Heartfield, R. and Loukas, G., 2016. A taxonomy of attacks and a survey of defence mechanisms for semantic social engineering attacks. ACM Computing Surveys (CSUR), 48(3), pp. 37. Article Google Scholar
Heartfield, R., Loukas, G. and Gan, D., 2016. You are probably not the weakest link: Towards practical prediction of susceptibility to semantic social engineering attacks. IEEE Access, 4, pp. 6910–6928. Article Google Scholar
Heartfield, R., Loukas, G. and Gan, D., 2017, June. An eye for deception: A case study in utilizing the human-as-a-security-sensor paradigm to detect zero-day semantic social engineering attacks. In Software Engineering Research, Management and Applications (SERA), 2017 IEEE 15th International Conference on (pp. 371–378). IEEE. Google Scholar
Jordan, M. and Gouday, H., 2005. The signs, and semiotics of the successful semantic attack. In 14th Annual EICAR Conference (pp. 344–364). Google Scholar
Huber, M., Mulazzani, M., Weippl, E., Kitzler, G. and Goluch, S., 2011. Friend-in-the-middle attacks: Exploiting social networking sites for spam. IEEE Internet Computing, 15(3), pp. 28–34. Article Google Scholar
Heartfield, R. and Loukas, G., 2013. On the feasibility of automated semantic attacks in the cloud. In Computer and Information Sciences III (pp. 343–351). Springer, London. Google Scholar
Madlmayr, G., Langer, J., Kantner, C. and Scharinger, J., 2008, March. NFC devices: Security and privacy. In Availability, Reliability and Security, 2008. ARES 08. Third International Conference on (pp. 642–647). IEEE. Google Scholar
Weber, R.H., 2010. Internet of ThingsNew security and privacy challenges. Computer law and security review, 26(1), pp. 23–30. Article Google Scholar
Dhamija, R., Tygar, J.D. and Hearst, M., 2006, April. Why phishing works. In Proceedings of the SIGCHI conference on Human Factors in computing systems (pp. 581–590). ACM. Google Scholar
Drake, C.E., Oliver, J.J. and Koontz, E.J., 2004, August. Anatomy of a Phishing Email. In CEAS. Google Scholar
Huber, M., Mulazzani, M. and Weippl, E., 2010, September. Who on earth is Mr. Cypher: automated friend injection attacks on social networking sites. In IFIP International Information Security Conference (pp. 80–89). Springer, Berlin, Heidelberg. Google Scholar
Aburrous, M., Hossain, M.A., Thabatah, F. and Dahal, K., 2008, April. Intelligent phishing website detection system using fuzzy techniques. In Information and Communication Technologies: From Theory to Applications, 2008. ICTTA 2008. 3rd International Conference on (pp. 1–6). IEEE. Google Scholar
Chou, N., Ledesma, R., Teraguchi, Y. and Mitchell, J.C., 2004, February. Client-Side Defense Against Web-Based Identity Theft. In NDSS. Google Scholar
Huang, H., Zhong, S. and Tan, J., 2009, August. Browser-side countermeasures for deceptive phishing attack. In Information Assurance and Security, 2009. IAS’09. Fifth International Conference on (pp. 352–355). IEEE. Google Scholar
Kumaraguru, P., Rhee, Y., Acquisti, A., Cranor, L.F., Hong, J. and Nunge, E., 2007, April. Protecting people from phishing: the design and evaluation of an embedded training email system. In Proceedings of the SIGCHI conference on Human factors in computing systems (pp. 905–914). ACM. Google Scholar
Giles, J., 2010. Scareware: the inside story. New Scientist, 205(2753), pp. 38–41. Article Google Scholar
Rekouche, K., 2011. Early phishing. arXiv preprint arXiv:1106.4692. Google Scholar
Kabay, M.E., 2001. Viruses and worms: more than a technical problem. Ubiquity 2001. ACM Google Scholar
Leavitt, N., 2005. Mobile phones: the next frontier for hackers?. Computer, 38(4), pp. 20–23. Article Google Scholar
Kong, J., Cai, W. and Wang, L., 2010, February. The evaluation of index poisoning in bittorrent. In Communication Software and Networks, 2010. ICCSN’10. Second International Conference on (pp. 382–386). IEEE. Google Scholar
