(original) (raw)
%!PS-Adobe-2.0 %%Creator: dvips(k) 5.86 Copyright 1999 Radical Eye Software %%Title: paper2.dvi %%Pages: 10 %%PageOrder: Ascend %%BoundingBox: 0 0 596 842 %%DocumentFonts: Helvetica-Bold Helvetica Courier Times-Bold Times-Roman %%+ Times-Italic %%EndComments %DVIPSWebPage: (www.radicaleye.com) %DVIPSCommandLine: dvips paper2.dvi -o pstable.ps %DVIPSParameters: dpi=600, compressed %DVIPSSource: TeX output 2004.03.17:1324 %%BeginProcSet: texc.pro %! /TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72 mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0 0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{ landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize mul 0}ifelse TR}if Resolution VResolution vsize -72 div 1 add mul TR[ matrix currentmatrix{A A round sub abs 0.00001 lt{round}if}forall round exch round exch]setmatrix}N/@landscape{/isls true N}B/@manualfeed{ statusdict/manualfeed true put}B/@copies{/#copies X}B/FMat[1 0 0 -1 0 0] N/FBB[0 0 0 0]N/nn 0 N/IEn 0 N/ctr 0 N/df-tail{/nn 8 dict N nn begin /FontType 3 N/FontMatrix fntrx N/FontBBox FBB N string/base X array /BitMaps X/BuildChar{CharBuilder}N/Encoding IEn N end A{/foo setfont}2 array copy cvx N load 0 nn put/ctr 0 N[}B/sf 0 N/df{/sf 1 N/fntrx FMat N df-tail}B/dfs{div/sf X/fntrx[sf 0 0 sf neg 0 0]N df-tail}B/E{pop nn A definefont setfont}B/Cw{Cd A length 5 sub get}B/Ch{Cd A length 4 sub get }B/Cx{128 Cd A length 3 sub get sub}B/Cy{Cd A length 2 sub get 127 sub} B/Cdx{Cd A length 1 sub get}B/Ci{Cd A type/stringtype ne{ctr get/ctr ctr 1 add N}if}B/id 0 N/rw 0 N/rc 0 N/gp 0 N/cp 0 N/G 0 N/CharBuilder{save 3 1 roll S A/base get 2 index get S/BitMaps get S get/Cd X pop/ctr 0 N Cdx 0 Cx Cy Ch sub Cx Cw add Cy setcachedevice Cw Ch true[1 0 0 -1 -.1 Cx sub Cy .1 sub]/id Ci N/rw Cw 7 add 8 idiv string N/rc 0 N/gp 0 N/cp 0 N{ rc 0 ne{rc 1 sub/rc X rw}{G}ifelse}imagemask restore}B/G{{id gp get/gp gp 1 add N A 18 mod S 18 idiv pl S get exec}loop}B/adv{cp add/cp X}B /chg{rw cp id gp 4 index getinterval putinterval A gp add/gp X adv}B/nd{ /cp 0 N rw exit}B/lsh{rw cp 2 copy get A 0 eq{pop 1}{A 255 eq{pop 254}{ A A add 255 and S 1 and or}ifelse}ifelse put 1 adv}B/rsh{rw cp 2 copy get A 0 eq{pop 128}{A 255 eq{pop 127}{A 2 idiv S 128 and or}ifelse} ifelse put 1 adv}B/clr{rw cp 2 index string putinterval adv}B/set{rw cp fillstr 0 4 index getinterval putinterval adv}B/fillstr 18 string 0 1 17 {2 copy 255 put pop}for N/pl[{adv 1 chg}{adv 1 chg nd}{1 add chg}{1 add chg nd}{adv lsh}{adv lsh nd}{adv rsh}{adv rsh nd}{1 add adv}{/rc X nd}{ 1 add set}{1 add clr}{adv 2 chg}{adv 2 chg nd}{pop nd}]A{bind pop} forall N/D{/cc X A type/stringtype ne{]}if nn/base get cc ctr put nn /BitMaps get S ctr S sf 1 ne{A A length 1 sub A 2 index S get sf div put }if put/ctr ctr 1 add N}B/I{cc 1 add D}B/bop{userdict/bop-hook known{ bop-hook}if/SI save N @rigin 0 0 moveto/V matrix currentmatrix A 1 get A mul exch 0 get A mul add .99 lt{/QV}{/RV}ifelse load def pop pop}N/eop{ SI restore userdict/eop-hook known{eop-hook}if showpage}N/@start{ userdict/start-hook known{start-hook}if pop/VResolution X/Resolution X 1000 div/DVImag X/IEn 256 array N 2 string 0 1 255{IEn S A 360 add 36 4 index cvrs cvn put}for pop 65781.76 div/vsize X 65781.76 div/hsize X}N /p{show}N/RMat[1 0 0 -1 0 0]N/BDot 260 string N/Rx 0 N/Ry 0 N/V{}B/RV/v{ /Ry X/Rx X V}B statusdict begin/product where{pop false[(Display)(NeXT) (LaserWriter 16/600)]{A length product length le{A length product exch 0 exch getinterval eq{pop true exit}if}{pop}ifelse}forall}{false}ifelse end{{gsave TR -.1 .1 TR 1 1 scale Rx Ry false RMat{BDot}imagemask grestore}}{{gsave TR -.1 .1 TR Rx Ry scale 1 1 false RMat{BDot} imagemask grestore}}ifelse B/QV{gsave newpath transform round exch round exch itransform moveto Rx 0 rlineto 0 Ry neg rlineto Rx neg 0 rlineto fill grestore}B/a{moveto}B/delta 0 N/tail{A/delta X 0 rmoveto}B/M{S p delta add tail}B/b{S p tail}B/c{-4 M}B/d{-3 M}B/e{-2 M}B/f{-1 M}B/g{0 M} B/h{1 M}B/i{2 M}B/j{3 M}B/k{4 M}B/w{0 rmoveto}B/l{p -4 w}B/m{p -3 w}B/n{ p -2 w}B/o{p -1 w}B/q{p 1 w}B/r{p 2 w}B/s{p 3 w}B/t{p 4 w}B/x{0 S rmoveto}B/y{3 2 roll p a}B/bos{/SS save N}B/eos{SS restore}B end %%EndProcSet %%BeginProcSet: 8r.enc % @@psencodingfile@{ % author = "S. Rahtz, P. MacKay, Alan Jeffrey, B. Horn, K. Berry", % version = "0.6", % date = "1 July 1998", % filename = "8r.enc", % email = "tex-fonts@@tug.org", % docstring = "Encoding for TrueType or Type 1 fonts % to be used with TeX." % @} % % Idea is to have all the characters normally included in Type 1 fonts % available for typesetting. This is effectively the characters in Adobe % Standard Encoding + ISO Latin 1 + extra characters from Lucida. % % Character code assignments were made as follows: % % (1) the Windows ANSI characters are almost all in their Windows ANSI % positions, because some Windows users cannot easily reencode the % fonts, and it makes no difference on other systems. The only Windows % ANSI characters not available are those that make no sense for % typesetting -- rubout (127 decimal), nobreakspace (160), softhyphen % (173). quotesingle and grave are moved just because it's such an % irritation not having them in TeX positions. % % (2) Remaining characters are assigned arbitrarily to the lower part % of the range, avoiding 0, 10 and 13 in case we meet dumb software. % % (3) Y&Y Lucida Bright includes some extra text characters; in the % hopes that other PostScript fonts, perhaps created for public % consumption, will include them, they are included starting at 0x12. % % (4) Remaining positions left undefined are for use in (hopefully) % upward-compatible revisions, if someday more characters are generally % available. % % (5) hyphen appears twice for compatibility with both % ASCII and Windows. % /TeXBase1Encoding [ % 0x00 (encoded characters from Adobe Standard not in Windows 3.1) /.notdef /dotaccent /fi /fl /fraction /hungarumlaut /Lslash /lslash /ogonek /ring /.notdef /breve /minus /.notdef % These are the only two remaining unencoded characters, so may as % well include them. /Zcaron /zcaron % 0x10 /caron /dotlessi % (unusual TeX characters available in, e.g., Lucida Bright) /dotlessj /ff /ffi /ffl /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef % very contentious; it's so painful not having quoteleft and quoteright % at 96 and 145 that we move the things normally found there to here. /grave /quotesingle % 0x20 (ASCII begins) /space /exclam /quotedbl /numbersign /dollar /percent /ampersand /quoteright /parenleft /parenright /asterisk /plus /comma /hyphen /period /slash % 0x30 /zero /one /two /three /four /five /six /seven /eight /nine /colon /semicolon /less /equal /greater /question % 0x40 /at /A /B /C /D /E /F /G /H /I /J /K /L /M /N /O % 0x50 /P /Q /R /S /T /U /V /W /X /Y /Z /bracketleft /backslash /bracketright /asciicircum /underscore % 0x60 /quoteleft /a /b /c /d /e /f /g /h /i /j /k /l /m /n /o % 0x70 /p /q /r /s /t /u /v /w /x /y /z /braceleft /bar /braceright /asciitilde /.notdef % rubout; ASCII ends % 0x80 /.notdef /.notdef /quotesinglbase /florin /quotedblbase /ellipsis /dagger /daggerdbl /circumflex /perthousand /Scaron /guilsinglleft /OE /.notdef /.notdef /.notdef % 0x90 /.notdef /.notdef /.notdef /quotedblleft /quotedblright /bullet /endash /emdash /tilde /trademark /scaron /guilsinglright /oe /.notdef /.notdef /Ydieresis % 0xA0 /.notdef % nobreakspace /exclamdown /cent /sterling /currency /yen /brokenbar /section /dieresis /copyright /ordfeminine /guillemotleft /logicalnot /hyphen % Y&Y (also at 45); Windows' softhyphen /registered /macron % 0xD0 /degree /plusminus /twosuperior /threesuperior /acute /mu /paragraph /periodcentered /cedilla /onesuperior /ordmasculine /guillemotright /onequarter /onehalf /threequarters /questiondown % 0xC0 /Agrave /Aacute /Acircumflex /Atilde /Adieresis /Aring /AE /Ccedilla /Egrave /Eacute /Ecircumflex /Edieresis /Igrave /Iacute /Icircumflex /Idieresis % 0xD0 /Eth /Ntilde /Ograve /Oacute /Ocircumflex /Otilde /Odieresis /multiply /Oslash /Ugrave /Uacute /Ucircumflex /Udieresis /Yacute /Thorn /germandbls % 0xE0 /agrave /aacute /acircumflex /atilde /adieresis /aring /ae /ccedilla /egrave /eacute /ecircumflex /edieresis /igrave /iacute /icircumflex /idieresis % 0xF0 /eth /ntilde /ograve /oacute /ocircumflex /otilde /odieresis /divide /oslash /ugrave /uacute /ucircumflex /udieresis /yacute /thorn /ydieresis ] def %%EndProcSet %%BeginProcSet: texps.pro %! TeXDict begin/rf{findfont dup length 1 add dict begin{1 index/FID ne 2 index/UniqueID ne and{def}{pop pop}ifelse}forall[1 index 0 6 -1 roll exec 0 exch 5 -1 roll VResolution Resolution div mul neg 0 0]/Metrics exch def dict begin Encoding{exch dup type/integertype ne{pop pop 1 sub dup 0 le{pop}{[}ifelse}{FontMatrix 0 get div Metrics 0 get div def} ifelse}forall Metrics/Metrics currentdict end def[2 index currentdict end definefont 3 -1 roll makefont/setfont cvx]cvx def}def/ObliqueSlant{ dup sin S cos div neg}B/SlantFont{4 index mul add}def/ExtendFont{3 -1 roll mul exch}def/ReEncodeFont{CharStrings rcheck{/Encoding false def dup[exch{dup CharStrings exch known not{pop/.notdef/Encoding true def} if}forall Encoding{]exch pop}{cleartomark}ifelse}if/Encoding exch def} def end %%EndProcSet %%BeginProcSet: special.pro %! TeXDict begin/SDict 200 dict N SDict begin/@SpecialDefaults{/hs 612 N /vs 792 N/ho 0 N/vo 0 N/hsc 1 N/vsc 1 N/ang 0 N/CLIP 0 N/rwiSeen false N /rhiSeen false N/letter{}N/note{}N/a4{}N/legal{}N}B/@scaleunit 100 N /@hscale{@scaleunit div/hsc X}B/@vscale{@scaleunit div/vsc X}B/@hsize{ /hs X/CLIP 1 N}B/@vsize{/vs X/CLIP 1 N}B/@clip{/CLIP 2 N}B/@hoffset{/ho X}B/@voffset{/vo X}B/@angle{/ang X}B/@rwi{10 div/rwi X/rwiSeen true N}B /@rhi{10 div/rhi X/rhiSeen true N}B/@llx{/llx X}B/@lly{/lly X}B/@urx{ /urx X}B/@ury{/ury X}B/magscale true def end/@MacSetUp{userdict/md known {userdict/md get type/dicttype eq{userdict begin md length 10 add md maxlength ge{/md md dup length 20 add dict copy def}if end md begin /letter{}N/note{}N/legal{}N/od{txpose 1 0 mtx defaultmatrix dtransform S atan/pa X newpath clippath mark{transform{itransform moveto}}{transform{ itransform lineto}}{6 -2 roll transform 6 -2 roll transform 6 -2 roll transform{itransform 6 2 roll itransform 6 2 roll itransform 6 2 roll curveto}}{{closepath}}pathforall newpath counttomark array astore/gc xdf pop ct 39 0 put 10 fz 0 fs 2 F/|______Courier fnt invertflag{PaintBlack} if}N/txpose{pxs pys scale ppr aload pop por{noflips{pop S neg S TR pop 1 -1 scale}if xflip yflip and{pop S neg S TR 180 rotate 1 -1 scale ppr 3 get ppr 1 get neg sub neg ppr 2 get ppr 0 get neg sub neg TR}if xflip yflip not and{pop S neg S TR pop 180 rotate ppr 3 get ppr 1 get neg sub neg 0 TR}if yflip xflip not and{ppr 1 get neg ppr 0 get neg TR}if}{ noflips{TR pop pop 270 rotate 1 -1 scale}if xflip yflip and{TR pop pop 90 rotate 1 -1 scale ppr 3 get ppr 1 get neg sub neg ppr 2 get ppr 0 get neg sub neg TR}if xflip yflip not and{TR pop pop 90 rotate ppr 3 get ppr 1 get neg sub neg 0 TR}if yflip xflip not and{TR pop pop 270 rotate ppr 2 get ppr 0 get neg sub neg 0 S TR}if}ifelse scaleby96{ppr aload pop 4 -1 roll add 2 div 3 1 roll add 2 div 2 copy TR .96 dup scale neg S neg S TR}if}N/cp{pop pop showpage pm restore}N end}if}if}N/normalscale{ Resolution 72 div VResolution 72 div neg scale magscale{DVImag dup scale }if 0 setgray}N/psfts{S 65781.76 div N}N/startTexFig{/psf$SavedState save N userdict maxlength dict begin/magscale true def normalscale currentpoint TR/psf$ury psfts/psf$urx psfts/psf$lly psfts/psf$llx psfts /psf$y psfts/psf$x psfts currentpoint/psf$cy X/psf$cx X/psf$sx psf$x psf$urx psf$llx sub div N/psf$sy psf$y psf$ury psf$lly sub div N psf$sx psf$sy scale psf$cx psf$sx div psf$llx sub psf$cy psf$sy div psf$ury sub TR/showpage{}N/erasepage{}N/copypage{}N/p 3 def @MacSetUp}N/doclip{ psf$llx psf$lly psf$urx psf$ury currentpoint 6 2 roll newpath 4 copy 4 2 roll moveto 6 -1 roll S lineto S lineto S lineto closepath clip newpath moveto}N/endTexFig{end psf$SavedState restore}N/@beginspecial{SDict begin/SpecialSave save N gsave normalscale currentpoint TR @SpecialDefaults count/ocount X/dcount countdictstack N}N/@setspecial{ CLIP 1 eq{newpath 0 0 moveto hs 0 rlineto 0 vs rlineto hs neg 0 rlineto closepath clip}if ho vo TR hsc vsc scale ang rotate rwiSeen{rwi urx llx sub div rhiSeen{rhi ury lly sub div}{dup}ifelse scale llx neg lly neg TR }{rhiSeen{rhi ury lly sub div dup scale llx neg lly neg TR}if}ifelse CLIP 2 eq{newpath llx lly moveto urx lly lineto urx ury lineto llx ury lineto closepath clip}if/showpage{}N/erasepage{}N/copypage{}N newpath}N /@endspecial{count ocount sub{pop}repeat countdictstack dcount sub{end} repeat grestore SpecialSave restore end}N/@defspecial{SDict begin}N /@fedspecial{end}B/li{lineto}B/rl{rlineto}B/rc{rcurveto}B/np{/SaveX currentpoint/SaveY X N 1 setlinecap newpath}N/st{stroke SaveX SaveY moveto}N/fil{fill SaveX SaveY moveto}N/ellipse{/endangle X/startangle X /yrad X/xrad X/savematrix matrix currentmatrix N TR xrad yrad scale 0 0 1 startangle endangle arc savematrix setmatrix}N end %%EndProcSet TeXDict begin 39158280 55380996 1000 600 600 (paper2.dvi) @start /Fa 206[25 49[{TeXBase1Encoding ReEncodeFont}1 49.8132 /Times-Roman rf %DVIPSBitmapFont: Fb cmsy5 5 2 /Fb 2 49 df0 D48 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fc cmbx6 6 2 /Fc 2 51 df<130E133EEA01FE12FFA212FE1200B3A6387FFFFEA317217BA023>49 DI E %EndDVIPSBitmapFont /Fd 133[33 37 37 1[37 42 25 29 33 42 42 37 42 62 21 2[21 1[37 25 33 42 33 42 37 12[50 42 54 1[46 58 1[71 5[58 46 50 54 54 8[25 3[37 37 37 37 37 37 49[{TeXBase1Encoding ReEncodeFont} 40 74.7198 /Times-Bold rf %DVIPSBitmapFont: Fe cmr5 5 3 /Fe 3 51 df48 D<1360EA01E0120F12FF12F11201B3A3387FFF80A2111C7B9B1C>II E %EndDVIPSBitmapFont %DVIPSBitmapFont: Ff cmsy6 6 10 /Ff 10 113 df0 D<127812FCA4127806067A8F13>I<13601370 1360A20040132000E0137038F861F0387E67E0381FFF803807FE00EA00F0EA07FE381FFF 80387E67E038F861F038E060700040132000001300A21370136014157B9620>3 D20 D<1606160E82A2831603831601707E17701778171E007F B81280B912E06C1780CAEA1E00177817705F4C5A16035F160794C7FCA2160E1606331B7C 993D>33 D48 D<01FEEC0FE02603FFC0EB3FF8000F01F0EBFE3E 3B1F0FF801F0073C3C01FC07C003803B3000FE0F00010070D93F1EEB00C00060EB1F9C00 E0D90FF81460485C14076E7E6E7E81020315E00060D9073F14C091390F1F80016C90261E 0FE01380003890397C07F0073C1C01F003FE1F003B0F8FE001FFFE3B03FF80007FF8C648 C7EA0FE033177C953D>I<903807FFF0133F5BD801FCC7FCEA03E0485A48C8FC121E121C 123C5A1270A212F05AA2B612F0A300E0C8FCA27E1270A212787E121C121E7E6C7EEA03E0 EA01FC6CB512F0133F13071C237A9D2A>I72 D<170C171C173C1738177817F017E0160117C0160317801607EE0F00160E161E 161C163C163816785E5E15015E15034B5AD8038091C7FC00075CD81FC0130E003F141ED8 F3E0131C0043143CD801F05B15706C6C13F05DEB7C015DEB3E034A5A011F90C8FC5CEB0F 8E149EEB07DC14FC6D5A5C13015C13002E327C8232>112 D E %EndDVIPSBitmapFont /Fg 166[43 4[37 33 40 2[43 43 53 3[20 43 1[33 37 3[43 65[{TeXBase1Encoding ReEncodeFont}12 59.7758 /Times-Roman rf %DVIPSBitmapFont: Fh cmmib9 9 2 /Fh 2 119 df97 D<017EEB01E03A01FFC003F8489038E007FC 3907CFF00FD80F07EB1FFE381F0FF8121E123C011F130F0078EBF0031501D8F83F13004A 137C0000153C137F4A137C01FF14785CA216F84815F0EC000116E0A2ED03C015071680ED 0F005D6C143E6E5A6D6C5A6DB45A010F13C0010190C7FC27237EA12C>118 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fi cmmi5 5 4 /Fi 4 117 df<137F3801FFC0EA07C3380F03E0381C07C0EA3C0348C7FCA25AA5007013 40007813E0383C03C0381FFF00EA07F813127C911B>99 D<3803C0F8380FE3FE380CFF0F 3918FC07803830F80313F01200A23801E007A3EC0F00EA03C0141E6D5A6D5A3807BFE0EB 8F800180C7FCA248C8FCA4EA7FE012FF191A7F911F>112 D<380F07E0383F8FF83833D8 1CEA63F038C3E03CEBC07C1203143838078000A448C7FCA4121E120C16127D911C>114 D<13C0EA01E0A3EA03C0A4EAFFFCA2EA0780A2EA0F00A4121EA31304EA3C0CA213181370 EA1FE0EA0F800E1A7D9917>116 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fj