cpython: 96d817f41c4c Modules/_posixsubprocess.c (original) (raw)
line wrap: on
line source
/* Authors: Gregory P. Smith & Jeffrey Yasskin */ #include "Python.h" #if defined(HAVE_PIPE2) && !defined(_GNU_SOURCE)
define _GNU_SOURCE
#endif #include <unistd.h> #include <fcntl.h> #ifdef HAVE_SYS_TYPES_H #include <sys/types.h> #endif #if defined(HAVE_SYS_STAT_H) && defined(FreeBSD) #include <sys/stat.h> #endif #ifdef HAVE_SYS_SYSCALL_H #include <sys/syscall.h> #endif #ifdef HAVE_DIRENT_H #include <dirent.h> #endif #if defined(sun) /* readdir64 is used to work around Solaris 9 bug 6395699. */
define readdir readdir64
define dirent dirent64
if !defined(HAVE_DIRFD)
/* Some versions of Solaris lack dirfd(). */
define dirfd(dirp) ((dirp)->dd_fd)
define HAVE_DIRFD
endif
#endif #if defined(FreeBSD) || (defined(APPLE) && defined(MACH))
define FD_DIR "/dev/fd"
define FD_DIR "/proc/self/fd"
#endif #define POSIX_CALL(call) if ((call) == -1) goto error /* Maximum file descriptor, initialized on module load. / static long max_fd; / Given the gc module call gc.enable() and return 0 on success. */ static int _enable_gc(PyObject *gc_module) { PyObject result; _Py_IDENTIFIER(enable); result = _PyObject_CallMethodId(gc_module, &PyId_enable, NULL); if (result == NULL) return 1; Py_DECREF(result); return 0; } / Convert ASCII to a positive int, no libc call. no overflow. -1 on error. */ static int _pos_int_from_ascii(char *name) { int num = 0; while (*name >= '0' && *name <= '9') { num = num * 10 + (*name - '0'); ++name; } if (name) return -1; / Non digit found, not a number. / return num; } #if defined(FreeBSD) / When /dev/fd isn't mounted it is often a static directory populated
- with 0 1 2 or entries for 0 .. 63 on FreeBSD, NetBSD and OpenBSD.
- NetBSD and OpenBSD have a /proc fs available (though not necessarily
- mounted) and do not have fdescfs for /dev/fd. MacOS X has a devfs
- that properly supports /dev/fd. / static int _is_fdescfs_mounted_on_dev_fd(void) { struct stat dev_stat; struct stat dev_fd_stat; if (stat("/dev", &dev_stat) != 0) return 0; if (stat(FD_DIR, &dev_fd_stat) != 0) return 0; if (dev_stat.st_dev == dev_fd_stat.st_dev) return 0; / / == /dev == /dev/fd means it is static. #fail */ return 1; }
#endif /* Returns 1 if there is a problem with fd_sequence, 0 otherwise. */ static int _sanity_check_python_fd_sequence(PyObject fd_sequence) { Py_ssize_t seq_idx, seq_len = PySequence_Length(fd_sequence); long prev_fd = -1; for (seq_idx = 0; seq_idx < seq_len; ++seq_idx) { PyObject* py_fd = PySequence_Fast_GET_ITEM(fd_sequence, seq_idx); long iter_fd = PyLong_AsLong(py_fd); if (iter_fd < 0 || iter_fd < prev_fd || iter_fd > INT_MAX) { / Negative, overflow, not a Long, unsorted, too big for a fd. / return 1; } } return 0; } / Is fd found in the sorted Python Sequence? */ static int _is_fd_in_sorted_fd_sequence(int fd, PyObject fd_sequence) { / Binary search. / Py_ssize_t search_min = 0; Py_ssize_t search_max = PySequence_Length(fd_sequence) - 1; if (search_max < 0) return 0; do { long middle = (search_min + search_max) / 2; long middle_fd = PyLong_AsLong( PySequence_Fast_GET_ITEM(fd_sequence, middle)); if (fd == middle_fd) return 1; if (fd > middle_fd) search_min = middle + 1; else search_max = middle - 1; } while (search_min <= search_max); return 0; } / Close all file descriptors in the range start_fd inclusive to
- end_fd exclusive except for those in py_fds_to_keep. If the
- range defined by [start_fd, end_fd) is large this will take a
- long time as it calls close() on EVERY possible fd.
