Electroosmotic pumps and their applications in microfluidic systems (original) (raw)
References
Ajdari A (2000) Pumping liquids using asymmetric electrode arrays. Phys Rev E 61(1):R45–R48 Article Google Scholar
Aoki H, Kubo T, Ikegami T, Tanaka N, Hosoya K, Tokuda D, Ishizuka N (2006) Preparation of glycerol dimethacrylate-based polymer monolith with unusual porous properties achieved via viscoelastic phase separation induced by monodisperse ultra high molecular weight poly(styrene) as a porogen. J Chromatogr A 1119(1–2):66–79 Article Google Scholar
Bazant MZ, Ben Y (2006) Theoretical prediction of fast 3D AC electro-osmotic pumps. Lab Chip 6(11):1455–1461 Article Google Scholar
Berrouche Y, Avenas Y, Schaeffer C, Wang P, Chang H-C (2008) Optimization of high flow rate nanoporous electroosmotic pump. J Fluids Eng 130(8):081604/1–081604/6 Article Google Scholar
Berthelot M (1859) Violet d’aniline. Rep Chim Appl 1:284 Google Scholar
Bird RB, Stewart WE, Lightfoot EN (2002) Transport phenomena, 2nd edn. Wiley Interscience, New York Google Scholar
Bockris JO’M, Reddy AKN (1970) Modern electrochemistry, vol 2. Plenum Press, New York, pp 826–835 Google Scholar
Borowsky J, Lu Q, Collins GE (2008a) High pressure electroosmotic based on a packed bed planar microchip. Sens Actuat B Chem 131(1):333–339 Article Google Scholar
Borowsky JF, Giordano BC, Lu Q, Terray A, Collins GE (2008b) Electroosmotic flow-based pump for liquid chromatography on a planar microchip. Anal Chem 80(21):8287–8292 Article Google Scholar
Brask A, Kutter JP, Bruus H (2005) Long-term stable electroosmotic pump with ion exchange membranes. Lab Chip 5(7):730–738 Article Google Scholar
Brown ABD, Smith CG, Rennie AR (2001) Pumping of water with ac electric fields applied to asymmetric pairs of microelectrodes. Phys Rev E 63(1–2):016305/1–016305/8 Google Scholar
Buie CR, Posner JD, Fabian T, Cha SW, Kim D, Prinz FB, Eaton JK, Santiago JG (2006a) Water management in proton exchange membrane fuel cells using integrated electroosmotic pumping. J Power Sources 161(1):191–202 Article Google Scholar
Buie CR, Kim D, Litster SE, Santiago JG (2006b) Free convection direct methanol fuel cells powered by electroosmotic pumps. ECS Trans 3(1):1279–1287 Article Google Scholar
Byun CK, Wang X, Pu Q, Liu S (2007) Electroosmosis-based nanopipettor. Anal Chem 79(10):3862–3866 Article Google Scholar
Cahill BP, Heyderman LJ, Gobrecht J, Stemmer A (2004) Electro-osmotic streaming on application of traveling-wave electric fields. Phys Rev E 70(3–2):036305-1-14 Google Scholar
Chen CH, Santiago JG (2002) A planar electroosmotic micropump. J Microelectromech Syst 11(6):672–683 Article Google Scholar
Chen L, Ma J, Guan Y (2003a) An electroosmotic pump for packed capillary liquid chromatography. Microchem J 75(1):15–21 Article Google Scholar
Chen L, Ma J, Tan F, Guan Y (2003b) Generating high-pressure sub-microliter flow rate in packed microchannel by electroosmotic force: potential application in microfluidic systems. Sens Actuat B Chem 88(3):260–265 Article Google Scholar
Chen L, Ma J, Guan Y (2004) Study of an electroosmotic pump for liquid delivery and its application in capillary column liquid chromatography. J Chromatogr A 1028(2):219–226 Article Google Scholar
Chen L, Guan Y, Ma J, Luo G, Liu K (2005a) Application of a high-pressure electro-osmotic pump using nanometer silica in capillary liquid chromatography. J Chromatogr A 1064(1):19–24 Article Google Scholar
Chen L, Wang H, Ma J, Wang C, Guan Y (2005b) Fabrication and characterization of a multi-stage electroosmotic pump for liquid delivery. Sens Actuat B Chem 104(1):117–123 Article Google Scholar
