A007377 - OEIS (original) (raw)
A007377
Numbers k such that the decimal expansion of 2^k contains no 0.
(Formerly M0485)
56
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 13, 14, 15, 16, 18, 19, 24, 25, 27, 28, 31, 32, 33, 34, 35, 36, 37, 39, 49, 51, 67, 72, 76, 77, 81, 86
COMMENTS
It is an open problem of long standing to show that 86 is the last term.
See A030700 for the analog for 3^k, which seems to end with k=68. - M. F. Hasler, Mar 07 2014
REFERENCES
J. S. Madachy, Mathematics on Vacation, Scribner's, NY, 1966, p. 126.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Eric Weisstein's World of Mathematics, Zero
EXAMPLE
Here is 2^86, conjecturally the largest power of 2 not containing a 0: 77371252455336267181195264. - N. J. A. Sloane, Feb 10 2023
MAPLE
remove(t -> has(convert(2^t, base, 10), 0), [$0..1000]); # Robert Israel, Dec 29 2015
MATHEMATICA
Do[ If[ Union[ RealDigits[ 2^n ] [[1]]] [[1]] != 0, Print[ n ] ], {n, 1, 60000}]
Select[Range@1000, First@Union@IntegerDigits[2^# ] != 0 &]
Select[Range[0, 100], DigitCount[2^#, 10, 0]==0&] (* Harvey P. Dale, Feb 06 2015 *)
PROG
(Magma) [ n: n in [0..50000] | not 0 in Intseq(2^n) ]; // Bruno Berselli, Jun 08 2011
(Perl) use bignum;
for(0..99) {
if((1<<$_) =~ /^[1-9]+$/) {
print "$_, "
}
(PARI) for(n=0, 99, if(vecmin(eval(Vec(Str(2^n)))), print1(n", "))) \\ Charles R Greathouse IV, Jun 30 2011
(Haskell)
import Data.List (elemIndices)
a007377 n = a007377_list !! (n-1)
a007377_list = elemIndices 0 a027870_list
(Python)
def ok(n): return '0' not in str(2**n)
CROSSREFS
Some similar sequences are listed in A035064.