*/
static void
_close_fds_by_brute_force(int start_fd, int end_fd, PyObject py_fds_to_keep)
{
Py_ssize_t num_fds_to_keep = PySequence_Length(py_fds_to_keep);
Py_ssize_t keep_seq_idx;
int fd_num;
/ As py_fds_to_keep is sorted we can loop through the list closing
- fds inbetween any in the keep list falling within our range. / for (keep_seq_idx = 0; keep_seq_idx < num_fds_to_keep; ++keep_seq_idx) { PyObject py_keep_fd = PySequence_Fast_GET_ITEM(py_fds_to_keep, keep_seq_idx); int keep_fd = PyLong_AsLong(py_keep_fd); if (keep_fd < start_fd) continue; for (fd_num = start_fd; fd_num < keep_fd; ++fd_num) { while (close(fd_num) < 0 && errno == EINTR); } start_fd = keep_fd + 1; } if (start_fd <= end_fd) { for (fd_num = start_fd; fd_num < end_fd; ++fd_num) { while (close(fd_num) < 0 && errno == EINTR); } } }
#if defined(linux) && defined(HAVE_SYS_SYSCALL_H) /* It doesn't matter if d_name has room for NAME_MAX chars; we're using this
- only to read a directory of short file descriptor number names. The kernel
- will return an error if we didn't give it enough space. Highly Unlikely.
- This structure is very old and stable: It will not change unless the kernel
- chooses to break compatibility with all existing binaries. Highly Unlikely. / struct linux_dirent64 { unsigned long long d_ino; long long d_off; unsigned short d_reclen; / Length of this linux_dirent / unsigned char d_type; char d_name[256]; / Filename (null-terminated) */ };
/* Close all open file descriptors in the range start_fd inclusive to end_fd
- exclusive. Do not close any in the sorted py_fds_to_keep list. *
- This version is async signal safe as it does not make any unsafe C library
- calls, malloc calls or handle any locks. It is unfortunate to be forced
- to resort to making a kernel system call directly but this is the ONLY api
- available that does no harm. opendir/readdir/closedir perform memory
- allocation and locking so while they usually work they are not guaranteed
- to (especially if you have replaced your malloc implementation). A version
- of this function that uses those can be found in the _maybe_unsafe variant. *
- This is Linux specific because that is all I am ready to test it on. It
- should be easy to add OS specific dirent or dirent64 structures and modify
- it with some cpp #define magic to work on other OSes as well if you want. / static void _close_open_fd_range_safe(int start_fd, int end_fd, PyObject py_fds_to_keep) { int fd_dir_fd; if (start_fd >= end_fd) return;
#ifdef O_CLOEXEC fd_dir_fd = open(FD_DIR, O_RDONLY | O_CLOEXEC, 0); #else fd_dir_fd = open(FD_DIR, O_RDONLY, 0); #ifdef FD_CLOEXEC { int old = fcntl(fd_dir_fd, F_GETFD); if (old != -1) fcntl(fd_dir_fd, F_SETFD, old | FD_CLOEXEC); } #endif #endif if (fd_dir_fd == -1) { /* No way to get a list of open fds. */ _close_fds_by_brute_force(start_fd, end_fd, py_fds_to_keep); return; } else { char buffer[sizeof(struct linux_dirent64)]; int bytes; while ((bytes = syscall(SYS_getdents64, fd_dir_fd, (struct linux_dirent64 *)buffer, sizeof(buffer))) > 0) { struct linux_dirent64 *entry; int offset; for (offset = 0; offset < bytes; offset += entry->d_reclen) { int fd; entry = (struct linux_dirent64 )(buffer + offset); if ((fd = _pos_int_from_ascii(entry->d_name)) < 0) continue; /* Not a number. */ if (fd != fd_dir_fd && fd >= start_fd && fd < end_fd && !_is_fd_in_sorted_fd_sequence(fd, py_fds_to_keep)) { while (close(fd) < 0 && errno == EINTR); } } } close(fd_dir_fd); } } #define _close_open_fd_range _close_open_fd_range_safe #else / NOT (defined(linux) && defined(HAVE_SYS_SYSCALL_H)) / / Close all open file descriptors in the range start_fd inclusive to end_fd
- exclusive. Do not close any in the sorted py_fds_to_keep list. *