cmex9 9 12 /Fj 12 91 df<1430147014E0EB01C0EB03801307EB0F00131E133E133C5B13F85B1201 5B1203A2485AA2120F5BA2121F90C7FCA25AA2123EA2127EA5127C12FCB3127C127EA512 3EA2123FA27EA27F120FA27F1207A26C7EA212017F12007F13787F133E131E7FEB078013 03EB01C0EB00E0147014301459758223>0 D<12C07E12707E7E121E7E6C7E7F12036C7E 7F12007F1378137CA27FA2133F7FA21480130FA214C0A21307A214E0A5130314F0B314E0 1307A514C0A2130FA21480A2131F1400A25B133EA25BA2137813F85B12015B485A12075B 48C7FC121E121C5A5A5A5A14597D8223>I<157815F8EC01F0EC03E0EC07C0EC0F80EC1F 00143E147E147C5C495A13035C1307495A5C131F91C7FC5B133E137E137C13FC5B1201A2 5B1203A2485AA3485AA35B121FA448C8FCA5123E127EA85AB3A5127EA8123E123FA56C7E A4120F7FA36C7EA36C7EA212017FA212007F137C137E133E133F7F80130F806D7E130380 13016D7E147C147E143E80EC0F80EC07C0EC03E0EC01F0EC00F815781D8572822E>16 D<12F07E127C7E7E6C7E6C7E6C7E7F12016C7E137C137E133E133F6D7E130F8013078013 0380130180130080A2147C147EA280A3EC1F80A3140F15C0A4EC07E0A5140315F0A8EC01 F8B3A5EC03F0A815E01407A5EC0FC0A41580141FA3EC3F00A3147EA2147C14FCA25C1301 5C13035C13075C130F5C131F49C7FC133E137E137C5B485A12035B485A485A48C8FC123E 5A5A5A1D857E822E>I<163C167C16F8ED01F0ED03E0ED07C0ED0F80ED1F00153E157E5D 4A5A5D14034A5A4A5A5D141F4AC7FCA2147E5CA2495AA2495AA2495AA2495AA2495AA213 3F91C8FC5B137EA213FE5BA212015BA21203A25B1207A25BA2120FA35B121FA45B123FA5 90C9FC5AA912FEB3AA127FA97E7FA5121F7FA4120F7FA31207A27FA212037FA21201A27F 1200A27F137EA2137F7F80131FA26D7EA26D7EA26D7EA26D7EA26D7EA2147E80A26E7E14 0F816E7E6E7E1401816E7E157E153E81ED0F80ED07C0ED03E0ED01F0ED00F8167C163C26 B2708239>I<12F07E127C7E7E6C7E6C7E6C7E6C7E7F6C7E137E133E133F6D7E6D7E1307 806D7EA26D7E6D7EA2147EA280A26E7EA26E7EA26E7EA2811403811401A2811400A28115 7EA2157FA2811680A2151FA216C0A3150F16E0A4150716F0A5150316F8A9ED01FCB3AAED 03F8A916F01507A516E0150FA416C0151FA31680A2153FA216005DA2157EA215FE5DA214 015DA214035D14075DA24A5AA24A5AA24AC7FCA2147EA25CA2495A495AA2495A5C130F49 5A49C8FC133E137E5B485A5B485A485A485A48C9FC123E5A5A5A26B27E8239>I<160F16 1F163E167C16F8150116F0ED03E0ED07C0150FED1F8016005D157E157C15FC4A5A5D1403 4A5AA24A5A141F5D143F92C7FC5C147E14FE5C13015C1303A2495AA25C130FA2495AA349 5AA349C8FCA313FEA312015BA312035BA31207A25BA2120FA35BA2121FA55BA2123FA65B 127FAB90C9FC5AB3B17E7FAB123F7FA6121FA27FA5120FA27FA31207A27FA21203A37F12 01A37F1200A3137FA36D7EA36D7EA36D7EA2130780A26D7EA2130180130080147E147F80 81141F81140F6E7EA26E7E1401816E7E157C157E81811680ED0FC01507ED03E0ED01F016 F81500167C163E161F160F28DF6E823D>32 D<12F07E127C7E7E7F120F6C7E6C7E7F6C7E 12007F137E133E133F6D7E130F806D7EA26D7E80130180130080147E147F8081141F81A2 6E7EA2140781A26E7EA36E7EA36E7EA3157FA31680153FA316C0151FA316E0A2150FA216 F0A31507A216F8A51503A216FCA6150116FEAB150016FFB3B116FE1501AB16FC1503A616 F8A21507A516F0A2150FA316E0A2151FA216C0A3153F1680A3157F1600A315FEA34A5AA3 4A5AA34A5AA25D140FA24A5AA25D143F92C7FC5C147E14FE5C13015C13035C495AA2495A 5C131F49C8FC133E137E5B5B1201485A5B485A485A121F90C9FC123E5A5A5A28DF7E823D >I80 D82 D88 D<197C4EB4FC953803C3C095380780E0 F00F0395381F07F0F03E0FA2187E187C9538FC07E09538F803C0050190C7FCA34D5AA34D 5AA3170F60A3171FA260A2173FA34DC8FCA45F5FA31601A25FA21603A45F1607A44C5AA4 161FA25FA3163FA35F167FA54C5AA45D94C9FCA45D5EA415075EA4150F5EA44B5AA55E15 3FA35EA3157FA25EA44BCAFCA45D1401A45DA21403A25DA314075DA44A5AA35DA2141FA2 5DA3143F92CBFCA3147EA35CA25CEA3C01127E00FF5B13035C495A12FE387C0F80D8701F CCFCEA3C3EEA0FF8EA03E044A67C7F2B>90 D E %EndDVIPSBitmapFont /Fk 82[22 51[33 1[48 33 33 18 26 22 33 33 33 33 52 18 33 1[18 33 33 22 29 33 29 33 29 8[48 3[41 3[37 2[59 9[44 1[48 11[33 2[33 1[33 18 17 1[17 41[37 2[{TeXBase1Encoding ReEncodeFont} 37 66.4176 /Times-Roman rf %DVIPSBitmapFont: Fl cmsy9 9 29 /Fl 29 113 df<007FB712FCB812FEA26C16FC2F047A943C>0 D<123C127E12FFA4127E 123C08087A9615>I<15E081B3A4007FB812C0B912E0A26C17C0C800F0C8FCB3007FB812 C0B912E0A26C17C033327CB13C>6 D15 D<007FB812C0B912E0A26C17C0CCFCAC007FB812C0B912E0A26C17C0CC FCAC007FB812C0B912E0A26C17C033247CA43C>17 D<171C177EEE01FEEE07FCEE1FF0EE 7FC0923801FF00ED07FCED1FF0ED7FC04A48C7FCEC07FCEC1FF0EC7FC04948C8FCEB07FC EB1FF0EB7FC04848C9FCEA07FCEA1FF0EA7FC048CAFCA2EA7FC0EA1FF0EA07FCEA01FF38 007FC0EB1FF0EB07FCEB01FF9038007FC0EC1FF0EC07FCEC01FF9138007FC0ED1FF0ED07 FCED01FF9238007FC0EE1FF0EE07FCEE01FEEE007E171C1700AC007FB712FCB812FEA26C 16FC2F3E7AB03C>20 D<127012FCB4FCEA7FC0EA1FF0EA07FCEA01FF38007FC0EB1FF0EB 07FCEB01FF9038007FC0EC1FF0EC07FCEC01FF9138007FC0ED1FF0ED07FCED01FF923800 7FC0EE1FF0EE07FCEE01FEA2EE07FCEE1FF0EE7FC0923801FF00ED07FCED1FF0ED7FC04A 48C7FCEC07FCEC1FF0EC7FC04948C8FCEB07FCEB1FF0EB7FC04848C9FCEA07FCEA1FF0EA 7FC048CAFC12FC1270CBFCAC007FB712FCB812FEA26C16FC2F3E7AB03C>I25 D<187018F0A2841878A2187C183C18 3E84A2727E727E85727E727E727E197F007FBA12C0BB12F0A26C19C0CCEA7F0019FC4E5A 4E5A4E5A614E5A4EC7FCA2183E183C187C1878A218F860A2187044287CA64D>33 D39 D49 D<91383FFFF849B512FC1307011F14F8D93FE0C7FC01FFC8FCEA01FCEA03 F0485A485A5B48C9FC5A123E5AA21278A212F8A25AB712F816FCA216F800F0C9FC7EA212 78A2127CA27E123F7E6C7E7F6C7E6C7EEA01FC6CB4FCEB3FE06DB512F8010714FC1301D9 003F13F8262E7AA933>I<0060ED018000F0ED03C06C1507A200781680007C150FA2003C 1600003E5DA26C153EA26C153C6D147CA26C6C5CA200035D90B6FCA26C5DA29038F00003 6C6C495AA201785C017C130FA2013C91C7FC013E5BA26D133EA26D133CEC807CA2010713 78ECC0F8A2903803E1F0A201015B14F3A26DB45AA26E5AA36EC8FCA3141E140C2A3680B3 2B>56 D<007FB61280B712C0A27EC81203B3A2003FB6FC5AA27EC81203B3A2007FB6FCB7 FCA26C158022347CB32B>I<167FD801F0903807FF80D807FC131FD80E1F017F7F3A1C0F 81F83F273807C3E07F00309038E7801F3B7003EF000FF014FE6D486D7E834A1303007882 00386D1301003C82001F81D80F81ED7F80EA07C10003EE3FC0EA01E100006DEC1FE01371 1880EF7E00EE03FC91B612F0178004FCC7FCECFE011260136113E11270EA31C1EA3F81EA 0F01000013FC821500A600305B123C127C12F8001849EC01C0D81C031507000C499038FF 0F80000E92387F1F006C484814BC26038780EB3FF86CB4C7EA0FF0D8007CEC03E033387D B537>60 D<91381FFFFE49B612F0010F15FC013F15FF9026FE1FC014C0D801E0020713E0 D80780020113F0D80F009138007FF8484AEB1FFC003E160F007EEE07FE007C013F140348 160100E017FFC78192C8FCA2187F5CA2147EA2187E14FE5C18FCA213014AEC01F8A218F0 4948EC03E0A2EF07C04948EC0F801800171E49485C5F5F4948EB01C0EE07804CC7FC49C7 123C16F8013EEB0FE0017EEBFF8090B500FCC8FC000314F04891C9FC4813F038337EB23B >68 D71 DI< 03071880031F17014B17035D1B071B0F70EE1F006363A203FF5F704B5A1A0303DF16071A 0F03CF161F02016D153E158F505A1AF891260387F0EC01F00307ED03E1F107C1F10F8191 260603F8EC1F01073F5B197E020E167C91260C01FCECF803F001F0021CED03E00218ED07 C06F6CEB0F804AED1F00183E70017E5C4A6D5B4D5A02E0DA83F013074A90383F87E0EFCF C04948ECDF8070B4C7FC01035D91C76C5A495D01066E5AD8300E5DD87C1C6E5AD87FFC5D 484891C914E0F3FBC049F1FF8049F1FE0063D83FC0F003F0D80F8095C8FC53397EB45C> 77 DI<021FB512F049B7FC010F16E0013F829027FE1FC0077FD801E0EC007F D80780ED0FFCD80F001507484A1303123E007E1601007C133F5A00E05FC790C7FCA24D5A 4A5DA24D5A027E4A5A95C7FC171E02FE5C4A14F04C5AEE1F800101D907FFC8FC9138F81F F84B5A4B7E903803F01F6F7E150701076D7E14E06F7EA249486C7FA2707E4948160C706C 133C91C715F84991391FF001F019E0017E91390FF803C09438FC0780017C913907FE1E00 01FCEDFFFC496E13F048486E13C001C06E48C7FC3E357EB241>82 D92 D<126012F0B3B3B3AFB512E0A37E134A74B722>98 D<14C0EB01E0B3B3B3AFB5FCA3 14C0134A7EB722>I102 D<12FCEAFFC0EA07F0EA01FC6C7E137F7F80131FB3 A580130F6D7E6D7EEB01FC9038007FC0EC1FE0EC7FC0903801FC00EB03F0495A495A131F 5CB3A5133F91C7FC5B13FE485AEA07F0EAFFC000FCC8FC1B4B7BB726>I<126012F0B3B3 B3B31260044B78B715>106 D<0070137000F01378B3B3B3B200701370154A78B726>I<19 30197819F8A2F001F0A2F003E0A2F007C0A2F00F80A2F01F00A2183EA260A260A24D5AA2 4D5AA24D5AA24D5AA24DC7FCA2173EA25FA25FA24C5A13C000014B5AEA07E0000F4B5AEA 3FF000734B5AEAE3F800C14BC8FCEA01FC0000153E7F017E5C137F6D5CA26E485A131F6E 485A130F6E485A13076E485A13036E48C9FC1301153E14FC01005B14FEEC7EF8147F6E5A A26E5AA26E5AA26E5A92CAFC3D4C7B8340>112 D E %EndDVIPSBitmapFont /Fm 107[42 42 25[33 33 50 33 37 21 29 29 37 37 37 37 54 21 33 1[21 37 37 21 33 37 33 37 37 9[62 46 1[42 37 46 1[46 54 50 62 42 1[33 25 54 54 46 46 54 50 46 46 7[37 37 1[37 37 37 1[37 37 37 1[19 25 19 2[25 25 37[37 2[{ TeXBase1Encoding ReEncodeFont}60 74.7198 /Times-Italic rf %DVIPSBitmapFont: Fn cmr9 9 30 /Fn 30 121 df0 D<017C1503D803FEED078026078780140F260F01C014 1F261E00E0EC3F00003E01F8147E003C017CEB01FE007C90397F8007FC913933FFFEF800 789038307FF900F89039380001F00218495A16075F4C5A161F4CC7FC163E5E023813FC00 7801305B007C4A5AEC7003003C01605B003E9038E007C0001EEBC00FD80F015C27078780 1FC8FC3903FE003FD8007C133E90C748131F03FCEBFF809239F801E1E0913A01F003C070 02039038078030DBE00F1338DA07C0EB0018020F49131C0380140C91381F001E4A013E13 0E023E15065C14FC495A5C495A13075C4948150E011F021E130C91C7121F013E161C017E 6E1318017CED803849020713300001923803C07049913801E1E049913800FF806C48ED1F 00373C7CB740>37 D<14C01301EB0380EB0F00130E5B133C5B5BA2485A485AA212075B12 0F90C7FC5AA2121E123EA3123C127CA55AB0127CA5123C123EA3121E121FA27E7F12077F 1203A26C7E6C7EA213787F131C7F130FEB0380EB01C01300124A79B71E>40 D<12C07E1270123C121C7E120F6C7E6C7EA26C7E6C7EA27F1378137C133C133EA2131E13 1FA37F1480A5EB07C0B0EB0F80A514005BA3131E133EA2133C137C137813F85BA2485A48 5AA2485A48C7FC120E5A123C12705A5A124A7CB71E>I<156015F0B3A4007FB812C0B912 E0A26C17C0C800F0C8FCB3A4156033327CAB3C>43 D48 D<13075B5B137FEA07FFB5FC13BFEAF83F1200B3B3A2497E 007FB51280A319327AB126>IIII<000C14C0380FC00F90B5128015005C5C14 F014C0D80C18C7FC90C8FCA9EB0FC0EB7FF8EBF07C380FC03F9038001F80EC0FC0120E00 0CEB07E0A2C713F01403A215F8A41218127E12FEA315F0140712F8006014E01270EC0FC0 6C131F003C14806CEB7F00380F80FE3807FFF8000113E038003F801D347CB126>I<14FE 903807FF80011F13E090383F00F0017C13703901F801F8EBF003EA03E01207EA0FC0EC01 F04848C7FCA248C8FCA35A127EEB07F0EB1FFC38FE381F9038700F809038E007C039FFC0 03E0018013F0EC01F8130015FC1400A24814FEA5127EA4127F6C14FCA26C1301018013F8 000F14F0EBC0030007EB07E03903E00FC03901F81F806CB51200EB3FFCEB0FE01F347DB1 26>I<1230123C003FB6FCA34814FEA215FC0070C7123800601430157015E04814C01401 EC0380C7EA07001406140E5C141814385CA25CA2495A1303A3495AA2130FA3131F91C7FC A25BA55BA9131C20347CB126>I57 D<123C127E12FFA4127E123C1200B0123C 127E12FFA4127E123C08207A9F15>I<007FB812C0B912E0A26C17C0CCFCAC007FB812C0 B912E0A26C17C033147C9C3C>61 D80 D91 D93 D97 D<151F90391FC07F809039FFF8E3C03901F07FC73907E03F033A0FC01F83809039800F80 00001F80EB00074880A66C5CEB800F000F5CEBC01F6C6C48C7FCEBF07C380EFFF8380C1F C0001CC9FCA3121EA2121F380FFFFEECFFC06C14F06C14FC4880381F0001003EEB007F48 80ED1F8048140FA56C141F007C15006C143E6C5C390FC001F83903F007E0C6B51280D91F FCC7FC22337EA126>103 D105 D108 D<2703F01FE013FF00FF90267FF80313C0903BF1E07C0F 03E0903BF3803E1C01F02807F7003F387FD803FE1470496D486C7EA2495CA2495CB3486C 496C487EB53BC7FFFE3FFFF0A33C217EA041>I<3903F01FC000FFEB7FF09038F1E0FC90 38F3807C3907F7007EEA03FE497FA25BA25BB3486CEB7F80B538C7FFFCA326217EA02B> II<3803E07C38FFE1FF9038 E38F809038E71FC0EA07EEEA03ECA29038FC0F8049C7FCA35BB2487EB512E0A31A217FA0 1E>114 DI<1330A51370A313 F0A21201A212031207381FFFFEB5FCA23803F000AF1403A814073801F806A23800FC0EEB 7E1CEB1FF8EB07E0182F7FAD1E>I120 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fo cmr6 6 14 /Fo 14 112 df<130C1338137013E0EA01C0EA038013005A120EA25AA25AA312781270A3 12F0AB1270A312781238A37EA27EA27E7E1380EA01C0EA00E013701338130C0E317AA418 >40 D<12C012707E7E7E7E7E1380EA01C0A2EA00E0A21370A313781338A3133CAB1338A3 13781370A313E0A2EA01C0A2EA038013005A120E5A5A5A12C00E317CA418>I<1438B2B7 12FEA3C70038C7FCB227277C9F2F>43 D<13FF000313C0380781E0380F00F0001E137848 133CA248131EA400F8131FAD0078131EA2007C133E003C133CA26C13786C13F0380781E0 3803FFC0C6130018227DA01E>48 D<13E01201120712FF12F91201B3A7487EB512C0A212 217AA01E>II<13FF000313C0380F03E0381C 00F014F8003E13FC147CA2001E13FC120CC712F8A2EB01F0EB03E0EB0FC03801FF00A238 0003E0EB00F01478147C143E143F1230127812FCA2143E48137E0060137C003813F8381E 03F0380FFFC00001130018227DA01E>I<14E01301A213031307A2130D131D1339133113 6113E113C1EA01811203EA07011206120C121C12181230127012E0B6FCA2380001E0A6EB 03F0EB3FFFA218227DA11E>I<00101330381E01F0381FFFE014C01480EBFE00EA1BF000 18C7FCA513FE381BFF80381F03C0381C01E0381800F014F8C71278A2147CA21230127812 F8A214784813F8006013F0387001E01238381E07803807FF00EA01F816227CA01E>I61 D<3801F83F3907FEFF80381E07E3391C038300 383801C000787FA500385B6C485AEA1E07D83FFEC7FCEA31F80030C8FC1238A2383FFF80 6C13F06C7F487F3838007E48130E48130F80A36C5B0070130E003C133C001F13F83807FF E0C690C7FC19227D951E>103 D<120FB4FCA2121F7EB3ABEAFFF0A20C237DA212>108 D<380F07F038FF1FFCEB703E381FC01E6C487EA21300AE39FFF0FFF0A21C167D9522> 110 D<137E3803FFC0380781E0380F00F0001E137848133CA248131EA200F8131FA70078 131E007C133E003C133C003E137C6C13F8380F81F03803FFC0C6130018187D961E>I E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fp cmmi6 6 30 /Fp 30 122 df<13F8D803FE1318487E48EB803048EBC060EA3C03397000E0C000601360 48EB71801431C7FCEC3300141B141EA2141CA31418A31438A214301470A45CA35CA21D21 7E9520>13 DI<0003B512FC120F5A4814F839 7818180000E01338EAC03000001330A213701360EBE070A21478EA01C0A21203EB807C00 07133C143E380F003C000613181E167D9424>25 DI<127812FCA212FEA2127E 1206A3120CA2121C121812301260124007107A8513>59 D<140C141C143C1438A2147814 7014F014E0130114C0A21303148013071400A25B130E131E131CA2133C13381378137013 F05BA212015B12035BA2120790C7FC5A120EA2121E121C123C123812781270A212F05AA2 16317CA420>61 D<12E012F812FEEA3F80EA0FE0EA03F8EA00FEEB3F80EB0FC0EB03F0EB 00FC147FEC1FC0EC07F0EC01FCEC007FED1FC01507151FED7F00EC01FCEC07F0EC1FC002 7FC7FC14FCEB03F0EB0FC0EB3F8001FEC8FCEA03F8EA0FE0EA3F8000FEC9FC12F812E022 237A9D30>I<151815381578157C15FC1401A2EC037C14071406EC0C7EEC1C3E14181430 A21460ECC03FA249487EEB0300A213065B010FB512805B903838000F13305B13E05B4848 14C00003140790C7FCD80F80130FD8FFE0EBFFFE16FC27247DA32E>65 D<90B6FC16E0903907C003F0ED00F8494813FC167C167EA249C7127C16FCA2ED01F8013E EB03F0ED07E0ED1F8090393FFFFE005B90397C003F80ED07C0ED03E04914F01501A216F8 484814F01503A2ED07E04848EB0FC0ED1F80ED3F00000714FEB612F815C027227CA12E> I<91380FF0039138FFFE06903903F8070E90390FC0019E013FC712FE017C147C5B484814 3C485A48481438485A121F90C8FC481530123E007E1500A25AA516C0A2ED0180A2007CEC 0300A2003C1406003E5C6C5C6C6C13706C6C5B3903F807802600FFFEC7FCEB1FF028247C A22C>I<90B612FCA2903807C000163C4948131CA2160CA249C7FCA21530A2013EEB6000 A215E0140190387FFFC0A2EB7C03140101F85BA44848C8FCA4485AA31207B57EA226227C A127>70 D<91380FF0039138FFFE06903903F8070E90390FC0019E013FC712FE017C147C 5B4848143C485A48481438485A121F90C8FC481530123E007E1500A25AA4913803FFFCA2 91380007C0A2ED0F80127CA27EED1F007E6C6C5BD807E0136F3903F803C6C6B51202D91F F8C7FC28247CA22F>I<90B57E92C7FCEB07C0A2495AA449C8FCA4133EA45BA45BED0180 A2ED0300485A1506A2150E48485B153C15F800071303B6FC5D21227CA12A>76 D79 D<90B512FEEDFFC0903907C007F0ED01F890380F8000 16FC167CA249C712FCA316F8013E1301ED03F016E0ED0FC049EB3F0090387FFFFC15E001 7CC8FC5BA4485AA4485AA31207EAFFFEA226227CA127>I<131FEBFF8C3801E0DE380380 7E3807007C48133C121E123E003C5B127CA3485BA215401560903801E0C0127813033938 07E180391C1CF300380FF87F3807E03C1B177E9522>97 DIIII<1338137CA2137813701300A7EA0780EA1FC0EA38E01230EA60F0EAC1E0A3 EA03C0A3EA0780A2EA0F0013041306EA1E0CA21318121CEA1E70EA0FE0EA07800F237DA1 16>105 D<1418143C147CA214381400A7EB0780EB1FE01338EB60F013C0A2EA0180A238 0001E0A4EB03C0A4EB0780A4EB0F00A4131EA21238EA783CEAF8381378EA70F0EA7FC000 1FC7FC162D81A119>I<13F8EA0FF0A21200A2485AA4485AA43807801E147FEB81C3EB83 87380F060F495A1318EB700E4848C7FCA213FCEA1E7EEA3C0F80EB0781158039780F0300 A21402EB070600F0138CEB03F8386000F019247CA221>II<000F13FC381FC3FF3931C707803861EC0301F813C0EAC1F0A213E03903C0 0780A3EC0F00EA0780A2EC1E041506D80F00130C143C15181538001EEB1C70EC1FE0000C EB07801F177D9526>110 D<3801E01F3903F07FC0390639C1E0390C3F80F0EB3E000018 14F8013C137815F8C65AA49038F001F0A3EC03E0D801E013C0EBF00715809038F80F0038 03DC3CEBCFF8EBC7E001C0C7FC485AA448C8FCA2EA7FF012FF1D20809520>112 D<380F01F0381FC7F83831CE1CEA61F8EBF03C00C1137C13E014383803C000A4485AA448 C7FCA4121EA2120C16177D951D>114 D<133013785BA4485AA4485AB51280A23803C000 485AA448C7FCA4121EA25B1480383C03001306A25BEA1C38EA0FF0EA07C011217D9F18> 116 D<3801F01E3907FC7F80390E1CE1C038180F8100301383007013071260EC0380D800 