Complex Modulus (original) (raw)

Algebra Applied Mathematics Calculus and Analysis Discrete Mathematics Foundations of Mathematics Geometry History and Terminology Number Theory Probability and Statistics Recreational Mathematics Topology

Alphabetical Index New in MathWorld


AbsoluteValue

AbsReIm

AbsContours

The modulus of a complex number z, also called the complex norm, is denoted |z| and defined by

|  \|x+iy|=sqrt(x^2+y^2). | (1) | | --------------------------------------------------------------------------------------------------------------- | --- |

If z is expressed as a complex exponential (i.e., a phasor), then

|  \|re^(iphi)|=|r|. | (2) | | ---------------------------------------------------------------------------------------------------------- | --- |

The complex modulus is implemented in the Wolfram Language as Abs[_z_], or as Norm[_z_].

The square |z|^2 of |z| is sometimes called the absolute square.

Let c_1=Ae^(iphi_1) and c_2=Be^(iphi_2) be two complex numbers. Then

so

|  \|(c_1)/(c_2)|=(|c_1|)/(|c_2|). | (5) | | ------------------------------------------------------------------------------------------------------------------------ | --- |

Also,

so

|  \|c_1c_2|=|c_1||c_2| | (8) | | ------------------------------------------------------------------------------------------------------------- | --- |

and, by extension,

|  \|z^n|=|z|^n. | (9) | | ------------------------------------------------------------------------------------------------------ | --- |

The only functions satisfying identities of the form

|  \|f(x+iy)|=|f(x)+f(iy)| | (10) | | ---------------------------------------------------------------------------------------------------------------- | ---- |

are f(z)=Az,f(z)=Asin(bz), and f(z)=Asinh(bz) (Robinson 1957).


See also

Absolute Square, Absolute Value, Complex Argument, Complex Number, Imaginary Part, Maximum Modulus Principle, Minimum Modulus Principle,Real Part

http://functions.wolfram.com/ComplexComponents/Abs/

Explore with Wolfram|Alpha

References

Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, p. 16, 1972.Krantz, S. G. "Modulus of a Complex Number." §1.1.4 n Handbook of Complex Variables. Boston, MA: Birkhäuser, pp. 2-3, 1999.Robinson, R. M. "A Curious Mathematical Identity." Amer. Math. Monthly 64, 83-85, 1957.

Referenced on Wolfram|Alpha

Complex Modulus

Cite this as:

Weisstein, Eric W. "Complex Modulus." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/ComplexModulus.html

Subject classifications