Auto-Scheduler (original) (raw)

// Halide tutorial lesson 21: Auto-Scheduler

// So far we have written Halide schedules by hand, but it is also possible to // ask Halide to suggest a reasonable schedule. We call this auto-scheduling. // This lesson demonstrates how to use the autoscheduler to generate a // copy-pasteable CPU schedule that can be subsequently improved upon.

// On linux or os x, you can compile and run it like so:

// g++ lesson_21_auto_scheduler_generate.cpp <path/to/tools/halide_image_io.h>/GenGen.cpp -g -std=c++17 -fno-rtti -I <path/to/Halide.h> -L <path/to/libHalide.so> -lHalide -lpthread -ldl -o lesson_21_generate // export LD_LIBRARY_PATH=<path/to/libHalide.so> # For linux // export DYLD_LIBRARY_PATH=<path/to/libHalide.dylib> # For OS X // ./lesson_21_generate -o . -g auto_schedule_gen -f auto_schedule_false -e static_library,h,schedule target=host auto_schedule=false // ./lesson_21_generate -o . -g auto_schedule_gen -f auto_schedule_true -e static_library,h,schedule -p <path/to/libautoschedule_mullapudi2016.so> -S Mullapudi2016 target=host autoscheduler=Mullapudi2016 autoscheduler.parallelism=32 autoscheduler.last_level_cache_size=16777216 autoscheduler.balance=40 // g++ lesson_21_auto_scheduler_run.cpp -std=c++17 -I <path/to/Halide.h> -I <path/to/tools/halide_image_io.h> auto_schedule_false.a auto_schedule_true.a -ldl -lpthread -o lesson_21_run // ./lesson_21_run

// If you have the entire Halide source tree, you can also build it by // running: // make tutorial_lesson_21_auto_scheduler_run // in a shell with the current directory at the top of the halide // source tree.

#include "Halide.h" #include <stdio.h>

using namespace Halide;

// We will define a generator to auto-schedule. class AutoScheduled : public Halide::Generator { public: Input<Buffer<float, 3>> input{"input"}; Input factor{"factor"};

Output<Buffer<float, 2>> output1{"output1"};
Output<Buffer<float, 2>> output2{"output2"};

Expr sum3x3(Func f, Var x, Var y) {
    return f(x - 1, y - 1) + f(x - 1, y) + f(x - 1, y + 1) +
           f(x, y - 1) + f(x, y) + f(x, y + 1) +
           f(x + 1, y - 1) + f(x + 1, y) + f(x + 1, y + 1);
}

void generate() {
    // For our algorithm, we'll use Harris corner detection.
    Func in_b = BoundaryConditions::repeat_edge(input);

    gray(x, y) = 0.299f * in_b(x, y, 0) + 0.587f * in_b(x, y, 1) + 0.114f * in_b(x, y, 2);

    Iy(x, y) = gray(x - 1, y - 1) * (-1.0f / 12) + gray(x - 1, y + 1) * (1.0f / 12) +
               gray(x, y - 1) * (-2.0f / 12) + gray(x, y + 1) * (2.0f / 12) +
               gray(x + 1, y - 1) * (-1.0f / 12) + gray(x + 1, y + 1) * (1.0f / 12);

    Ix(x, y) = gray(x - 1, y - 1) * (-1.0f / 12) + gray(x + 1, y - 1) * (1.0f / 12) +
               gray(x - 1, y) * (-2.0f / 12) + gray(x + 1, y) * (2.0f / 12) +
               gray(x - 1, y + 1) * (-1.0f / 12) + gray(x + 1, y + 1) * (1.0f / 12);

    Ixx(x, y) = Ix(x, y) * Ix(x, y);
    Iyy(x, y) = Iy(x, y) * Iy(x, y);
    Ixy(x, y) = Ix(x, y) * Iy(x, y);
    Sxx(x, y) = sum3x3(Ixx, x, y);
    Syy(x, y) = sum3x3(Iyy, x, y);
    Sxy(x, y) = sum3x3(Ixy, x, y);
    det(x, y) = Sxx(x, y) * Syy(x, y) - Sxy(x, y) * Sxy(x, y);
    trace(x, y) = Sxx(x, y) + Syy(x, y);
    harris(x, y) = det(x, y) - 0.04f * trace(x, y) * trace(x, y);
    output1(x, y) = harris(x, y);
    output2(x, y) = factor * harris(x, y);
}

void schedule() {
    if (using_autoscheduler()) {
        // The autoscheduler requires estimates on all the input/output
        // sizes and parameter values in order to compare different
        // alternatives and decide on a good schedule.

        // To provide estimates (min and extent values) for each dimension
        // of the input images ('input', 'filter', and 'bias'), we use the
        // set_estimates() method. set_estimates() takes in a list of
        // (min, extent) of the corresponding dimension as arguments.
        input.set_estimates({{0, 1024}, {0, 1024}, {0, 3}});

        // To provide estimates on the parameter values, we use the
        // set_estimate() method.
        factor.set_estimate(2.0f);

        // To provide estimates (min and extent values) for each dimension
        // of pipeline outputs, we use the set_estimates() method. set_estimates()
        // takes in a list of (min, extent) for each dimension.
        output1.set_estimates({{0, 1024}, {0, 1024}});
        output2.set_estimates({{0, 1024}, {0, 1024}});

        // Technically, the estimate values can be anything, but the closer
        // they are to the actual use-case values, the better the generated
        // schedule will be.