1EC7FCA45BA21580003014C0397878018012F8EC030038F0FC0638E19C1C387F0FF8381E 03E01A177D9523>120 DI E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fq cmmi9 9 50 /Fq 50 127 df13 DI<903801FF80130F013F130001FFC7FCEA01F8485A485A48 5A485A48C8FCA2127E387FFFF880B5FC00FCC8FCA9127CA27EA26C1307380F800E3803E0 7C3801FFF038003F8019217D9F1F>I<013FB6128090B712C01203481680481600271F00 C018C7FC001C1438EA38010070143000601380EAE00300001470A2EB0700A25B15F0130E 131EA2013E7F133C137CA213FC497FA2000180A2485A157EA2D801C013382A217E9F2C> 25 DI<123C127E12FF A4127E123C08087A8715>58 D<123C127EB4FCA21380A2127F123D1201A412031300A25A 1206120E120C121C5A5A126009177A8715>I<171C177EEE01FEEE07FCEE1FF0EE7FC092 3801FF00ED07FCED1FF0ED7FC04A48C7FCEC07FCEC1FF0EC7FC04948C8FCEB07FCEB1FF0 EB7FC04848C9FCEA07FCEA1FF0EA7FC048CAFCA2EA7FC0EA1FF0EA07FCEA01FF38007FC0 EB1FF0EB07FCEB01FF9038007FC0EC1FF0EC07FCEC01FF9138007FC0ED1FF0ED07FCED01 FF9238007FC0EE1FF0EE07FCEE01FEEE007E171C2F2E7AA93C>I<1530157815F8A215F0 1401A215E01403A215C01407A21580140FA215005CA2143EA2143C147CA2147814F8A25C 1301A25C1303A25C1307A2495AA291C7FC5BA2131E133EA2133C137CA2137813F8A25B12 01A25B1203A2485AA25B120FA290C8FC5AA2121E123EA2123C127CA2127812F8A25A1260 1D4B7CB726>I<127012FCB4FCEA7FC0EA1FF0EA07FCEA01FF38007FC0EB1FF0EB07FCEB 01FF9038007FC0EC1FF0EC07FCEC01FF9138007FC0ED1FF0ED07FCED01FF9238007FC0EE 1FF0EE07FCEE01FEA2EE07FCEE1FF0EE7FC0923801FF00ED07FCED1FF0ED7FC04A48C7FC EC07FCEC1FF0EC7FC04948C8FCEB07FCEB1FF0EB7FC04848C9FCEA07FCEA1FF0EA7FC048 CAFC12FC12702F2E7AA93C>I<16035E5EA24C7EA2163F167FA216FFA2ED01BFED033F83 1506161F150C1518A215301570156015C083EC01800203130F15001406A25C141C14184A 80A2027FB5FC91B6FCA2903901800007A249C7FC1306835B16035B5B1370136013E01201 D807F04A7EB549B512F0A25B34367DB53A>65 D<010FB612F017FEEFFF80903B003FC000 3FE0EF0FF017074B14F81703027F15FCA292C7FCA25C18F84A140718F00101150F18E04A EC1FC0EF3F800103ED7F00EE01FE4AEB07F891B612E04915809139F8001FF04AEB03FCEE 00FE010F157FA24AEC3F80A2011F16C0A25CA2133F18804A147FA2017FEDFF005F91C712 014C5A494A5A4C5A49EC3FE00001913801FF80B748C7FC16F816C036337DB23A>II<010FB612F817FF18C0903B003FC0 003FE0EF0FF0EF03F84B6D7E717E027F157F8492C81380A24A151F19C05CA21301A25CA2 1303183F5CA2130719804A157FA2130F19004A5D60011F1501605C4D5A013F5E17074A4A 5A60017F4B5A4DC7FC91C8127E4C5A494A5AEE0FF049EC3FC000014AB4C8FCB712FC16F0 93C9FC3A337DB23F>I<010FB712FEA218FC903A003FC000031700187C4B143CA2027F15 1C181892C8FCA25CA24A1303A201014A1338040613304A1500160E13035E4A137C91B512 FC5B5EECF0001638130F16305C1860011F027013E0046013C04A140104001380133F1703 4A15005F017F150EA291C8121E5F49157C5F4914030001ED1FF0B8FCA25F37337DB239> I<010FB712FCA218F8903A003FC00007170018785D1838147F183092C8FCA25CA25C1606 0101020E1370040C13604A1500A20103141C5E5C16F849B5FCA25EECF001010F13001660 5CA2011F14E05E5CA2013F91C8FCA25CA2137FA291CAFCA25BA25B487EB6FCA336337DB2 31>II< 010FB512F0A39026003FE0C7FC5DA25DA2147FA292C8FCA25CA25CA21301A25CA21303A2 5CA21307A25CA2130FA25C170C011F151C17185C1738013F153017705C17E0137F160191 C7EA03C0160749EC0F80161F49147F0001913803FF00B8FCA25E2E337DB234>76 D<90260FFFE049B5FCA281D9001F9138000FE04A6CEC07801900DA33FC1406A2DA71FE14 0E180C146081DAE07F141C701318ECC03F82010116386F6C133014806F7E010316706F6C 136014001503496E13E003015C0106801500010EECFF0160010CEC7F81A2011CEC3FC395 C7FC0118EC1FE3A20138EC0FF717F60130140717FE017014035F01601401A213E0705A12 01D807F01578B57E1730A240337DB23D>78 DI<010FB612F017FE83903B003FC0007FC0EF1FE0EF07F05D EF03F8147FA292C713FCA25CEF07F85CA2010116F0170F4A15E0EF1FC00103ED3F80EF7F 004A14FEEE03FC0107EC1FF091B612C04CC7FC02F0C9FC130FA25CA2131FA25CA2133FA2 5CA2137FA291CAFCA25BA25B1201B512FCA336337DB231>I<010FB67E17F817FE903A00 3FC001FF9338003FC0EF1FE04B130FEF07F0147FA292C713F8A25CEF0FF05CA20101ED1F E018C04AEC3F8018000103157E4C5A4AEB07F0EE3FC049B500FEC7FC16F89138F0007E82 010F6E7E707E5C83131FA25CA2013F141FA25CA2017F143F5F91C7FC180649160E180C49 161C00011718B500FC011F133893380FE070040713E0C93803FFC09338007F0037357DB2 3A>82 D<03FF13180207EBE038021FEBF87891397F00FCF802FCEB1FF0D901F0130F4948 130749481303494814E0A249C71201A2013E15C0A3137E1780A2017F91C7FC8080EB3FF0 14FF15F06D13FE6D6D7E6D806D80010080020F7F1400150F6F7E150315011500A2120CA2 001C5D1218A2150100385D003C14035E4B5A007E4A5A007F141F6D49C7FCD87BE0137C39 F9FC03F839F07FFFE0D8E01F138026C003FEC8FC2D377CB42F>I<0003B812F05A18E090 3AF0007F000FD80F8049130390C71401000E5C48EE00C01401121800384A1301A2003001 031580127000605CA20207140300E01700C74990C7FCA2140FA25DA2141FA25DA2143FA2 5DA2147FA292C9FCA25CA25CA21301A25CA21303A25C497E001FB512FEA334337FB22D> I<267FFFFE90380FFFF8A3000190C8EA7F0049153C1738491530A217701203491560A217 E01207495DA21601120F495DA21603121F4992C7FCA25E123F491406A2160E127F90C812 0CA2161C5A481518A216381630481570166016E04B5A7E007E4A5A4BC8FC007F140E6C14 3C6C6C5B6C6C485A3907F00FC06CB5C9FCC613FCEB1FE035357BB234>I<0103B539C007 FFFC5BA29026000FFCC713804BECFC00020715F0606E6C495A4D5A02014AC7FC6F130E5F 6E6C5B5F92387F80605F92383F818004C3C8FC16C6ED1FEC16F86F5AA2150782A282150F ED1DFE153915704B7E4A5A4A486C7E150002066D7E5C4A131F4A805C4A6D7E495A49C76C 7E1306010E1403013C81137CD803FE4A7EB500C090387FFFFCA2603E337EB23F>88 D96 DI<133FEA1FFFA25B1200A35BA21201A25BA21203A25BA21207A2EBE0F8EBE3FF 390FEF07809038FC03C001F813E0EBF001D81FE013F013C0138015F8123FA21300A24813 0315F0127EA2140700FE14E05AA2EC0FC0A2EC1F80007C14005C147E003C137C003E5B38 1E01F0380F07C06CB4C7FCEA00FC1D357EB321>I<147F903803FFC090380FC0F090383F 0038137C4913F83801F0013803E0031207EA0FC090388001F0001F90C7FC123F90C8FCA2 5A127EA45AA3127C150C151C15386C147015E06CEB03C0390F800F003807C07E3801FFF0 38007F801E227EA021>II<14FE903807FF8090381F03C090387C01E03801F800485A485A 485A485A1401D83F0013C01403007EEB0F80ECFE00387FFFF8B5128000FCC8FCA45AA415 186C1438007C147015E0003CEB01C0003EEB07806CEB1E00380F80FC3803FFE0C690C7FC 1D227DA024>IIII< EB01C0EB07E014F0130F14E01307EB038090C7FCAA13F0EA03FCEA071EEA0E1F121C1238 00301380EB3F00127012605BEAE07EEA40FE12005B12015BA212035B12071420EBE07000 0F136013C014E014C0EA1F80EA0F81EB8380EB8700EA078EEA03FCEA00F014337EB11A> I<151C157E15FEA315FC15781500AA143FECFFC0903801C3E0EB038390380701F0130EEB 0C03131C1338133014071370012013E01300140FA215C0A2141FA21580A2143FA21500A2 5CA2147EA214FEA25CA21301A25CA21303001C5B127F495AA238FE0FC0495AD8783FC7FC EA707CEA3FF0EA0FC01F4281B11F>IIIII<147F903803FFC090380FC1F090383F00F8017C137C497F48 5A48487F1207485A5B001F1580123F90C7FCED3F005A127EA25D157E5A15FE5D007C5C14 014A5A5D6C495A4A5A6C49C7FC380F807E3807C1F83801FFE06C6CC8FC21227EA025>I< 011F131F90397FC07FE09039E3E1E0F09039C3E380783A01C1F7007CD981FE133CD983FC 133E00035BEB03F0163FEA0707120600025B1200010F147F167E5CA2011F14FE16FC5CA2 013FEB01F8A291380003F016E0491307ED0FC002801380ED1F009038FFC03E9038FEE0F8 9038FC7FE0EC1F80000190C8FCA25BA21203A25BA21207A25BB57EA3283083A027>I<90 3801F803903807FE0790381F071F90387C03BF9038F801BED801F013FE00031300485A49 13FC120F485A1401D83F0013F8A3481303007E14F0A300FE13074814E0A3140F15C0127C 141F143F003CEB7F80003E13FF381E01DF380F07BF3907FE3F00EA00F813005C147EA314 FE5CA21301A25C90387FFFE090B5FCA220307EA022>I<3903E003E0390FF81FF8391C7C 3C1C0018EB703E39383EE0FE38303FC0EB7F800070EB00FCEA607E157000E01400EAC0FE EA40FC1200A212015BA312035BA312075BA3120F5BA3121F5B0007C8FC1F227EA023>I< EB0380EB0FC0A3131FA21480A2133FA21400A25BA2137E387FFFFEA2B5FC3800FC00A212 01A25BA21203A25BA21207A25BA2120FA25B1408001F131C14181380143814701460EB00 E0EB01C0380F8380EB8700EA07FEEA01F817307FAE1C>116 D<01F0130ED803FC131FD8 071EEB3F80EA0E1F121C0038EB801F0030140F013F130700701300006014035BD8E07E14 001240EA00FE495B000114065BA2150E0003140C5B151C15181538491330157015606D13 E04A5A0001495A6D48C7FC3800FC1EEB3FF8EB07E021227EA025>118 D<90391F801F8090397FE07FE09039E0F0E0703A01C0F9C0F83903807D833807007F000E 1403000C15F0001C137E0018EC01C002FEC7FC00385B1210C7FC13015CA31303A25C1640 010714E016C0001C5B007E1401010F148000FE1403011FEB0700011B130E39F839F01C39 7070F878393FE07FE0390F801F8025227EA02C>120 D<13F0D803FCEB01C0D8071EEB03 E0D80E1F1307121C003813800030140F013F14C000701300126049131FD8E07E14801240 EA00FE49133F000115005BA25D0003147E5BA215FE5D5BA214015DEBF00314070001130F 3900F83FF0EB3FFBEB0FC3EB00075DA20007130FD81F805B003F495AA24AC7FCEB007E00 3E137C00385B381803F0381E07C0D807FFC8FCEA01F823317EA026>I<156015F081A215 7C157EB7FC1680A21600C7EA01FCEC03F04A5A5D5D6EC7FC211072B526>126 D E %EndDVIPSBitmapFont /Fr 105[37 1[33 33 24[33 37 37 54 37 37 21 29 25 37 37 37 37 58 21 37 21 21 37 37 25 33 37 33 37 33 3[25 1[25 46 54 1[71 54 54 46 42 50 1[42 54 54 66 46 54 29 25 54 54 42 46 54 50 50 54 1[33 3[21 21 37 37 37 37 37 37 37 37 37 37 21 19 25 19 2[25 25 25 2[37 32[42 42 2[{ TeXBase1Encoding ReEncodeFont}78 74.7198 /Times-Roman rf /Fs 82[33 51[50 3[55 33 39 44 1[55 50 55 83 28 2[28 55 50 33 44 55 44 55 50 7[72 72 100 72 72 66 55 72 78 61 78 72 94 66 2[39 78 78 61 66 72 72 66 72 9[50 50 50 50 50 50 50 2[25 43[55 2[{TeXBase1Encoding ReEncodeFont}52 99.6264 /Times-Bold rf /Ft 103[45 30[45 1[45 45 45 45 45 45 1[45 45 45 45 45 45 45 45 45 1[45 45 45 45 1[45 18[45 12[45 45 5[45 6[45 1[45 45 45 45 46[{ TeXBase1Encoding ReEncodeFont}31 74.7198 /Courier rf /Fu 134[50 2[50 55 28 50 33 1[55 55 55 83 22 50 1[22 55 1[28 55 55 50 55 55 10[66 72 61 66 2[66 1[72 83 55 2[28 4[72 72 20[28 1[28 44[{TeXBase1Encoding ReEncodeFont}33 99.6264 /Helvetica rf /Fv 82[50 51[83 2[83 91 50 83 58 1[91 91 91 133 42 2[42 91 91 1[83 91 83 91 83 13[100 6[91 3[108 3[108 1[108 66[{TeXBase1Encoding ReEncodeFont}25 149.44 /Helvetica-Bold rf end %%EndProlog %%BeginSetup %%Feature: *Resolution 600dpi TeXDict begin %%PaperSize: A4 %%EndSetup %%Page: 1 1 1 0 bop 11 104 a Fv(Locality\255Sensitive)40 b(Hashing)i(Sc)o(heme)g (Based)g(on)g(p\255Stab)o(le)1481 270 y(Distrib)m(utions)700 608 y Fu(Ma)m(yur)28 b(Datar)218 707 y(Depar)t(tment)h(of)f(Computer)h (Science)o(,)554 806 y(Stanf)m(ord)h(Univ)n(ersity)502 893 y Ft(datar@cs.stanford.edu)2448 608 y Fu(Nicole)f(Immor)q(lica)1971 707 y(Labor)o(ator)s(y)h(f)m(or)e(Computer)h(Science)o(,)f(MIT)2257 794 y Ft(nickle@theory.lcs.mit.edu)744 1040 y Fu(Piotr)h(Indyk)134 1139 y(Labor)o(ator)s(y)h(f)m(or)e(Computer)h(Science)o(,)f(MIT)442 1226 y Ft(indyk@theory.lcs.mit.edu)2510 1040 y Fu(V)-7 b(ahab)30 b(S)n(.)e(Mirrokni)2056 1139 y(Labor)o(ator)s(y)h(f)m(or)f (Computer)h(Science)o(,)g(MIT)2296 1226 y Ft (mirrokni@theory.lcs.mit.edu)-152 1524 y Fs(ABSTRA)-5 b(CT)-152 1644 y Fr(W)f(e)19 b(present)g(a)g(no)o(v)o(el)h (Locality-Sensiti)n(v)o(e)f(Hashing)h(scheme)g(for)f(the)g(Ap-)-152 1731 y(proximate)25 b(Nearest)e(Neighbor)i(Problem)f(under)g Fq(l)1225 1739 y Fp(p)1285 1731 y Fr(norm,)h(based)f(on)g Fq(p)p Fr(-)-152 1819 y(stable)19 b(distrib)o(utions.)-77 1906 y(Our)24 b(scheme)g(impro)o(v)o(es)g(the)g(running)h(time)e(of)g (the)h(earlier)f(algorithm)-152 1993 y(for)e(the)h(case)f(of)g(the)h Fq(l)437 2001 y Fo(2)492 1993 y Fr(norm.)31 b(It)20 b(also)i(yields)f (the)g(\002rst)g(kno)n(wn)h(pro)o(v)n(ably)-152 2080 y(ef)n(\002cient)j(approximate)g(NN)f(algorithm)h(for)f(the)h(case)g Fq(p)31 b(<)h Fn(1)p Fr(.)40 b(W)-6 b(e)23 b(also)-152 2167 y(sho)n(w)g(that)f(the)g(algorithm)h(\002nds)f(the)g Fm(e)o(xact)g Fr(near)h(neigbhor)g(in)f Fq(O)r Fn(\(log)16 b Fq(n)p Fn(\))-152 2254 y Fr(time)j(for)g(data)g(satisfying)g(certain) g(\223bounded)i(gro)n(wth\224)f(condition.)-77 2342 y(Unlik)o(e)15 b(earlier)f(schemes,)i(our)f(LSH)e(scheme)i(w)o(orks)g(directly)g(on)g (points)-152 2429 y(in)21 b(the)f(Euclidean)i(space)f(without)g (embeddings.)30 b(Consequently)-5 b(,)22 b(the)f(re-)-152 2516 y(sulting)h(query)h(time)e(bound)i(is)e(free)g(of)h(lar)o(ge)f(f)o (actors)h(and)g(is)f(simple)h(and)-152 2603 y(easy)g(to)f(implement.)30 b(Our)21 b(e)o(xperiments)h(\(on)f(synthetic)h(data)f(sets\))g(sho)n(w) -152 2690 y(that)e(the)g(our)g(data)h(structure)f(is)f(up)i(to)e(40)i (times)e(f)o(aster)h(than)h Fq(k)r(d)p Fr(-tree.)-152 2928 y Fs(1.)100 b(INTR)m(ODUCTION)-77 3036 y Fr(A)14 b(similarity)g(search)i(problem)f(in)m(v)o(olv)o(es)g(a)g(collection)g (of)g(objects)g(\(doc-)-152 3124 y(uments,)23 b(images,)g(etc.\))31 b(that)22 b(are)f(characterized)i(by)f(a)g(collection)g(of)g(rel-)-152 3211 y(e)n(v)n(ant)i(features)g(and)g(represented)g(as)g(points)f(in)h (a)f(high-dimensional)i(at-)-152 3298 y(trib)o(ute)c(space;)i(gi)n(v)o (en)f(queries)g(in)g(the)f(form)h(of)f(points)h(in)f(this)g(space,)i (we)-152 3385 y(are)17 b(required)g(to)g(\002nd)f(the)h(nearest)g (\(most)g(similar\))e(object)i(to)g(the)g(query)-5 b(.)23 b(A)-152 3472 y(particularly)g(interesting)f(and)g(well-studied)h (instance)f(is)g Fq(d)p Fr(-dimensional)-152 3559 y(Euclidean)f(space.) 28 b(This)20 b(problem)h(is)f(of)g(major)h(importance)g(to)f(a)g(v)n (ariety)-152 3647 y(of)26 b(applications;)j(some)c(e)o(xamples)h(are:) 36 b(data)26 b(compression,)i(databases)-152 3734 y(and)20 b(data)g(mining,)f(information)h(retrie)n(v)n(al,)f(image)g(and)h (video)g(databases,)-152 3821 y(machine)k(learning,)g(pattern)f (recognition,)i(statistics)d(and)h(data)g(analysis.)-152 3908 y(T)-6 b(ypically)h(,)30 b(the)e(features)g(of)g(the)g(objects)g (of)g(interest)f(\(documents,)k(im-)-152 3995 y(ages,)24 b(etc\))f(are)g(represented)h(as)f(points)g(in)g Fl(<)1065 3964 y Fp(d)1124 3995 y Fr(and)g(a)g(distance)h(metric)e(is)-152 4082 y(used)27 b(to)e(measure)i(similarity)e(of)g(objects.)44 b(The)26 b(basic)f(problem)i(then)f(is)-152 4170 y(to)21 b(perform)g(inde)o(xing)i(or)d(similarity)h(searching)h(for)e(query)i (objects.)30 b(The)-152 4257 y(number)19 b(of)f(features)g(\(i.e.,)f (the)h(dimensionality\))g(ranges)h(an)o(ywhere)g(from)-152 4344 y(tens)g(to)g(thousands.)-77 4431 y(The)e(lo)n(w-dimensional)h (case)g(\(say)-5 b(,)17 b(for)g(the)g(dimensionality)h Fq(d)f Fr(equal)h(to)-152 4518 y(2)25 b(or)g(3\))g(is)g(well-solv)o (ed,)h(so)g(the)f(main)g(issue)g(is)g(that)f(of)h(dealing)h(with)f(a) -152 4948 y Fk(Permission)h(to)f(mak)o(e)h(digital)i(or)d(hard)g (copies)i(of)e(all)h(or)f(part)g(of)g(this)h(w)o(ork)f(for)-152 5022 y(personal)f(or)f(classroom)g(use)f(is)g(granted)j(without)e(fee)h (pro)o(vided)g(that)f(copies)h(are)-152 5097 y(not)c(made)f(or)g (distrib)o(uted)i(for)e(pro\002t)g(or)g(commercial)i(adv)n(antage)h (and)d(that)h(copies)-152 5172 y(bear)e(this)f(notice)i(and)e(the)g (full)h(citation)h(on)e(the)g(\002rst)g(page.)25 b(T)-5 b(o)15 b(cop)o(y)j(otherwise,)g(to)-152 5246 y(republish,)g(to)e(post)f (on)h(serv)o(ers)g(or)g(to)g(redistrib)o(ute)i(to)e(lists,)g(requires)i (prior)e(speci\002c)-152 5321 y(permission)i(and/or)h(a)e(fee.)-152 5396 y(Cop)o(yright)j(200X)d(A)m(CM)g(X\255XXXXX\255XX\255X/XX/XX)g (...)p Fr($)p Fk(5.00.)2040 1524 y Fr(lar)o(ge)24 b(number)h(of)f (dimensions,)i(the)e(so-called)g(\223curse)h(of)e(dimensional-)2040 1611 y(ity\224.)36 b(Despite)23 b(decades)i(of)e(intensi)n(v)o(e)h(ef)n (fort,)g(the)f(current)h(solutions)f(are)2040 1698 y(not)d(entirely)g (satisf)o(actory;)g(in)f(f)o(act,)h(for)f(lar)o(ge)h(enough)h Fq(d)p Fr(,)e(in)h(theory)g(or)f(in)2040 1785 y(practice,)24 b(the)o(y)g(often)g(pro)o(vide)g(little)e(impro)o(v)o(ement)i(o)o(v)o (er)g(a)f(linear)g(algo-)2040 1872 y(rithm)e(which)g(compares)h(a)f (query)g(to)g(each)h(point)f(from)g(the)g(database.)29 b(In)2040 1960 y(particular)m(,)17 b(it)g(w)o(as)g(sho)n(wn)i(in)e ([28])g(\(both)h(empirically)f(and)h(theoretically\))2040 2047 y(that)25 b Fm(all)g Fr(current)h(inde)o(xing)g(techniques)h (\(based)f(on)g(space)g(partitioning\))2040 2134 y(de)o(grade)20 b(to)f(linear)g(search)g(for)g(suf)n(\002ciently)g(high)h(dimensions.) 