ブラーマグプタの定理 (original) (raw)

ブラーマグプタの定理(ブラーマグプタのていり、Brahmagupta theorem)は初等幾何学の定理である。円に内接する四角形で対角線が互いに垂直に交わるものについて、対角線の交点から一辺に向けて垂線を下ろしたとき、この線は反対側の辺を二等分する、ということを主張している。インドの数学者ブラーマグプタにちなんで名づけられた。 より具体的に言えば、A, B, C, D を円周上の4点で線分 AC と線分 BD が垂直に交わるものとし、線分 AC と線分 BD の交点を M とする。M から線分 BC に向けて下ろした垂線の足を E とし、F を直線 EM と線分 AD の交点を F とするとき、F は線分 AD の中点である、というのが定理の主張である。この内容は、日本の高等学校で習う初等幾何学に収録されている。

thumbnail