Complex Modulus (original) (raw)
Algebra Applied Mathematics Calculus and Analysis Discrete Mathematics Foundations of Mathematics Geometry History and Terminology Number Theory Probability and Statistics Recreational Mathematics Topology
Alphabetical Index New in MathWorld
The modulus of a complex number , also called the complex norm, is denoted
and defined by
| | (1) |
| --------------------------------------------------------------------------------------------------------------- | --- |
If is expressed as a complex exponential (i.e., a phasor), then
| | (2) |
| ---------------------------------------------------------------------------------------------------------- | --- |
The complex modulus is implemented in the Wolfram Language as Abs[_z_], or as Norm[_z_].
The square of
is sometimes called the absolute square.
Let and
be two complex numbers. Then
so
| | (5) |
| ------------------------------------------------------------------------------------------------------------------------ | --- |
Also,
so
| | (8) |
| ------------------------------------------------------------------------------------------------------------- | --- |
and, by extension,
| | (9) |
| ------------------------------------------------------------------------------------------------------ | --- |
The only functions satisfying identities of the form
| | (10) |
| ---------------------------------------------------------------------------------------------------------------- | ---- |
are ,
, and
(Robinson 1957).
See also
Absolute Square, Absolute Value, Complex Argument, Complex Number, Imaginary Part, Maximum Modulus Principle, Minimum Modulus Principle,Real Part
Related Wolfram sites
http://functions.wolfram.com/ComplexComponents/Abs/
Explore with Wolfram|Alpha
References
Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, p. 16, 1972.Krantz, S. G. "Modulus of a Complex Number." §1.1.4 n Handbook of Complex Variables. Boston, MA: Birkhäuser, pp. 2-3, 1999.Robinson, R. M. "A Curious Mathematical Identity." Amer. Math. Monthly 64, 83-85, 1957.
Referenced on Wolfram|Alpha
Cite this as:
Weisstein, Eric W. "Complex Modulus." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/ComplexModulus.html