2115 2221 y(In)27 b(recent)g(years,)i(se)n(v)o(eral)e(researchers)g (proposed)i(to)e(a)o(v)o(oid)f(the)h(run-)2040 2308 y(ning)d(time)e (bottleneck)i(by)f(using)h Fm(appr)m(oximation)g Fr(\(e.g.,)f([3,)g (22,)h(19,)g(24,)2040 2396 y(15],)f(see)f(also)f([12]\).)32 b(This)22 b(is)f(due)h(to)g(the)g(f)o(act)g(that,)g(in)f(man)o(y)i (cases,)f(ap-)2040 2483 y(proximate)i(nearest)g(neighbor)g(is)f(almost) g(as)g(good)i(as)e(the)g(e)o(xact)h(one;)h(in)2040 2570 y(particular)m(,)30 b(if)d(the)g(distance)i(measure)f(accurately)h (captures)f(the)g(notion)2040 2657 y(of)g(user)f(quality)-5 b(,)30 b(then)e(small)f(dif)n(ferences)i(in)e(the)g(distance)i(should)f (not)2040 2744 y(matter)l(.)40 b(In)25 b(f)o(act,)h(in)e(situations)h (when)h(the)f(quality)g(of)f(the)h(approximate)2040 2831 y(nearest)20 b(neighbor)h(is)e(much)h(w)o(orse)f(than)h(the)g(quality)f (of)h(the)f(actual)h(near)o(-)2040 2919 y(est)h(neighbor)m(,)i(then)f (the)f(nearest)g(neighbor)i(problem)f(is)f Fm(unstable)p Fr(,)h(and)g(it)2040 3006 y(is)d(not)g(clear)g(if)f(solving)i(it)e(is)g (at)h(all)f(meaningful)i([4,)f(17].)2115 3093 y(In)14 b([19,)i(14],)f(the)g(authors)g(introduced)g(an)g(approximate)h (high-dimensional)2040 3180 y(similarity)27 b(search)i(scheme)g(with)e (pro)o(v)n(ably)j(sublinear)e(dependence)j(on)2040 3267 y(the)d(data)f(size.)49 b(Instead)28 b(of)f(using)i(tree-lik)o(e)e (space)h(partitioning,)i(it)d(re-)2040 3354 y(lied)21 b(on)g(a)g(ne)n(w)h(method)g(called)f Fm(locality-sensitive)g(hashing)h (\(LSH\))p Fr(.)e(The)2040 3442 y(k)o(e)o(y)i(idea)f(is)g(to)g(hash)h (the)f(points)g(using)h(se)n(v)o(eral)f(hash)h(functions)g(so)f(as)g (to)2040 3529 y(ensure)i(that,)f(for)g(each)h(function,)h(the)e (probability)h(of)f(collision)g(is)g(much)2040 3616 y(higher)15 b(for)g(objects)f(which)h(are)g(close)g(to)f(each)h(other)g(than)g(for) f(those)h(which)2040 3703 y(are)23 b(f)o(ar)g(apart.)34 b(Then,)24 b(one)f(can)g(determine)h(near)f(neighbors)h(by)f(hashing) 2040 3790 y(the)15 b(query)h(point)g(and)f(retrie)n(ving)h(elements)f (stored)g(in)g(b)o(uck)o(ets)h(containing)2040 3877 y(that)22 b(point.)33 b(In)22 b([19,)h(14])f(the)g(authors)h(pro)o(vided)g(such)g (locality-sensiti)n(v)o(e)2040 3965 y(hash)17 b(functions)g(for)g(the)f (case)h(when)g(the)f(points)h(li)n(v)o(e)f(in)h(binary)g(Hamming)2040 4052 y(space)k Fl(f)p Fn(0)p Fq(;)14 b Fn(1)p Fl(g)2413 4020 y Fp(d)2450 4052 y Fr(.)27 b(The)o(y)21 b(sho)n(wed)h(e)o (xperimentally)f(that)f(the)h(data)f(structure)2040 4139 y(achie)n(v)o(es)d(lar)o(ge)e(speedup)i(o)o(v)o(er)f(se)n(v)o(eral)g (tree-based)g(data)g(structures)g(when)2040 4226 y(the)21 b(data)g(is)f(stored)h(on)g(disk.)29 b(In)21 b(addition,)g(since)g(the) g(LSH)e(is)i(a)f(hashing-)2040 4313 y(based)i(scheme,)g(it)f(can)g(be)h (naturally)f(e)o(xtended)i(to)e(the)g Fm(dynamic)h Fr(setting,)2040 4400 y(i.e.,)29 b(when)g(insertion)f(and)h(deletion)f(operations)i (also)e(need)h(to)f(be)g(sup-)2040 4488 y(ported.)35 b(This)22 b(a)o(v)o(oids)h(the)g(comple)o(xity)g(of)g(dealing)g(with)g (tree)f(structures)2040 4575 y(when)e(the)f(data)g(is)f(dynamic.)2115 4662 y(The)30 b(LSH)e(algorithm)i(has)h(been)f(since)g(used)h(in)e (numerous)j(applied)2040 4749 y(settings,)27 b(e.g.,)g(see)f([14,)h (10,)h(16,)f(27,)h(5,)f(7,)g(29,)h(6,)f(26,)g(13].)44 b(Ho)n(we)n(v)o(er)m(,)2040 4836 y(it)22 b(suf)n(fers)g(from)g(a)g (fundamental)i(dra)o(wback:)30 b(it)22 b(is)g(f)o(ast)g(and)h(simple)f (only)2040 4924 y(when)j(the)f(input)g(points)g(li)n(v)o(e)g(in)g(the)g (Hamming)g(space)h(\(indeed,)g(almost)2040 5011 y(all)d(of)h(the)g(abo) o(v)o(e)g(applications)h(in)m(v)o(olv)o(ed)f(binary)g(data\).)35 b(As)22 b(mentioned)2040 5098 y(in)d([19,)g(14],)h(it)e(is)h(possible)h (to)f(e)o(xtend)h(the)f(algorithm)h(to)f(the)g Fq(l)3709 5106 y Fo(2)3762 5098 y Fr(norm,)h(by)2040 5185 y(embedding)h Fq(l)2414 5193 y Fo(2)2467 5185 y Fr(space)e(into)g Fq(l)2809 5193 y Fo(1)2862 5185 y Fr(space,)g(and)g(then)h Fq(l)3362 5193 y Fo(1)3415 5185 y Fr(space)f(into)g(Hamming)2040 5272 y(space.)27 b(Ho)n(we)n(v)o(er)m(,)20 b(it)f(increases)h(the)g (query)h(time)e(and/or)i(error)f(by)g(a)g(lar)o(ge)2040 5359 y(f)o(actor)f(and)h(complicates)f(the)g(algorithm.)p eop %%Page: 2 2 2 1 bop -77 -69 a Fr(In)24 b(this)f(paper)i(we)e(present)i(a)f(no)o(v)o (el)g(v)o(ersion)g(of)g(the)g(LSH)f(algorithm.)-152 19 y(As)28 b(the)g(pre)n(vious)h(schemes,)i(it)c(w)o(orks)h(for)g(the)g Fn(\()p Fq(R)q(;)13 b(c)p Fn(\))p Fr(-Near)28 b(Neighbor)-152 106 y(\(NN\))23 b(problem,)i(where)f(the)f(goal)h(is)f(to)g(report)h(a) f(point)h(within)f(distance)-152 193 y Fq(cR)g Fr(from)e(a)h(query)h Fq(q)s Fr(,)f(if)f(there)h(is)f(a)h(point)g(in)g(the)g(data)g(set)f Fq(P)32 b Fr(within)22 b(dis-)-152 280 y(tance)f Fq(R)g Fr(from)f Fq(q)s Fr(.)28 b(Unlik)o(e)20 b(the)h(earlier)f(algorithm,)h (our)f(algorithm)h(w)o(orks)-152 367 y(directly)27 b(on)g(points)h(in)e (Euclidean)i(space)f(without)g(embeddings.)49 b(As)27 b(a)-152 454 y(consequence,)d(it)c(has)h(the)g(follo)n(wing)g(adv)n (antages)h(o)o(v)o(er)f(the)g(pre)n(vious)h(al-)-152 542 y(gorithm:)-41 673 y Fl(\017)38 b Fr(F)o(or)29 b(the)g Fq(l)310 681 y Fo(2)373 673 y Fr(norm,)j(its)c(query)i(time)e(is)h Fq(O)r Fn(\()p Fq(dn)1295 642 y Fp(\032)p Fo(\()p Fp(c)p Fo(\))1420 673 y Fn(log)15 b Fq(n)p Fn(\))p Fr(,)31 b(where)35 761 y Fq(\032)p Fn(\()p Fq(c)p Fn(\))26 b Fq(<)h Fn(1)p Fq(=c)22 b Fr(for)g Fq(c)k Fl(2)h Fn(\(1)p Fq(;)13 b Fn(10])23 b Fr(\(the)f(inequality)g(is)f(strict,)g(see)h(Fig-)35 848 y(ure)c(1\(b\)\).)23 b(Thus,)17 b(for)h(lar)o(ge)f(range)h(of)g(v)n (alues)g(of)g Fq(c)p Fr(,)f(the)h(query)g(time)35 935 y(e)o(xponent)j(is)d(better)h(than)g(the)g(one)h(in)f([19,)g(14].)-41 1074 y Fl(\017)38 b Fr(It)18 b(is)h(simple)g(and)g(quite)h(easy)f(to)g (implement.)-41 1214 y Fl(\017)38 b Fr(It)20 b(w)o(orks)h(for)f(an)o(y) g Fq(l)559 1222 y Fp(p)615 1214 y Fr(norm,)h(as)f(long)h(as)f Fq(p)j Fl(2)h Fn(\(0)p Fq(;)14 b Fn(2])p Fr(.)27 b(Speci\002cally)-5 b(,)35 1301 y(we)24 b(sho)n(w)h(that)f(for)g(an)o(y)h Fq(p)31 b Fl(2)h Fn(\(0)p Fq(;)13 b Fn(2])25 b Fr(and)g Fq(\015)35 b(>)c Fn(0)25 b Fr(there)f(e)o(xists)g(an)35 1388 y(algorithm)18 b(for)f Fn(\()p Fq(R)q(;)c(c)p Fn(\))p Fr(-NN)k(under)h Fq(l)994 1352 y Fp(p)993 1409 y(d)1047 1388 y Fr(which)g(uses)g Fq(O)r Fn(\()p Fq(dn)11 b Fn(+)g Fq(n)1697 1356 y Fo(1+)p Fp(\032)1811 1388 y Fn(\))35 1475 y Fr(space,)29 b(with)e(query)g(time)g Fq(O)r Fn(\()p Fq(n)900 1443 y Fp(\032)949 1475 y Fn(log)1049 1494 y Fo(1)p Fp(=\015)1164 1475 y Fq(n)p Fn(\))p Fr(,)h(where)f(where)g Fq(\032)36 b Fl(\024)35 1578 y Fn(\(1)21 b(+)g Fq(\015)t Fn(\))g Fl(\001)g Fn(max)498 1518 y Fj(\000)559 1547 y Fo(1)p 543 1561 63 4 v 543 1603 a Fp(c)571 1589 y Fi(p)616 1578 y Fq(;)660 1547 y Fo(1)p 660 1561 31 4 v 661 1603 a Fp(c)700 1518 y Fj(\001)736 1578 y Fr(.)38 b(T)-6 b(o)24 b(our)g(kno)n(wledge,)j(this)d(is)g(the)g(only)35 1665 y(kno)n(wn)h Fm(pr)m(o)o(vable)g Fr(algorithm)e(for)h(the)f (high-dimensional)i(nearest)35 1752 y(neighbor)17 b(problem)f(for)f (the)g(case)g Fq(p)21 b(<)g Fn(1)p Fr(.)h(Similarity)14 b(search)i(under)35 1840 y(such)i Fm(fr)o(actional)f Fr(norms)g(ha)o(v)o(e)g(recently)g(attracted)g(interest)g([1,)g(11].) -77 1971 y(Our)30 b(algorithm)g(also)h(inherits)f(tw)o(o)g(v)o(ery)g (con)m(v)o(enient)i(properties)f(of)-152 2059 y(LSH)26 b(schemes.)47 b(The)27 b(\002rst)f(one)h(is)f(that)h(it)f(w)o(orks)h (well)f(on)i(data)e(that)h(is)-152 2146 y(e)o(xtremely)h (high-dimensional)g(b)o(ut)f(sparse.)47 b(Speci\002cally)-5 b(,)28 b(the)f(running)-152 2233 y(time)20 b(bound)h(remains)f (unchanged)j(if)c Fq(d)g Fr(denotes)i(the)f(maximum)h(number)-152 2320 y(of)j(non-zero)h(elements)f(in)f(v)o(ectors.)38 b(T)-6 b(o)23 b(our)h(kno)n(wledge,)i(this)e(property)-152 2407 y(is)29 b(not)h(shared)g(by)g(other)f(kno)n(wn)i(spatial)e(data)g (structures.)55 b(Thanks)30 b(to)-152 2494 y(this)c(property)-5 b(,)29 b(we)d(were)g(able)h(to)f(use)g(our)h(ne)n(w)g(LSH)e(scheme)i (\(specif-)-152 2582 y(ically)-5 b(,)30 b(the)e Fq(l)200 2590 y Fo(1)262 2582 y Fr(norm)h(v)o(ersion\))f(for)g(f)o(ast)g(color)o (-based)h(image)f(similarity)-152 2669 y(search)19 b([20].)24 b(In)18 b(that)g(conte)o(xt,)h(each)h(image)e(w)o(as)h(represented)h (by)f(a)f(point)-152 2756 y(in)f(roughly)h Fn(100)286 2724 y Fo(3)322 2756 y Fr(-dimensional)f(space,)h(b)o(ut)e(only)h (about)h(100)f(dimensions)-152 2843 y(were)31 b(non-zero)i(per)e (point.)61 b(The)31 b(use)h(of)f(our)g(LSH)f(scheme)i(enabled)-152 2930 y(achie)n(ving)21 b(order\(s\))e(of)g(magnitude)h(speed-up)g(o)o (v)o(er)g(the)e(linear)h(scan.)-77 3017 y(The)25 b(second)i(property)g (is)e(that)g(our)h(algorithm)g(pro)o(v)n(ably)h(reports)f(the)-152 3105 y Fm(e)o(xact)15 b Fr(near)f(neighbor)i(v)o(ery)f(quickly)-5 b(,)16 b(if)e(the)h(data)f(satis\002es)g(certain)h Fm(bounded)-152 3192 y(gr)m(owth)24 b Fr(property)-5 b(.)40 b(Speci\002cally)-5 b(,)25 b(for)e(a)h(query)h(point)g Fq(q)s Fr(,)f(and)h Fq(c)31 b Fl(\025)g Fn(1)p Fr(,)25 b(let)-152 3279 y Fq(N)8 b Fn(\()p Fq(q)s(;)14 b(c)p Fn(\))21 b Fr(be)h(the)f(number)i (of)e Fq(c)p Fr(-approximate)i(nearest)e(neighbors)i(of)f Fq(q)i Fr(in)-152 3366 y Fq(P)11 b Fr(.)40 b(If)24 b Fq(N)8 b Fn(\()p Fq(q)s(;)14 b(c)p Fn(\))24 b Fr(gro)n(ws)i(\223sub-e)o (xponentially\224)h(as)e(a)f(function)i(of)e Fq(c)p Fr(,)i(then)-152 3453 y(the)c(LSH)e(algorithm)i(reports)f Fq(p)g Fr(with)g(constant)h (probability)g(within)f(time)-152 3540 y Fq(O)r Fn(\()p Fq(d)13 b Fn(log)i Fq(n)p Fn(\))p Fr(,)j(assuming)g(it)f(is)g(gi)n(v)o (en)i(a)e(constant)i(f)o(actor)f(approximation)h(to)-152 3628 y(the)j(distance)g(from)g Fq(q)i Fr(to)e(its)f(nearest)h(neighbor) l(.)33 b(In)21 b(particular)m(,)h(we)g(sho)n(w)-152 3715 y(that)16 b(if)f Fq(N)8 b Fn(\()p Fq(q)s(;)14 b(c)p Fn(\))21 b(=)g Fq(O)r Fn(\()p Fq(c)496 3683 y Fp(b)528 3715 y Fn(\))p Fr(,)16 b(then)h(the)f(running)h(time)e(is)h Fq(O)r Fn(\(log)f Fq(n)6 b Fn(+)g(2)1665 3683 y Fp(O)r Fo(\()p Fp(b)p Fo(\))1792 3715 y Fn(\))p Fr(.)-152 3802 y(Ef)n(\002cient)18 b(nearest)g(neighbor)i(algorithms)e(for)g(data)h (sets)f(with)f(polynomial)-152 3889 y(gro)n(wth)22 b(properties)g(in)f (general)g(metrics)g(ha)o(v)o(e)g(been)h(recently)g(a)f(focus)h(of)-152 3976 y(se)n(v)o(eral)30 b(papers)g([9,)i(21,)g(23].)55 b(LSH)28 b(solv)o(es)i(an)g(easier)f(problem)h(\(near)-152 4063 y(neighbor)18 b(under)f Fq(l)339 4071 y Fo(2)390 4063 y Fr(norm\),)g(while)f(w)o(orking)h(under)g(weak)o(er)g (assumptions)-152 4151 y(about)g(the)e(gro)n(wth)h(function.)23 b(It)15 b(is)g(also)h(some)n(what)g(f)o(aster)m(,)g(due)h(to)e(the)h(f) o(act)-152 4238 y(that)h(the)h Fn(log)d Fq(n)i Fr(f)o(actor)g(in)g(the) h(query)g(time)f(of)g(the)g(earlier)g(schemes)h(is)f Fm(mul-)-152 4325 y(tiplied)i Fr(by)g(a)g(function)h(of)f Fq(b)p Fr(,)f(while)h(in)g(our)g(case)g(this)g(f)o(actor)g(is)g(additi) n(v)o(e.)-77 4412 y(W)-6 b(e)18 b(complement)i(our)e(theoretical)h (analysis)g(with)f(e)o(xperimental)h(e)n(v)n(al-)-152 4499 y(uation)k(of)e(the)h(algorithm)g(on)h(data)f(with)f(wide)h(range) h(of)e(parameters.)33 b(In)-152 4587 y(particular)m(,)20 b(we)f(compare)h(our)g(algorithm)g(to)f(an)h(approximate)h(v)o(ersion)f (of)-152 4674 y(the)j Fq(k)r(d)p Fr(-tree)g(algorithm)h([2].)35 b(W)-6 b(e)23 b(performed)h(the)f(e)o(xperiments)h(on)f(syn-)-152 4761 y(thetic)i(data)h(sets)f(containing)h(\223planted\224)g(near)g (neighbor)h(\(see)e(section)g(5)-152 4848 y(for)e(more)g(details\);)h (similar)e(model)i(w)o(as)f(earlier)f(used)h(in)g([30].)35 b(Our)23 b(e)o(x-)-152 4935 y(periments)16 b(indicate)g(that)f(the)g (ne)n(w)h(LSH)e(scheme)i(achie)n(v)o(es)h(query)f(time)f(of)-152 5022 y(up)20 b(to)f(40)g(times)g(better)f(than)i(the)f(query)g(time)g (of)g(the)g Fq(k)r(d)p Fr(-tree)f(algorithm.)-152 5172 y Fs(1.1)99 b(Notations)25 b(and)g(pr)n(oblem)h(de\002nitions)-77 5280 y Fr(W)-6 b(e)25 b(use)h Fq(l)195 5248 y Fp(d)194 5293 y(p)257 5280 y Fr(to)f(denote)i(the)f(space)g Fl(<)928 5248 y Fp(d)990 5280 y Fr(under)g(the)g Fq(l)1325 5288 y Fp(p)1386 5280 y Fr(norm.)44 b(F)o(or)25 b(an)o(y)-152 5378 y(point)20 b Fh(v)j Fl(2)f(<)216 5346 y Fp(d)253 5378 y Fr(,)c(we)h(denote)h(by)f Fl(jj)747 5377 y Fq(~)749 5378 y Fh(v)s Fl(jj)838 5386 y Fp(p)894 5378 y Fr(the)g Fq(l)1027 5386 y Fp(p)1081 5378 y Fr(norm)h(of)f(the)g(v)o(ector)1651 5377 y Fq(~)1653 5378 y Fh(v)r Fr(.)k(Let)2040 -69 y Fl(M)e Fn(=)g(\()p Fq(X)r(;)13 b(d)p Fn(\))18 b Fr(be)h(an)o(y)f (metric)g(space,)h(and)g Fq(v)24 b Fl(2)e Fq(X)6 b Fr(.)23 b(The)18 b Fm(ball)g Fr(of)g(radius)h Fq(r)2040 19 y Fr(centered)h(at)e Fq(v)k Fr(is)d(de\002ned)g(as)g Fq(B)t Fn(\()p Fq(v)s(;)13 b(r)r Fn(\))21 b(=)g Fl(f)p Fq(q)k Fl(2)c Fq(X)28 b Fl(j)22 b Fq(d)p Fn(\()p Fq(v)s(;)12 b(q)s Fn(\))22 b Fl(\024)f Fq(r)r Fl(g)p Fr(.)2115 106 y(Let)i Fq(c)30 b Fn(=)f(1)21 b(+)f Fq(\017)p Fr(.)37 b(In)23 b(this)g(paper)h(we)g(focus)g(on)g(the)f Fn(\()p Fq(R)q(;)13 b(c)p Fn(\))p Fr(-NN)23 b(prob-)2040 193 y(lem.)44 b(Observ)o(e)27 b(that)e Fn(\()p Fq(R)q(;)13 b(c)p Fn(\))p Fr(-NN)26 b(is)f(simply)h(a)g(decision)h(v)o(ersion)f(of) g(the)2040 280 y(Approximate)j(Nearest)g(Neighbor)g(problem.)52 b(Although)29 b(in)f(man)o(y)h(ap-)2040 367 y(plications)i(solving)g (the)f(decision)h(v)o(ersion)g(is)f(good)h(enough,)k(one)c(can)2040 454 y(also)25 b(reduce)h(the)e(approximate)i(NN)f(problem)g(to)g (approximate)h(NN)e(via)2040 542 y(binary-search-lik)o(e)c(approach.)25 b(In)18 b(particular)m(,)h(it)f(is)g(kno)n(wn)i([19,)f(15])g(that)2040 629 y(the)k Fq(c)p Fr(-approximate)h(NN)e(problem)i(reduces)g(to)e Fq(O)r Fn(\(log)s(\()p Fq(n=\017)p Fn(\)\))h Fr(instances)2040 716 y(of)28 b Fn(\()p Fq(R)q(;)13 b(c)p Fn(\))p Fr(-NN.)27 b(Then,)j(the)e(comple)o(xity)h(of)f Fq(c)p Fr(-approximate)h(NN)f(is)f (the)2040 803 y(same)19 b(\(within)g(log)g(f)o(actor\))g(as)g(that)g (of)g(the)g Fn(\()p Fq(R)q(;)12 b(c)p Fn(\))p Fr(-NN)19 b(problem.)2040 999 y Fs(2.)99 b(LOCALITY)-9 b(\255SENSITIVE)27 b(HASHING)2115 1107 y Fr(An)19 b(important)h(technique)g(from)f([19],)g (to)h(solv)o(e)f(the)g Fn(\()p Fq(R)q(;)13 b(c)p Fn(\))p Fr(-NN)19 b(prob-)2040 1194 y(lem)28 b(is)f(locality)g(sensiti)n(v)o(e) h(hashing)h(or)f(LSH.)e(F)o(or)h(a)h(domain)g Fq(S)k Fr(of)27 b(the)2040 1282 y(points)19 b(set)g(with)g(distance)g(measure) h Fq(D)r Fr(,)f(an)g(LSH)f(f)o(amily)h(is)f(de\002ned)i(as:)2125 1422 y(D)t Fg(E)t(FI)t(N)t(I)t(T)t(I)t(O)t(N)40 b Fr(1.)e Fm(A)14 b(family)g Fl(H)21 b Fn(=)g Fl(f)p Fq(h)h Fn(:)g Fq(S)k Fl(!)21 b Fq(U)8 b Fl(g)15 b Fm(is)f(called)g Fn(\()p Fq(r)3825 1430 y Fo(1)3860 1422 y Fq(;)f(r)3929 1430 y Fo(2)3963 1422 y Fq(;)g(p)4036 1430 y Fo(1)4070 1422 y Fq(;)g(p)4143 1430 y Fo(2)4177 1422 y Fn(\))p Fr(-)2040 1510 y(sensiti)n(v)o(e)19 b Fm(for)g Fq(D)i Fm(if)e(for)f(any)i Fq(v)s(;)13 b(q)24 b Fl(2)e Fq(S)2151 1591 y Fl(\017)38 b Fm(if)18 b Fq(v)24 b Fl(2)e Fq(B)t Fn(\()p Fq(q)s(;)13 b(r)2619 1599 y Fo(1)2653 1591 y Fn(\))19 b Fm(then)g Fn(Pr)2931 1599 y Ff(H)2988 1591 y Fn([)p Fq(h)p Fn(\()p Fq(q)s Fn(\))j(=)f Fq(h)p Fn(\()p Fq(v)s Fn(\)])g Fl(\025)h Fq(p)3560 1599 y Fo(1)3594 1591 y Fm(,)2151 1734 y Fl(\017)38 b Fm(if)18 b Fq(v)33 b(=)-47 b Fl(2)22 b Fq(B)t Fn(\()p Fq(q)s(;)13 b(r)2619 1742 y Fo(2)2653 1734 y Fn(\))19 b Fm(then)g Fn(Pr)2931 1742 y Ff(H)2988 1734 y Fn([)p Fq(h)p Fn(\()p Fq(q)s Fn(\))j(=)f Fq(h)p Fn(\()p Fq(v)s Fn(\)])g Fl(\024)h Fq(p)3560 1742 y Fo(2)3594 1734 y Fm(.)2040 1875 y Fr(In)h(order)g(for) g(a)g(locality-sensiti)n(v)o(e)h(hash)f(\(LSH\))f(f)o(amily)h(to)g(be)g (useful,)h(it)2040 1962 y(has)19 b(to)g(satisfy)g(inequalities)g Fq(p)2851 1970 y Fo(1)2907 1962 y Fq(>)i(p)3027 1970 y Fo(2)3080 1962 y Fr(and)e Fq(r)3241 1970 y Fo(1)3297 1962 y Fq(<)i(r)3413 1970 y Fo(2)3447 1962 y Fr(.)2115 2050 y(W)-6 b(e)25 b(will)g(brie\003y)g(describe,)j(from)e([19],)h(ho)n (w)f(a)g(LSH)e(f)o(amily)i(can)g(be)2040 2137 y(used)k(to)g(solv)o(e)f (the)h Fn(\()p Fq(R)q(;)13 b(c)p Fn(\))p Fr(-NN)29 b(problem:)45 b(W)-6 b(e)29 b(choose)h Fq(r)3660 2145 y Fo(1)3736 2137 y Fn(=)41 b Fq(R)30 b Fr(and)2040 2224 y Fq(r)2075 2232 y Fo(2)2149 2224 y Fn(=)39 b Fq(c)24 b Fl(\001)h Fq(R)q Fr(.)51 b(Gi)n(v)o(en)29 b(a)f(f)o(amily)g Fl(H)h Fr(of)f(hash)i (functions)f(with)f(parame-)2040 2311 y(ters)19 b Fn(\()p Fq(r)2232 2319 y Fo(1)2266 2311 y Fq(;)13 b(r)2335 2319 y Fo(2)2370 2311 y Fq(;)g(p)2443 2319 y Fo(1)2477 2311 y Fq(;)g(p)2550 2319 y Fo(2)2584 2311 y Fn(\))19 b Fr(as)g(in)h (De\002nition)f(1,)g(we)g(amplify)h(the)f(gap)h(between)2040 2398 y(the)32 b(\223high\224)i(probability)e Fq(p)2793 2406 