PEP 8 -- Style Guide for Python Code (original) (raw)

PEP Index > PEP 8 -- Style Guide for Python Code

PEP: 8
Title: Style Guide for Python Code
Version: c451868df657
Last-Modified: 2016-06-08 10:43:53 -0400 (Wed, 08 Jun 2016)
Author: Guido van Rossum , Barry Warsaw , Nick Coghlan
Status: Active
Type: Process
Content-Type: text/x-rst
Created: 05-Jul-2001
Post-History: 05-Jul-2001, 01-Aug-2013

Contents

Introduction

This document gives coding conventions for the Python code comprising the standard library in the main Python distribution. Please see the companion informational PEP describing style guidelines for the C code in the C implementation of Python [1].

This document and PEP 257 (Docstring Conventions) were adapted from Guido's original Python Style Guide essay, with some additions from Barry's style guide [2].

This style guide evolves over time as additional conventions are identified and past conventions are rendered obsolete by changes in the language itself.

Many projects have their own coding style guidelines. In the event of any conflicts, such project-specific guides take precedence for that project.

A Foolish Consistency is the Hobgoblin of Little Minds

One of Guido's key insights is that code is read much more often than it is written. The guidelines provided here are intended to improve the readability of code and make it consistent across the wide spectrum of Python code. As PEP 20 says, "Readability counts".

A style guide is about consistency. Consistency with this style guide is important. Consistency within a project is more important. Consistency within one module or function is the most important.

However, know when to be inconsistent -- sometimes style guide recommendations just aren't applicable. When in doubt, use your best judgment. Look at other examples and decide what looks best. And don't hesitate to ask!

In particular: do not break backwards compatibility just to comply with this PEP!

Some other good reasons to ignore a particular guideline:

  1. When applying the guideline would make the code less readable, even for someone who is used to reading code that follows this PEP.
  2. To be consistent with surrounding code that also breaks it (maybe for historic reasons) -- although this is also an opportunity to clean up someone else's mess (in true XP style).
  3. Because the code in question predates the introduction of the guideline and there is no other reason to be modifying that code.
  4. When the code needs to remain compatible with older versions of Python that don't support the feature recommended by the style guide.

Code lay-out

Indentation

Use 4 spaces per indentation level.

Continuation lines should align wrapped elements either vertically using Python's implicit line joining inside parentheses, brackets and braces, or using a hanging indent [7]. When using a hanging indent the following should be considered; there should be no arguments on the first line and further indentation should be used to clearly distinguish itself as a continuation line.

Yes:

Aligned with opening delimiter.

foo = long_function_name(var_one, var_two, var_three, var_four)

More indentation included to distinguish this from the rest.

def long_function_name( var_one, var_two, var_three, var_four): print(var_one)

Hanging indents should add a level.

foo = long_function_name( var_one, var_two, var_three, var_four)

No:

Arguments on first line forbidden when not using vertical alignment.

foo = long_function_name(var_one, var_two, var_three, var_four)

Further indentation required as indentation is not distinguishable.

def long_function_name( var_one, var_two, var_three, var_four): print(var_one)

The 4-space rule is optional for continuation lines.

Optional:

Hanging indents may be indented to other than 4 spaces.

foo = long_function_name( var_one, var_two, var_three, var_four)

When the conditional part of an if-statement is long enough to require that it be written across multiple lines, it's worth noting that the combination of a two character keyword (i.e. if), plus a single space, plus an opening parenthesis creates a natural 4-space indent for the subsequent lines of the multiline conditional. This can produce a visual conflict with the indented suite of code nested inside the if-statement, which would also naturally be indented to 4 spaces. This PEP takes no explicit position on how (or whether) to further visually distinguish such conditional lines from the nested suite inside the if-statement. Acceptable options in this situation include, but are not limited to:

No extra indentation.

if (this_is_one_thing and that_is_another_thing): do_something()

Add a comment, which will provide some distinction in editors

supporting syntax highlighting.

if (this_is_one_thing and that_is_another_thing): # Since both conditions are true, we can frobnicate. do_something()

Add some extra indentation on the conditional continuation line.

if (this_is_one_thing and that_is_another_thing): do_something()

(Also see the discussion of whether to break before or after binary operators below.)