- This function violates the strict use of async signal safe functions. :(
- It calls opendir(), readdir() and closedir(). Of these, the one most
- likely to ever cause a problem is opendir() as it performs an internal
- malloc(). Practically this should not be a problem. The Java VM makes the
- same calls between fork and exec in its own UNIXProcess_md.c implementation. *
- readdir_r() is not used because it provides no benefit. It is typically
- implemented as readdir() followed by memcpy(). See also:
- http://womble.decadent.org.uk/readdir_r-advisory.html[](#l263) / static void _close_open_fd_range_maybe_unsafe(int start_fd, int end_fd, PyObject py_fds_to_keep)
{ DIR proc_fd_dir; #ifndef HAVE_DIRFD while (_is_fd_in_sorted_fd_sequence(start_fd, py_fds_to_keep) && (start_fd < end_fd)) { ++start_fd; } if (start_fd >= end_fd) return; / Close our lowest fd before we call opendir so that it is likely to * reuse that fd otherwise we might close opendir's file descriptor in * our loop. This trick assumes that fd's are allocated on a lowest * available basis. / while (close(start_fd) < 0 && errno == EINTR); ++start_fd; #endif if (start_fd >= end_fd) return; #if defined(FreeBSD) if (!_is_fdescfs_mounted_on_dev_fd()) proc_fd_dir = NULL; else #endif proc_fd_dir = opendir(FD_DIR); if (!proc_fd_dir) { / No way to get a list of open fds. */ _close_fds_by_brute_force(start_fd, end_fd, py_fds_to_keep); } else { struct dirent dir_entry; #ifdef HAVE_DIRFD int fd_used_by_opendir = dirfd(proc_fd_dir); #else int fd_used_by_opendir = start_fd - 1; #endif errno = 0; while ((dir_entry = readdir(proc_fd_dir))) { int fd; if ((fd = _pos_int_from_ascii(dir_entry->d_name)) < 0) continue; /* Not a number. */ if (fd != fd_used_by_opendir && fd >= start_fd && fd < end_fd && !_is_fd_in_sorted_fd_sequence(fd, py_fds_to_keep)) { while (close(fd) < 0 && errno == EINTR); } errno = 0; } if (errno) { / readdir error, revert behavior. Highly Unlikely. / _close_fds_by_brute_force(start_fd, end_fd, py_fds_to_keep); } closedir(proc_fd_dir); } } #define _close_open_fd_range _close_open_fd_range_maybe_unsafe #endif / else NOT (defined(linux) && defined(HAVE_SYS_SYSCALL_H)) / /
- This function is code executed in the child process immediately after fork
- to set things up and call exec(). *
- All of the code in this function must only use async-signal-safe functions,
- listed at
man 7 signal
or - http://www.opengroup.org/onlinepubs/009695399/functions/xsh_chap02_04.html.[](#l333) *
- This restriction is documented at
- http://www.opengroup.org/onlinepubs/009695399/functions/fork.html.[](#l336) */ static void child_exec(char *const exec_array[], char *const argv[], char *const envp[], const char *cwd, int p2cread, int p2cwrite, int c2pread, int c2pwrite, int errread, int errwrite, int errpipe_read, int errpipe_write, int close_fds, int restore_signals, int call_setsid, PyObject *py_fds_to_keep, PyObject *preexec_fn, PyObject *preexec_fn_args_tuple)
{
int i, saved_errno, unused, reached_preexec = 0;
PyObject result;
const char err_msg = "";
/* Buffer large enough to hold a hex integer. We can't malloc. */
char hex_errno[sizeof(saved_errno)2+1];
/ Close parent's pipe ends. /
if (p2cwrite != -1) {
POSIX_CALL(close(p2cwrite));
}
if (c2pread != -1) {
POSIX_CALL(close(c2pread));
}
if (errread != -1) {
POSIX_CALL(close(errread));
}
POSIX_CALL(close(errpipe_read));
/ When duping fds, if there arises a situation where one of the fds is
either 0, 1 or 2, it is possible that it is overwritten (#12607). /
if (c2pwrite == 0)
POSIX_CALL(c2pwrite = dup(c2pwrite));
if (errwrite == 0 || errwrite == 1)
POSIX_CALL(errwrite = dup(errwrite));
/ Dup fds for child.