y Fo(1)2860 2398 y Fr(and)g(\223lo)n(w\224)h(probability)g Fq(p)3607 2406 y Fo(2)3673 2398 y Fr(by)g(concate-)2040 2486 y(nating)d(se)n(v)o(eral)h(functions.)56 b(In)30 b(particular)m(,)i(for)e Fq(k)h Fr(speci\002ed)g(later)m(,)g(de-)2040 2573 y(\002ne)e(a)g(function)g(f)o(amily)g Fl(G)45 b Fn(=)40 b Fl(f)p Fq(g)j Fn(:)d Fq(S)45 b Fl(!)40 b Fq(U)3382 2541 y Fp(k)3420 2573 y Fl(g)29 b Fr(such)h(that)f Fq(g)s Fn(\()p Fq(v)s Fn(\))39 b(=)2040 2660 y(\()p Fq(h)2114 2668 y Fo(1)2149 2660 y Fn(\()p Fq(v)s Fn(\))p Fq(;)13 b(:)g(:)g(:)26 b(;)13 b(h)2476 2669 y Fp(k)2514 2660 y Fn(\()p Fq(v)s Fn(\)\))p Fr(,)23 b(where)h Fq(h)2936 2668 y Fp(i)2992 2660 y Fl(2)29 b(H)p Fr(.)36 b(F)o(or)22 b(an)i(inte)o(ger)f Fq(L)g Fr(we)g(choose)2040 2747 y Fq(L)28 b Fr(functions)i Fq(g)2464 2755 y Fo(1)2498 2747 y Fq(;)13 b(:)g(:)g(:)26 b(;)13 b(g)2718 2755 y Fp(L)2792 2747 y Fr(from)28 b Fl(G)t Fr(,)i(independently)h(and)e(uniformly)g(at) 2040 2834 y(random.)35 b(During)23 b(preprocessing,)i(we)e(store)f (each)h Fq(v)32 b Fl(2)c Fq(P)33 b Fr(\(input)23 b(point)2040 2921 y(set\))h(in)h(the)g(b)o(uck)o(et)g Fq(g)2629 2929 y Fp(j)2662 2921 y Fn(\()p Fq(v)s Fn(\))p Fr(,)g(for)g Fq(j)37 b Fn(=)32 b(1)p Fq(;)13 b(:)g(:)h(:)25 b(;)14 b(L)p Fr(.)40 b(Since)25 b(the)g(total)f(num-)2040 3009 y(ber)h(of)f(b)o(uck)o(ets)i(may)f(be)g(lar)o(ge,)g(we)g(retain)f(only) h(the)g(non-empty)h(b)o(uck-)2040 3096 y(ets)h(by)h(resorting)f(to)h (hashing.)49 b(T)-6 b(o)27 b(process)h(a)f(query)h Fq(q)s Fr(,)h(we)e(search)h(all)2040 3183 y(b)o(uck)o(ets)e Fq(g)2328 3191 y Fo(1)2362 3183 y Fn(\()p Fq(q)s Fn(\))p Fq(;)13 b(:)g(:)g(:)26 b(;)13 b(g)2679 3191 y Fp(L)2725 3183 y Fn(\()p Fq(q)s Fn(\))p Fr(;)28 b(as)d(it)g(is)f(possible)i (\(though)h(unlik)o(ely\))f(that)2040 3270 y(the)e(total)f(number)i(of) f(points)g(stored)g(in)g(those)g(b)o(uck)o(ets)h(is)e(lar)o(ge,)i(we)f (in-)2040 3357 y(terrupt)j(search)g(after)f(\002nding)h(\002rst)f Fn(3)p Fq(L)h Fr(points)g(\(including)g(duplicates\).)2040 3444 y(Let)d Fq(v)2201 3452 y Fo(1)2236 3444 y Fq(;)13 b(:)g(:)h(:)25 b(;)14 b(v)2457 3452 y Fp(t)2509 3444 y Fr(be)25 b(the)g(points)g(encountered)i(therein.)41 b(F)o(or)24 b(each)h Fq(v)3909 3452 y Fp(j)3942 3444 y Fr(,)h(if)2040 3532 y Fq(v)2077 3540 y Fp(j)2131 3532 y Fl(2)c Fq(B)t Fn(\()p Fq(q)s(;)13 b(r)2402 3540 y Fo(2)2436 3532 y Fn(\))18 b Fr(then)i(we)f(return)i Fg(Y)t(E)t(S)e Fr(and)h Fq(v)3241 3540 y Fp(j)3274 3532 y Fr(,)e(else)h(we)g(return)i Fg(N)t(O)r Fr(.)2115 3619 y(The)j(parameters)h Fq(k)h Fr(and)f Fq(L)f Fr(are)h(chosen)g(so)g(as)f(to)g(ensure)h(that)g(with)e (a)2040 3706 y(constant)d(probability)f(the)g(follo)n(wing)h(tw)o(o)f (properties)g(hold:)2133 3847 y(1.)38 b(If)20 b(there)h(e)o(xists)g Fq(v)2697 3815 y Ff(\003)2758 3847 y Fl(2)k Fq(B)t Fn(\()p Fq(q)s(;)13 b(r)3032 3855 y Fo(1)3066 3847 y Fn(\))21 b Fr(then)g Fq(g)3303 3855 y Fp(j)3335 3847 y Fn(\()p Fq(v)3405 3815 y Ff(\003)3441 3847 y Fn(\))k(=)g Fq(g)3618 3855 y Fp(j)3650 3847 y Fn(\()p Fq(q)s Fn(\))20 b Fr(for)h(some)2227 3934 y Fq(j)26 b Fn(=)21 b(1)13 b Fq(:)g(:)g(:)h(L)p Fr(,)k(and)2133 4078 y(2.)38 b(The)28 b(total)f(number)i(of)f (collisions)g(of)g Fq(q)j Fr(with)c(points)h(from)g Fq(P)35 b Fl(\000)2227 4165 y Fq(B)t Fn(\()p Fq(q)s(;)13 b(r)2425 4173 y Fo(2)2459 4165 y Fn(\))19 b Fr(is)f(less)h(than)g Fn(3)p Fq(L)p Fr(,)g(i.e.)2520 4283 y Fp(L)2485 4305 y Fj(X)2488 4463 y Fp(j)s Fo(=1)2609 4376 y Fl(j)p Fn(\()p Fq(P)28 b Fl(\000)17 b Fq(B)t Fn(\()p Fq(q)s(;)c(r)3012 4384 y Fo(2)3046 4376 y Fn(\)\))k Fl(\\)g Fq(g)3231 4340 y Ff(\000)p Fo(1)3228 4393 y Fp(j)3313 4376 y Fn(\()p Fq(g)3380 4384 y Fp(j)3412 4376 y Fn(\()p Fq(q)s Fn(\)\))p Fl(j)k Fq(<)g Fn(3)p Fq(L:)2115 4617 y Fr(Observ)o(e)27 b(that)f(if)h(\(1\))f(and)h(\(2\))g(hold,)i(then)e(the)f(algorithm)h (is)g(correct.)2040 4704 y(It)32 b(follo)n(ws)h(\(see)f([19])h(Theorem) g(5)g(for)g(details\))f(that)g(if)g(we)h(set)f Fq(k)50 b Fn(=)2040 4791 y(log)2139 4810 y Fo(1)p Fp(=p)2233 4820 y Fe(2)2283 4791 y Fq(n)p Fr(,)26 b(and)f Fq(L)32 b Fn(=)g Fq(n)2728 4759 y Fp(\032)2789 4791 y Fr(where)25 b Fq(\032)31 b Fn(=)3169 4755 y Fo(ln)10 b(1)p Fp(=p)3325 4765 y Fe(1)p 3169 4774 189 4 v 3169 4816 a Fo(ln)g(1)p Fp(=p)3325 4826 y Fe(2)3392 4791 y Fr(then)25 b(\(1\))f(and)h(\(2\))g (hold)2040 4888 y(with)14 b(a)h(constant)g(probability)-5 b(.)22 b(Thus,)15 b(we)g(get)f(follo)n(wing)h(theorem)g(\(slightly)2040 4975 y(dif)n(ferent)i(v)o(ersion)g(of)f(Theorem)h(5)g(in)f([19]\),)h (which)f(relates)h(the)f(ef)n(\002cienc)o(y)2040 5062 y(of)23 b(solving)h Fn(\()p Fq(R)q(;)13 b(c)p Fn(\))p Fr(-NN)23 b(problem)h(to)f(the)g(sensiti)n(vity)g(parameters)h(of)f (the)2040 5150 y(LSH.)2125 5290 y(T)t Fg(H)t(E)t(O)t(R)t(E)t(M)41 b Fr(1.)c Fm(Suppose)19 b(ther)m(e)f(is)f(a)g Fn(\()p Fq(R)q(;)c(cR)q(;)g(p)3425 5298 y Fo(1)3459 5290 y Fq(;)g(p)3532 5298 y Fo(2)3566 5290 y Fn(\))p Fm(-sensitive)18 b(fam-)2040 5378 y(ily)26 b Fl(H)h Fm(for)g(a)f(distance)i(measur)m(e)g Fq(D)r Fm(.)46 b(Then)27 b(ther)m(e)g(e)o(xists)f(an)h(algorithm)p eop %%Page: 3 3 3 2 bop -152 -69 a Fm(for)19 b Fn(\()p Fq(R)q(;)13 b(c)p Fn(\))p Fm(-NN)19 b(under)h(measur)m(e)g Fq(D)h Fm(whic)o(h)f(uses)f Fq(O)r Fn(\()p Fq(dn)f Fn(+)f Fq(n)1491 -100 y Fo(1+)p Fp(\032)1604 -69 y Fn(\))i Fm(space)o(,)-152 19 y(with)24 b(query)h(time)f(dominated)i(by)e Fq(O)r Fn(\()p Fq(n)918 -13 y Fp(\032)955 19 y Fn(\))g Fm(distance)h(computations,)i(and)-152 106 y Fq(O)r Fn(\()p Fq(n)-16 74 y Fp(\032)34 106 y Fn(log)133 124 y Fo(1)p Fp(=p)227 134 y Fe(2)277 106 y Fq(n)p Fn(\))18 b Fm(e)o(valuations)i(of)f(hash)h(functions)g(fr)m(om)e Fl(H)p Fm(,)h(wher)m(e)g Fq(\032)i Fn(=)-142 182 y Fo(ln)10 b(1)p Fp(=p)14 192 y Fe(1)p -142 201 189 4 v -142 244 a Fo(ln)g(1)p Fp(=p)14 254 y Fe(2)57 218 y Fm(.)-152 424 y Fs(3.)100 b(OUR)24 b(LSH)h(SCHEME)-77 532 y Fr(In)e(this)g (section,)h(we)f(present)g(a)g(LSH)f(f)o(amily)h(based)h(on)f Fq(p)p Fr(-stable)g(dis-)-152 619 y(trib)o(utions,)c(that)f(w)o(orks)i (for)f(all)f Fq(p)j Fl(2)h Fn(\(0)p Fq(;)13 b Fn(2])p Fr(.)-77 706 y(Since)18 b(we)g(consider)h(points)f(in)g Fq(l)783 674 y Fp(d)782 719 y(p)819 706 y Fr(,)g(without)g(loss)g(of)g (generality)g(we)g(can)-152 793 y(consider)i Fq(R)i Fn(=)f(1)p Fr(,)e(which)g(we)g(assume)h(from)f(no)n(w)g(on.)-152 950 y Fs(3.1)99 b Fq(p)p Fs(\255stable)25 b(distrib)n(utions)-77 1058 y Fr(Stable)15 b(distrib)o(utions)h([31])g(are)f(de\002ned)i(as)e (limits)g(of)h(normalized)g(sums)-152 1145 y(of)h(independent)i (identically)e(distrib)o(uted)g(v)n(ariables)g(\(an)g(alternate)g (de\002ni-)-152 1232 y(tion)24 b(follo)n(ws\).)36 b(The)23 b(most)g(well-kno)n(wn)h(e)o(xample)g(of)g(a)f(stable)g(distrib)o(u-) -152 1320 y(tion)30 b(is)g(Gaussian)g(\(or)g(normal\))g(distrib)o (ution.)56 b(Ho)n(we)n(v)o(er)m(,)33 b(the)d(class)g(is)-152 1407 y(much)20 b(wider;)f(for)f(e)o(xample,)i(it)e(includes)i(hea)o (vy-tailed)f(distrib)o(utions.)-152 1494 y Fd(Stable)g(Distrib)o (ution:)k Fr(A)c(distrib)o(ution)h Fl(D)i Fr(o)o(v)o(er)e Fl(<)g Fr(is)f(called)h Fq(p)p Fm(-stable)p Fr(,)f(if)-152 1581 y(there)k(e)o(xists)g Fq(p)28 b Fl(\025)g Fn(0)23 b Fr(such)g(that)g(for)f(an)o(y)i Fq(n)e Fr(real)h(numbers)h Fq(v)1481 1589 y Fo(1)1528 1581 y Fq(:)13 b(:)h(:)f(v)1668 1589 y Fp(n)1733 1581 y Fr(and)-152 1668 y(i.i.d.)23 b(v)n(ariables)d Fq(X)357 1676 y Fo(1)405 1668 y Fq(:)13 b(:)g(:)g(X)570 1676 y Fp(n)632 1668 y Fr(with)19 b(distrib)o(ution)g Fl(D)r Fr(,)g(the)g(random)h(v)n(ariable)-152 1699 y Fj(P)-71 1778 y Fp(i)-31 1755 y Fq(v)6 1763 y Fp(i)32 1755 y Fq(X)95 1763 y Fp(i)138 1755 y Fr(has)d(the)g(same)g(distrib)o (ution)f(as)g(the)h(v)n(ariable)g Fn(\()1362 1699 y Fj(P)1443 1778 y Fp(i)1482 1755 y Fl(j)p Fq(v)1540 1763 y Fp(i)1567 1755 y Fl(j)1588 1724 y Fp(p)1625 1755 y Fn(\))1655 1724 y Fo(1)p Fp(=p)1753 1755 y Fq(X)6 b Fr(,)-152 1843 y(where)20 b Fq(X)25 b Fr(is)18 b(a)h(random)h(v)n(ariable)f(with)g(distrib)o (ution)g Fl(D)r Fr(.)-77 1930 y(It)g(is)f(kno)n(wn)j([31])e(that)g (stable)h(distrib)o(utions)f(e)o(xist)g(for)g(an)o(y)h Fq(p)h Fl(2)h Fn(\(0)p Fq(;)13 b Fn(2])p Fr(.)-152 2017 y(In)19 b(particular:)-41 2167 y Fl(\017)38 b Fr(a)27 b Fm(Cauc)o(hy)h(distrib)o(ution)g Fl(D)783 2175 y Fp(C)834 2167 y Fr(,)h(de\002ned)f(by)g(the)f(density)h(function)35 2254 y Fq(c)p Fn(\()p Fq(x)p Fn(\))21 b(=)288 2224 y Fo(1)p 284 2238 38 4 v 284 2280 a Fp(\031)399 2224 y Fo(1)p 342 2238 145 4 v 342 2281 a(1+)p Fp(x)454 2267 y Fe(2)496 2254 y Fr(,)d(is)h Fn(1)p Fr(-stable)-41 2408 y Fl(\017)38 b Fr(a)19 b Fm(Gaussian)g(\(normal\))g(distrib)o(ution)f Fl(D)1095 2416 y Fp(G)1147 2408 y Fr(,)g(de\002ned)i(by)e(the)h (density)35 2511 y(function)h Fq(g)s Fn(\()p Fq(x)p Fn(\))g(=)602 2481 y Fo(1)p 558 2495 119 4 v 558 2503 a Ff(p)p 608 2503 69 3 v 41 x Fo(2)p Fp(\031)686 2511 y Fq(e)722 2480 y Ff(\000)p Fp(x)805 2459 y Fe(2)837 2480 y Fp(=)p Fo(2)903 2511 y Fr(,)f(is)f Fn(2)p Fr(-stable)-77 2672 y(W)-6 b(e)17 b(note)g(from)g(a)g(practical)g(point)h(of)f(vie)n(w)-5 b(,)17 b(despite)g(the)h(lack)f(of)g(closed)-152 2759 y(form)29 b(density)g(and)g(distrib)o(ution)f(functions,)j(it)d(is)g (kno)n(wn)h([8])g(that)f(one)-152 2846 y(can)23 b(generate)g Fq(p)p Fr(-stable)f(random)h(v)n(ariables)g(essentially)g(from)f(tw)o (o)g(inde-)-152 2934 y(pendent)f(v)n(ariables)e(distrib)o(uted)g (uniformly)g(o)o(v)o(er)h Fn([0)p Fq(;)14 b Fn(1])p Fr(.)-77 3021 y(Stable)20 b(distrib)o(ution)h(ha)o(v)o(e)g(found)g(numerous)i (applications)e(in)g(v)n(arious)-152 3108 y(\002elds)i(\(see)f(the)h (surv)o(e)o(y)g([25])g(for)f(more)h(details\).)34 b(In)23 b(computer)g(science,)-152 3195 y(stable)e(distrib)o(utions)g(were)g (used)g(for)g(\223sk)o(etching\224)h(of)f(high)h(dimensional)-152 3282 y(v)o(ectors)29 b(by)g(Indyk)g(\([18]\))g(and)g(since)f(ha)o(v)o (e)h(found)g(use)g(in)f(v)n(arious)h(ap-)-152 3369 y(plications.)38 b(The)23 b(main)h(property)g(of)g Fq(p)p Fr(-stable)f(distrib)o(utions) g(mentioned)-152 3457 y(in)32 b(the)g(de\002nition)g(abo)o(v)o(e)h (directly)f(translates)g(into)g(a)g(sk)o(etching)h(tech-)-152 3544 y(nique)23 b(for)f(high)h(dimensional)g(v)o(ectors.)34 b(The)22 b(idea)g(is)g(to)g(generate)h(a)g(ran-)-152 3631 y(dom)d(v)o(ector)g Fh(a)f Fr(of)h(dimension)g Fq(d)f Fr(whose)i(each)f(entry)g(is)f(chosen)h(indepen-)-152 3718 y(dently)h(from)g(a)f Fq(p)p Fr(-stable)g(distrib)o(ution.)27 b(Gi)n(v)o(en)21 b(a)g(v)o(ector)f Fh(v)j Fr(of)d(dimension)-152 3805 y Fq(d)p Fr(,)29 b(the)f(dot)f(product)i Fh(a)p Fq(:)p Fh(v)h Fr(is)d(a)g(random)i(v)n(ariable)f(which)g(is)f(distrib)o (uted)-152 3892 y(as)e Fn(\()-35 3836 y Fj(P)46 3915 y Fp(i)85 3892 y Fl(j)p Fq(v)143 3900 y Fp(i)170 3892 y Fl(j)191 3861 y Fp(p)228 3892 y Fn(\))258 3861 y Fo(1)p Fp(=p)356 3892 y Fq(X)31 b Fr(\(i.e.,)24 b Fl(jj)p Fh(v)s Fl(jj)741 3900 y Fp(p)778 3892 y Fq(X)6 b Fr(\),)26 b(where)f Fq(X)31 b Fr(is)24 b(a)g(random)i(v)n(ariable)-152 3980 y(with)21 b Fq(p)p Fr(-stable)g(distrib)o(ution.)30 b(A)20 b(small)h(collection)h(of)f(such)h(dot)g(products)-152 4067 y(\()p Fh(a)p Fq(:)p Fh(v)s Fr(\),)30 b(corresponding)g(to)f(dif)n (ferent)f Fh(a)p Fr(')l(s,)i(is)e(termed)h(as)f(the)g(sk)o(etch)i(of) -152 4154 y(the)d(v)o(ector)h Fh(v)h Fr(and)f(can)f(be)g(used)h(to)f (estimate)g Fl(jj)p Fh(v)s Fl(jj)1270 4162 y Fp(p)1333 4154 y Fr(\(see)g([18])h(for)e(de-)-152 4241 y(tails\).)c(It)17 b(is)f(easy)i(to)f(see)g(that)g(such)h(a)f(sk)o(etch)h(is)f(linearly)g (composable,)i(i.e.)-152 4328 y Fh(a)p Fq(:)p Fn(\()p Fh(v)-8 4336 y Fc(1)48 4328 y Fl(\000)e Fh(v)169 4336 y Fc(2)207 4328 y Fn(\))k(=)g Fh(a)p Fq(:)p Fh(v)453 4336 y Fc(1)509 4328 y Fl(\000)16 b Fh(a)p Fq(:)p Fh(v)699 4336 y Fc(2)738 4328 y Fr(.)-152 4485 y Fs(3.2)99 b(Hash)25 b(family)-77 4593 y Fr(In)d(this)f(paper)h(we)g(use)g Fq(p)p Fr(-stable)f(distrib)o(utions)h(in)f(a)h(slightly)f(dif)n (ferent)-152 4680 y(manner)l(.)32 b(Instead)23 b(of)e(using)i(the)e (dot)h(products)h(\()p Fh(a)p Fq(:)p Fh(v)s Fr(\))e(to)h(estimate)f (the)h Fq(l)1805 4688 y Fp(p)-152 4767 y Fr(norm)j(we)g(use)g(them)g (to)f(assign)h(a)g(hash)g(v)n(alue)h(to)e(each)h(v)o(ector)g Fh(v)s Fr(.)40 b(Intu-)-152 4855 y(iti)n(v)o(ely)-5 b(,)21 b(the)f(hash)i(function)f(f)o(amily)f(should)i(be)f(locality)f(sensiti) n(v)o(e,)h(i.e.)27 b(if)-152 4942 y(tw)o(o)17 b(v)o(ectors)g(\()p Fh(v)276 4950 y Fc(1)314 4942 y Fq(;)c Fh(v)392 4950 y Fc(2)430 4942 y Fr(\))j(are)h(close)f(\(small)g Fl(jj)p Fh(v)1037 4950 y Fc(1)1084 4942 y Fl(\000)7 b Fh(v)1195 4950 y Fc(2)1233 4942 y Fl(jj)1275 4950 y Fp(p)1312 4942 y Fr(\))16 b(then)h(the)o(y)g(should)-152 5029 y(collide)25 b(\(hash)g(to)f(the)g(same)h(v)n(alue\))g(with)f(high)h(probability)g (and)g(if)e(the)o(y)-152 5116 y(are)e(f)o(ar)g(the)o(y)g(should)g (collide)g(with)f(small)h(probability)-5 b(.)29 b(The)21 b(dot)g(product)-152 5203 y Fh(a)p Fq(:)p Fh(v)h Fr(projects)d(each)g (v)o(ector)h(to)e(the)h(real)g(line;)f(It)h(follo)n(ws)g(from)g Fq(p)p Fr(-stability)-152 5290 y(that)g(for)f(tw)o(o)h(v)o(ectors)g(\() p Fh(v)516 5298 y Fc(1)554 5290 y Fq(;)13 b Fh(v)632 5298 y Fc(2)670 5290 y Fr(\))19 b(the)f(distance)h(between)h(their)e (projections)-152 5378 y(\()p Fh(a)p Fq(:)p Fh(v)-13 5386 y Fc(1)31 5378 y Fl(\000)5 b Fh(a)o Fq(:)p Fh(v)209 5386 y Fc(2)248 5378 y Fr(\))15 b(is)h(distrib)o(uted)f(as)h Fl(jj)p Fh(v)851 5386 y Fc(1)895 5378 y Fl(\000)5 b Fh(v)1004 5386 y Fc(2)1043 5378 y Fl(jj)1085 5386 y Fp(p)1121 5378 y Fq(X)22 b Fr(where)16 b Fq(X)22 b Fr(is)15 b(a)h Fq(p)p Fr(-stable)2040 -69 y(distrib)o(ution.)23 b(If)18 b(we)g(\223chop\224)i (the)f(real)f(line)h(into)f(equi-width)h(se)o(gments)g(of)2040 19 y(appropriate)f(size)e Fq(r)i Fr(and)f(assign)g(hash)g(v)n(alues)h (to)e(v)o(ectors)h(based)g(on)g(which)2040 106 y(se)o(gment)22 b(the)o(y)g(project)f(onto,)h(then)g(it)e(is)h(intuiti)n(v)o(ely)g (clear)h(that)f(this)g(hash)2040 193 y(function)f(will)e(be)h(locality) g(preserving)h(in)f(the)g(sense)g(described)h(abo)o(v)o(e.)2115 280 y(F)o(ormally)-5 b(,)30 b(each)f(hash)g(function)g Fq(h)3083 289 y Fh(a)p Fp(;b)3182 280 y Fn(\()p Fh(v)r Fn(\))39 b(:)h Fl(R)3453 248 y Fp(d)3528 280 y Fl(!)f(N)g Fr(maps)29 b(a)f Fq(d)2040 367 y Fr(dimensional)c(v)o(ector)f Fh(v)i Fr(onto)e(the)g(set)f(of)h(inte)o(gers.)34 b(Each)23 b(hash)h(function)2040 454 y(in)19 b(the)g(f)o(amily)g(is)g(inde)o(x)o (ed)h(by)f(a)g(choice)h(of)f(random)h Fh(a)f Fr(and)h Fq(b)e Fr(where)i Fh(a)e Fr(is,)2040 542 y(as)d(before,)h(a)f Fq(d)g Fr(dimensional)h(v)o(ector)f(with)g(entries)g(chosen)h (independently)2040 629 y(from)f(a)g Fq(p)p Fr(-stable)g(distrib)o (ution)g(and)g Fq(b)g Fr(is)g(a)g(real)f(number)i(chosen)h(uniformly) 2040 716 y(from)28 b(the)f(range)h Fn([0)p Fq(;)14 b(r)r Fn(])p Fr(.)49 b(F)o(or)27 b(a)g(\002x)o(ed)h Fh(a)p Fq(;)13 b(b)27 b Fr(the)h(hash)g(function)g Fq(h)3856 725 y Fh(a)p Fp(;b)3983 716 y Fr(is)2040 803 y(gi)n(v)o(en)20 b(by)f Fq(h)2359 812 y Fh(a)p Fp(;b)2459 803 y Fn(\()p Fh(v)r Fn(\))i(=)g Fl(b)2711 772 y Fh(a)p Ff(\001)p Fh(v)r Fo(+)p Fp(b)p 2711 786 188 4 v 2790 828 a(r)2909 803 y Fl(c)2115 890 y Fr(Ne)o(xt,)c(we)g(compute)h(the)f(probability)g (that)g(tw)o(o)g(v)o(ectors)h Fh(v)3658 898 y Fc(1)3696 890 y Fq(;)13 b Fh(v)3774 898 y Fc(2)3829 890 y Fr(collide)2040 977 y(under)19 b(a)e(hash)i(function)f(dra)o(wn)h(uniformly)f(at)f (random)i(from)f(this)f(f)o(amily)-5 b(.)2040 1065 y(Let)25 b Fq(f)2202 1073 y Fp(p)2239 1065 y Fn(\()p Fq(t)p Fn(\))g Fr(denote)h(the)g(probability)h(density)f(function)g(of)g(the)g Fd(absolute)2040 1152 y(v)o(alue)j Fr(of)f(the)h Fq(p)p Fr(-stable)f(distrib)o(ution.)52 b(W)-6 b(e)28 b(may)h(drop)g(the)g (subscript)g Fq(p)2040 1239 y Fr(whene)n(v)o(er)24 b(it)e(is)g(clear)g (from)h(the)f(conte)o(xt.)35 b(F)o(or)22 b(the)h(tw)o(o)f(v)o(ectors)h Fh(v)3859 1247 y Fc(1)3897 1239 y Fq(;)14 b Fh(v)3976 1247 y Fc(2)4014 1239 y Fr(,)2040 1326 y(let)g Fq(c)22 b Fn(=)f Fl(jj)p Fh(v)2351 1334 y Fc(1)2390 1326 y Fl(\000)q Fh(v)2495 1334 y Fc(2)2533 1326 y Fl(jj)2575 1334 y Fp(p)2612 1326 y Fr(.)g(F)o(or)14 b(a)h(random)h(v)o(ector)e Fh(a)h