A014377 - OEIS (original) (raw)
1, 0, 0, 0, 1, 5, 1547, 21609301, 733351105934, 42700033549946250, 4073194598236125132578, 613969628444792223002008202, 141515621596238755266884806115631
REFERENCES
CRC Handbook of Combinatorial Designs, 1996, p. 648.
I. A. Faradzev, Constructive enumeration of combinatorial objects, pp. 131-135 of Problèmes combinatoires et théorie des graphes (Orsay, 9-13 Juillet 1976). Colloq. Internat. du C.N.R.S., No. 260, Centre Nat. Recherche Scient., Paris, 1978.
FORMULA
This sequence is the inverse Euler transformation of A165628.
EXAMPLE
a(0)=1 because the null graph (with no vertices) is vacuously 7-regular and connected.
CROSSREFS
Contribution (almost all) from Jason Kimberley, Feb 10 2011: (Start)
7-regular simple graphs: this sequence (connected), A165877 (disconnected), A165628 (not necessarily connected).
Connected regular simple graphs A005177 (any degree), A068934 (triangular array), specified degree k: A002851 (k=3), A006820 (k=4), A006821 (k=5), A006822 (k=6), this sequence (k=7), A014378 (k=8), A014381 (k=9), A014382 (k=10), A014384 (k=11).
Connected 7-regular simple graphs with girth at least g: this sequence (g=3), A181153 (g=4).
Connected 7-regular simple graphs with girth exactly g: A184963 (g=3), A184964 (g=4), A184965 (g=5). (End)
EXTENSIONS
Added another term from Meringer's page. Dmitry Kamenetsky, Jul 28 2009
Term a(8) (on Meringer's page) was found from running Meringer's GENREG for 325 processor days at U. Newcastle by Jason Kimberley, Oct 02 2009