Вестник КРАУНЦ.Физ.-мат. науки. 2021. Т. 36. №3. C. 189-199. ISSN 2079-6641 — Вестник КРАУНЦ. Физико-математические науки (original) (raw)

Содержание выпуска/Contents of this issue

INSTRUMENTS AND METHODS OF MEASUREMENT

MSC 86A10

Research Article

Relation of gamma dose rate with the intensity of rain showers

A. S. Zelinskiy¹, G. A. Yakovlev², D. E. Filatov³

¹School of Nuclear Science & Engineering, Nuclear Fuel Cycle Department, Tomsk Polytechnic University, 634050, Tomsk, Lenina avenue, 30, Russia
²Institute of Applied Mathematics and Computer Science, Tomsk State University, 634050, Tomsk, Lenina avenue, 36, Russia
³Institute of Monitoring of Climatic and Ecological Systems of Siberian Branch of the Russian Academy of Sciences, 634050, Tomsk, Academichesky
Avenue, 10/3, Russia

E-mail: azelinskiys@yandex.ru

Experimental and theoretical studies of the influence of the intensity, amount and duration of liquid atmospheric precipitation on the formation of γ-background in the surface layer of the atmosphere are presented. It was observed that precipitation causes an increase in the γ-radiation dose rate in the form of bursts. In this case, the total amount of precipitation in an event determines the magnitude of the burst of the dose rate, and the intensity of precipitation determines the rate of increase in the dose rate of γ-radiation. A mathematical model, which establishes a quantitative relationship between the dose rate of γ-radiation and the intensity (amount) of liquid atmospheric precipitation has been developed and verified (R2 = 0.93).

Keywords: gamma-radiation, gamma-background, radon decay products, precipitation, atmosphere, mathematical model.

DOI: 10.26117/2079-6641-2021-36-3-189-199

Original article submitted: 30.09.2021

Revision submitted: 13.10.2021

For citation. Zelinskiy A. S., Yakovlev G. A., Fil’trov D. E. Relation of gamma dose rate with the intensity of rain showers. Vestnik KRAUNC. Fiz.-mat. nauki. 2021, 36: 3, 189-199. DOI: 10.26117/2079-6641-2021-36-3-189-199

Competing interests. The authors declare that there are no conflicts of interest regarding authorship and publication.

Contribution and Responsibility. All authors contributed to this article. Authors are solely responsible for providing the final version of the article in print. The final version of the manuscript was approved by all authors.

The content is published under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/deed.ru)

© Zelinskiy A. S., Yakovlev G. A., Filatov D. E., 2021

ПРИБОРЫ И МЕТОДЫ ИЗМЕРЕНИЙ

УДК 551.594.1+551.594.2+551.515.4

Научная статья

Связь мощности дозы гамма-излучения с интенсивностью ливневых осадков

A. С. Зелинский¹, Г. A. Яковлев², Д. Е. Филатов³

¹Томский политехнический университет, 634050, г. Томск, пр. Ленина, 30, Россия
²Томский государственный университет 634050, г. Томск, пр. Ленина, 36, Россия
³Институт мониторинга климатических и экологических систем СО РАН, 634050, г. Томск, пр. Академический, 10/3, Россия.

E-mail: azelinskiys@yandex.ru

Представлены экспериментальные и теоретические исследования влияния интенсивности, количества и продолжительности жидких атмосферных осадков на формирование γ-фона в приземном слое атмосферы. Было замечено, что осадки вызывают увеличение мощности дозы γ-излучения в виде всплесков. В этом случае общее количество осадков в событии определяет величину всплеска мощности дозы, а интенсивность осадков определяет скорость увеличения мощности дозы γ-излучения. Разработана и проверена математическая модель, устанавливающая количественную связь между мощностью дозы γ-излучения и интенсивностью (количеством) жидких атмосферных осадков (R2 = 0,93).

Ключевые слова: гамма-излучение, гамма-фон, продукты распада радона, осадки, атмосфера, математическая модель.