Chen Z, Wang P, Chang HC (2005c) An electro-osmotic micro-pump based on monolithic silica for micro-flow analyses and electro-sprays. Anal Bioanal Chem 382(3):817–824 Article Google Scholar
Chen L, Choo J, Yan B (2007) The microfabricated electrokinetic pump: a potential promising drug delivery technique. Export Opin Drug Deliv 4(2):119–129 Article Google Scholar
Chen L, Lee S, Choo J, Lee EK (2008a) Continuous dynamic flow micropumps for microfluid manipulation. J Micromech Microeng 18(1):013001/1–013001/22 Google Scholar
Chen L, Li Q, Lee S, Choo J (2008b) Development of an electroosmotic pump using nanosilica particle packed capillary. IEEE Sens J 8(5):488–494 Article Google Scholar
Chen YF, Li MC, Hu YH, Chang WJ, Wang CC (2008c) Low-voltage electroosmotic pumping using porous anodic alumina membranes. Microfluid Nanofluid 5(2):235–244 Article Google Scholar
Dasgupta PK, Liu S (1994) Electroosmosis: a reliable fluid propulsion system for flow injection analysis. Anal Chem 66(11):1792–1798 Article Google Scholar
Debesset S, Hayden CJ, Dalton C, Eijkel JCT, Manz A (2004) An AC electroosmotic micropump for circular chromatographic applications. Lab Chip 4(4):396–400 Article Google Scholar
Edwards JMIV, Hamblin MN, Fuentes HV, Peeni BA, Lee ML, Woolley AT, Hawkins AR (2007) Thin film electro-osmotic pumps for biomicrofluidic applications. Biomicrofluidics 1(1):014101/1–014101/11 Article Google Scholar
Fabian T, O’Hayre R, Litster S, Prinz FB, Santiago JG (2006) Water management at the cathode of a planar air-breathing fuel cell with an electroosmotic pump. ECS Trans 3(1):949–960 Article Google Scholar
Figeys D, Aebersold R (1998) Nanoflow solvent gradient delivery from a microfabricated device for protein identifications by electrospray ionization mass spectrometry. Anal Chem 70(18):3721–3727 Article Google Scholar
Gan W, Yang L, He Y, Zeng R, Cervera ML, de la Guardia M (2000) Mechanism of porous core electroosmotic pump flow injection system and its application to determination of chromium(VI) in waste-water. Talanta 51(4):667–675 Article Google Scholar
Garcia-Sanchez P, Ramos A, Green NG, Morgan H (2006) Experiments on ac electrokinetic pumping of liquids using arrays of microelectrodes. IEEE Trans Electr Insul 13(3):670–677 Article Google Scholar
Guenat OT, Ghiglione D, Morf WE, de Rooij NF (2001) Partial electroosmotic pumping in complex capillary systems. Part 2: Fabrication and application of a micro total analysis system (μTAS) suited for continuous volumetric nanotitrations. Sens Actuat B Chem 72(3):273–282 Article Google Scholar
Hadd AG, Raymond DE, Halliwell JW, Jacobson SC, Ramsey JM (1997) Microchip device for performing enzyme assays. Anal Chem 69(17):3407–3412 Article Google Scholar
Helmholtz von HLF (1879) Studien uber electrische grenzschichten. Ann Phys 7:337–382 Google Scholar
Hunter RJ (1980) In: Brockris JO’M, Conway BE, Yeager E (Eds) Comprehensive treatise of electrochemistry, vol 1. Plenum Press, New York, pp 404–412
Iverson BD, Garimella SV (2008) Recent advances in microscale pumping technologies: a review and evaluation. Microfluid Nanofluid 5(2):145–174 Article Google Scholar
Jiang L, Mikkelsen J, Koo JM, Huber D, Yao S, Zhang L, Zhou P, Maveety JG, Prasher R, Santiago JG, Kenny TW, Goodson KE (2002) Closed-loop electroosmotic microchannel cooling system for VLSI circuits. IEEE Trans Comp Pack Manuf Technol 25(3):347–355 Article Google Scholar