Fr(whose)g(entries)f(are)h(dra)o(wn)2040 1413 y(from)g(a)g Fq(p)p Fr(-stable)f(distrib)o(ution,)h Fh(a)p Fq(:)p Fh(v)2991 1421 y Fc(1)3031 1413 y Fl(\000)q Fh(a)p Fq(:)p Fh(v)3206 1421 y Fc(2)3259 1413 y Fr(is)f(distrib)o(uted)h(as)g Fq(cX)21 b Fr(where)2040 1500 y Fq(X)k Fr(is)19 b(a)g(random)h(v)n (ariable)f(dra)o(wn)g(from)g(a)g Fq(p)p Fr(-stable)g(distrib)o(ution.)k (Since)c Fq(b)2040 1588 y Fr(is)g(dra)o(wn)g(uniformly)g(from)g Fn([0)p Fq(;)14 b(r)r Fn(])19 b Fr(it)f(is)h(easy)g(to)g(see)g(that) 2071 1844 y Fq(p)p Fn(\()p Fq(c)p Fn(\))i(=)g Fq(P)11 b(r)2400 1853 y Fh(a)o Fp(;b)2498 1844 y Fn([)p Fq(h)2563 1853 y Fh(a)q Fp(;b)2663 1844 y Fn(\()p Fh(v)2737 1852 y Fc(1)2775 1844 y Fn(\))21 b(=)h Fq(h)2952 1853 y Fh(a)p Fp(;b)3051 1844 y Fn(\()p Fh(v)3125 1852 y Fc(2)3163 1844 y Fn(\)])g(=)3317 1742 y Fj(Z)3393 1762 y Fp(r)3359 1912 y Fo(0)3451 1795 y Fn(1)p 3451 1826 39 4 v 3454 1894 a Fq(c)3499 1844 y(f)3536 1852 y Fp(p)3573 1844 y Fn(\()3615 1795 y Fq(t)p 3613 1826 34 4 v 3613 1894 a(c)3656 1844 y Fn(\)\(1)17 b Fl(\000)3862 1795 y Fq(t)p 3858 1826 37 4 v 3858 1894 a(r)3904 1844 y Fn(\))p Fq(dt)2115 2029 y Fr(F)o(or)30 b(a)g(\002x)o(ed)h(parameter)g Fq(r)h Fr(the)f(probability)g(of)g(collision)f(decreases)2040 2116 y(monotonically)d(with)e Fq(c)33 b Fn(=)g Fl(jj)p Fh(v)2900 2124 y Fc(1)2961 2116 y Fl(\000)22 b Fh(v)3087 2124 y Fc(2)3125 2116 y Fl(jj)3167 2124 y Fp(p)3204 2116 y Fr(.)42 b(Thus,)27 b(as)e(per)g(De\002nition)g(1)2040 2203 y(the)f(f)o(amily)f(of)h(hash)g(functions)g(abo)o(v)o(e)h(is)e Fn(\()p Fq(r)3257 2211 y Fo(1)3291 2203 y Fq(;)13 b(r)3360 2211 y Fo(2)3394 2203 y Fq(;)h(p)3468 2211 y Fo(1)3502 2203 y Fq(;)f(p)3575 2211 y Fo(2)3609 2203 y Fn(\))p Fr(-sensiti)n(v)o(e)24 b(for)2040 2291 y Fq(p)2079 2299 y Fo(1)2135 2291 y Fn(=)d Fq(p)p Fn(\(1\))d Fr(and)i Fq(p)2537 2299 y Fo(2)2592 2291 y Fn(=)h Fq(p)p Fn(\()p Fq(c)p Fn(\))d Fr(for)h Fq(r)2964 2299 y Fo(2)2998 2291 y Fq(=r)3071 2299 y Fo(1)3127 2291 y Fn(=)i Fq(c)p Fr(.)2115 2391 y(In)j(what)f(follo)n(ws)h(we)g(will)f(bound)i(the)f(ratio)g Fq(\032)30 b Fn(=)3522 2355 y Fo(ln)10 b(1)p Fp(=p)3678 2365 y Fe(1)p 3522 2374 189 4 v 3522 2416 a Fo(ln)g(1)p Fp(=p)3678 2426 y Fe(2)3721 2391 y Fr(,)24 b(which)g(as)2040 2488 y(discussed)c(earlier)e(is)g(critical)g(to)h(the)f(performance)i (when)g(this)e(hash)h(f)o(am-)2040 2575 y(ily)g(is)f(used)i(to)f(solv)o (e)g(the)g Fn(\()p Fq(R)q(;)13 b(c)p Fn(\))p Fr(-NN)18 b(problem.)2115 2662 y(Note)23 b(that)g(we)g(ha)o(v)o(e)h(not)g (speci\002ed)f(the)h(parameter)f Fq(r)r Fr(,)h(for)f(it)g(depends)2040 2749 y(on)e(the)f(v)n(alue)g(of)g Fq(c)g Fr(and)h Fq(p)p Fr(.)26 b(F)o(or)19 b(e)n(v)o(ery)i Fq(c)f Fr(we)g(w)o(ould)h(lik)o(e)f (to)g(choose)h(\002nite)2040 2837 y Fq(r)g Fr(that)d(mak)o(es)i Fq(\032)e Fr(as)h(small)g(as)g(possible.)2040 3052 y Fs(4.)99 b(COMPUT)-9 b(A)g(TION)n(AL)30 b(AN)n(AL)-9 b(YSIS)30 b(OF)f(THE)2214 3168 y(RA)-9 b(TIO)24 b Fq(\032)d Fn(=)2708 3132 y Fo(ln)10 b(1)p Fp(=P)2871 3142 y Fe(1)p 2708 3151 196 4 v 2708 3193 a Fo(ln)g(1)p Fp(=P)2871 3203 y Fe(2)2115 3276 y Fr(In)20 b(this)h(section)g(we)f(focus)h(on)g (the)g(cases)g(of)f Fq(p)k Fn(=)g(1)p Fq(;)14 b Fn(2)p Fr(.)28 b(In)20 b(these)h(cases)2040 3363 y(the)k(ratio)f Fq(\032)f Fr(can)i(be)g(e)o(xplicitly)f(e)n(v)n(aluated.)41 b(W)-6 b(e)24 b(compute)h(and)g(plot)g(this)2040 3450 y(ratio)30 b(and)h(compare)g(it)e(with)h Fn(1)p Fq(=c)p Fr(.)57 b(Note,)32 b Fn(1)p Fq(=c)f Fr(is)f(the)g(best)g(\(smallest\)) 2040 3537 y(kno)n(wn)18 b(e)o(xponent)h(for)e Fq(n)g Fr(in)g(the)g(space)h(requirement)g(and)g(query)g(time)f(that)2040 3625 y(is)i(achie)n(v)o(ed)h(in)f([19])g(for)g(these)g(cases.)2040 3786 y Fs(4.1)99 b(Computing)26 b(the)f(ratio)g Fq(\032)g Fs(f)n(or)f(special)h(cases)2115 3894 y Fr(F)o(or)h(the)h(special)h (cases)f Fq(p)37 b Fn(=)f(1)p Fq(;)14 b Fn(2)27 b Fr(we)g(can)h (compute)g(the)f(probabili-)2040 3981 y(ties)18 b Fq(p)2201 3989 y Fo(1)2235 3981 y Fq(;)13 b(p)2308 3989 y Fo(2)2342 3981 y Fr(,)k(using)i(the)f(density)h(functions)f(mentioned)h(before.) 24 b(A)17 b(simple)2040 4090 y(calculation)j(sho)n(ws)g(that)g Fq(p)2762 4098 y Fo(2)2818 4090 y Fn(=)j(2)2949 4054 y Fp(tan)3045 4033 y Fb(\000)p Fe(1)3122 4054 y Fo(\()p Fp(r)r(=c)o Fo(\))p 2949 4073 312 4 v 3086 4116 a Fp(\031)3288 4090 y Fl(\000)3448 4060 y Fo(1)p 3375 4074 177 4 v 3375 4116 a Fp(\031)r Fo(\()p Fp(r)r(=c)p Fo(\))3574 4090 y Fn(ln\(1)17 b(+)g(\()p Fq(r)r(=c)p Fn(\))3968 4058 y Fo(2)4003 4090 y Fn(\))2040 4199 y Fr(for)k Fq(p)26 b Fn(=)f(1)d Fr(\(Cauchy\))f(and)h Fq(p)2824 4207 y Fo(2)2884 4199 y Fn(=)k(1)19 b Fl(\000)g Fn(2)p Fq(nor)r(m)p Fn(\()p Fl(\000)p Fq(r)r(=c)p Fn(\))g Fl(\000)3756 4168 y Fo(2)p 3667 4182 209 4 v 3667 4190 a Ff(p)p 3717 4190 69 3 v 41 x Fo(2)p Fp(\031)s(r)r(=c)3886 4199 y Fn(\(1)g Fl(\000)2040 4332 y Fq(e)2076 4300 y Ff(\000)p Fo(\()p Fp(r)2179 4279 y Fe(2)2211 4300 y Fp(=)p Fo(2)p Fp(c)2301 4279 y Fe(2)2333 4300 y Fo(\))2361 4332 y Fn(\))27 b Fr(for)g Fq(p)37 b Fn(=)g(2)27 b Fr(\(Gaussian\),)i(where)f Fq(nor)r(m)p Fn(\()p Fl(\001)p Fn(\))f Fr(is)f(the)i(cumu-)2040 4419 y(lati)n(v)o(e)23 b(distrib)o(ution)g(function)i(\(cdf\))e(for)g(a)g (random)i(v)n(ariable)e(that)h(is)f(dis-)2040 4506 y(trib)o(uted)15 b(as)h Fq(N)8 b Fn(\(0)p Fq(;)14 b Fn(1\))p Fr(.)21 b(The)16 b(v)n(alue)g(of)f Fq(p)3067 4514 y Fo(1)3117 4506 y Fr(can)h(be)f (obtained)i(by)f(substituting)2040 4593 y Fq(c)22 b Fn(=)f(1)e Fr(in)g(the)g(formulas)g(abo)o(v)o(e.)2115 4680 y(F)o(or)e Fq(c)h Fr(v)n(alues)g(in)g(the)g(range)g Fn([1)p Fq(;)c Fn(10])19 b Fr(\(in)e(increments)i(of)f Fn(0)p Fq(:)p Fn(05)p Fr(\))g(we)g(com-)2040 4767 y(pute)e(the)f(minimum)h(v)n(alue)g (of)f Fq(\032)p Fr(,)g Fq(\032)p Fn(\()p Fq(c)p Fn(\))21 b(=)g Fq(min)3297 4775 y Fp(r)3345 4767 y Fn(log)r(\(1)p Fq(=p)3589 4775 y Fo(1)3624 4767 y Fn(\))p Fq(=)13 b Fn(log)r(\(1)p Fq(=p)3949 4775 y Fo(2)3984 4767 y Fn(\))p Fr(,)2040 4855 y(using)21 b Fm(Matlab)p Fr(.)28 b(The)21 b(plot)f(of)h Fq(c)f Fr(v)o(ersus)h Fq(\032)p Fn(\()p Fq(c)p Fn(\))f Fr(is)g(sho)n(wn)h(in)f(Figure)h(1.)27 b(The)2040 4942 y(crucial)19 b(observ)n(ation)g(for)g(the)f(case)h Fq(p)i Fn(=)g(2)d Fr(is)g(that)g(the)h(curv)o(e)g(correspond-)2040 5029 y(ing)24 b(to)f(optimal)h(ratio)f Fq(\032)g Fr(\()p Fq(\032)p Fn(\()p Fq(c)p Fn(\))p Fr(\))f(lies)h(strictly)g(belo)n(w)h (the)f(curv)o(e)h Fn(1)p Fq(=c)p Fr(.)38 b(As)2040 5116 y(mentioned)30 b(earlier)m(,)g(this)e(is)g(a)h(strict)e(impro)o(v)o (ement)j(o)o(v)o(er)f(the)f(pre)n(vious)2040 5203 y(best)17 b(kno)n(wn)g(e)o(xponent)h Fn(1)p Fq(=c)g Fr(from)e([19].)22 b(While)16 b(we)h(ha)o(v)o(e)f(computed)i(here)2040 5290 y Fq(\032)p Fn(\()p Fq(c)p Fn(\))23 b Fr(for)g Fq(c)g Fr(in)g(the)g(range)h Fn([1)p Fq(;)14 b Fn(10])p Fr(,)25 b(we)e(belie)n(v)o(e)h(that)f Fq(\032)p Fn(\()p Fq(c)p Fn(\))f Fr(is)h(strictly)g(less)2040 5378 y(than)c Fn(1)p Fq(=c)h Fr(for)f(all)f(v)n(alues)i(of)f Fq(c)p Fr(.)p eop %%Page: 4 4 4 3 bop 103 1254 a @beginspecial 76 @llx 199 @lly 548 @urx 589 @ury 2126 @rwi 1587 @rhi @setspecial %%BeginDocument: l1_plot.eps %!PS-Adobe-2.0 EPSF-1.2 %%Creator: MATLAB, The Mathworks, Inc. %%Title: /afs/ir.stanford.edu/users/d/a/datar/papers/socg03/l1/l11_plot.eps %%CreationDate: 12/03/2002 20:07:06 %%DocumentNeededFonts: Helvetica %%DocumentProcessColors: Cyan Magenta Yellow Black %%Pages: 1 %%BoundingBox: 76 199 548 589 %%EndComments %%BeginProlog % MathWorks dictionary /MathWorks 160 dict begin % definition operators /bdef {bind def} bind def /ldef {load def} bind def /xdef {exch def} bdef /xstore {exch store} bdef % operator abbreviations /c /clip ldef /cc /concat ldef /cp /closepath ldef /gr /grestore ldef /gs /gsave ldef /mt /moveto ldef /np /newpath ldef /cm /currentmatrix ldef /sm /setmatrix ldef /rm /rmoveto ldef /rl /rlineto ldef /s {show newpath} bdef /sc {setcmykcolor} bdef /sr /setrgbcolor ldef /sg /setgray ldef /w /setlinewidth ldef /j /setlinejoin ldef /cap /setlinecap ldef /rc {rectclip} bdef /rf {rectfill} bdef % page state control /pgsv () def /bpage {/pgsv save def} bdef /epage {pgsv restore} bdef /bplot /gsave ldef /eplot {stroke grestore} bdef % orientation switch /portraitMode 0 def /landscapeMode 1 def /rotateMode 2 def % coordinate system mappings /dpi2point 0 def % font control /FontSize 0 def /FMS {/FontSize xstore findfont [FontSize 0 0 FontSize neg 0 0] makefont setfont} bdef /reencode {exch dup where {pop load} {pop StandardEncoding} ifelse exch dup 3 1 roll findfont dup length dict begin { 1 index /FID ne {def}{pop pop} ifelse } forall /Encoding exch def currentdict end definefont pop} bdef /isroman {findfont /CharStrings get /Agrave known} bdef /FMSR {3 1 roll 1 index dup isroman {reencode} {pop pop} ifelse exch FMS} bdef /csm {1 dpi2point div -1 dpi2point div scale neg translate dup landscapeMode eq {pop -90 rotate} {rotateMode eq {90 rotate} if} ifelse} bdef % line types: solid, dotted, dashed, dotdash /SO { [] 0 setdash } bdef /DO { [.5 dpi2point mul 4 dpi2point mul] 0 setdash } bdef /DA { [6 dpi2point mul] 0 setdash } bdef /DD { [.5 dpi2point mul 4 dpi2point mul 6 dpi2point mul 4 dpi2point mul] 0 setdash } bdef % macros for lines and objects /L {lineto stroke} bdef /MP {3 1 roll moveto 1 sub {rlineto} repeat} bdef /AP {{rlineto} repeat} bdef /PDlw -1 def /W {/PDlw currentlinewidth def setlinewidth} def /PP {closepath eofill} bdef /DP {closepath stroke} bdef /MR {4 -2 roll moveto dup 0 exch rlineto exch 0 rlineto neg 0 exch rlineto closepath} bdef /FR {MR stroke} bdef /PR {MR fill} bdef /L1i {{currentfile picstr readhexstring pop} image} bdef /tMatrix matrix def /MakeOval {newpath tMatrix currentmatrix pop translate scale 0 0 1 0 360 arc tMatrix setmatrix} bdef /FO {MakeOval stroke} bdef /PO {MakeOval fill} bdef /PD {currentlinewidth 2 div 0 360 arc fill PDlw -1 eq not {PDlw w /PDlw -1 def} if} def /FA {newpath tMatrix currentmatrix pop translate scale 0 0 1 5 -2 roll arc tMatrix setmatrix stroke} bdef /PA {newpath tMatrix currentmatrix pop translate 0 0 moveto scale 0 0 1 5 -2 roll arc closepath tMatrix setmatrix fill} bdef /FAn {newpath tMatrix currentmatrix pop translate scale 0 0 1 5 -2 roll arcn tMatrix setmatrix stroke} bdef /PAn {newpath tMatrix currentmatrix pop translate 0 0 moveto scale 0 0 1 5 -2 roll arcn closepath tMatrix setmatrix fill} bdef /vradius 0 def /hradius 0 def /lry 0 def /lrx 0 def /uly 0 def /ulx 0 def /rad 0 def /MRR {/vradius xdef /hradius xdef /lry xdef /lrx xdef /uly xdef /ulx xdef newpath tMatrix currentmatrix pop ulx hradius add uly vradius add translate hradius vradius scale 0 0 1 180 270 arc tMatrix setmatrix lrx hradius sub uly vradius add translate hradius vradius scale 0 0 1 270 360 arc tMatrix setmatrix lrx hradius sub lry vradius sub translate hradius vradius scale 0 0 1 0 90 arc tMatrix setmatrix ulx hradius add lry vradius sub translate hradius vradius scale 0 0 1 90 180 arc tMatrix setmatrix closepath} bdef /FRR {MRR stroke } bdef /PRR {MRR fill } bdef /MlrRR {/lry xdef /lrx xdef /uly xdef /ulx xdef /rad lry uly sub 2 div def newpath tMatrix currentmatrix pop ulx rad add uly rad add translate rad rad scale 0 0 1 90 270 arc tMatrix setmatrix lrx rad sub lry rad sub translate rad rad scale 0 0 1 270 90 arc tMatrix setmatrix closepath} bdef /FlrRR {MlrRR stroke } bdef /PlrRR {MlrRR fill } bdef /MtbRR {/lry xdef /lrx xdef /uly xdef /ulx xdef /rad lrx ulx sub 2 div def newpath tMatrix currentmatrix pop ulx rad add uly rad add translate rad rad scale 0 0 1 180 360 arc tMatrix setmatrix lrx rad sub lry rad sub translate rad rad scale 0 0 1 0 180 arc tMatrix setmatrix closepath} bdef /FtbRR {MtbRR stroke } bdef /PtbRR {MtbRR fill } bdef /stri 6 array def /dtri 6 array def /smat 6 array def /dmat 6 array def /tmat1 6 array def /tmat2 6 array def /dif 3 array def /asub {/ind2 exch def /ind1 exch def dup dup ind1 get exch ind2 get sub exch } bdef /tri_to_matrix { 2 0 asub 3 1 asub 4 0 asub 5 1 asub dup 0 get exch 1 get 7 -1 roll astore } bdef /compute_transform { dmat dtri tri_to_matrix tmat1 invertmatrix smat stri tri_to_matrix tmat2 concatmatrix } bdef /ds {stri astore pop} bdef /dt {dtri astore pop} bdef /db {2 copy /cols xdef /rows xdef mul dup string currentfile exch readhexstring pop /bmap xdef pop pop} bdef /it {gs np dtri aload pop moveto lineto lineto cp c cols rows 8 compute_transform {bmap} image gr}bdef /il {newpath moveto lineto stroke}bdef currentdict end def %%EndProlog %%BeginSetup MathWorks begin 0 cap end %%EndSetup %%Page: 1 1 %%BeginPageSetup %%PageBoundingBox: 76 199 548 589 MathWorks begin bpage %%EndPageSetup %%BeginObject: obj1 bplot /dpi2point 12 def portraitMode 0216 7344 csm 698 274 5673 4681 MR c np 91 dict begin %Colortable dictionary /c0 { 0 0 0 sr} bdef /c1 { 1 1 1 sr} bdef /c2 { 1 0 0 sr} bdef /c3 { 0 1 0 sr} bdef /c4 { 0 0 1 sr} bdef /c5 { 1 1 0 sr} bdef /c6 { 1 0 1 sr} bdef /c7 { 0 1 1 sr} bdef c0 1 j 1 sg 0 0 6913 5186 PR 6 w 0 4226 5356 0 0 -4226 899 4615 4 MP PP -5356 0 0 4226 5356 0 0 -4226 899 4615 5 MP stroke 4 w DO SO 6 w 0 sg 899 4615 mt 6255 4615 L 899 389 mt 6255 389 L 899 4615 mt 899 389 L 6255 4615 mt 6255 389 L 899 4615 mt 6255 4615 L 899 4615 mt 899 389 L 899 4615 mt 899 4561 L 899 389 mt 899 442 L %%IncludeResource: font Helvetica /Helvetica /ISOLatin1Encoding 120 FMSR 866 4760 mt (1) s 1494 4615 mt 1494 4561 L 1494 389 mt 1494 442 L 1461 4760 mt (2) s 2089 4615 mt 2089 4561 L 2089 389 mt 2089 442 L 2056 4760 mt (3) s 2684 4615 mt 2684 4561 L 2684 389 mt 2684 442 L 2651 4760 mt (4) s 3279 4615 mt 3279 4561 L 3279 389 mt 3279 442 L 3246 4760 mt (5) s 3874 4615 mt 3874 4561 L 3874 389 mt 3874 442 L 3841 4760 mt (6) s 4469 4615 mt 4469 4561 L 4469 389 mt 4469 442 L 4436 4760 mt (7) s 5064 4615 mt 5064 4561 L 5064 389 mt 5064 442 L 5031 4760 mt (8) s 5659 4615 mt 5659 4561 L 5659 389 mt 5659 442 L 5626 4760 mt (9) s 6255 4615 mt 6255 4561 L 6255 389 mt 6255 442 L 6189 4760 mt (10) s 899 4615 mt 952 4615 L 6255 4615 mt 6201 4615 L 798 4659 mt (0) s 899 4192 mt 952 4192 L 6255 4192 mt 6201 4192 L 698 4236 mt (0.1) s 899 3769 mt 952 3769 L 6255 3769 mt 6201 3769 L 698 3813 mt (0.2) s 899 3347 mt 952 3347 L 6255 3347 mt 6201 3347 L 698 3391 mt (0.3) s 899 2924 mt 952 2924 L 6255 2924 mt 6201 2924 L 698 2968 mt (0.4) s 899 2502 mt 952 2502 L 6255 2502 mt 6201 2502 L 698 2546 mt (0.5) s 899 2079 mt 952 2079 L 6255 2079 mt 6201 2079 L 698 2123 mt (0.6) s 899 1656 mt 952 1656 L 6255 1656 mt 6201 1656 L 698 1700 mt (0.7) s 899 1234 mt 952 1234 L 6255 1234 mt 6201 1234 L 698 1278 mt (0.8) s 899 811 mt 952 811 L 6255 811 mt 6201 811 L 698 855 mt (0.9) s 899 389 mt 952 389 L 6255 389 mt 6201 389 L 798 433 mt (1) s 899 4615 mt 6255 4615 L 899 389 mt 6255 389 L 899 4615 mt 899 389 L 6255 4615 mt 6255 389 L gs 899 389 5357 4227 MR c np 30 3 30 2 30 2 30 2 29 3 30 2 30 2 30 3 29 2 30 3 30 2 30 2 29 3 30 2 30 3 30 3 29 2 30 3 30 2 30 3 29 3 30 3 30 2 30 3 29 3 30 3 30 3 30 3 29 3 30 3 30 3 30 3 29 3 30 3 30 3 30 3 29 4 30 3 30 3 30 4 29 3 30 4 30 3 30 4 29 3 30 4 30 4 30 3 30 4 29 4 30 4 30 4 30 4 29 4 30 4 30 4 30 4 29 5 30 4 30 4 30 5 29 4 30 5 30 5 30 4 29 5 30 5 30 5 30 5 29 5 30 5 30 5 30 6 29 5 30 5 30 6 30 6 29 5 30 6 30 6 30 6 29 7 30 6 30 6 30 7 29 6 30 7 30 7 30 7 29 7 30 7 30 7 30 8 30 7 29 8 30 8 30 8 30 8 29 9 3309 3736 100 MP stroke 30 8 30 9 30 8 29 10 30 9 30 9 30 10 29 10 30 9 30 11 30 11 29 10 30 11 30 11 30 12 29 11 30 12 30 12 30 13 29 13 30 13 30 13 30 14 29 15 30 14 30 15 30 16 29 15 30 17 30 16 30 18 29 16 30 18 30 20 30 19 29 20 30 20 30 22 30 20 30 23 29 22 30 24 30 26 30 26 29 26 30 27 30 28 30 31 29 30 30 32 30 32 30 35 29 38 30 34 30 42 30 41 29 43 30 44 30 44 30 49 29 50 30 57 30 53 30 62 29 63 30 66 30 67 30 76 29 76 30 87 30 90 30 97 29 98 30 112 30 116 30 125 29 141 30 149 30 163 30 178 928 583 81 MP stroke DO 30 2 30 2 30 3 30 2 29 2 30 2 30 2 30 3 29 2 30 2 30 3 30 2 29 2 30 3 30 2 30 3 29 2 30 3 30 2 30 3 29 3 30 2 30 3 30 3 29 2 30 3 30 3 30 3 29 3 30 3 30 3 30 3 29 3 