dbo:abstract
- Helmut Hasse lokális-globális elve, azaz a Hasse-elv az algebrai számelmélet területén az az elképzelés, mely szerint egy egyenlet egész megoldásai megtalálhatók oly módon, hogy a kínai maradéktétel segítségével összefűzzük a megoldásokat modulo minden prímszámhatványra nézve. Ez úgy történik, hogy megvizsgáljuk az egyenletet a racionális számok testének teljessé tételeire nézve, tehát a valós számokra és a p-adikus számokra minden p prímre. A Hasse-elv formálisabb verziójának megfogalmazása szerint bizonyos fajta egyenleteknek akkor és csak akkor van racionális megoldása, ha van megoldásuk a valós számokon és megoldhatók a p-adikus számokon minden p prímre. A lokális-globális elv teljesül például a származó egyenletekre, de nem teljesül a magasabb fokú, többhatározatlanú polinomokra. (hu)