Jin LJ, Ferrance J, Sanders JC, Landers JP (2003) A microchip-based proteolytic digestion system driven by electroosmotic pumping. Lab Chip 3(1):11–18 Article Google Scholar
Joo S, Chung TD, Kim HC (2007) A rapid field-free electroosmotic micropump incorporating charged microchannel surfaces. Sens Actuat B Chem 123(2):1161–1168 Article Google Scholar
Kim D, Posner JD, Santiago JG (2006) Electroosmotic pumping of methanol/water mixtures for direct methanol fuel cell applications. ECS Trans 1(6):241–245 ArticleMATH Google Scholar
Kim D, Posner JD, Santiago JG (2008) High flow rate per power electroosmotic pumping using low ion density solvents. Sens Actuat A 141(1):201–212 Article Google Scholar
Kutter JP, Jacobson SC, Ramsey JM (1997) Integrated microchip device with electrokinetically controlled solvent mixing for isocratic and gradient elution in micellar electrokinetic chromatography. Anal Chem 69(24):5165–5171 Article Google Scholar
Lammerhofer M, Svec F, Frechet JMJ, Lindner W (2001) Capillary electrochromatography in anion-exchange and normal-phase mode using monolithic stationary phases. J Chromatogr A 925(1–2):265–277 Article Google Scholar
Laser DJ, Santiago JG (2004) A review of micropumps. J Micromech Microeng 14(6):R35–R64 Article Google Scholar
Lastochkin D, Zhou R, Wang P, Ben Y, Chang HC (2004) Electrokinetic micropump and micromixer design based on ac faradaic polarization. J Appl Phys 96(3):1730–1733 Article Google Scholar
Lazar LM, Karger BL (2002) Multiple open-channel electroosmotic pumping system for microfluidic sample handling. Anal Chem 74(24):6259–6268 Article Google Scholar
Lazar IM, Trisiripisal P, Sarvaiya HA (2006) Microfluidic liquid chromatography system for proteomic applications and biomarker screening. Anal Chem 78(15):5513–5524 Article Google Scholar
Li PCH, Harrison DJ (1997) Transport, manipulation, and reaction of biological cells on-chip using electrokinetic effects. Anal Chem 69(8):1564–1568 Article Google Scholar
Litster S, Buie CR, Fabian T, Eaton JK, Santiago JG (2007) Active water management for PEM fuel cells. J Electrochem Soc 154(10):B1049–B1058 Article Google Scholar
Liu S, Dasgupta PK (1992) Flow injection analysis in the capillary format using electroosmotic pumping. Anal Chim Acta 268(1):1–6 Article Google Scholar
Liu S, Dasgupta PK (1993) A simple means to increase absorbance detection sensitivity in capillary zone electrophoresis. Anal Chim Acta 283(2):747–753 Article Google Scholar
Liu S, Dasgupta PK (1994) Sequential injection analysis in capillary format with an electroosmotic pump. Talanta 41(11):1903–1910 Article Google Scholar
Liu S, Dasgupta PK (1995) Electroosmotically pumped capillary format sequential injection analysis with a membrane sampling interface for gaseous analytes. Anal Chim Acta 308(1–3):281–285 Article Google Scholar
Liu S, Pu Q, Lu JJ (2003) Electric field-decoupled electroosmotic pump for microfluidic devices. J Chromatogr A 1013(1–2):57–64 Article Google Scholar
Miao J, Xu Z, Zhang X, Wang N, Yang Z, Sheng P (2007) Micropumps based on the enhanced electroosmotic effect of aluminum oxide membranes. Adv Mater 19(23):4234–4237 Article Google Scholar
Morf WE, Guenat OT, de Rooij NF (2001) Partial electroosmotic pumping in complex capillary systems. Part 1: Principles and general theoretical approach. Sens Actuat B Chem 72(3):266–272 Article Google Scholar
Mpholo M, Smith CG, Brown ABD (2003) Low voltage plug flow pumping using anisotropic electrode arrays. Sens Actuat B Chem 92(3):262–268 Article Google Scholar
Nie F, Macka M, Barron L, Connolly D, Kent N, Paull B (2007a) Robust monolithic silica-based on-chip electro-osmotic micro-pump. Analyst 132(5):417–424 Article Google Scholar