30 3 30 3 30 3 29 3 30 3 30 3 30 4 29 3 30 3 30 4 30 3 29 4 30 3 30 4 30 4 30 3 29 4 30 4 30 4 30 3 29 4 30 4 30 4 30 5 29 4 30 4 30 4 30 5 29 4 30 4 30 5 30 5 29 4 30 5 30 5 30 5 29 5 30 5 30 5 30 5 29 5 30 6 30 5 30 6 29 5 30 6 30 6 30 6 29 6 30 6 30 6 30 6 29 7 30 6 30 7 30 7 29 7 30 7 30 7 30 7 30 8 29 7 30 8 30 8 30 8 29 8 3309 3778 100 MP stroke 30 9 30 8 30 9 29 9 30 9 30 9 30 10 29 9 30 10 30 10 30 11 29 10 30 11 30 11 30 11 29 12 30 12 30 12 30 12 29 13 30 13 30 13 30 14 29 14 30 15 30 14 30 16 29 15 30 16 30 17 30 17 29 17 30 18 30 19 30 19 29 20 30 20 30 21 30 22 30 22 29 23 30 24 30 25 30 25 29 27 30 27 30 29 30 29 29 31 30 32 30 33 30 34 29 36 30 38 30 39 30 41 29 42 30 45 30 47 30 49 29 51 30 55 30 57 30 60 29 63 30 67 30 71 30 76 29 80 30 85 30 91 30 97 29 104 30 112 30 120 30 130 29 141 30 153 30 167 30 183 928 590 81 MP stroke gr DO 2985 4903 mt (Approximation factor c) s SO 1 sg 0 299 573 0 0 -299 5622 748 4 MP PP -573 0 0 299 573 0 0 -299 5622 748 5 MP stroke 4 w DO SO 6 w 0 sg 5622 748 mt 6195 748 L 5622 449 mt 6195 449 L 5622 748 mt 5622 449 L 6195 748 mt 6195 449 L 5622 748 mt 6195 748 L 5622 748 mt 5622 449 L 5622 748 mt 6195 748 L 5622 449 mt 6195 449 L 5622 748 mt 5622 449 L 6195 748 mt 6195 449 L 5955 571 mt (rho) s 5955 709 mt (1/c) s gs 5622 449 574 300 MR c np 200 0 5688 531 2 MP stroke DO 200 0 5688 669 2 MP stroke SO gr end eplot %%EndObject epage end showpage %%Trailer %%EOF %%EndDocument @endspecial 696 1424 a Fr(\(a\))18 b(Optimal)h Fq(\032)f Fr(for)h Fq(l)1248 1432 y Fo(1)2006 1254 y @beginspecial 76 @llx 199 @lly 548 @urx 589 @ury 2126 @rwi 1587 @rhi @setspecial %%BeginDocument: l2_plot.eps %!PS-Adobe-2.0 EPSF-1.2 %%Creator: MATLAB, The Mathworks, Inc. %%Title: /afs/ir.stanford.edu/users/d/a/datar/papers/socg03/l2/l2_plot.eps %%CreationDate: 12/03/2002 20:11:31 %%DocumentNeededFonts: Helvetica %%DocumentProcessColors: Cyan Magenta Yellow Black %%Pages: 1 %%BoundingBox: 76 199 548 589 %%EndComments %%BeginProlog % MathWorks dictionary /MathWorks 160 dict begin % definition operators /bdef {bind def} bind def /ldef {load def} bind def /xdef {exch def} bdef /xstore {exch store} bdef % operator abbreviations /c /clip ldef /cc /concat ldef /cp /closepath ldef /gr /grestore ldef /gs /gsave ldef /mt /moveto ldef /np /newpath ldef /cm /currentmatrix ldef /sm /setmatrix ldef /rm /rmoveto ldef /rl /rlineto ldef /s {show newpath} bdef /sc {setcmykcolor} bdef /sr /setrgbcolor ldef /sg /setgray ldef /w /setlinewidth ldef /j /setlinejoin ldef /cap /setlinecap ldef /rc {rectclip} bdef /rf {rectfill} bdef % page state control /pgsv () def /bpage {/pgsv save def} bdef /epage {pgsv restore} bdef /bplot /gsave ldef /eplot {stroke grestore} bdef % orientation switch /portraitMode 0 def /landscapeMode 1 def /rotateMode 2 def % coordinate system mappings /dpi2point 0 def % font control /FontSize 0 def /FMS {/FontSize xstore findfont [FontSize 0 0 FontSize neg 0 0] makefont setfont} bdef /reencode {exch dup where {pop load} {pop StandardEncoding} ifelse exch dup 3 1 roll findfont dup length dict begin { 1 index /FID ne {def}{pop pop} ifelse } forall /Encoding exch def currentdict end definefont pop} bdef /isroman {findfont /CharStrings get /Agrave known} bdef /FMSR {3 1 roll 1 index dup isroman {reencode} {pop pop} ifelse exch FMS} bdef /csm {1 dpi2point div -1 dpi2point div scale neg translate dup landscapeMode eq {pop -90 rotate} {rotateMode eq {90 rotate} if} ifelse} bdef % line types: solid, dotted, dashed, dotdash /SO { [] 0 setdash } bdef /DO { [.5 dpi2point mul 4 dpi2point mul] 0 setdash } bdef /DA { [6 dpi2point mul] 0 setdash } bdef /DD { [.5 dpi2point mul 4 dpi2point mul 6 dpi2point mul 4 dpi2point mul] 0 setdash } bdef % macros for lines and objects /L {lineto stroke} bdef /MP {3 1 roll moveto 1 sub {rlineto} repeat} bdef /AP {{rlineto} repeat} bdef /PDlw -1 def /W {/PDlw currentlinewidth def setlinewidth} def /PP {closepath eofill} bdef /DP {closepath stroke} bdef /MR {4 -2 roll moveto dup 0 exch rlineto exch 0 rlineto neg 0 exch rlineto closepath} bdef /FR {MR stroke} bdef /PR {MR fill} bdef /L1i {{currentfile picstr readhexstring pop} image} bdef /tMatrix matrix def /MakeOval {newpath tMatrix currentmatrix pop translate scale 0 0 1 0 360 arc tMatrix setmatrix} bdef /FO {MakeOval stroke} bdef /PO {MakeOval fill} bdef /PD {currentlinewidth 2 div 0 360 arc fill PDlw -1 eq not {PDlw w /PDlw -1 def} if} def /FA {newpath tMatrix currentmatrix pop translate scale 0 0 1 5 -2 roll arc tMatrix setmatrix stroke} bdef /PA {newpath tMatrix currentmatrix pop translate 0 0 moveto scale 0 0 1 5 -2 roll arc closepath tMatrix setmatrix fill} bdef /FAn {newpath tMatrix currentmatrix pop translate scale 0 0 1 5 -2 roll arcn tMatrix setmatrix stroke} bdef /PAn {newpath tMatrix currentmatrix pop translate 0 0 moveto scale 0 0 1 5 -2 roll arcn closepath tMatrix setmatrix fill} bdef /vradius 0 def /hradius 0 def /lry 0 def /lrx 0 def /uly 0 def /ulx 0 def /rad 0 def /MRR {/vradius xdef /hradius xdef /lry xdef /lrx xdef /uly xdef /ulx xdef newpath tMatrix currentmatrix pop ulx hradius add uly vradius add translate hradius vradius scale 0 0 1 180 270 arc tMatrix setmatrix lrx hradius sub uly vradius add translate hradius vradius scale 0 0 1 270 360 arc tMatrix setmatrix lrx hradius sub lry vradius sub translate hradius vradius scale 0 0 1 0 90 arc tMatrix setmatrix ulx hradius add lry vradius sub translate hradius vradius scale 0 0 1 90 180 arc tMatrix setmatrix closepath} bdef /FRR {MRR stroke } bdef /PRR {MRR fill } bdef /MlrRR {/lry xdef /lrx xdef /uly xdef /ulx xdef /rad lry uly sub 2 div def newpath tMatrix currentmatrix pop ulx rad add uly rad add translate rad rad scale 0 0 1 90 270 arc tMatrix setmatrix lrx rad sub lry rad sub translate rad rad scale 0 0 1 270 90 arc tMatrix setmatrix closepath} bdef /FlrRR {MlrRR stroke } bdef /PlrRR {MlrRR fill } bdef /MtbRR {/lry xdef /lrx xdef /uly xdef /ulx xdef /rad lrx ulx sub 2 div def newpath tMatrix currentmatrix pop ulx rad add uly rad add translate rad rad scale 0 0 1 180 360 arc tMatrix setmatrix lrx rad sub lry rad sub translate rad rad scale 0 0 1 0 180 arc tMatrix setmatrix closepath} bdef /FtbRR {MtbRR stroke } bdef /PtbRR {MtbRR fill } bdef /stri 6 array def /dtri 6 array def /smat 6 array def /dmat 6 array def /tmat1 6 array def /tmat2 6 array def /dif 3 array def /asub {/ind2 exch def /ind1 exch def dup dup ind1 get exch ind2 get sub exch } bdef /tri_to_matrix { 2 0 asub 3 1 asub 4 0 asub 5 1 asub dup 0 get exch 1 get 7 -1 roll astore } bdef /compute_transform { dmat dtri tri_to_matrix tmat1 invertmatrix smat stri tri_to_matrix tmat2 concatmatrix } bdef /ds {stri astore pop} bdef /dt {dtri astore pop} bdef /db {2 copy /cols xdef /rows xdef mul dup string currentfile exch readhexstring pop /bmap xdef pop pop} bdef /it {gs np dtri aload pop moveto lineto lineto cp c cols rows 8 compute_transform {bmap} image gr}bdef /il {newpath moveto lineto stroke}bdef currentdict end def %%EndProlog %%BeginSetup MathWorks begin 0 cap end %%EndSetup %%Page: 1 1 %%BeginPageSetup %%PageBoundingBox: 76 199 548 589 MathWorks begin bpage %%EndPageSetup %%BeginObject: obj1 bplot /dpi2point 12 def portraitMode 0216 7344 csm 698 274 5673 4681 MR c np 91 dict begin %Colortable dictionary /c0 { 0 0 0 sr} bdef /c1 { 1 1 1 sr} bdef /c2 { 1 0 0 sr} bdef /c3 { 0 1 0 sr} bdef /c4 { 0 0 1 sr} bdef /c5 { 1 1 0 sr} bdef /c6 { 1 0 1 sr} bdef /c7 { 0 1 1 sr} bdef c0 1 j 1 sg 0 0 6913 5186 PR 6 w 0 4226 5356 0 0 -4226 899 4615 4 MP PP -5356 0 0 4226 5356 0 0 -4226 899 4615 5 MP stroke 4 w DO SO 6 w 0 sg 899 4615 mt 6255 4615 L 899 389 mt 6255 389 L 899 4615 mt 899 389 L 6255 4615 mt 6255 389 L 899 4615 mt 6255 4615 L 899 4615 mt 899 389 L 899 4615 mt 899 4561 L 899 389 mt 899 442 L %%IncludeResource: font Helvetica /Helvetica /ISOLatin1Encoding 120 FMSR 866 4760 mt (1) s 1494 4615 mt 1494 4561 L 1494 389 mt 1494 442 L 1461 4760 mt (2) s 2089 4615 mt 2089 4561 L 2089 389 mt 2089 442 L 2056 4760 mt (3) s 2684 4615 mt 2684 4561 L 2684 389 mt 2684 442 L 2651 4760 mt (4) s 3279 4615 mt 3279 4561 L 3279 389 mt 3279 442 L 3246 4760 mt (5) s 3874 4615 mt 3874 4561 L 3874 389 mt 3874 442 L 3841 4760 mt (6) s 4469 4615 mt 4469 4561 L 4469 389 mt 4469 442 L 4436 4760 mt (7) s 5064 4615 mt 5064 4561 L 5064 389 mt 5064 442 L 5031 4760 mt (8) s 5659 4615 mt 5659 4561 L 5659 389 mt 5659 442 L 5626 4760 mt (9) s 6255 4615 mt 6255 4561 L 6255 389 mt 6255 442 L 6189 4760 mt (10) s 899 4615 mt 952 4615 L 6255 4615 mt 6201 4615 L 798 4659 mt (0) s 899 4192 mt 952 4192 L 6255 4192 mt 6201 4192 L 698 4236 mt (0.1) s 899 3769 mt 952 3769 L 6255 3769 mt 6201 3769 L 698 3813 mt (0.2) s 899 3347 mt 952 3347 L 6255 3347 mt 6201 3347 L 698 3391 mt (0.3) s 899 2924 mt 952 2924 L 6255 2924 mt 6201 2924 L 698 2968 mt (0.4) s 899 2502 mt 952 2502 L 6255 2502 mt 6201 2502 L 698 2546 mt (0.5) s 899 2079 mt 952 2079 L 6255 2079 mt 6201 2079 L 698 2123 mt (0.6) s 899 1656 mt 952 1656 L 6255 1656 mt 6201 1656 L 698 1700 mt (0.7) s 899 1234 mt 952 1234 L 6255 1234 mt 6201 1234 L 698 1278 mt (0.8) s 899 811 mt 952 811 L 6255 811 mt 6201 811 L 698 855 mt (0.9) s 899 389 mt 952 389 L 6255 389 mt 6201 389 L 798 433 mt (1) s 899 4615 mt 6255 4615 L 899 389 mt 6255 389 L 899 4615 mt 899 389 L 6255 4615 mt 6255 389 L gs 899 389 5357 4227 MR c np 30 1 30 2 30 2 30 2 29 2 30 1 30 2 30 2 29 2 30 2 30 2 30 2 29 2 30 2 30 2 30 2 29 2 30 2 30 2 30 3 29 2 30 2 30 2 30 3 29 2 30 2 30 2 30 3 29 2 30 3 30 2 30 3 29 2 30 3 30 2 30 3 29 3 30 2 30 3 30 3 29 3 30 2 30 3 30 3 29 3 30 3 30 3 30 3 30 3 29 3 30 4 30 3 30 3 29 3 30 4 30 3 30 4 29 3 30 4 30 3 30 4 29 4 30 4 30 3 30 4 29 4 30 4 30 5 30 4 29 4 30 4 30 5 30 4 29 5 30 4 30 5 30 5 29 4 30 5 30 5 30 5 29 6 30 5 30 5 30 6 29 5 30 6 30 6 30 6 29 6 30 6 30 6 30 6 30 7 29 6 30 7 30 7 30 7 29 7 3309 3922 100 MP stroke 30 7 30 8 30 8 29 7 30 8 30 8 30 9 29 8 30 9 30 9 30 9 29 9 30 10 30 10 30 10 29 10 30 11 30 11 30 11 29 11 30 12 30 12 30 12 29 13 30 13 30 13 30 14 29 14 30 15 30 15 30 16 29 16 30 16 30 17 30 18 29 18 30 19 30 19 30 21 30 20 29 22 30 23 30 23 30 24 29 25 30 26 30 27 30 28 29 30 30 31 30 32 30 33 29 35 30 37 30 38 30 40 29 43 30 44 30 47 30 49 29 52 30 55 30 59 30 61 29 66 30 70 30 74 30 79 29 85 30 91 30 98 30 105 29 114 30 123 30 133 30 146 29 158 30 174 30 192 30 211 928 623 81 MP stroke DO 30 2 30 2 30 3 30 2 29 2 30 2 30 2 30 3 29 2 30 2 30 3 30 2 29 2 30 3 30 2 30 3 29 2 30 3 30 2 30 3 29 3 30 2 30 3 30 3 29 2 30 3 30 3 30 3 29 3 30 3 30 3 30 3 29 3 30 3 30 3 30 3 29 3 30 3 30 3 30 4 29 3 30 3 30 4 30 3 29 4 30 3 30 4 30 4 30 3 29 4 30 4 30 4 30 3 29 4 30 4 30 4 30 5 29 4 30 4 30 4 30 5 29 4 30 4 30 5 30 5 29 4 30 5 30 5 30 5 29 5 30 5 30 5 30 5 29 5 30 6 30 5 30 6 29 5 30 6 30 6 30 6 29 6 30 6 30 6 30 6 29 7 30 6 30 7 30 7 29 7 30 7 30 7 30 7 30 8 29 7 30 8 30 8 30 8 29 8 3309 3778 100 MP stroke 30 9 30 8 30 9 29 9 30 9 30 9 30 10 29 9 30 10 30 10 30 11 29 10 30 11 30 11 30 11 29 12 30 12 30 12 30 12 29 13 30 13 30 13 30 14 29 14 30 15 30 14 30 16 29 15 30 16 30 17 30 17 29 17 30 18 30 19 30 19 29 20 30 20 30 21 30 22 30 22 29 23 30 24 30 25 30 25 29 27 30 27 30 29 30 29 29 31 30 32 30 33 30 34 29 36 30 38 30 39 30 41 29 42 30 45 30 47 30 49 29 51 30 55 30 57 30 60 29 63 30 67 30 71 30 76 29 80 30 85 30 91 30 97 29 104 30 112 30 120 30 130 29 141 30 153 30 167 30 183 928 590 81 MP stroke gr DO 2985 4903 mt (Approximation factor c) s SO 1 sg 0 299 573 0 0 -299 5622 748 4 MP PP -573 0 0 299 573 0 0 -299 5622 748 5 MP stroke 4 w DO SO 6 w 0 sg 5622 748 mt 6195 748 L 5622 449 mt 6195 449 L 5622 748 mt 5622 449 L 6195 748 mt 6195 449 L 5622 748 mt 6195 748 L 5622 748 mt 5622 449 L 5622 748 mt 6195 748 L 5622 449 mt 6195 449 L 5622 748 mt 5622 449 L 6195 748 mt 6195 449 L 5955 571 mt (rho) s 5955 709 mt (1/c) s gs 5622 449 574 300 MR c np 200 0 5688 531 2 MP stroke DO 200 0 5688 669 2 MP stroke SO gr end eplot %%EndObject epage end showpage %%Trailer %%EOF %%EndDocument @endspecial 2596 1424 a Fr(\(b\))g(Optimal)g Fq(\032)f Fr(for)h Fq(l)3153 1432 y Fo(2)1553 1666 y Fd(Figur)o(e)f(1:)23 b(Optimal)c Fq(\032)f Fd(vs)h Fq(c)-77 1990 y Fr(F)o(or)27 b(the)g(case)h Fq(p)37 b Fn(=)h(1)p Fr(,)29 b(we)f(observ)o(e)g(that)f Fq(\032)p Fn(\()p Fq(c)p Fn(\))g Fr(curv)o(e)h(is)f(v)o(ery)h(close) -152 2078 y(to)c Fn(1)p Fq(=c)p Fr(,)i(although)f(it)e(lies)g(abo)o(v)o (e)i(it.)37 b(The)24 b(optimal)g Fq(\032)p Fn(\()p Fq(c)p Fn(\))f Fr(w)o(as)h(computed)-152 2165 y(using)17 b Fm(Matlab)h Fr(as)e(mentioned)i(before.)23 b(The)16 b Fm(Matlab)h Fr(program)g(has)g(a)g(limit)-152 2252 y(on)h(the)f(number)i(of)e (iterations)g(it)f(performs)i(to)f(compute)i(the)e(minimum)h(of)-152 2339 y(a)24 b(function.)40 b(W)-6 b(e)23 b(reached)i(this)f(limit)f (during)i(the)f(computations.)40 b(If)24 b(we)-152 2426 y(compute)30 b(the)e(true)g(minimum,)j(then)e(we)f(suspect)h(that)f(it) f(will)h(be)g(v)o(ery)-152 2513 y(close)c(to)g Fn(1)p Fq(=c)p Fr(,)i(possibly)e(equal)h(to)e Fn(1)p Fq(=c)p Fr(,)j(and)e(that)g(this)f(minimum)h(might)-152 2601 y(be)c(reached)g(at)e Fq(r)23 b Fn(=)e Fl(1)p Fr(.)-77 2688 y(If)i(one)i(were)f(to)f(implement)h(our)h(LSH)d(scheme,)k (ideally)e(the)o(y)g(w)o(ould)-152 2775 y(w)o(ant)e(to)g(kno)n(w)h(the) f(optimal)g(v)n(alue)g(of)g Fq(r)h Fr(for)f(e)n(v)o(ery)h Fq(c)p Fr(.)31 b(F)o(or)22 b Fq(p)k Fn(=)h(2)p Fr(,)22 b(for)g(a)-152 2862 y(gi)n(v)o(en)h(v)n(alue)f(of)g Fq(c)p Fr(,)f(we)h(can)g(compute)h(the)e(v)n(alue)h(of)g Fq(r)h Fr(that)f(gi)n(v)o(es)g(the)f(op-)-152 2949 y(timal)f(v)n(alue)g(of)g Fq(\032)p Fn(\()p Fq(c)p Fn(\))p Fr(.)26 b(This)19 b(can)i(be)f(done)h (using)f(programs)h(lik)o(e)f Fm(Matlab)p Fr(.)-152 3037 y(Ho)n(we)n(v)o(er)m(,)h(we)f(observ)o(e)h(that)f(for)g(a)g(\002x)o(ed) g Fq(c)g Fr(the)g(v)n(alue)h(of)f Fq(\032)g Fr(as)g(a)g(function)-152 3124 y(of)e Fq(r)h Fr(is)f(more)g(or)f(less)h(stable)g(after)f(a)h (certain)g(point)g(\(see)f(Figure)h(2\).)23 b(Thus,)-152 3211 y(we)f(observ)o(e)h(that)f Fq(\032)f Fr(is)h(not)g(v)o(ery)h (sensiti)n(v)o(e)f(to)g Fq(r)i Fr(be)o(yond)f(a)f(certain)g(point)-152 3298 y(and)27 b(as)f(long)g(we)g(choose)h Fq(r)g Fr(\223suf)n (\002ciently\224)f(a)o(w)o(ay)h(from)f Fn(0)p Fr(,)h(the)f Fq(\032)f Fr(v)n(alue)-152 3385 y(will)20 b(be)g(close)h(to)f(optimal.) 28 b(Note,)20 b(ho)n(we)n(v)o(er)i(that)e(we)g(should)i(not)e(choose) -152 3472 y(an)c Fq(r)h Fr(v)n(alue)e(that)h(is)e(too)i(lar)o(ge.)21 b(As)15 b Fq(r)i Fr(increases,)f(both)g Fq(p)1296 3480 y Fo(1)1345 3472 y Fr(and)g Fq(p)1507 3480 y Fo(2)1556 3472 y Fr(get)f(closer)-152 3560 y(to)i Fn(1)p Fr(.)22 b(This)17 b(increases)g(the)g(query)g(time,)g(since)g Fq(k)r Fr(,)f(which)i(is)e(the)h(\223width\224)g(of)-152 3647 y(each)j(hash)g(function)f(\(refer)g(to)g(Subsection)g(2\),)g (increases)g(as)g Fn(log)1607 3665 y Fo(1)p Fp(=p)1701 3675 y Fe(2)1751 3647 y Fq(n)p Fr(.)-77 3734 y(W)-6 b(e)20 b(mention)h(that)g(for)f(the)h Fq(l)681 3742 y Fo(2)735 3734 y Fr(norm,)h(the)e(optimal)h(v)n(alue)g(of)g Fq(r)h Fr(appears)-152 3821 y(to)d(be)g(a)g(\(\002nite\))f(function)i(of)f Fq(c)p Fr(.)-77 3908 y(W)-6 b(e)26 b(also)h(plot)f Fq(\032)g Fr(as)g(a)g(function)i(of)e Fq(c)h Fr(for)f(a)g(fe)n(w)h(\002x)o(ed)f Fq(r)i Fr(v)n(alues\(See)-152 3995 y(Figure)d(3\).)39 b(F)o(or)24 b Fq(p)31 b Fn(=)h(2)p Fr(,)25 b(we)f(observ)o(e)i(that)e (for)g(moderate)h Fq(r)h Fr(v)n(alues)g(the)-152 4083 y Fq(\032)j Fr(curv)o(e)h(\223beats\224)f(the)h Fn(1)p Fq(=c)g Fr(curv)o(e)f(o)o(v)o(er)h(a)f(lar)o(ge)g(range)h(of)f Fq(c)g Fr(that)g(is)g(of)-152 4170 y(practical)22 b(interest.)32 b(F)o(or)22 b Fq(p)k Fn(=)h(1)p Fr(,)c(we)e(observ)o(e)i(that)f(as)g Fq(r)i Fr(increases)e(the)g Fq(\032)-152 4257 y Fr(curv)o(e)e(drops)g (lo)n(wer)e(and)i(gets)f(closer)g(and)h(closer)f(to)g(the)g Fn(1)p Fq(=c)g Fr(curv)o(e.)