Irani, D., Balduzzi, M., Balzarotti, D., Kirda, E. and Pu, C., 2011, July. Reverse social engineering attacks in online social networks. In International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment (pp. 55–74). Springer, Berlin, Heidelberg. Chapter Google Scholar
Bianchi, A., Corbetta, J., Invernizzi, L., Fratantonio, Y., Kruegel, C. and Vigna, G., 2015, May. What the app is that? deception and countermeasures in the android user interface. In Security and Privacy (SP), 2015 IEEE Symposium on (pp. 931–948). IEEE. Google Scholar
Shahzad, R.K. and Lavesson, N., 2011, August. Detecting scareware by mining variable length instruction sequences. In Information Security South Africa (ISSA), 2011 (pp. 1–8). IEEE. Google Scholar
Seifert, C., Stokes, J.W., Colcernian, C., Platt, J.C. and Lu, L., 2013, May. Robust scareware image detection. In Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on (pp. 2920–2924). IEEE. Google Scholar
Stringhini, G., Kruegel, C. and Vigna, G., 2013, November. Shady paths: Leveraging surfing crowds to detect malicious web pages. In Proceedings of the 2013 ACM SIGSAC conference on Computer and communications security (pp. 133–144). ACM. Google Scholar
Asanka, N., Love, S. and Scott, M., 2012. Designing a mobile game to teach conceptual knowledge of avoiding’phishing attacks’. International Journal for e-Learning Security, 2(1), pp. 127–132. Article Google Scholar
Sheng, S., Magnien, B., Kumaraguru, P., Acquisti, A., Cranor, L.F., Hong, J. and Nunge, E., 2007, July. Anti-phishing phil: the design and evaluation of a game that teaches people not to fall for phish. In Proceedings of the 3rd symposium on Usable privacy and security (pp. 88–99). ACM. Google Scholar
Aulov, O. and Halem, M., 2012. Human sensor networks for improved modeling of natural disasters. Proceedings of the IEEE, 100(10), pp. 2812–2823. Article Google Scholar
Marforio, C., Francillon, A. and Capkun, S., 2011. Application collusion attack on the permission-based security model and its implications for modern smartphone systems. Technical Report. ETH Zurich. Google Scholar
Kumaraguru, P., 2009. Phishguru: a system for educating users about semantic attacks. Carnegie Mellon University. Google Scholar
Bates, J., 1990. Trojan horse: AIDS information introductory diskette version 2.0. Virus Bulletin, pp. 3–6. Google Scholar
Young, A. and Yung, M., 1996, May. Cryptovirology: Extortion-based security threats and countermeasures. In Security and Privacy, 1996. Proceedings., 1996 IEEE Symposium on (pp. 129–140). IEEE. Google Scholar
Howard, F. and Komili, O., 2010. Poisoned search results: How hackers have automated search engine poisoning attacks to distribute malware. Sophos Technical Papers, pp. 1–15. Google Scholar
Jensen, M.L., Dinger, M., Wright, R.T. and Thatcher, J.B., 2017. Training to mitigate phishing attacks using mindfulness techniques. Journal of Management Information Systems, 34(2), pp. 597–626. Article Google Scholar
Neupane, A., Saxena, N., Maximo, J.O. and Kana, R., 2016. Neural Markers of Cybersecurity: An fMRI Study of Phishing and Malware Warnings. IEEE Transactions on Information Forensics and Security, 11(9), pp. 1970–1983. Article Google Scholar
Ishtiaq Roufa, R.M., Mustafaa, H., Travis Taylora, S.O., Xua, W., Gruteserb, M., Trappeb, W. and Seskarb, I., 2010, February. Security and privacy vulnerabilities of in-car wireless networks: A tire pressure monitoring system case study. In 19th USENIX Security Symposium, Washington DC (pp. 11–13). Google Scholar
Koppel, T., 2015. Lights out: a cyberattack, a nation unprepared, surviving the aftermath. Broadway Books. Google Scholar
Hutchins, E.M., Cloppert, M.J. and Amin, R.M., 2011. Intelligence-driven computer network defense informed by analysis of adversary campaigns and intrusion kill chains. Leading Issues in Information Warfare and Security Research, 1(1), pp. 80. Google Scholar