Nie F, Macka M, Paull B (2007b) Micro-flow injection analysis system: on-chip sample preconcentration, injection and delivery using coupled monolithic electroosmotic pumps. Lab Chip 7(11):1597–1599 Article Google Scholar
Peters EC, Petro M, Svec F, Frechet JMJ (1997) Molded rigid polymer monoliths as separation media for capillary electrochromatography. Anal Chem 69(17):3646–3649 Article Google Scholar
Paul PH, Arnold DW, Rakestraw DJ (1998) Electrokinetic generation of high pressures using porous microstructures. In: Harrison DJ, van den Berg A (eds) Micro total analysis system. Springer, New York, pp 49–52 Google Scholar
Paul PH, Rakestraw DJ (2000) Electrokinetic high pressure hydraulic system. US Patent 6,019,882
Paul PH, Arnold DW, Neyer DW, Smith KB (2000) Electrokinetic pump application in micro-total analysis systems: mechanical actuation to HPLC. In: Harrison DJ, van den Berg A (eds) Micro total analysis system. Springer, New York, pp 583–590 Google Scholar
Pikal MJ (2001) The role of electroosmotic flow in transdermal iontophoresis. Adv Drug Deliv Rev 46(1–3):281–305 Article Google Scholar
Prakash P, Grissom MD, Rahn CD, Zydney AL (2006) Development of an electroosmotic pump for high performance actuation. J Membr Sci 286(1+2):153–160 Article Google Scholar
Pretorius V, Hopkins BJ, Schieke JD (1974) Electroosmosis. New concept for high speed liquid chromatography. J Chromatogr A 99:23–30 Article Google Scholar
Pu Q, Liu S (2004) Microfabricated electroosmotic pump for capillary-based sequential injection analysis. Anal Chim Acta 511(1):105–112 Article Google Scholar
Pu Q, Yun J, Temkin H, Liu S (2004) Ion-enrichment and ion-depletion effect of nanochannel structures. Nano Lett 4(6):1099–1103 Article Google Scholar
Ramos A, Morgan H, Green NG, Castellanos A (1999) AC electric-field-induced fluid flow in microelectrodes. J Colloid Interf Sci 217(2):420–422 Article Google Scholar
Ramos A, Gonzalez A, Castellanos A, Green NG, Morgan H (2003) Pumping of liquids with ac voltages applied to asymmetric pairs of microelectrodes. Phys Rev E 67(5–2):056302/1–056302/11 Google Scholar
Ramos A, Morgan H, Green NG, Castellanos A (2005) Pumping of liquids with traveling-wave electroosmosis. J Appl Phys 97(8):084906/1–084906/8 Article Google Scholar
Razunguzwa TT, Timperman AT (2004) Fabrication and characterization of a fritless microfabricated electroosmotic pump with reduced pH dependence. Anal Chem 76(5):1336–1341 Article Google Scholar
Reichmuth DS, Kirby BJ (2003) Effects of ammonioalkyl sulfonate internal salts on electrokinetic micropump performance and reversed-phase HPLC separations. J Chromatogr A 1013(1–2):93–101 Article Google Scholar
Reuss FF (1809) Sur un nouvel effet de l’électricité galvanique. Mémoires de la Société Impériale des Naturalistes de Moscou 2:327–337 Google Scholar
Rice CL, Whitehead R (1965) Electrokinetic flow in a narrow cylindrical capillary. J Phys Chem 69(11):4017–4024 Article Google Scholar
Ruzicka J, Hansen EH (1981) Flow injection analysis. Wiley, New York Google Scholar
Saltzman BE (1954) Colorimetric microdetermination of nitrogen dioxide in the atmosphere. Anal Chem 26:1949–1955 Article Google Scholar
Seibel K, Schöler L, Schäfer H, Böhm M (2008) A programmable planar electroosmotic micropump for lab-on-chip application. 18(2):025008/1–025008/7
Smoluchowski MV (1917) Versuch einer mathematischen theorie der koagulationskinetik kolloider lösungen. Z Phys Chem 92:129–168 Google Scholar
