X線 (original) (raw)
出典: フリー百科事典『ウィキペディア(Wikipedia)』
この項目では、レントゲンが発見した放射線について説明しています。1897年の映画については「X線 (映画)」をご覧ください。 |
---|
レントゲンが1896年1月23日に撮影した手の透視画像。骨と指輪の部分が黒く写っている。
人間の胸部のX線画像
X線(エックスせん、英: X-ray)は、波長が1 pm - 10 nm程度の電磁波である。発見者であるヴィルヘルム・レントゲンの名をとってレントゲン線と呼ばれることもある。電磁波であるが放射線の一種でもあり、X線撮影、回折現象を利用した結晶構造の解析などに用いられる。呼称の由来は数学の“未知数”を表す「X」で、これもレントゲンの命名による。
1895年11月8日、ドイツのヴィルヘルム・レントゲンにより特定の波長域を持つ電磁波が発見され、X線として命名された[1]。この発見は当時直ちに大反響を呼び、X線の発生について理論的方向付けを与えようとしたポアンカレは1896年1月に、蛍光物質とX線の関連について予測を述べた。その予測に従い、翌月の2月にアンリ・ベクレルはウランを含む燐光体が現代からいえば放射性物質であることを発見[2]するなどX線の発見は原子核物理の端緒となった。
日本の法令上は片仮名を用いて「エックス線」若しくは「エツクス線」(ツを並字で表記する)と表記するのが原則となっている。
管理域シンボル
例えば、対陰極(陽極)として銅、モリブデン、タングステンなどの標的に、加速した電子ビーム(30 keV程度)を当て原子の1s軌道の電子を弾き飛ばす、すると空になった1s軌道に、より外側の軌道(2p、3p軌道など)から電子が遷移してくる。この遷移によって放出される電磁波がX線(特性X線)である[3]。この時、軌道のポテンシャルエネルギーの差で電磁波の波長が決まるので、どのような波長のX線でも出てくるわけではない。
加速電圧(管電圧)と電子流による電流(管電流)からくる消費電力の1 %程度だけがX線に転換される[3]。つまり電子線の電力の99 %が対陰極の金属塊を熱するということになるため、実験上冷却が重要である[3]。このような方法でX線を発生させる装置は、
がある。
電子を対陰極で急激に制動させたり、磁場により運動方向を変更したりするなどの加速度運動をするとX線が放射され(制動放射)[3]、制動X線と呼ばれる。特定のスペクトルを示さないので、白色X線と言われる。このような方法でX線を発生させる装置は
レーザーで高温のプラズマを発生させ、超短パルスのX線を発生させたり、X線レーザー発振の研究が行われている。
セロハンテープのロールを一定の速さではがすことによるもの。トライボ(摩擦)ルミネッセンスの一種であるが、X線の発生については2008年現在の摩擦学の理論では十分な説明ができない[4]。1950年代には旧ソ連の科学者たちが、セロハンテープロールをある速さではがすとエネルギースペクトルのX線の領域でパルスが発生することを突き止めていた。2008年にUCLA(米カリフォルニア大学ロサンゼルス校)のチームが、真空中でセロハンテープを秒速3 cmの速さで剥がすことでX線撮影が可能な強度のX線が発生したことを観測し、ネイチャー誌に発表した[4][5]。
強誘電体に電流を流す事で熱膨張・収縮する時に生じる高電圧(80 kV)により低圧~真空容器内の残留ガスに起因する電子が加速され、微小試料に衝突して試料に含まれる元素特有の特性X線が発生する[6]。百円ライターやガスコンロの着火に使用される圧電素子でも高電圧が発生してX線が発生する可能性がある[7]。
- 医療分野(診断用)でのX線撮影(レントゲン撮影)・CT
- 材料の内部の傷等の探索(非破壊検査)
- 物性物理学分野での結晶構造解析(X線回折)
- 化学物質等に含まれる微量の元素の検出(蛍光X線分析法)
- 空港・飛行場における搭乗前の手荷物検査(後方散乱X線検査装置)
- 食品分野における出荷前の異物混入検査(X線検査装置)
- 見世物 - 観客の前で人間を骸骨に変化させる「人間変化」(X線の応用という触れ込みで、レントゲン写真を掲げていたが、実際はペッパーズ・ゴーストを応用した物)、「箱の中身はなんだろな」箱を持つ舞台上の芸人にX線を照射して箱の中身を当てる「千里眼」など。X線の発見当初はむしろ見世物としての活用が主な用途で、活動写真などと同じく、電気を利用した見世物の一つとして人気を博したが、次第に飽きられた。常設小屋としては、浅草の「珍世界」(後の富士館)や「電友館」(後の電気館)などが有名。当時はまだX線の害が詳しく判明していなかったものの、なんだろな箱を持つ手が急性皮膚炎になったという症例が当時から報告されている。X線を1896年から4年間浴び続けた芸人が、1900年に皮膚癌で死亡したとの報告があり、これがX線による世界最初の犠牲者だと現在では考えられている[8]。
超軟X線 (Ultrasoft X-ray)
軟X線 (Soft X-ray)
約0.1 – 2 keVのエネルギーが低くて透過性の弱いX線
X線 (X-ray)
約2 – 20 keVの典型的なX線 (一部を軟X線に入れたり硬X線に入れる場合もある)
硬X線 (Hard X-ray)
約20 – 100 keVのエネルギーが高くて透過性の強いX線
波としての性質より粒子としての性質を強く示すようになる。
X線の検出には写真作用、蛍光作用、イオン化作用などの作用が利用され、X線フィルムや乾板を用いる写真法、計数管(サーベイメーター)を用いる計数管法などがある[9]。