dup2() removes the CLOEXEC flag but we must do it ourselves if dup2()
would be a no-op (issue #10806). /
if (p2cread == 0) {
int old = fcntl(p2cread, F_GETFD);
if (old != -1)
fcntl(p2cread, F_SETFD, old & ~FD_CLOEXEC);
} else if (p2cread != -1) {
POSIX_CALL(dup2(p2cread, 0)); / stdin /
}
if (c2pwrite == 1) {
int old = fcntl(c2pwrite, F_GETFD);
if (old != -1)
fcntl(c2pwrite, F_SETFD, old & ~FD_CLOEXEC);
} else if (c2pwrite != -1) {
POSIX_CALL(dup2(c2pwrite, 1)); / stdout /
}
if (errwrite == 2) {
int old = fcntl(errwrite, F_GETFD);
if (old != -1)
fcntl(errwrite, F_SETFD, old & ~FD_CLOEXEC);
} else if (errwrite != -1) {
POSIX_CALL(dup2(errwrite, 2)); / stderr /
}
/ Close pipe fds. Make sure we don't close the same fd more than /
/ once, or standard fds. */
if (p2cread > 2) {
POSIX_CALL(close(p2cread));
}
if (c2pwrite > 2 && c2pwrite != p2cread) {
POSIX_CALL(close(c2pwrite));
}
if (errwrite != c2pwrite && errwrite != p2cread && errwrite > 2) {
POSIX_CALL(close(errwrite));
}
if (close_fds) {
int local_max_fd = max_fd;
#if defined(NetBSD)
local_max_fd = fcntl(0, F_MAXFD);
if (local_max_fd < 0)
local_max_fd = max_fd;
#endif
/* TODO HP-UX could use pstat_getproc() if anyone cares about it. */
_close_open_fd_range(3, local_max_fd, py_fds_to_keep);
}
if (cwd)
POSIX_CALL(chdir(cwd));
if (restore_signals)
_Py_RestoreSignals();
#ifdef HAVE_SETSID
if (call_setsid)
POSIX_CALL(setsid());
#endif
reached_preexec = 1;
if (preexec_fn != Py_None && preexec_fn_args_tuple) {
/* This is where the user has asked us to deadlock their program. */
result = PyObject_Call(preexec_fn, preexec_fn_args_tuple, NULL);
if (result == NULL) {
/* Stringifying the exception or traceback would involve
* memory allocation and thus potential for deadlock.
