A082116 - OEIS (original) (raw)
0, 1, 1, 2, 3, 0, 3, 3, 1, 4, 0, 4, 4, 3, 2, 0, 2, 2, 4, 1, 0, 1, 1, 2, 3, 0, 3, 3, 1, 4, 0, 4, 4, 3, 2, 0, 2, 2, 4, 1, 0, 1, 1, 2, 3, 0, 3, 3, 1, 4, 0, 4, 4, 3, 2, 0, 2, 2, 4, 1, 0, 1, 1, 2, 3, 0, 3, 3, 1, 4, 0, 4, 4, 3, 2, 0, 2, 2, 4, 1, 0, 1, 1, 2, 3, 0, 3, 3, 1, 4, 0, 4, 4, 3, 2, 0, 2, 2, 4, 1, 0, 1, 1
COMMENTS
This sequence contains the complete set of residues modulo 5. See A079002. - Michel Marcus, Jan 31 2020
REFERENCES
S. Vajda, Fibonacci and Lucas numbers and the Golden Section, Ellis Horwood Ltd., Chichester, 1989. See p. 88. - N. J. A. Sloane, Feb 20 2013
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,1,0,-1,1,1,-1,-1,1,0,-1,0,1).
FORMULA
Sequence is periodic with Pisano period 20.
a(n) = 2 + ((n mod 20) - ((n - 1) mod 20) - ((n - 3) mod 20) - ((n - 4) mod 20) + 3*((n - 5) mod 20) - 3*((n - 6) mod 20) + 2*((n - 8) mod 20) - 3*((n - 9) mod 20) + 4*((n - 10) mod 20) - 4*((n - 11) mod 20) + ((n - 13) mod 20) + ((n - 14) mod 20) + 2*((n - 15) mod 20) - 2*((n - 16) mod 20) - 2*((n - 18) mod 20) + 3*((n - 19) mod 20))/20. - Hieronymus Fischer, Jun 30 2007
G.f.: (x + x^2 + 2x^3 + 3x^4 + 3x^6 + 3x^7 + x^8 + 4x^9 + 4x^11 + 4x^12 + 3x^13 + 2x^14 + 2x^16 + 2x^17 + 4x^18 + x^19)/(1 - x^20), not reduced. - Hieronymus Fischer, Jun 30 2007
G.f.: -x*(1 + x + x^2 + 2*x^3 + 3*x^6 - x^7 - 2*x^8 - x^4 + x^9 + 4*x^10 + x^11) / ( (x - 1) * (x^4 + x^3 + x^2 + x + 1) * (x^8 - x^6 + x^4 - x^2 + 1) ). - R. J. Mathar, Jul 14 2012
MATHEMATICA
Table[Mod[Fibonacci[n], 5], {n, 0, 125}] (* Alonso del Arte, Jul 29 2013 *)