Axiom of Infinity (original) (raw)

Algebra Applied Mathematics Calculus and Analysis Discrete Mathematics Foundations of Mathematics Geometry History and Terminology Number Theory Probability and Statistics Recreational Mathematics Topology

Alphabetical Index New in MathWorld


The axiom of Zermelo-Fraenkel set theorywhich asserts the existence of a set containing all the natural numbers,

  exists x(emptyset in x ^  forall y in x(y^' in x)),

where  exists denotes exists, emptyset is the empty set,  ^ is logical AND, forall means for all, and  in denotes "is an element of" (Enderton 1977). Following von Neumann, 0=emptyset, 1=0^'={0}, 2=1^'={0,1}, 3=2^'={0,1,2}, ....


See also

Zermelo-Fraenkel Set Theory

Explore with Wolfram|Alpha

References

Enderton, H. B. Elements of Set Theory. New York: Academic Press, 1977.Itô, K. (Ed.). "Zermelo-Fraenkel Set Theory." §33B in Encyclopedic Dictionary of Mathematics, 2nd ed., Vol. 1. Cambridge, MA: MIT Press, pp. 146-148, 1986.

Referenced on Wolfram|Alpha

Axiom of Infinity

Cite this as:

Weisstein, Eric W. "Axiom of Infinity." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/AxiomofInfinity.html

Subject classifications