Studer V, Pepin A, Chen Y, Ajdari A (2004) An integrated AC electrokinetic pump in a microfluidic loop for fast and tunable flow control. Analyst 129(10):944–949 Article Google Scholar
Takamura Y, Onoda H, Inokuchi H, Adachi S, Oki A, Horiike Y (2001) Low-voltage electroosmosis pump and its application to on-chip linear stepping pneumatic pressure source. Micro total analysis systems, pp 230–232
Takamura Y, Onoda H, Inokuchi H, Adachi S, Oki A, Horiike Y (2003) Low-voltage electroosmosis pump for stand-alone microfluidics devices. Electrophoresis 24(1–2):185–192 Article Google Scholar
Tanaka N, Kobayashi H, Ishizuka N, Minakuchi H, Nakanishi K, Hosoya K, Ikegami T (2002) Monolithic silica columns for high-efficiency chromatographic separations. J Chromatogr A 965(1–2):35–49 Article Google Scholar
Tripp JA, Svec F, Frechet JMJ, Zeng SL, Mikkelsen JC, Santiago JG (2004) High-pressure electroosmotic pumps based on porous polymer monoliths. Sens Actuat B Chem 99(1):66–73 Article Google Scholar
Urbanski JP, Thorsen T, Levitan JA, Bazant MZ (2006) Fast AC electro-osmotic micropumps with nonplanar electrodes. Appl Phys Lett 89(14):143508/1–143508/3 Article Google Scholar
Urbanski JP, Levitan JA, Burch DN, Thorsen T, Bazant MZ (2007) The effect of step height on ac electro-osmotic microfluidic pumps. J Colloid Interf 309(2):332–341 Article Google Scholar
Wallner JZ, Nagar N, Friedrich CR, Bergstrom PL (2007) Macro porous silicon as pump media for electro-osmotic pump. Phys Stat Sol (a) 204(5):1327–1331 Article Google Scholar
Wang P, Chen ZL, Chang HC (2006) A new electro-osmotic pump based on silica monoliths. Sens Actuat B Chem 113(1):500–509 ArticleMathSciNet Google Scholar
Wu J (2008) Ac electro-osmotic micropump by asymmetric electrode polarization. J Appl Phys 103(2):024907/1–024907/5 Google Scholar
Xie C, Hu J, Xiao H, Su X, Dong J, Tian R, He Z, Zou H (2005) Electrochromatographic evaluation of a silica monolith capillary column for separation of basic pharmaceuticals. Electrophoresis 26(4–5):790–797 Article Google Scholar
Yang L, He YZ, Gan WE, Li M, Qu QS, Lin XQ (2001) Determination of chromium(VI) and lead(II) in drinking water by electrokinetic flow analysis system and graphite furnace atomic absorption spectrometry. Talanta 55(2):271–279 Article Google Scholar
Yao S, Huber D, Mikkelsen JC, Santiago JG (2001) A large flowrate electroosmotic pump with micron pores. In: Proceedings of the international mechanical engineering congress and exposition, sixth microfluids symposium, New York, pp 1–7
Yao S, Hertzog DE, Zeng S, Mikkelsen JC, Santiago JG (2003) Porous glass electroosmotic pumps: design and experiments. J Colloid Interf Sci 268(1):143–153 Article Google Scholar
Yao S, Myers AM, Posner JD, Rose KA, Santiago JG (2006) Electroosmotic pumps fabricated from porous silicon membranes. J Microelectromech Syst 15(3):717–728 Article Google Scholar
Zeng S, Chen CH, Mikkelsen JC, Santiago JG (2001) Fabrication and characterization of electroosmotic micropumps. Sens Actuat B Chem 79(2–3):107–114 Article Google Scholar
Zeng S, Chen CH, Santiago JG, Chen J, Zare RN, Tripp JA, Svec F, Frechet J (2002) Electroosmotic flow pumps with polymer frits. Sens Actuat B 82(2–3):209–212 Article Google Scholar
Zhao YQ, He YZ, Gan WE, Yang L (2002) Determination of nitrite by sequential injection analysis using electrokinetic flow analysis system. Talanta 6(4):619–625 Article Google Scholar
Zou HF, Huang XD, Ye ML, Luo QZ (2002) Monolithic stationary phases for liquid chromatography and capillary electrochromatography. J Chromatogr A 954(1):5–32 Article Google Scholar