Joo, J.W., Moon, S.Y., Singh, S. and Park, J.H., 2017. S-Detector: an enhanced security model for detecting Smishing attack for mobile computing. Telecommunication Systems, 66(1), pp. 29–38. Article Google Scholar
Cova, M., Kruegel, C. and Vigna, G., 2010, April. Detection and analysis of drive-by-download attacks and malicious JavaScript code. In Proceedings of the 19th international conference on World wide web (pp. 281–290). ACM. Google Scholar
Jayasinghe, G.K., Culpepper, J.S. and Bertok, P., 2014. Efficient and effective realtime prediction of drive-by download attacks. Journal of Network and Computer Applications, 38, pp. 135–149. Article Google Scholar
Lu, L., Yegneswaran, V., Porras, P. and Lee, W., 2010, October. Blade: an attack-agnostic approach for preventing drive-by malware infections. In Proceedings of the 17th ACM conference on Computer and communications security (pp. 440–450). ACM. Google Scholar
Blsing, T., Batyuk, L., Schmidt, A.D., Camtepe, S.A. and Albayrak, S., 2010, October. An android application sandbox system for suspicious software detection. In Malicious and unwanted software (MALWARE), 2010 5th international conference on (pp. 55–62). IEEE. Google Scholar
Brickell, E.F., Hall, C.D., Cihula, J.F. and Uhlig, R., Intel Corp, 2011. Method of improving computer security through sandboxing. U.S. Patent 7,908,653. Google Scholar
Cone, B.D., Irvine, C.E., Thompson, M.F. and Nguyen, T.D., 2007. A video game for cyber security training and awareness. Computers and Security, 26(1), pp. 63–72. Article Google Scholar
Heartfield, R. and Loukas, G., 2018. Detecting semantic social engineering attacks with the weakest link: Implementation and empirical evaluation of a human-as-a-security-sensor framework. Computers and Security, 76, pp. 101–127. Article Google Scholar
Heartfield, R., Loukas, G. and Gan, D., 2016. You are probably not the weakest link: Towards practical prediction of susceptibility to semantic social engineering attacks. IEEE Access, 4, pp. 6910–6928. Article Google Scholar
Heartfield, R. and Loukas, G., 2016, June. Evaluating the reliability of users as human sensors of social media security threats. In Cyber Situational Awareness, Data Analytics And Assessment (CyberSA), 2016 International Conference On (pp. 1–7). IEEE. Google Scholar
Bianchi, A., Corbetta, J., Invernizzi, L., Fratantonio, Y., Kruegel, C. and Vigna, G., 2015, May. What the app is that? deception and countermeasures in the android user interface. In Security and Privacy (SP), 2015 IEEE Symposium on (pp. 931–948). IEEE. Google Scholar
Dhanalakshmi, R. and Chellappan, C., 2010, July. Detection and recognition of file masquerading for e-mail and data security. In International Conference on Network Security and Applications (pp. 253–262). Springer, Berlin, Heidelberg. Chapter Google Scholar
Stringhini, G. and Thonnard, O., 2015, July. That ain’t you: Blocking spearphishing through behavioral modelling. In International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment (pp. 78–97). Springer, Cham. Chapter Google Scholar
Aggarwal, A., Rajadesingan, A. and Kumaraguru, P., 2012, October. PhishAri: Automatic realtime phishing detection on twitter. In eCrime Researchers Summit (eCrime), 2012 (pp. 1–12). IEEE. Google Scholar
Basnet, R., Mukkamala, S. and Sung, A.H., 2008. Detection of phishing attacks: A machine learning approach. In Soft Computing Applications in Industry (pp. 373–383). Springer, Berlin, Heidelberg. Google Scholar
Bhardwaj, T., Sharma, T.K. and Pandit, M.R., 2014. Social engineering prevention by detecting malicious URLs using artificial bee colony algorithm. In Proceedings of the Third International Conference on Soft Computing for Problem Solving (pp. 355–363). Springer, New Delhi. Google Scholar
Asanka, N., Love, S. and Scott, M., 2012. Designing a mobile game to teach conceptual knowledge of avoiding’phishing attacks’. International Journal for e-Learning Security, 2(1), pp. 127–132. Article Google Scholar
