ハウスドルフのパラドックス (original) (raw)
ハウスドルフのパラドックス(英: Hausdorff paradox)とは、選択公理の仮定のもと、球面の逆説的な分解が存在することを主張した定理(疑似パラドックス)である。 つまり、選択公理を仮定すると、球面 K の分割 K = Q ∪ A ∪ B ∪ C であって、A, B, C, B ∪ C は互いに合同であり、Q は可算集合となるようなものが存在する。 いま、合同な図形に対して値が等しいような有限加法的測度が存在し、K の有限加法的測度が 1 であるとすると、A の測度は 1/2 にも 1/3 にもなり、矛盾が生じる。 この定理は、フェリックス・ハウスドルフにより、1914年に選択公理を使って証明され、『集合論基礎』(Grundzüge der Mengenlehre, Leipzig 1914) の巻末に採録された。フランスの数学者エミール・ボレルは、この結果を見て、選択公理に疑念を深めた。 また、1924年、ポーランドの数学者ステファン・バナッハ(バナフ)とアルフレト・タルスキは、ハウスドルフのパラドックスを援用して、バナッハ=タルスキーのパラドックスを証明した。