A005638 - OEIS (original) (raw)

A005638

Number of unlabeled trivalent (or cubic) graphs with 2n nodes.
(Formerly M1656)

31

1, 0, 1, 2, 6, 21, 94, 540, 4207, 42110, 516344, 7373924, 118573592, 2103205738, 40634185402, 847871397424, 18987149095005, 454032821688754, 11544329612485981, 310964453836198311, 8845303172513781271

COMMENTS

Because the triangle A051031 is symmetric, a(n) is also the number of (2n-4)-regular graphs on 2n vertices.

REFERENCES

R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Robinson, R. W.; Wormald, N. C., Numbers of cubic graphs, J. Graph Theory 7 (1983), no. 4, 463-467.

Peter Steinbach, Field Guide to Simple Graphs, Volume 1, Part 17 (For Volumes 1, 2, 3, 4 of this book see A000088, A008406, A000055, A000664, respectively.)

Eric Weisstein's World of Mathematics, Cubic Graph

FORMULA

This sequence is the Euler transformation of A002851.

CROSSREFS

3-regular simple graphs: A002851 (connected), A165653 (disconnected), this sequence (not necessarily connected).

Regular graphs A005176 (any degree), A051031 (triangular array), chosen degrees: A000012 (k=0), A059841 (k=1), A008483 (k=2), this sequence (k=3), A033301 (k=4), A165626 (k=5), A165627 (k=6), A165628 (k=7), A180260 (k=8).

Not necessarily connected 3-regular simple graphs with girth *at least* g: this sequence (g=3), A185334 (g=4), A185335 (g=5), A185336 (g=6).

Not necessarily connected 3-regular simple graphs with girth *exactly* g: A185133 (g=3), A185134 (g=4), A185135 (g=5), A185136 (g=6).

EXTENSIONS

More terms from Ronald C. Read.

Comment, formulas, and (most) crossrefs by Jason Kimberley, 2009 and 2012