Bergholz, A., Chang, J.H., Paass, G., Reichartz, F. and Strobel, S., 2008, August. Improved Phishing Detection using Model-Based Features. In CEAS. Google Scholar
Dong-Her, S., Hsiu-Sen, C., Chun-Yuan, C. and Lin, B., 2004. Internet security: malicious e-mails detection and protection. Industrial Management and Data Systems, 104(7), pp. 613–623. Article Google Scholar
Drucker, H., Wu, D. and Vapnik, V.N., 1999. Support vector machines for spam categorization. IEEE Transactions on Neural networks, 10(5), pp. 1048–1054. Article Google Scholar
Stembert, N., Padmos, A., Bargh, M.S., Choenni, S. and Jansen, F., 2015, September. A study of preventing email (spear) phishing by enabling human intelligence. In Intelligence and Security Informatics Conference (EISIC), 2015 European (pp. 113–120). IEEE. Google Scholar
Malisa, L., Kostiainen, K. and Capkun, S., 2017, March. Detecting mobile application spoofing attacks by leveraging user visual similarity perception. In Proceedings of the Seventh ACM on Conference on Data and Application Security and Privacy (pp. 289–300). ACM. Google Scholar
Corbetta, J., Invernizzi, L., Kruegel, C. and Vigna, G., 2014, September. Eyes of a human, eyes of a program: Leveraging different views of the web for analysis and detection. In International Workshop on Recent Advances in Intrusion Detection (pp. 130–149). Springer, Cham. Google Scholar
Kumaraguru, P., 2009. Phishguru: a system for educating users about semantic attacks. Carnegie Mellon University. Google Scholar
Lee, K., Caverlee, J. and Webb, S., 2010, April. The social honeypot project: protecting online communities from spammers. In Proceedings of the 19th international conference on World wide web (pp. 1139–1140). ACM. Google Scholar
Lee, S. and Kim, J., 2012, February. WarningBird: Detecting Suspicious URLs in Twitter Stream. In NDSS (Vol. 12, pp. 1–13). Google Scholar
Sheng, S., Magnien, B., Kumaraguru, P., Acquisti, A., Cranor, L.F., Hong, J. and Nunge, E., 2007, July. Anti-phishing phil: the design and evaluation of a game that teaches people not to fall for phish. In Proceedings of the 3rd symposium on Usable privacy and security (pp. 88–99). ACM. Google Scholar
Xiang, G., Hong, J., Rose, C.P. and Cranor, L., 2011. Cantina+: A feature-rich machine learning framework for detecting phishing web sites. ACM Transactions on Information and System Security (TISSEC), 14(2), p.21. Article Google Scholar
Shamsi, J.A., Hameed, S., Rahman, W., Zuberi, F., Altaf, K. and Amjad, A., 2014, January. Clicksafe: Providing security against clickjacking attacks. In High-Assurance Systems Engineering (HASE), 2014 IEEE 15th International Symposium on (pp. 206–210). IEEE. Google Scholar
Larson, M., Massey, D., Rose, S., Arends, R. and Austein, R., 2005. DNS security introduction and requirements. IETF. https://tools.ietf.org/html/rfc4033
Shahzad, R.K. and Lavesson, N., 2011, August. Detecting scareware by mining variable length instruction sequences. In Information Security South Africa (ISSA), 2011 (pp. 1–8). IEEE. Google Scholar
Seifert, C., Stokes, J.W., Colcernian, C., Platt, J.C. and Lu, L., 2013, May. Robust scareware image detection. In Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on (pp. 2920–2924). IEEE. Google Scholar
Alnajjar, A.Y., Manickam, S., Anbar, M., Al-saleem, S. and Elejla, O., 2016. TrustQR: A New Technique for the Detection of Phishing Attacks on QR Code. Advanced Science Letters, 22(10), pp.2905–2909. Article Google Scholar
Beyah, R., Kangude, S., Yu, G., Strickland, B. and Copeland, J., 2004, December. Rogue access point detection using temporal traffic characteristics. In Global Telecommunications Conference, 2004. GLOBECOM’04. IEEE (Vol. 4, pp. 2271–2275). IEEE. Google Scholar
Al-Khamis, A.K. and Khalafallah, A.A., 2015, November. Secure Internet on Google Chrome: Client side anti-tabnabbing extension. In Anti-Cybercrime (ICACC), 2015 First International Conference on (pp. 1–4). IEEE. Google Scholar
