Erdős-Selfridge Function (original) (raw)

Algebra Applied Mathematics Calculus and Analysis Discrete Mathematics Foundations of Mathematics Geometry History and Terminology Number Theory Probability and Statistics Recreational Mathematics Topology

Alphabetical Index New in MathWorld


The Erdős-Selfridge function g(k) is defined as the least integer bigger than k+1 such that the least prime factor of (g(k); k) exceeds k, where (n; k) is the binomial coefficient (Ecklund et al. 1974, Erdős et al. 1993). The best lower bound known is

 g(k)>=exp(csqrt((ln^3k)/(lnlnk)))

(Granville and Ramare 1996). Scheidler and Williams (1992) tabulated g(k) up to k=140, and Lukes et al. (1997) tabulated g(k) for 135<=k<=200. The values for n=1, 2, 3, ... are 3, 6, 7, 7, 23, 62, 143, 44, 159, 46, 47, 174, 2239, ... (OEIS A003458).


See also

Binomial Coefficient, Good Binomial Coefficient, Least Prime Factor

Explore with Wolfram|Alpha

References

Ecklund, E. F. Jr.; Erdős, P.; and Selfridge, J. L. "A New Function Associated with the prime factors of (n; k)." Math. Comput. 28, 647-649, 1974.Erdős, P.; Lacampagne, C. B.; and Selfridge, J. L. "Estimates of the Least Prime Factor of a Binomial Coefficient." Math. Comput. 61, 215-224, 1993.Granville, A. and Ramare, O. "Explicit Bounds on Exponential Sums and the Scarcity of Squarefree Binomial Coefficients." Mathematika 43, 73-107, 1996.Lukes, R. F.; Scheidler, R.; and Williams, H. C. "Further Tabulation of the Erdős-Selfridge Function." Math. Comput. 66, 1709-1717, 1997.Scheidler, R. and Williams, H. C. "A Method of Tabulating the Number-Theoretic Function g(k)." Math. Comput. 59, 251-257, 1992.Sloane, N. J. A. Sequence A003458/M2515 in "The On-Line Encyclopedia of Integer Sequences."

Referenced on Wolfram|Alpha

Erdős-Selfridge Function

Cite this as:

Weisstein, Eric W. "Erdős-Selfridge Function." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/Erdos-SelfridgeFunction.html

Subject classifications