DOI: 10.26117/2079-6641-2021-36-3-189-199

Поступила в редакцию: 30.09.2021

В окончательном варианте: 13.10.2021

Для цитирования. Zelinskiy A. S., Yakovlev G. A., Fil’trov D. E. Relation of gamma dose rate with the intensity of rain showers // Вестник КРАУНЦ. Физ.-мат. науки. 2021. Т. 36. № 3. C. 189-199. DOI: 10.26117/2079-6641-2021-36-3-189-199

Конкурирующие интересы. Авторы заявляют, что конфликтов интересов в отношении авторства и публикации нет.

Авторский вклад и ответственность. Все авторы участвовали в написании статьи и полностью несут ответственность за предоставление окончательной версии статьи в печать. Окончательная версия рукописи была одобрена всеми авторами.

Контент публикуется на условиях лицензии Creative Commons Attribution 4.0 International
(https://creativecommons.org/licenses/by/4.0/deed.ru)

© Зелинский A. С., Яковлев Г. A., Филатов Д. Е., 2021

References

  1. Beck H. L.Gamma radiation from radon daughters in the atmosphere // Journal of Geophysical Research, 1974. vol. 79(15), pp. 2215-2221.
  2. Takeuchi N., Katase A. Rainout-washout model for variation of environmental gamma-ray intensity by precipitation // Journal of Nuclear Science and Technology, 1982. vol. 19(5), pp. 393-409.
  3. Thompson I. M. G., Btter-Jensen L., Deme S., Pernicka F., Sáez-Vergara J. C. Technical recommendations on measurements of external environmental gamma radiation doses, EURADOS report 1999: Office for Official Publications of the European Communities, 1999.
  4. Lebedyte M., Butkus D., Mork¯unas G.Variations of the ambient dose equivalent rate in the ground level air // Journal of environmental radioactivity, 2003. vol. 64(1), pp. 45-57.
  5. Datar G., Vichare G., Raghav A., Bhaskar A., Sinha A. K., Nair K. U.Response of Gamma-Ray Spectrum During Ockhi Cyclone // Frontiers in Earth Science, 2020. vol. 8, no. 15.
  6. Mercier J. F., et al. Increased environmental gamma-ray dose rate during precipitation: a strong correlation with contributing air mass. // Journal of environmental radioactivity, 2009. vol. 100, no. 7, pp. 527–533.
  7. Fujinami N.,Watanabe T., Tsutsui T. Looping variation of correlation between radon progeny concentration and dose rate in outdoor air // In Radioactivity in the Environment, 2005. vol. 7, pp. 284-289.
  8. Hiemstra P. H., Pebesma E. J., Heuvelink G. B., Twenhöfel C. J. Using rainfall radar data to improve interpolated maps of dose rate in the Netherlands // Science of the total environment, 2010. vol. 409(1), pp. 123-133.
  9. Burnett J. L., Croudace I. W., Warwick P. E. Short-lived variations in the background gammaradiation dose // Journal of Radiological Protection, 2010. vol. 30(3), pp. 525.
  10. Liu H., Daisuke K., Motokiyo M., Hirao S., Moriizumi J., Yamazawa H. On the characteristics of the wet deposition process using radon as a tracer gas // Radiation protection dosimetry, 2014. vol. 160(1-3), pp. 83-86.
  11. Livesay R. J., Blessinger C. S., Guzzardo T. F., Hausladen P. A. Rain-induced increase in background radiation detected by Radiation Portal Monitors // Journal of environmental radioactivity, 2014. vol. 137, pp. 137–141.
  12. Yakovleva V. S. In-situ measuring method of radon and thoron diffusion coefficient in soil // Vestnik KRAUNC. Fiziko-Matematicheskie Nauki, 2014. vol. 8, no. 1, pp. 81-85 (in Russian).
  13. Yakovleva V. S., Parovik R. I. Numerical solution of of diffusion advection equation of radon transport in many-layered geological media //Vestnik KRAUNC. Fiziko-Matematicheskie Nauki, 2011. vol. 1(2), pp. 46-56 (in Russian).
  14. Yakovleva V. S. (2010)Modelirovanie vliyaniya sostoyaniya i izmenchivosti atmosfery i litosfery na plotnost’ potokov radona i torona s poverkhnosti zemli // Izvestiya Tomskogo politekhnicheskogo
