Laboratory for Intelligent Probabilistic Systems (original) (raw)

We are a research group working on both core methods in machine learning and artificial intelligence, as well as collaborative applications across science and engineering. Some of the topics we're interested in include

Recent Publications

  1. Mirramezani, M., Oktay, D., & Adams, R. P. (2024). A rapid and automated computational approach to the design of multistable soft actuators. Computer Physics Communicationsn.[PDF]bibtex/details
  2. Novick, A., Cai, D., Nguyen, Q., Garnett, R., Adams, R. P., & Toberer, E. (2024). Probabilistic Prediction of Material Stability: Integrating Convex Hulls into Active Learning. ArXiv Preprint ArXiv:2402.15582.[PDF]bibtex/details
  3. Bordiga, G., Medina, E., Jafarzadeh, S., Boesch, C., Adams, R. P., Tournat, V., & Bertoldi, K. (2024). Automated discovery of reprogrammable nonlinear dynamic metamaterials. ArXiv Preprint ArXiv:2403.08078.[PDF]bibtex/details
  4. Liu, S., Ramadge, P. J., & Adams, R. P. (2024). Generative Marginalization Models. Proceedings of the 41st International Conference on Machine Learning (ICML).[PDF]bibtex/details
  5. Pastrana, R., Oktay, D., Adams, R. P., & Adriaenssens, S. (2023). JAX FDM: A differentiable solver for inverse form-finding. ArXiv Preprint ArXiv:2307.12407.[PDF]bibtex/details

Recent Blog Posts

Ari Seff · September 25, 2021 Vitruvion: A Generative Model of Parametric CAD Sketches

Geoffrey Roeder · September 28, 2020 Using 3D Printing to Develop Rapid-Response PPE Manufacturing

Ryan Adams · September 27, 2020 Video: Introduction to Convex Optimization

Ryan Adams · September 20, 2020 Video: Basics of Optimization

Ryan Adams · September 13, 2020 Video: Information Theory Basics

Current Collaborators

Funding