A000389 - OEIS (original) (raw)

0, 0, 0, 0, 0, 1, 6, 21, 56, 126, 252, 462, 792, 1287, 2002, 3003, 4368, 6188, 8568, 11628, 15504, 20349, 26334, 33649, 42504, 53130, 65780, 80730, 98280, 118755, 142506, 169911, 201376, 237336, 278256, 324632, 376992, 435897, 501942, 575757, 658008, 749398

COMMENTS

a(n+4) is the number of inequivalent ways of coloring the vertices of a regular 4-dimensional simplex with n colors, under the full symmetric group S_5 of order 120, with cycle index (x1^5 + 10*x1^3*x2 + 20*x1^2*x3 + 15*x1*x2^2 + 30*x1*x4 + 20*x2*x3 + 24*x5)/120.

Figurate numbers based on 5-dimensional regular simplex. According to Hyun Kwang Kim, it appears that every nonnegative integer can be represented as the sum of g = 10 of these 5-simplex(n) numbers (compared with g=3 for triangular numbers, g=5 for tetrahedral numbers and g=8 for pentatope numbers). - Jonathan Vos Post, Nov 28 2004

The convolution of the nonnegative integers (A001477) with the tetrahedral numbers (A000292), which are the convolution of the nonnegative integers with themselves (making appropriate allowances for offsets of all sequences). - Graeme McRae, Jun 07 2006

a(n) is the number of terms in the expansion of (a_1 + a_2 + a_3 + a_4 + a_5 + a_6)^n. - Sergio Falcon, Feb 12 2007

Product of five consecutive numbers divided by 120. - Artur Jasinski, Dec 02 2007

Equals binomial transform of [1, 5, 10, 10, 5, 1, 0, 0, 0, ...]. - Gary W. Adamson, Feb 02 2009

Equals INVERTi transform of A099242 (1, 7, 34, 153, 686, 3088, ...). - Gary W. Adamson, Feb 02 2009

For a team with n basketball players (n>=5), this sequence is the number of possible starting lineups of 5 players, without regard to the positions (center, forward, guard) of the players. - Mohammad K. Azarian, Sep 10 2009

a(n) is the number of different patterns, regardless of order, when throwing (n-5) 6-sided dice. For example, one die can display the 6 numbers 1, 2, ..., 6; two dice can display the 21 digit-pairs 11, 12, ..., 56, 66. - Ian Duff, Nov 16 2009

Sum of the first n pentatope numbers (1, 5, 15, 35, 70, 126, 210, ...), see A000332. - Paul Muljadi, Dec 16 2009

Sum_{n>=0} a(n)/n! = e/120. Sum_{n>=4} a(n)/(n-4)! = 501*e/120. See A067764 regarding the second ratio. - Richard R. Forberg, Dec 26 2013

For a set of integers {1,2,...,n}, a(n) is the sum of the 2 smallest elements of each subset with 4 elements, which is 3*C(n+1,5) (for n>=4), hence a(n) = 3*C(n+1,5) = 3*A000389(n+1). - Serhat Bulut, Mar 11 2015

a(n) = fallfac(n,5)/5! is also the number of independent components of an antisymmetric tensor of rank 5 and dimension n >= 1. Here fallfac is the falling factorial. - Wolfdieter Lang, Dec 10 2015

Number of compositions (ordered partitions) of n+1 into exactly 6 parts. - Juergen Will, Jan 02 2016

Number of weak compositions (ordered weak partitions) of n-5 into exactly 6 parts. - Juergen Will, Jan 02 2016

a(n+3) could be the general number of all geodetic graphs of diameter n>=2 homeomorphic to the Petersen Graph. - Carlos Enrique Frasser, May 24 2018

a(n) is the number of chiral pairs of colorings of the 5 tetrahedral facets (or vertices) of the regular 4-D simplex (5-cell, pentachoron, Schläfli symbol {3,3,3}) using subsets of a set of n colors. Each member of a chiral pair is a reflection but not a rotation of the other.

a(n+4) is the number of unoriented colorings of the 5 tetrahedral facets of the regular 4-D simplex (5-cell, pentachoron) using subsets of a set of n colors. Each chiral pair is counted as one when enumerating unoriented arrangements. (End)

For integer m and positive integer r >= 4, the polynomial a(n) + a(n + m) + a(n + 2*m) + ... + a(n + r*m) in n has its zeros on the vertical line Re(n) = (4 - r*m)/2 in the complex plane. - Peter Bala, Jun 02 2024

REFERENCES

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.

A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 196.

L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 7.

Gupta, Hansraj; Partitions of j-partite numbers into twelve or a smaller number of parts. Collection of articles dedicated to Professor P. L. Bhatnagar on his sixtieth birthday. Math. Student 40 (1972), 401-441 (1974).

J. C. P. Miller, editor, Table of Binomial Coefficients. Royal Society Mathematical Tables, Vol. 3, Cambridge Univ. Press, 1954.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].

Eric Weisstein's World of Mathematics, Composition.

