Axiom of Infinity (original) (raw)
Algebra Applied Mathematics Calculus and Analysis Discrete Mathematics Foundations of Mathematics Geometry History and Terminology Number Theory Probability and Statistics Recreational Mathematics Topology
Alphabetical Index New in MathWorld
The axiom of Zermelo-Fraenkel set theorywhich asserts the existence of a set containing all the natural numbers,
where denotes exists,
is the empty set,
is logical AND,
means for all, and
denotes "is an element of" (Enderton 1977). Following von Neumann,
,
,
,
, ....
See also
Explore with Wolfram|Alpha
References
Enderton, H. B. Elements of Set Theory. New York: Academic Press, 1977.Itô, K. (Ed.). "Zermelo-Fraenkel Set Theory." §33B in Encyclopedic Dictionary of Mathematics, 2nd ed., Vol. 1. Cambridge, MA: MIT Press, pp. 146-148, 1986.
Referenced on Wolfram|Alpha
Cite this as:
Weisstein, Eric W. "Axiom of Infinity." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/AxiomofInfinity.html