    universiteta. Inzhiniring georesursov, 2010. vol. 317(2) (in Russian).
  15. Barbosa S. M., Miranda P., Azevedo E. B. Short-term variability of gamma radiation at the ARM Eastern North Atlantic facility (Azores) // Journal of environmental radioactivity, 2017. vol. 172, pp. 218-231.
  16. Melintescu A., Chambers S. D., Crawford J., Williams A. G., Zorila B., Galeriu D. Radon-222 related influence on ambient gamma dose // Journal of environmental radioactivity, 2018. vol. 189, pp. 67–78.
  17. Takeyasu M., Iida T., Tsujimoto T., Yamasaki K., Ogawa Y. Concentrations and their ratio of 222Rn decay products in rainwater measured by gamma-ray spectrometry using a low-background Ge detector // Journal of environmental radioactivity, 2006. vol. 88, no. 1, pp. 74–89.
  18. Eckerman K., Endo A. Observational study of the scavenging of radon daughters by precipitation from the atmosphere // Environment International, 1996. vol. 2, pp. 181–185.
  19. Seasonal and spatial variations of enhanced gamma ray dose rates derived from 222Rn progeny during precipitation in Japan Atmospheric Environment, 2007. vol. 41, no. 37, pp. 8043–8057.
  20. Gusev A. A., Martin I. M., Alves M. A., de Abreu A. J. Simulation of the radiation fallout from gamma-ray measurements //Modeling Earth Systems and Environment, 2015. vol. 1, no. 3, pp. 18.
  21. Moriizumi J., Kondo D., Kojima Y., Liu H., Hirao S., Yamazawa H. 214Bi/214Pb ra- dioactivity ratio in rainwater for residence time estimation of cloud droplets and raindrops // Radiation protection dosimetry, 2015. vol. 167, no. 1-3, pp. 55–58.
  22. Kalchikhin V. V., Kobzev A. A., Korolkov V. A., Tikhomirov A. A. Results of optical precipitation gage field tests // Atmospheric and Oceanic Optics, 2018. vol. 31, no. 5, pp. 545–547.
  23. Eckerman K., Endo A. ICRP Publication 107. Nuclear decay data for dosimetric calculations. Gamma radiation from radon daughters in the atmosphere // Annals of the ICRP, 2008. vol. 38, no. 3, pp. 7.
  24. Jaeger R. G., Blizard E.P., Grotenhuis M., Hönig A., Jaeger T. A., Eisenlohr H. H. Engineering compendium on radiation shielding, Shielding fundamentals and methods, vol. 1. New York: Springer, 1968.
  25. Bevelacqua J. J. Appendix II: Basic Source Geometries and Attenuation Relationships // Contemporary Health Physics, 2009 https://doi.org/10.14498/9783527626809.
  26. Shultis J. K., Faw R. E. Radiation shielding and radiological protection, Handbook of nuclear engineering, 2010.
  27. Agostinelli S. et al.GEANT4—a simulation toolkit // Nuclear instruments and methods in physics research section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003. vol. 506, no. 3, pp. 250–303.
  28. Butner E. K., Gisina F.A. Effective coefficient of capture of aerosol particles by rain and cloudy drops // Proceedings of LGMI. vol. 15, pp. 103–117 (In Russian).

Zelinskiy Alexey Sergeevich – postgraduate student, Tomsk Polytechnic University, Tomsk, Russia, ORCID 0000-0002-4737-3790.

Зелинский Алексей Сергеевич – аспирант, Томский политехнический университет, г. Томск, Россия, ORCID 0000-0002-4737-3790.


Yakovlev Grigory Alekseevich — student of Tomsk State University, Tomsk, Russia, ORCID 0000-0001-7842-5672.

Яковлев Григорий Алексеевич – студент Томского государственного университета, г. Томск, Россия, ORCID 0000-0001-7842-5672.


Filаrov Dmitry Evgenievich – junior researcher of the Institute for Monitoring of Climatic and Ecological Systems of the Siberian Branch of the Russian Academy of Sciences, Tomsk, Russia.

Филатов Дмитрий Евгеньевич – младший научный сотрудник Института мониторинга климатических и экологических систем СО РАН, г. Томск, Россия.