A007547 - OEIS (original) (raw)
19, 69, 281, 710, 2375, 3893, 8102, 11361, 19268, 36981, 45680, 75417, 101354, 118093, 152344, 215797, 293897, 327571, 429229, 508284, 556494, 701008, 809381, 990746, 1274952, 1435957, 1531854, 1712701, 1820085, 2021938, 2835628, 3107393, 3549288, 3723821
REFERENCES
D. Olivastro, Ancient Puzzles. Bantam Books, NY, 1993, p. 21.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
MAPLE
a:= proc(n) option remember; local l, p, m, k;
l:= [17/91, 78/85, 19/51, 23/38, 29/33, 77/29, 95/23,
77/19, 1/17, 11/13, 13/11, 15/2, 1/7, 55/1]:
if n=1 then b(0):= 2; a(0):= 0 else a(n-1) fi;
p:= b(n-1);
for m do for k while not type(p*l[k], integer) do od;
p:= p*l[k];
if 2^ilog2(p)=p then break fi
od:
b(n):= p;
m + a(n-1)
end:
MATHEMATICA
Clear[a]; a[n_] := a[n] = Module[{l, p, m, k}, l = {17/91, 78/85, 19/51, 23/38, 29/33, 77/29, 95/23, 77/19, 1/17, 11/13, 13/11, 15/2, 1/7, 55/1}; If[n == 1, b[0] = 2; a[0] = 0, a[n-1]]; p = b[n-1]; For[m=1, True, m++, For[k=1, !IntegerQ[p*l[[k]]], k++]; p = p*l[[k]]; If[2^(Length[IntegerDigits[p, 2]]-1) == p, Break[]]]; b[n] = p; m + a[n-1]]; Table[Print[a[n]]; a[n], {n, 1, 30}] (* Jean-François Alcover, Nov 25 2014, after Alois P. Heinz *)
PROG
(Haskell)
import Data.List (elemIndices)
a007547 n = a007547_list !! n
a007547_list = tail $ elemIndices 2 $ map a006530 a007542_list