高線量のX線を含む放射線は健康に悪影響を及ぼすことが知られているほか、低線量での影響も研究されている。
2003年に米国アメリカ合衆国エネルギー省の低線量放射線研究プログラムによる支援等を受けて[10]米国科学アカデミー紀要(PNAS)に発表された論文によれば、人の癌リスクの増加の十分な証拠が存在するエックス線やガンマ線の最低線量は、瞬間的な被曝では、10–50 mSv、長期被曝では50–100 mSvであることが示唆されている[11]。
- ^ なお、波長域はガンマ線のそれと一部重なっている。これは、X線とガンマ線との区別が波長ではなく発生機構によるためであり、波長からX線かガンマ線かを割り出すことはできない。軌道電子の遷移を起源とするものをX線、原子核内のエネルギー準位の遷移を起源とするものをガンマ線と呼ぶ。
- ^ Henri Becquerel (1896), Sur les radiations émises par phosphorescence, http://www.bibnum.education.fr/files/BECQUEREL_SUR_LES_RADIATIONS_EMISES.pdf (燐光物質によって放出される見えない放射線について)
- ^ a b c d e 戸田裕之. X線CT―産業・理工学でのトモグラフィー実践活用. 共立出版. ISBN 978-4-320-08222-9
- ^ a b Camara, Carlos G.; Juan V. Escobar, Jonathan R. Hird1, Seth J. Putterman (2008-10-23). “Correlation between nanosecond X-ray flashes and stick–slip friction in peeling tape”. Nature 455 (7216): 1089-1092. doi:10.1038/nature07378. http://www.nature.com/nature/journal/v455/n7216/full/nature07378.html 2009年1月27日閲覧。.
- ^ セロハンテープでX線、透視撮影も可能?! 米研究、APF BB NEWS、 2008年10月24日
- ^ 手のひらに載るほど超小型な電子線プローブX線マイクロアナライザーの開発に成功
- ^ 圧電材料を用いた超微小X線発生装置の試作
- ^ 放射線計測と防護
- ^ “安全のための手引 第9章 エックス線、エックス線発生装置”. 長岡技術科学大学. 2023年4月27日閲覧。
- ^ David J. Brenner et al. (2003). “Cancer risks attributable to low doses of ionizing radiation: Assessing what we really know”. PNAS 100 (24): 13761-13766. doi:10.1073/pnas.2235592100. http://www.pnas.org/content/100/24/13761.full. "This work was supported in part by the U.S. Department of Energy Low-Dose Radiation Research Program."
- ^ 翻訳:調麻佐志, 【翻訳論文】「低線量被ばくによるがんリスク:私たちが確かにわかっていることは何かを評価する」PNAS(2003), “海外癌医療情報リファレンス”, 一般社団法人 サイエンス・メディア・センター, http://smc-japan.org/?p=2037 2011年8月26日閲覧。
- 広重 徹『物理学史Ⅱ』培風館、1967年。ISBN 4-563-02406-6。
- X線天文学
- X線撮影 (レントゲン)
- コンピュータ断層撮影
- エネルギー分散型X線分析
- 蛍光X線
- X線小角散乱
- 診療エックス線技師 - 診療放射線技師に一本化された。
- エックス線作業主任者 - エックス線等透過写真撮影者
- ヴィルヘルム・レントゲン - X線を発見した。
- マックス・フォン・ラウエ - X線回折を発見し、X線が電磁波であることを示した。
- ヘンリー・ブラッグ、ローレンス・ブラッグ - ブラッグの法則を発見した。
表話編歴放射線 | |
---|---|
単位 | 放射線量の単位 放射能の単位 |
測定 | 放射線・放射能計測機器 |
放射線の種類 | 電磁放射線 X線 ガンマ線 粒子放射線 アルファ線 ベータ線 中性子線 陽子線 非電離放射線 |
物質との相互作用 | 各放射線と物質との相互作用 |
放射線と健康 | 基本概念 放射線生物学 放射線医学 放射線被曝 保健物理学 放射線の利用 放射線源 放射線療法 単純X線撮影(レントゲン) コンピュータ断層撮影(CTスキャン) ポジトロン断層法 (PET) 後方散乱X線検査装置 食品照射 原子力電池 放射線と健康影響 放射線障害 放射線の健康影響 放射能被害 放射能汚染 核実験 一覧 原子力事故 一覧 |
法律・資格 | 放射線管理区域 放射線管理手帳 放射線業務従事者 診療放射線技師 放射線取扱主任者 技術士(原子力・放射線部門) 原子炉主任技術者 核燃料取扱主任者 エックス線作業主任者 ガンマ線透過写真撮影作業主任者 エックス線等透過写真撮影者 日本の原子力関連法規 |
関連 | 放射線研究者 日本の原子力関連組織 原子力関連の国際組織 放射線量 放射能 放射性物質 放射性降下物 |
カテゴリ コモンズ |