* We've already faced potential deadlock by calling back
* into Python in the first place, so it probably doesn't
* matter but we avoid it to minimize the possibility. */
err_msg = "Exception occurred in preexec_fn.";
errno = 0; /* We don't want to report an OSError. */
goto error;
}
/* Py_DECREF(result); - We're about to exec so why bother? */
}
/* This loop matches the Lib/os.py _execvpe()'s PATH search when */
/* given the executable_list generated by Lib/subprocess.py. */
saved_errno = 0;
for (i = 0; exec_array[i] != NULL; ++i) {
const char *executable = exec_array[i];
if (envp) {
execve(executable, argv, envp);
} else {
execv(executable, argv);
}
if (errno != ENOENT && errno != ENOTDIR && saved_errno == 0) {
saved_errno = errno;
}
}
/* Report the first exec error, not the last. */
if (saved_errno)
errno = saved_errno;
error:
saved_errno = errno;
/* Report the posix error to our parent process. */
/* We ignore all write() return values as the total size of our writes is
* less than PIPEBUF and we cannot do anything about an error anyways. */
if (saved_errno) {
char *cur;
unused = write(errpipe_write, "OSError:", 8);
cur = hex_errno + sizeof(hex_errno);
while (saved_errno != 0 && cur > hex_errno) {
--cur = "0123456789ABCDEF"[saved_errno % 16];
saved_errno /= 16;
}
unused = write(errpipe_write, cur, hex_errno + sizeof(hex_errno) - cur);
unused = write(errpipe_write, ":", 1);
if (!reached_preexec) {
/ Indicate to the parent that the error happened before exec(). /
unused = write(errpipe_write, "noexec", 6);
}
/ We can't call strerror(saved_errno). It is not async signal safe.
* The parent process will look the error message up. /
} else {
unused = write(errpipe_write, "SubprocessError:0:", 18);
unused = write(errpipe_write, err_msg, strlen(err_msg));
}
if (unused) return; / silly? yes! avoids gcc compiler warning. */
}
static PyObject
subprocess_fork_exec(PyObject self, PyObject *args)
{
PyObject *gc_module = NULL;
PyObject *executable_list, *py_fds_to_keep;
PyObject *env_list, *preexec_fn;
PyObject *process_args, *converted_args = NULL, *fast_args = NULL;
PyObject *preexec_fn_args_tuple = NULL;
int p2cread, p2cwrite, c2pread, c2pwrite, errread, errwrite;
int errpipe_read, errpipe_write, close_fds, restore_signals;
int call_setsid;
PyObject *cwd_obj, *cwd_obj2;
const char *cwd;
pid_t pid;
int need_to_reenable_gc = 0;
char *const *exec_array, *const *argv = NULL, *const *envp = NULL;
Py_ssize_t arg_num;
if (!PyArg_ParseTuple(
args, "OOpOOOiiiiiiiiiiO:fork_exec",
&process_args, &executable_list, &close_fds, &py_fds_to_keep,
&cwd_obj, &env_list,
&p2cread, &p2cwrite, &c2pread, &c2pwrite,
&errread, &errwrite, &errpipe_read, &errpipe_write,
&restore_signals, &call_setsid, &preexec_fn))
return NULL;
if (close_fds && errpipe_write < 3) { /* precondition */
PyErr_SetString(PyExc_ValueError, "errpipe_write must be >= 3");
return NULL;
}
if (PySequence_Length(py_fds_to_keep) < 0) {
PyErr_SetString(PyExc_ValueError, "cannot get length of fds_to_keep");
return NULL;
}
if (_sanity_check_python_fd_sequence(py_fds_to_keep)) {
PyErr_SetString(PyExc_ValueError, "bad value(s) in fds_to_keep");
return NULL;
}
/* We need to call gc.disable() when we'll be calling preexec_fn */
if (preexec_fn != Py_None) {
PyObject *result;
_Py_IDENTIFIER(isenabled);
_Py_IDENTIFIER(disable);
