Puiseux's Theorem (original) (raw)

TOPICS

Search Close

Search

Algebra Applied Mathematics Calculus and Analysis Discrete Mathematics Foundations of Mathematics Geometry History and Terminology Number Theory Probability and Statistics Recreational Mathematics Topology

Alphabetical Index New in MathWorld


The whole neighborhood of any point y_i of an algebraic curve may be uniformly represented by a certain finite number of convergent developments in power series,

 x_i=rho_nuy_i+a_(nui1)t_nu+a_(nui2)t_nu^2+....


Explore with Wolfram|Alpha

WolframAlpha

More things to try:

References

Coolidge, J. L. A Treatise on Algebraic Plane Curves. New York: Dover, p. 207, 1959.Puiseux, V. "Recherches sur les fonctions algébriques." J. de math. pures et appl. 15, 207, 1850.

Referenced on Wolfram|Alpha

Puiseux's Theorem

Cite this as:

Weisstein, Eric W. "Puiseux's Theorem." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/PuiseuxsTheorem.html

Subject classifications