FORMULA

G.f.: x^5/(1-x)^6.

a(n) = n*(n-1)*(n-2)*(n-3)*(n-4)/120.

a(n) = (n^5-10*n^4+35*n^3-50*n^2+24*n)/120. (Replace all x_i's in the cycle index with n.)

a(n+2) = Sum_{i+j+k=n} i*j*k. - Benoit Cloitre, Nov 01 2002

Convolution of triangular numbers (A000217) with themselves.

a(n+3) = (1/2!)*(d^2/dx^2)S(n,x)|_{x=2}, n>=2, one half of second derivative of Chebyshev S-polynomials evaluated at x=2. See A049310. - Wolfdieter Lang, Apr 04 2007

Sum_{n>=5} 1/a(n) = 5/4. - R. J. Mathar, Jan 27 2009

For n>4, a(n) = 1/(Integral_{x=0..Pi/2} 10*(sin(x))^(2*n-9)*(cos(x))^9). - Francesco Daddi, Aug 02 2011

Sum_{n>=5} (-1)^(n + 1)/a(n) = 80*log(2) - 655/12 = 0.8684411114... - Richard R. Forberg, Aug 11 2014

a(n) = -a(4-n) for all n in Z. - Michael Somos, Oct 07 2014

0 = a(n)*(+a(n+1) + 4*a(n+2)) + a(n+1)*(-6*a(n+1) + a(n+2)) for all n in Z. - Michael Somos, Oct 07 2014

E.g.f.: x^5*exp(x)/120.

Inverse binomial transform of A054849. (End)

a(n+4) = 1*C(n,1) + 4*C(n,2) + 6*C(n,3) + 4*C(n,4) + 1*C(n,5), where the coefficient of C(n,k) is the number of unoriented pentachoron colorings using exactly k colors. (End)

EXAMPLE

G.f. = x^5 + 6*x^6 + 21*x^7 + 56*x^8 + 126*x^9 + 252*x^10 + 462*x^11 + ...

For A={1,2,3,4}, the only subset with 4 elements is {1,2,3,4}; sum of 2 minimum elements of this subset: a(4) = 1+2 = 3 = 3*C(4+1,5).

For A={1,2,3,4,5}, the subsets with 4 elements are {1,2,3,4}, {1,2,3,5}, {1,2,4,5}, {1,3,4,5}, {2,3,4,5}; sum of 2 smallest elements of each subset: a(5) = (1+2)+(1+2)+(1+2)+(1+3)+(2+3) = 18 = 3*C(5+1,5). - Serhat Bulut, Mar 11 2015

a(6) = 6 from the six independent components of an antisymmetric tensor A of rank 5 and dimension 6: A(1,2,3,4,5), A(1,2,3,4,6), A(1,2,3,5,6), A(1,2,4,5,6), A(1,3,4,5,6), A(2,3,4,5,6). See the Dec 10 2015 comment. - Wolfdieter Lang, Dec 10 2015

MAPLE

f:=n->(1/120)*(n^5-10*n^4+35*n^3-50*n^2+24*n): seq(f(n), n=0..60);

ZL := [S, {S=Prod(B, B, B, B, B, B), B=Set(Z, 1 <= card)}, unlabeled]: seq(combstruct[count](ZL, size=n+1), n=0..42); # Zerinvary Lajos, Mar 13 2007

MATHEMATICA

CoefficientList[Series[x^5 / (1 - x)^6, {x, 0, 40}], x] (* Vincenzo Librandi, Mar 12 2015 *)

LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 0, 0, 0, 0, 1}, 50] (* Harvey P. Dale, Jul 17 2016 *)

PROG

(PARI) (conv(u, v)=local(w); w=vector(length(u), i, sum(j=1, i, u[j]*v[i+1-j])); w);

(t(n)=n*(n+1)/2); u=vector(10, i, t(i)); conv(u, u)

(Haskell)

a000389 n = a000389_list !! n

a000389_list = 0 : 0 : f [] a000217_list where

f xs (t:ts) = (sum $ zipWith (*) xs a000217_list) : f (t:xs) ts

(Magma) [Binomial(n, 5): n in [0..40]]; // Vincenzo Librandi, Mar 12 2015

CROSSREFS

5-cell colorings: A337895 (oriented), A132366(n-1) (achiral).

Unoriented colorings: A063843 (5-cell edges, faces), A128767 (8-cell vertices, 16-cell facets), A337957 (16-cell vertices, 8-cell facets), A338949 (24-cell), A338965 (600-cell vertices, 120-cell facets).

Chiral colorings: A331352 (5-cell edges, faces), A337954 (8-cell vertices, 16-cell facets), A234249 (16-cell vertices, 8-cell facets), A338950 (24-cell), A338966 (600-cell vertices, 120-cell facets).

EXTENSIONS

Corrected formulas that had been based on other offsets. - R. J. Mathar, Jun 16 2009

I changed the offset to 0. This will require some further adjustments to the formulas. - N. J. A. Sloane, Aug 01 2010