A matematikában, differenciálegyenletek területén, a határérték probléma egy differenciálegyenlet egy sor korlátozással, amiket peremfeltételeknek nevezünk. A peremérték probléma megoldása a differenciálegyenlet azon megoldása, amely kielégíti a peremfeltételeket. A peremérték-problémák a fizika több ágában megjelennek, mint bármely más differenciálegyenlet. A fontos peremérték-problémák egyik tág osztálya a Sturm–Liouville problémák. Ahhoz, hogy egy peremérték-probléma hasznos legyen valamilyen alkalmazás során, ahhoz jól meg kell legyen határozva. Ez azt jelenti, hogy a bemeneti problémának csak egy megoldása van, ami folyamatosan függ a bemenettől. A parciális differenciálegyenletek terén végzet munkák bizonyítják, hogy a tudományos és mérnöki alkalmazásokból származó peremérték-problémák jól meg vannak határozva. A legelső tanulmányozott peremérték-probléma a Dirichlet-probléma, a harmonikus függvények (a megoldásai) megtalálása. (hu)