The closing brace/bracket/parenthesis on multi-line constructs may either line up under the first non-whitespace character of the last line of list, as in:

my_list = [ 1, 2, 3, 4, 5, 6, ] result = some_function_that_takes_arguments( 'a', 'b', 'c', 'd', 'e', 'f', )

or it may be lined up under the first character of the line that starts the multi-line construct, as in:

my_list = [ 1, 2, 3, 4, 5, 6, ] result = some_function_that_takes_arguments( 'a', 'b', 'c', 'd', 'e', 'f', )

Tabs or Spaces?

Spaces are the preferred indentation method.

Tabs should be used solely to remain consistent with code that is already indented with tabs.

Python 3 disallows mixing the use of tabs and spaces for indentation.

Python 2 code indented with a mixture of tabs and spaces should be converted to using spaces exclusively.

When invoking the Python 2 command line interpreter with the -t option, it issues warnings about code that illegally mixes tabs and spaces. When using -tt these warnings become errors. These options are highly recommended!

Maximum Line Length

Limit all lines to a maximum of 79 characters.

For flowing long blocks of text with fewer structural restrictions (docstrings or comments), the line length should be limited to 72 characters.

Limiting the required editor window width makes it possible to have several files open side-by-side, and works well when using code review tools that present the two versions in adjacent columns.

The default wrapping in most tools disrupts the visual structure of the code, making it more difficult to understand. The limits are chosen to avoid wrapping in editors with the window width set to 80, even if the tool places a marker glyph in the final column when wrapping lines. Some web based tools may not offer dynamic line wrapping at all.

Some teams strongly prefer a longer line length. For code maintained exclusively or primarily by a team that can reach agreement on this issue, it is okay to increase the nominal line length from 80 to 100 characters (effectively increasing the maximum length to 99 characters), provided that comments and docstrings are still wrapped at 72 characters.

The Python standard library is conservative and requires limiting lines to 79 characters (and docstrings/comments to 72).

The preferred way of wrapping long lines is by using Python's implied line continuation inside parentheses, brackets and braces. Long lines can be broken over multiple lines by wrapping expressions in parentheses. These should be used in preference to using a backslash for line continuation.

Backslashes may still be appropriate at times. For example, long, multiple with-statements cannot use implicit continuation, so backslashes are acceptable:

with open('/path/to/some/file/you/want/to/read') as file_1,
open('/path/to/some/file/being/written', 'w') as file_2: file_2.write(file_1.read())

(See the previous discussion on multiline if-statements for further thoughts on the indentation of such multiline with-statements.)

Another such case is with assert statements.

Make sure to indent the continued line appropriately.

Should a line break before or after a binary operator?

For decades the recommended style was to break after binary operators. But this can hurt readability in two ways: the operators tend to get scattered across different columns on the screen, and each operator is moved away from its operand and onto the previous line. Here, the eye has to do extra work to tell which items are added and which are subtracted:

No: operators sit far away from their operands

income = (gross_wages + taxable_interest + (dividends - qualified_dividends) - ira_deduction - student_loan_interest)

To solve this readability problem, mathematicians and their publishers follow the opposite convention. Donald Knuth explains the traditional rule in his Computers and Typesetting series: "Although formulas within a paragraph always break after binary operations and relations, displayed formulas always break before binary operations" [3].

Following the tradition from mathematics usually results in more readable code:

Yes: easy to match operators with operands

income = (gross_wages + taxable_interest + (dividends - qualified_dividends) - ira_deduction - student_loan_interest)

In Python code, it is permissible to break before or after a binary operator, as long as the convention is consistent locally. For new code Knuth's style is suggested.

Blank Lines

Surround top-level function and class definitions with two blank lines.

Method definitions inside a class are surrounded by a single blank line.

Extra blank lines may be used (sparingly) to separate groups of related functions. Blank lines may be omitted between a bunch of related one-liners (e.g. a set of dummy implementations).

Use blank lines in functions, sparingly, to indicate logical sections.

Python accepts the control-L (i.e. ^L) form feed character as whitespace; Many tools treat these characters as page separators, so you may use them to separate pages of related sections of your file. Note, some editors and web-based code viewers may not recognize control-L as a form feed and will show another glyph in its place.