        // To auto-schedule the pipeline, we don't have to do anything else:
        // every Generator implicitly has a GeneratorParam named "auto_scheduler.name";
        // if this is set to the name of the Autoscheduler we want to use, Halide will
        // apply it to all of our pipeline's outputs automatically.

        // Every Generator also implicitly has additional, optional GeneratorParams that are
        // dependent on the specific Autoscheduler select, which allows you to specify
        // characteristics of the machine architecture
        // for the autoscheduler; it's generally specified in your Makefile.
        // If none is specified, the default machine parameters for a generic CPU
        // architecture will be used by the autoscheduler.

        // Let's see some arbitrary but plausible values for the machine parameters
        // for the Mullapudi2016 Autoscheduler:
        //
        //      autoscheduler=Mullapudi2016
        //      autoscheduler.parallelism=32
        //      autoscheduler.last_level_cache_size=16777216
        //      autoscheduler.balance=40
        //
        // These are the maximum level of parallelism
        // available, the size of the last-level cache (in bytes), and the ratio
        // between the cost of a miss at the last level cache and the cost
        // of arithmetic on the target architecture, in that order.

        // Note that when using the autoscheduler, no schedule should have
        // been applied to the pipeline; otherwise, the autoscheduler will
        // throw an error. The current autoscheduler cannot handle a
        // partially-scheduled pipeline.

        // If HL_DEBUG_CODEGEN is set to 3 or greater, the schedule will be dumped
        // to stdout (along with much other information); a more useful way is
        // to add "schedule" to the -e flag to the Generator. (In CMake and Bazel,
        // this is done using the "extra_outputs" flag.)

        // The generated schedule that is dumped to file is an actual
        // Halide C++ source, which is readily copy-pasteable back into
        // this very same source file with few modifications. Programmers
        // can use this as a starting schedule and iteratively improve the
        // schedule. Note that the current autoscheduler is only able to
        // generate CPU schedules and only does tiling, simple vectorization
        // and parallelization. It doesn't deal with line buffering, storage
        // reordering, or factoring reductions.

        // At the time of writing, the autoscheduler will produce the
        // following schedule for the estimates and machine parameters
        // declared above when run on this pipeline:
        //
        // Var x_i("x_i");
        // Var x_i_vi("x_i_vi");
        // Var x_i_vo("x_i_vo");
        // Var x_o("x_o");
        // Var x_vi("x_vi");
        // Var x_vo("x_vo");
        // Var y_i("y_i");
        // Var y_o("y_o");
        //
        // Func Ix = pipeline.get_func(4);
        // Func Iy = pipeline.get_func(7);
        // Func gray = pipeline.get_func(3);
        // Func harris = pipeline.get_func(14);
        // Func output1 = pipeline.get_func(15);
        // Func output2 = pipeline.get_func(16);
        //
        // {
        //     Var x = Ix.args()[0];
        //     Ix
        //         .compute_at(harris, x_o)
        //         .split(x, x_vo, x_vi, 8)
        //         .vectorize(x_vi);
        // }
        // {
        //     Var x = Iy.args()[0];
        //     Iy
        //         .compute_at(harris, x_o)
        //         .split(x, x_vo, x_vi, 8)
        //         .vectorize(x_vi);
        // }
        // {
        //     Var x = gray.args()[0];
        //     gray
        //         .compute_at(harris, x_o)
        //         .split(x, x_vo, x_vi, 8)
        //         .vectorize(x_vi);
        // }
        // {
        //     Var x = harris.args()[0];
        //     Var y = harris.args()[1];
        //     harris
        //         .compute_root()
        //         .split(x, x_o, x_i, 256)
        //         .split(y, y_o, y_i, 128)
        //         .reorder(x_i, y_i, x_o, y_o)
        //         .split(x_i, x_i_vo, x_i_vi, 8)
        //         .vectorize(x_i_vi)
        //         .parallel(y_o)
        //         .parallel(x_o);
        // }
        // {
        //     Var x = output1.args()[0];
        //     Var y = output1.args()[1];
        //     output1
        //         .compute_root()
        //         .split(x, x_vo, x_vi, 8)
        //         .vectorize(x_vi)
        //         .parallel(y);
        // }
        // {
        //     Var x = output2.args()[0];
        //     Var y = output2.args()[1];
        //     output2
        //         .compute_root()
        //         .split(x, x_vo, x_vi, 8)
        //         .vectorize(x_vi)
        //         .parallel(y);
        // }

    } else {
        // This is where you would declare the schedule you have written by
        // hand or paste the schedule generated by the autoscheduler.
        // We will use a naive schedule here to compare the performance of
        // the autoschedule with a basic schedule.
        gray.compute_root();
        Iy.compute_root();
        Ix.compute_root();
    }
}

private: Var x{"x"}, y{"y"}, c{"c"}; Func gray, Iy, Ix, Ixx, Iyy, Ixy, Sxx, Syy, Sxy, det, trace, harris; };

// As in lesson 15, we register our generator and then compile this // file along with tools/GenGen.cpp. HALIDE_REGISTER_GENERATOR(AutoScheduled, auto_schedule_gen)

// After compiling this file, see how to use it in // lesson_21_auto_scheduler_run.cpp