gc_module = PyImport_ImportModule("gc");
if (gc_module == NULL)
return NULL;
result = _PyObject_CallMethodId(gc_module, &PyId_isenabled, NULL);
if (result == NULL) {
Py_DECREF(gc_module);
return NULL;
}
need_to_reenable_gc = PyObject_IsTrue(result);
Py_DECREF(result);
if (need_to_reenable_gc == -1) {
Py_DECREF(gc_module);
return NULL;
}
result = _PyObject_CallMethodId(gc_module, &PyId_disable, NULL);
if (result == NULL) {
Py_DECREF(gc_module);
return NULL;
}
Py_DECREF(result);
}
exec_array = _PySequence_BytesToCharpArray(executable_list);
if (!exec_array) {
Py_XDECREF(gc_module);
return NULL;
}
/* Convert args and env into appropriate arguments for exec() */
/* These conversions are done in the parent process to avoid allocating
or freeing memory in the child process. */
if (process_args != Py_None) {
Py_ssize_t num_args;
/* Equivalent to: */
/* tuple(PyUnicode_FSConverter(arg) for arg in process_args) */
fast_args = PySequence_Fast(process_args, "argv must be a tuple");
if (fast_args == NULL)
goto cleanup;
num_args = PySequence_Fast_GET_SIZE(fast_args);
converted_args = PyTuple_New(num_args);
if (converted_args == NULL)
goto cleanup;
for (arg_num = 0; arg_num < num_args; ++arg_num) {
PyObject *borrowed_arg, *converted_arg;
borrowed_arg = PySequence_Fast_GET_ITEM(fast_args, arg_num);
if (PyUnicode_FSConverter(borrowed_arg, &converted_arg) == 0)
goto cleanup;
PyTuple_SET_ITEM(converted_args, arg_num, converted_arg);
}
argv = _PySequence_BytesToCharpArray(converted_args);
Py_CLEAR(converted_args);
Py_CLEAR(fast_args);
if (!argv)
goto cleanup;
}
if (env_list != Py_None) {
envp = _PySequence_BytesToCharpArray(env_list);
if (!envp)
goto cleanup;
}
if (preexec_fn != Py_None) {
preexec_fn_args_tuple = PyTuple_New(0);
if (!preexec_fn_args_tuple)
goto cleanup;
_PyImport_AcquireLock();
}
if (cwd_obj != Py_None) {
if (PyUnicode_FSConverter(cwd_obj, &cwd_obj2) == 0)
goto cleanup;
cwd = PyBytes_AsString(cwd_obj2);
} else {
cwd = NULL;
cwd_obj2 = NULL;
}
pid = fork();
if (pid == 0) {
/* Child process */
/*
* Code from here to _exit() must only use async-signal-safe functions,
* listed at man 7 signal
or
* http://www.opengroup.org/onlinepubs/009695399/functions/xsh_chap02_04.html.[](#l632)
*/
if (preexec_fn != Py_None) {
/* We'll be calling back into Python later so we need to do this.
* This call may not be async-signal-safe but neither is calling
* back into Python. The user asked us to use hope as a strategy
* to avoid deadlock... */
PyOS_AfterFork();
}
child_exec(exec_array, argv, envp, cwd,
p2cread, p2cwrite, c2pread, c2pwrite,
errread, errwrite, errpipe_read, errpipe_write,
close_fds, restore_signals, call_setsid,
py_fds_to_keep, preexec_fn, preexec_fn_args_tuple);
_exit(255);
return NULL; /* Dead code to avoid a potential compiler warning. */
}
Py_XDECREF(cwd_obj2);
if (pid == -1) {
/* Capture the errno exception before errno can be clobbered. */
PyErr_SetFromErrno(PyExc_OSError);
}
if (preexec_fn != Py_None &&
_PyImport_ReleaseLock() < 0 && !PyErr_Occurred()) {
PyErr_SetString(PyExc_RuntimeError,
"not holding the import lock");
}
/* Parent process */
if (envp)
_Py_FreeCharPArray(envp);
if (argv)
_Py_FreeCharPArray(argv);
_Py_FreeCharPArray(exec_array);
/* Reenable gc in the parent process (or if fork failed). */
if (need_to_reenable_gc && _enable_gc(gc_module)) {