Source File Encoding

Code in the core Python distribution should always use UTF-8 (or ASCII in Python 2).

Files using ASCII (in Python 2) or UTF-8 (in Python 3) should not have an encoding declaration.

In the standard library, non-default encodings should be used only for test purposes or when a comment or docstring needs to mention an author name that contains non-ASCII characters; otherwise, using \x,\u, \U, or \N escapes is the preferred way to include non-ASCII data in string literals.

For Python 3.0 and beyond, the following policy is prescribed for the standard library (see PEP 3131): All identifiers in the Python standard library MUST use ASCII-only identifiers, and SHOULD use English words wherever feasible (in many cases, abbreviations and technical terms are used which aren't English). In addition, string literals and comments must also be in ASCII. The only exceptions are (a) test cases testing the non-ASCII features, and (b) names of authors. Authors whose names are not based on the latin alphabet MUST provide a latin transliteration of their names.

Open source projects with a global audience are encouraged to adopt a similar policy.

Imports

Module level dunder names

Module level "dunders" (i.e. names with two leading and two trailing underscores) such as __all__, __author__, __version__, etc. should be placed after the module docstring but before any import statements except from __future__ imports. Python mandates that future-imports must appear in the module before any other code except docstrings.

For example:

"""This is the example module.

This module does stuff. """

from future import barry_as_FLUFL

all = ['a', 'b', 'c'] version = '0.1' author = 'Cardinal Biggles'

import os import sys

String Quotes

In Python, single-quoted strings and double-quoted strings are the same. This PEP does not make a recommendation for this. Pick a rule and stick to it. When a string contains single or double quote characters, however, use the other one to avoid backslashes in the string. It improves readability.

For triple-quoted strings, always use double quote characters to be consistent with the docstring convention in PEP 257.

Whitespace in Expressions and Statements

Pet Peeves

Avoid extraneous whitespace in the following situations:

y = 2
long_variable = 3

Other Recommendations

if foo == 'blah': one(); two(); three()

Naming Conventions

The naming conventions of Python's library are a bit of a mess, so we'll never get this completely consistent -- nevertheless, here are the currently recommended naming standards. New modules and packages (including third party frameworks) should be written to these standards, but where an existing library has a different style, internal consistency is preferred.

Overriding Principle

Names that are visible to the user as public parts of the API should follow conventions that reflect usage rather than implementation.

Descriptive: Naming Styles

There are a lot of different naming styles. It helps to be able to recognize what naming style is being used, independently from what they are used for.

The following naming styles are commonly distinguished:

There's also the style of using a short unique prefix to group related names together. This is not used much in Python, but it is mentioned for completeness. For example, the os.stat() function returns a tuple whose items traditionally have names like st_mode,st_size, st_mtime and so on. (This is done to emphasize the correspondence with the fields of the POSIX system call struct, which helps programmers familiar with that.)

The X11 library uses a leading X for all its public functions. In Python, this style is generally deemed unnecessary because attribute and method names are prefixed with an object, and function names are prefixed with a module name.

In addition, the following special forms using leading or trailing underscores are recognized (these can generally be combined with any case convention):

Prescriptive: Naming Conventions

Names to Avoid

Never use the characters 'l' (lowercase letter el), 'O' (uppercase letter oh), or 'I' (uppercase letter eye) as single character variable names.

In some fonts, these characters are indistinguishable from the numerals one and zero. When tempted to use 'l', use 'L' instead.

Package and Module Names

Modules should have short, all-lowercase names. Underscores can be used in the module name if it improves readability. Python packages should also have short, all-lowercase names, although the use of underscores is discouraged.

When an extension module written in C or C++ has an accompanying Python module that provides a higher level (e.g. more object oriented) interface, the C/C++ module has a leading underscore (e.g. _socket).

Class Names

Class names should normally use the CapWords convention.

The naming convention for functions may be used instead in cases where the interface is documented and used primarily as a callable.

Note that there is a separate convention for builtin names: most builtin names are single words (or two words run together), with the CapWords convention used only for exception names and builtin constants.

