Lattice Homomorphism (original) (raw)

Algebra Applied Mathematics Calculus and Analysis Discrete Mathematics Foundations of Mathematics Geometry History and Terminology Number Theory Probability and Statistics Recreational Mathematics Topology

Alphabetical Index New in MathWorld



See also

Lattice, Lattice Embedding, Lattice Isomorphism, Structure Homomorphism

This entry contributed by Matt Insall (author's link)

Explore with Wolfram|Alpha

References

Bandelt, H. H. "Tolerance Relations on Lattices." Bull. Austral. Math. Soc. 23, 367-381, 1981.Birkhoff, G. Lattice Theory, 3rd ed. Providence, RI: Amer. Math. Soc., 1967.Burris, S. and Sankappanavar, H. P. A Course in Universal Algebra. New York: Springer-Verlag, 1981. http://www.thoralf.uwaterloo.ca/htdocs/ualg.html.Chajda, I. and Zelinka, B. "Tolerances and Convexity." Czech. Math. J. 29, 584-587, 1979.Chajda, I. and Zelinka, B. "A Characterization of Tolerance-Distributive Tree Semilattices." Czech. Math. J. 37, 175-180, 1987.Gehrke, M.; Kaiser, K.; and Insall, M. "Some Nonstandard Methods Applied to Distributive Lattices." Zeitschrifte für Mathematische Logik und Grundlagen der Mathematik 36, 123-131, 1990.Grätzer, G. Lattice Theory: First Concepts and Distributive Lattices. San Francisco, CA: W. H. Freeman, 1971.Grätzer, G. Universal Algebra, 2nd ed. New York: Springer-Verlag, 1979.Grätzer, G. General Lattice Theory, 2nd ed. Boston, MA: Birkhäuser, 1998.Hobby, D. and McKenzie, R. The Structure of Finite Algebras. Providence, RI: Amer. Math. Soc., 1988.Insall, E. "Nonstandard Methods and Finiteness Conditions in Algebra." Ph.D. dissertation. Houston, TX: University of Houston, 1989.Insall, M. "Some Finiteness Conditions in Lattices Using Nonstandard Proof Methods." J. Austral. Math. Soc. 53, 266-280, 1992.Insall, M. "Geometric Conditions for Local Finiteness of a Lattice of Convex Sets." Math. Moravica 1, 35-40, 1997.Schweigert, D. "Central Relations on Lattices."J. Austral. Math. Soc. 37, 213-219, 1988.Schweigert, D. and Szymanska, M. "On Central Relations of Complete Lattices." Czech. Math. J. 37, 70-74, 1987.

Referenced on Wolfram|Alpha

Lattice Homomorphism

Cite this as:

Insall, Matt. "Lattice Homomorphism." From MathWorld--A Wolfram Web Resource, created by Eric W. Weisstein. https://mathworld.wolfram.com/LatticeHomomorphism.html

Subject classifications