Py_XDECREF(gc_module);
return NULL;
}
Py_XDECREF(preexec_fn_args_tuple);
Py_XDECREF(gc_module);
if (pid == -1)
return NULL; /* fork() failed. Exception set earlier. */
return PyLong_FromPid(pid);
cleanup:
if (envp)
_Py_FreeCharPArray(envp);
if (argv)
_Py_FreeCharPArray(argv);
_Py_FreeCharPArray(exec_array);
Py_XDECREF(converted_args);
Py_XDECREF(fast_args);
Py_XDECREF(preexec_fn_args_tuple);
/* Reenable gc if it was disabled. */
if (need_to_reenable_gc)
_enable_gc(gc_module);
Py_XDECREF(gc_module);
return NULL;
}
PyDoc_STRVAR(subprocess_fork_exec_doc,
"fork_exec(args, executable_list, close_fds, cwd, env,\n[](#l702)
p2cread, p2cwrite, c2pread, c2pwrite,\n[](#l703)
errread, errwrite, errpipe_read, errpipe_write,\n[](#l704)
restore_signals, call_setsid, preexec_fn)\n[](#l705)
\n[](#l706)
Forks a child process, closes parent file descriptors as appropriate in the\n[](#l707)
child and dups the few that are needed before calling exec() in the child\n[](#l708)
process.\n[](#l709)
\n[](#l710)
The preexec_fn, if supplied, will be called immediately before exec.\n[](#l711)
WARNING: preexec_fn is NOT SAFE if your application uses threads.\n[](#l712)
It may trigger infrequent, difficult to debug deadlocks.\n[](#l713)
\n[](#l714)
If an error occurs in the child process before the exec, it is\n[](#l715)
serialized and written to the errpipe_write fd per subprocess.py.\n[](#l716)
\n[](#l717)
Returns: the child process's PID.\n[](#l718)
\n[](#l719)
Raises: Only on an error in the parent process.\n[](#l720)
");
PyDoc_STRVAR(subprocess_cloexec_pipe_doc,
"cloexec_pipe() -> (read_end, write_end)\n\n[](#l724)
Create a pipe whose ends have the cloexec flag set.");
static PyObject *
subprocess_cloexec_pipe(PyObject *self, PyObject noargs)
{
int fds[2];
int res;
#ifdef HAVE_PIPE2
Py_BEGIN_ALLOW_THREADS
res = pipe2(fds, O_CLOEXEC);
Py_END_ALLOW_THREADS
if (res != 0 && errno == ENOSYS)
{
{
#endif
/ We hold the GIL which offers some protection from other code calling
* fork() before the CLOEXEC flags have been set but we can't guarantee
* anything without pipe2(). /
long oldflags;
res = pipe(fds);
if (res == 0) {
oldflags = fcntl(fds[0], F_GETFD, 0);
if (oldflags < 0) res = oldflags;
}
if (res == 0)
res = fcntl(fds[0], F_SETFD, oldflags | FD_CLOEXEC);
if (res == 0) {
oldflags = fcntl(fds[1], F_GETFD, 0);
if (oldflags < 0) res = oldflags;
}
if (res == 0)
res = fcntl(fds[1], F_SETFD, oldflags | FD_CLOEXEC);
#ifdef HAVE_PIPE2
}
}
#endif
if (res != 0)
return PyErr_SetFromErrno(PyExc_OSError);
return Py_BuildValue("(ii)", fds[0], fds[1]);
}
/ module level code ********************************************************/
PyDoc_STRVAR(module_doc,
"A POSIX helper for the subprocess module.");
static PyMethodDef module_methods[] = {
{"fork_exec", subprocess_fork_exec, METH_VARARGS, subprocess_fork_exec_doc},
{"cloexec_pipe", subprocess_cloexec_pipe, METH_NOARGS, subprocess_cloexec_pipe_doc},
{NULL, NULL} /* sentinel /
};
static struct PyModuleDef _posixsubprocessmodule = {
PyModuleDef_HEAD_INIT,
"_posixsubprocess",
module_doc,
-1, / No memory is needed. /
module_methods,
};
PyMODINIT_FUNC
PyInit__posixsubprocess(void)
{
#ifdef _SC_OPEN_MAX
max_fd = sysconf(_SC_OPEN_MAX);
if (max_fd == -1)
#endif
max_fd = 256; / Matches Lib/subprocess.py */
return PyModule_Create(&_posixsubprocessmodule);
}