Limit Ordinal (original) (raw)

Algebra Applied Mathematics Calculus and Analysis Discrete Mathematics Foundations of Mathematics Geometry History and Terminology Number Theory Probability and Statistics Recreational Mathematics Topology

Alphabetical Index New in MathWorld


An ordinal number alpha>0 is called a limit ordinal iff it has no immediate predecessor, i.e., if there is no ordinal number beta such that beta+1=alpha (Ciesielski 1997, p. 46; Moore 1982, p. 60; Rubin 1967, p. 182; Suppes 1972, p. 196). The first limit ordinal is omega.


See also

Ordinal Number, Successor

Explore with Wolfram|Alpha

References

Ciesielski, K. Set Theory for the Working Mathematician. Cambridge, England: Cambridge University Press, 1997.Moore, G. H. Zermelo's Axiom of Choice: Its Origin, Development, and Influence. New York: Springer-Verlag, 1982.Rubin, J. E. Set Theory for the Mathematician. New York: Holden-Day, 1967.Suppes, P. Axiomatic Set Theory. New York: Dover, 1972.

Referenced on Wolfram|Alpha

Limit Ordinal

Cite this as:

Weisstein, Eric W. "Limit Ordinal." FromMathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/LimitOrdinal.html

Subject classifications