Kharraz, A., Arshad, S., Mulliner, C., Robertson, W.K. and Kirda, E., 2016, August. UNVEIL: A Large-Scale, Automated Approach to Detecting Ransomware. In USENIX Security Symposium (pp. 757–772). Google Scholar
Vinayakumar, R., Soman, K.P., Velan, K.S. and Ganorkar, S., 2017, September. Evaluating shallow and deep networks for ransomware detection and classification. In Advances in Computing, Communications and Informatics (ICACCI), 2017 International Conference on (pp. 259–265). IEEE. Google Scholar
Mercaldo, F., Nardone, V., Santone, A. and Visaggio, C.A., 2016, June. Ransomware steals your phone. formal methods rescue it. In International Conference on Formal Techniques for Distributed Objects, Components, and Systems (pp. 212–221). Springer, Cham. Chapter Google Scholar
Bandhakavi, S., King, S.T., Madhusudan, P. and Winslett, M., 2010, August. VEX: Vetting Browser Extensions for Security Vulnerabilities. In USENIX Security Symposium (Vol. 10, pp. 339–354). Google Scholar
Ter Louw, M., Lim, J.S. and Venkatakrishnan, V.N., 2008. Enhancing web browser security against malware extensions. Journal in Computer Virology, 4(3), pp. 179–195. Article Google Scholar
Ford, S., Cova, M., Kruegel, C. and Vigna, G., 2009, December. Analyzing and detecting malicious flash advertisements. In Computer Security Applications Conference, 2009. ACSAC’09. Annual (pp. 363–372). IEEE. Google Scholar
Li, Z., Zhang, K., Xie, Y., Yu, F. and Wang, X., 2012, October. Knowing your enemy: understanding and detecting malicious web advertising. In Proceedings of the 2012 ACM conference on Computer and communications security (pp. 674–686). ACM. Google Scholar
Poornachandran, P., Balagopal, N., Pal, S., Ashok, A., Sankar, P. and Krishnan, M.R., 2017. Demalvertising: A Kernel Approach for Detecting Malwares in Advertising Networks. In Proceedings of the First International Conference on Intelligent Computing and Communication (pp. 215–224). Springer, Singapore. Google Scholar
Patil, K., 2016. Request dependency integrity: validating web requests using dependencies in the browser environment. International Journal of Information Privacy, Security and Integrity, 2(4), pp. 281–306. ArticleMathSciNet Google Scholar
Banerjee, A., Rahman, M.S. and Faloutsos, M., 2011. SUT: Quantifying and mitigating url typosquatting. Computer Networks, 55(13), pp. 3001–3014. Article Google Scholar
Szurdi, J., Kocso, B., Cseh, G., Spring, J., Felegyhazi, M. and Kanich, C., 2014, August. The Long “Taile” of Typosquatting Domain Names. In USENIX Security Symposium (pp. 191–206). Google Scholar
Almeida, Tiago, Renato Moraes Silva, and Akebo Yamakami. “Machine learning methods for spamdexing detection.” International Journal of Information Security Science 2, no. 3 (2013): 86–107. Google Scholar
Geng, G.G., Wang, C.H. and Li, Q.D., 2008, January. Improving Spamdexing Detection Via a Two-Stage Classification Strategy. In Asia Information Retrieval Symposium (pp. 356–364). Springer, Berlin, Heidelberg. Google Scholar
Abou-Assaleh, T. and Das, T., 2006, November. Combating spamdexing: Incorporating heuristics in link-based ranking. In International Workshop on Algorithms and Models for the Web-Graph (pp. 97–106). Springer, Berlin, Heidelberg. Google Scholar
Shahriar, H., Haddad, H. and Devendran, V.K., 2015. Request and Response Analysis Framework for Mitigating Clickjacking Attacks. International Journal of Secure Software Engineering (IJSSE), 6(3), pp. 1–25. Article Google Scholar
Johns, M. and Lekies, S., 2013, October. Tamper-resistant likejacking protection. In International Workshop on Recent Advances in Intrusion Detection (pp. 265–285). Springer, Berlin, Heidelberg. Chapter Google Scholar
Sarjaz, B.S. and Abbaspour, M., 2013. Securing BitTorrent using a new reputation-based trust management system. Peer-to-Peer Networking and Applications, 6(1), pp. 86–100. Article Google Scholar