Exception Names

Because exceptions should be classes, the class naming convention applies here. However, you should use the suffix "Error" on your exception names (if the exception actually is an error).

Global Variable Names

(Let's hope that these variables are meant for use inside one module only.) The conventions are about the same as those for functions.

Modules that are designed for use via from M import * should use the __all__ mechanism to prevent exporting globals, or use the older convention of prefixing such globals with an underscore (which you might want to do to indicate these globals are "module non-public").

Function Names

Function names should be lowercase, with words separated by underscores as necessary to improve readability.

mixedCase is allowed only in contexts where that's already the prevailing style (e.g. threading.py), to retain backwards compatibility.

Function and method arguments

Always use self for the first argument to instance methods.

Always use cls for the first argument to class methods.

If a function argument's name clashes with a reserved keyword, it is generally better to append a single trailing underscore rather than use an abbreviation or spelling corruption. Thus class_ is better than clss. (Perhaps better is to avoid such clashes by using a synonym.)

Method Names and Instance Variables

Use the function naming rules: lowercase with words separated by underscores as necessary to improve readability.

Use one leading underscore only for non-public methods and instance variables.

To avoid name clashes with subclasses, use two leading underscores to invoke Python's name mangling rules.

Python mangles these names with the class name: if class Foo has an attribute named __a, it cannot be accessed by Foo.__a. (An insistent user could still gain access by calling Foo._Foo__a.) Generally, double leading underscores should be used only to avoid name conflicts with attributes in classes designed to be subclassed.

Note: there is some controversy about the use of __names (see below).

Constants

Constants are usually defined on a module level and written in all capital letters with underscores separating words. Examples includeMAX_OVERFLOW and TOTAL.

Designing for inheritance

Always decide whether a class's methods and instance variables (collectively: "attributes") should be public or non-public. If in doubt, choose non-public; it's easier to make it public later than to make a public attribute non-public.

Public attributes are those that you expect unrelated clients of your class to use, with your commitment to avoid backward incompatible changes. Non-public attributes are those that are not intended to be used by third parties; you make no guarantees that non-public attributes won't change or even be removed.

We don't use the term "private" here, since no attribute is really private in Python (without a generally unnecessary amount of work).

Another category of attributes are those that are part of the "subclass API" (often called "protected" in other languages). Some classes are designed to be inherited from, either to extend or modify aspects of the class's behavior. When designing such a class, take care to make explicit decisions about which attributes are public, which are part of the subclass API, and which are truly only to be used by your base class.

With this in mind, here are the Pythonic guidelines:

Public and internal interfaces

Any backwards compatibility guarantees apply only to public interfaces. Accordingly, it is important that users be able to clearly distinguish between public and internal interfaces.

Documented interfaces are considered public, unless the documentation explicitly declares them to be provisional or internal interfaces exempt from the usual backwards compatibility guarantees. All undocumented interfaces should be assumed to be internal.

To better support introspection, modules should explicitly declare the names in their public API using the __all__ attribute. Setting__all__ to an empty list indicates that the module has no public API.

Even with __all__ set appropriately, internal interfaces (packages, modules, classes, functions, attributes or other names) should still be prefixed with a single leading underscore.

An interface is also considered internal if any containing namespace (package, module or class) is considered internal.

Imported names should always be considered an implementation detail. Other modules must not rely on indirect access to such imported names unless they are an explicitly documented part of the containing module's API, such as os.path or a package's __init__ module that exposes functionality from submodules.

Programming Recommendations

def bar(x):
if x < 0:
return None
return math.sqrt(x)
No:
def foo(x):
if x >= 0:
return math.sqrt(x)
def bar(x):
if x < 0:
return
return math.sqrt(x)

Function Annotations

With the acceptance of PEP 484, the style rules for function annotations are changing.

type: ignore

near the top of the file; this tells type checker to ignore all annotations. (More fine-grained ways of disabling complaints from type checkers can be found in PEP 484.)

Footnotes

[7] Hanging indentation is a type-setting style where all the lines in a paragraph are indented except the first line. In the context of Python, the term is used to describe a style where the opening parenthesis of a parenthesized statement is the last non-whitespace character of the line, with subsequent lines being indented until the closing parenthesis.

This document has been placed in the public domain.