-152 4456 y Fs(5.)100 b(EMPIRICAL)15 b(EV)-13 b(ALU)-6 b(A)d(TION)15 b(OF)g(OUR)g(TECH\255)23 4572 y(NIQ)o(UE)-77 4680 y Fr(In)f(this)h(section)g(we)f(present)h(an)g (e)o(xperimental)g(e)n(v)n(aluation)g(of)g(our)g(no)o(v)o(el)-152 4767 y(LSH)k(scheme.)27 b(W)-6 b(e)19 b(focus)i(on)f(the)g(Euclidean)g (norm)h(case,)f(since)g(this)f(oc-)-152 4855 y(curs)f(most)g (frequently)g(in)f(practice.)23 b(Our)17 b(data)h(structure)g(is)f (implemented)-152 4942 y(for)i(main)g(memory)-5 b(.)-77 5029 y(In)18 b(what)g(follo)n(ws,)g(we)g(brie\003y)g(discuss)h(some)f (of)g(the)h(issues)f(pertaining)-152 5116 y(to)k(the)f(implementation)h (of)f(our)h(technique.)32 b(W)-6 b(e)20 b(then)i(report)g(some)g(pre-) -152 5203 y(liminary)e(performance)i(results)e(based)g(on)h(an)f (empirical)g(comparison)i(of)-152 5290 y(our)e(technique)g(to)f(the)g Fq(k)r(d)p Fr(-tree)f(data)h(structure.)-152 5378 y Fd(P)o(arameters)h (and)f(P)o(erf)n(ormance)g(T)-6 b(radeoffs:)23 b Fr(The)c(three)g(main) g(param-)2040 1990 y(eters)24 b(that)g(af)n(fect)g(the)g(performance)h (of)f(our)h(algorithm)f(are:)33 b(number)25 b(of)2040 2078 y(projections)i(per)f(hash)g(v)n(alue)h(\()p Fq(k)r Fr(\),)g(number)f(of)g(hash)h(tables)e(\()p Fq(l)q Fr(\))h(and)g(the) 2040 2165 y(width)17 b(of)g(the)f(projection)i(\()p Fq(r)r Fr(\).)j(In)c(general,)h(one)f(could)h(also)f(introduce)g(an-)2040 2252 y(other)22 b(parameter)h(\(say)f Fq(T)11 b Fr(\),)21 b(such)i(that)e(the)h(query)h(procedure)g(stops)g(after)2040 2339 y(retrie)n(ving)e Fq(T)31 b Fr(points.)e(In)21 b(our)g(analysis,)g Fq(T)31 b Fr(w)o(as)21 b(set)f(to)h Fn(3)p Fq(l)q Fr(.)29 b(In)20 b(our)h(e)o(xper)o(-)2040 2426 y(iments,)f(ho)n(we)n(v)o(er)m (,)h(the)e(query)i(procedure)g(retrie)n(v)o(ed)f Fm(all)g Fr(points)g(colliding)2040 2513 y(with)f(the)h(query)g(\(i.e.,)e(we)h (used)h Fq(T)33 b Fn(=)22 b Fl(1)p Fr(\).)i(This)19 b(reduces)h(the)g (number)g(of)2040 2601 y(parameters)g(and)f(simpli\002es)f(the)h (choice)h(of)f(the)g(optimal.)2115 2688 y(F)o(or)24 b(a)h(gi)n(v)o(en)h (v)n(alue)f(of)g Fq(k)r Fr(,)h(it)e(is)h(easy)g(to)g(\002nd)g(the)g (optimal)g(v)n(alue)h(of)e Fq(l)2040 2775 y Fr(which)16 b(will)e(guarantee)j(that)e(the)h(fraction)g(of)f(f)o(alse)h(ne)o(gati) n(v)o(es)g(are)f(no)h(more)2040 2862 y(than)k(a)f(user)h(speci\002ed)f (threshold.)26 b(This)19 b(process)h(is)f(e)o(xactly)g(the)h(same)f(as) 2040 2949 y(in)f(an)f(earlier)h(paper)g(by)g(Cohen)g(et)f(al.)23 b(\([10]\))17 b(that)h(uses)g(locality)f(sensiti)n(v)o(e)2040 3037 y(hashing)29 b(to)f(\002nd)g(similar)g(column)h(pairs)f(in)g(mark) o(et-bask)o(et)h(data,)i(with)2040 3124 y(the)24 b(similarity)f(e)o (xceeding)j(a)e(certain)g(user)g(speci\002ed)g(threshold.)39 b(In)24 b(our)2040 3211 y(e)o(xperiments)29 b(we)g(tried)f(a)g(fe)n(w)g (v)n(alues)i(of)e Fq(k)i Fr(\(between)f Fn(1)g Fr(and)g Fn(10)p Fr(\))g(and)2040 3298 y(belo)n(w)21 b(we)g(report)g(the)f Fq(k)j Fr(that)e(gi)n(v)o(es)g(the)g(best)f(tradeof)n(f)h(for)g(our)g (scenario.)2040 3385 y(The)28 b(parameter)g Fq(k)i Fr(represents)e(a)g (tradeof)n(f)g(between)h(the)f(time)f(spent)h(in)2040 3472 y(computing)16 b(hash)f(v)n(alues)h(and)f(time)f(spent)i(in)e (pruning)i(f)o(alse)f(positi)n(v)o(es,)g(i.e.)2040 3560 y(computing)21 b(distances)g(between)g(the)f(query)h(and)f(candidates;) i(a)e(bigger)g Fq(k)2040 3647 y Fr(v)n(alue)27 b(increases)f(the)g (number)h(of)f(hash)h(computations.)45 b(In)26 b(general)h(we)2040 3734 y(could)f(do)g(a)f(binary)g(search)h(o)o(v)o(er)f(a)g(lar)o(ge)g (range)h(to)f(\002nd)g(the)g(optimal)g Fq(k)2040 3821 y Fr(v)n(alue.)k(This)20 b(binary)h(search)g(can)g(be)g(a)o(v)o(oided)g (if)f(we)g(ha)o(v)o(e)h(a)f(good)i(model)2040 3908 y(of)17 b(the)g(relati)n(v)o(e)f(times)h(of)f(hash)i(computations)g(to)f (distance)g(computations)2040 3995 y(for)i(the)g(application)h(at)e (hand.)2115 4083 y(Decreasing)24 b(the)f(width)g(of)g(the)g(projection) g(\()p Fq(r)r Fr(\))g(decreases)h(the)f(proba-)2040 4170 y(bility)17 b(of)g(collision)g(for)g(an)o(y)g(tw)o(o)g(points.)23 b(Thus,)17 b(it)g(has)g(the)g(same)g(ef)n(fect)g(as)2040 4257 y(increasing)22 b Fq(k)r Fr(.)28 b(As)21 b(a)g(result,)f(we)h(w)o (ould)h(lik)o(e)f(to)f(set)h Fq(r)h Fr(as)f(small)f(as)h(possi-)2040 4344 y(ble)g(and)g(in)g(this)f(w)o(ay)i(decrease)f(the)g(number)h(of)f (projections)g(we)g(need)g(to)2040 4431 y(mak)o(e.)38 b(Ho)n(we)n(v)o(er)m(,)26 b(decreasing)f Fq(r)g Fr(belo)n(w)f(a)g (certain)f(threshold)i(increases)2040 4518 y(the)d(quantity)h Fq(\032)p Fr(,)f(thereby)h(requiring)g(us)f(to)g(increase)h Fq(l)q Fr(.)32 b(Thus)22 b(we)g(cannot)2040 4606 y(decrease)29 b Fq(r)g Fr(by)g(too)f(much.)50 b(F)o(or)27 b(the)h Fq(l)3121 4614 y Fo(2)3183 4606 y Fr(norm)h(we)e(found)i(the)f(optimal)2040 4693 y(v)n(alue)20 b(of)f Fq(r)h Fr(using)g(Matlab)f(which)g(we)g(used) h(in)f(our)g(e)o(xperiments.)2115 4780 y(Before)c(we)g(report)h(our)f (performance)i(numbers)f(we)f(will)f(ne)o(xt)i(describe)2040 4867 y(the)j(data)g(set)g(and)h(query)f(set)g(that)g(we)g(used)g(for)g (testing.)2040 4954 y Fd(Data)31 b(Set:)47 b Fr(W)-6 b(e)31 b(used)g(synthetically)h(generated)g(data)f(sets)g(and)g(query) 2040 5041 y(points)22 b(to)g(test)f(our)g(algorithm.)32 b(The)21 b(dimensionality)i(of)e(the)h(underlying)2040 5129 y Fq(l)2063 5137 y Fo(2)2120 5129 y Fr(space)h(w)o(as)g(v)n(aried) g(between)g Fn(20)h Fr(and)f Fn(500)p Fr(.)35 b(W)-6 b(e)22 b(considered)i(generat-)2040 5216 y(ing)g(all)g(the)g(data)h (and)f(query)h(points)g(independently)h(at)e(random.)40 b(Thus,)2040 5303 y(for)21 b(a)h(data)f(point)h(\(or)f(query)h(point\)) g(its)e(coordinate)j(along)f(e)n(v)o(ery)g(dimen-)p eop %%Page: 5 5 5 4 bop 103 -69 a gsave currentpoint currentpoint translate -90 neg rotate neg exch neg exch translate 103 -69 a @beginspecial 50 @llx 50 @lly 554 @urx 770 @ury 1587 @rwi 2126 @rhi @setspecial %%BeginDocument: r_var_l1.ps %!PS-Adobe-2.0 %%Title: r_var_l1.ps %%Creator: gnuplot 3.7 patchlevel 1 %%CreationDate: Wed Nov 27 01:28:42 2002 %%DocumentFonts: (atend) %%BoundingBox: 50 50 554 770 %%Orientation: Landscape %%Pages: (atend) %%EndComments /gnudict 256 dict def gnudict begin /Color false def /Solid false def /gnulinewidth 5.000 def /userlinewidth gnulinewidth def /vshift -46 def /dl {10 mul} def /hpt_ 31.5 def /vpt_ 31.5 def /hpt hpt_ def /vpt vpt_ def /M {moveto} bind def /L {lineto} bind def /R {rmoveto} bind def /V {rlineto} bind def /vpt2 vpt 2 mul def /hpt2 hpt 2 mul def /Lshow { currentpoint stroke M 0 vshift R show } def /Rshow { currentpoint stroke M dup stringwidth pop neg vshift R show } def /Cshow { currentpoint stroke M dup stringwidth pop -2 div vshift R show } def /UP { dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def } def /DL { Color {setrgbcolor Solid {pop []} if 0 setdash } {pop pop pop Solid {pop []} if 0 setdash} ifelse } def /BL { stroke userlinewidth 2 mul setlinewidth } def /AL { stroke userlinewidth 2 div setlinewidth } def /UL { dup gnulinewidth mul /userlinewidth exch def 10 mul /udl exch def } def /PL { stroke userlinewidth setlinewidth } def /LTb { BL [] 0 0 0 DL } def /LTa { AL [1 udl mul 2 udl mul] 0 setdash 0 0 0 setrgbcolor } def /LT0 { PL [] 1 0 0 DL } def /LT1 { PL [4 dl 2 dl] 0 1 0 DL } def /LT2 { PL [2 dl 3 dl] 0 0 1 DL } def /LT3 { PL [1 dl 1.5 dl] 1 0 1 DL } def /LT4 { PL [5 dl 2 dl 1 dl 2 dl] 0 1 1 DL } def /LT5 { PL [4 dl 3 dl 1 dl 3 dl] 1 1 0 DL } def /LT6 { PL [2 dl 2 dl 2 dl 4 dl] 0 0 0 DL } def /LT7 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 1 0.3 0 DL } def /LT8 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 0.5 0.5 0.5 DL } def /Pnt { stroke [] 0 setdash gsave 1 setlinecap M 0 0 V stroke grestore } def /Dia { stroke [] 0 setdash 2 copy vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke Pnt } def /Pls { stroke [] 0 setdash vpt sub M 0 vpt2 V currentpoint stroke M hpt neg vpt neg R hpt2 0 V stroke } def /Box { stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke Pnt } def /Crs { stroke [] 0 setdash exch hpt sub exch vpt add M hpt2 vpt2 neg V currentpoint stroke M hpt2 neg 0 R hpt2 vpt2 V stroke } def /TriU { stroke [] 0 setdash 2 copy vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke Pnt } def /Star { 2 copy Pls Crs } def /BoxF { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath fill } def /TriUF { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath fill } def /TriD { stroke [] 0 setdash 2 copy vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke Pnt } def /TriDF { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath fill} def /DiaF { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath fill } def /Pent { stroke [] 0 setdash 2 copy gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore Pnt } def /PentF { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath fill grestore } def /Circle { stroke [] 0 setdash 2 copy hpt 0 360 arc stroke Pnt } def /CircleF { stroke [] 0 setdash hpt 0 360 arc fill } def /C0 { BL [] 0 setdash 2 copy moveto vpt 90 450 arc } bind def /C1 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill vpt 0 360 arc closepath } bind def /C2 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath } bind def /C3 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill vpt 0 360 arc closepath } bind def /C4 { BL [] 0 setdash 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc closepath } bind def /C5 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc } bind def /C6 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 270 arc closepath fill vpt 0 360 arc closepath } bind def /C7 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 270 arc closepath fill vpt 0 360 arc closepath } bind def /C8 { BL [] 0 setdash 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath } bind def /C9 { BL [] 0 setdash 2 copy moveto 2 copy vpt 270 450 arc closepath fill vpt 0 360 arc closepath } bind def /C10 { BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath } bind def /C11 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath } bind def /C12 { BL [] 0 setdash 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath } bind def /C13 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath } bind def /C14 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 360 arc closepath fill vpt 0 360 arc } bind def /C15 { BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill vpt 0 360 arc closepath } bind def /Rec { newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto neg 0 rlineto closepath } bind def /Square { dup Rec } bind def /Bsquare { vpt sub exch vpt sub exch vpt2 Square } bind def /S0 { BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare } bind def /S1 { BL [] 0 setdash 2 copy vpt Square fill Bsquare } bind def /S2 { BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S3 { BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def /S4 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def /S5 { BL [] 0 setdash 2 copy 2 copy vpt Square fill exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def /S6 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare } bind def /S7 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill 2 copy vpt Square fill Bsquare } bind def /S8 { BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare } bind def /S9 { BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare } bind def /S10 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S11 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def /S12 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare } bind def /S13 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy vpt Square fill Bsquare } bind def /S14 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S15 { BL [] 0 setdash 2 copy Bsquare fill Bsquare } bind def /D0 { gsave translate 45 rotate 0 0 S0 stroke grestore } bind def /D1 { gsave translate 45 rotate 0 0 S1 stroke grestore } bind def /D2 { gsave translate 45 rotate 0 0 S2 stroke grestore } bind def /D3 { gsave translate 45 rotate 0 0 S3 stroke grestore } bind def /D4 { gsave translate 45 rotate 0 0 S4 stroke grestore } bind def /D5 { gsave translate 45 rotate 0 0 S5 stroke grestore } bind def /D6 { gsave translate 45 rotate 0 0 S6 stroke grestore } bind def /D7 { gsave translate 45 rotate 0 0 S7 stroke grestore } bind def /D8 { gsave translate 45 rotate 0 0 S8 stroke grestore } bind def /D9 { gsave translate 45 rotate 0 0 S9 stroke grestore } bind def /D10 { gsave translate 45 rotate 0 0 S10 stroke grestore } bind def /D11 { gsave translate 45 rotate 0 0 S11 stroke grestore } bind def /D12 { gsave translate 45 rotate 0 0 S12 stroke grestore } bind def /D13 { gsave translate 45 rotate 0 0 S13 stroke grestore } bind def /D14 { gsave translate 45 rotate 0 0 S14 stroke grestore } bind def /D15 { gsave translate 45 rotate 0 0 S15 stroke grestore } bind def /DiaE { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke } def /BoxE { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke } def /TriUE { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke } def /TriDE { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke } def /PentE { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore } def /CircE { stroke [] 0 setdash hpt 0 360 arc stroke } def /Opaque { gsave closepath 1 setgray fill grestore 0 setgray closepath } def /DiaW { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V Opaque stroke } def /BoxW { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V Opaque stroke } def /TriUW { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V Opaque stroke } def /TriDW { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V Opaque stroke } def /PentW { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat Opaque stroke grestore } def /CircW { stroke [] 0 setdash hpt 0 360 arc Opaque stroke } def /BoxFill { gsave Rec 1 setgray fill grestore } def end %%EndProlog %%Page: 1 1 gnudict begin gsave 50 50 translate 0.100 0.100 scale 90 rotate 0 -5040 translate 0 setgray newpath (Helvetica) findfont 140 scalefont setfont 1.000 UL LTb 630 420 M 63 0 V 6269 0 R -63 0 V 546 420 M (0.1) Rshow 630 915 M 63 0 V 6269 0 R -63 0 V 546 915 M (0.2) Rshow 630 1409 M 63 0 V 6269 0 R -63 0 V -6353 0 R (0.3) Rshow 630 1904 M 63 0 V 6269 0 R -63 0 V -6353 0 R (0.4) Rshow 630 2399 M 63 0 V 6269 0 R -63 0 V -6353 0 R (0.5) Rshow 630 2893 M 63 0 V 6269 0 R -63 0 V -6353 0 R (0.6) Rshow 630 3388 M 63 0 V 6269 0 R -63 0 V -6353 0 R (0.7) Rshow 630 3883 M 63 0 V 6269 0 R -63 0 V -6353 0 R (0.8) Rshow 630 4377 M 63 0 V 6269 0 R -63 0 V -6353 0 R (0.9) Rshow 630 4872 M 63 0 V 6269 0 R -63 0 V -6353 0 R (1) Rshow 630 420 M 0 63 V 0 4389 R 0 -63 V 630 280 M (0) Cshow 2213 420 M 0 63 V 0 4389 R 0 -63 V 0 -4529 R (5) Cshow 3796 420 M 0 63 V 0 4389 R 0 -63 V 0 -4529 R (10) Cshow 5379 420 M 0 63 V 0 4389 R 0 -63 V 0 -4529 R (15) Cshow 6962 420 M 0 63 V 0 4389 R 0 -63 V 0 -4529 R (20) Cshow 1.000 UL LTb 630 420 M 6332 0 V 0 4452 V -6332 0 V 630 420 L 140 2646 M currentpoint gsave translate 90 rotate 0 0 M (pxe) Cshow grestore 3796 70 M (r) Cshow 1.000 UL LT0 6311 4739 M (c=1.1) Rshow 6395 4739 M 399 0 V 694 4708 M 64 -44 V 64 -31 V 64 -24 V 64 -18 V 64 -13 V 64 -10 V 64 -8 V 64 -6 V 64 -5 V 64 -4 V 64 -3 V 63 -3 V 64 -2 V 64 -2 V 64 -2 V 64 -2 V 64 -1 V 64 -1 V 64 -1 V 64 -1 V 64 -1 V 64 -1 V 64 -1 V 64 0 V 64 -1 V 64 -1 V 64 0 V 64 -1 V 64 0 V 64 -1 V 64 0 V 64 0 V 64 -1 V 64 0 V 64 -1 V 64 0 V 63 0 V 64 -1 V 64 0 V 64 0 V 64 0 V 64 -1 V 64 0 V 64 0 V 64 0 V 64 -1 V 64 0 V 64 0 V 64 0 V 64 -1 V 64 0 V 64 0 V 64 0 V 64 0 V 64 -1 V 64 0 V 64 0 V 64 0 V 64 0 V 64 0 V 63 -1 V 64 0 V 64 0 V 64 0 V 64 0 V 64 0 V 64 -1 V 64 0 V 64 0 V 64 0 V 64 0 V 64 0 V 64 0 V 64 -1 V 64 0 V 64 0 V 64 0 V 64 0 V 64 0 V 64 0 V 64 0 V 64 0 V 64 -1 V 64 0 V 64 0 V 63 0 V 64 0 V 64 0 V 64 0 V 64 0 V 64 0 V 64 -1 V 64 0 V 64 0 V 64 0 V 64 0 V 64 0 V 64 0 V 1.000 UL LT1 6311 4599 M (c=1.5) Rshow 6395 4599 M 399 0 V 694 4242 M 64 -154 V 64 -112 V 64 -85 V 64 -64 V 64 -50 V 64 -39 V 64 -30 V 64 -25 V 64 -20 V 64 -16 V 64 -13 V 63 -12 V 64 -9 V 64 -8 V 64 -8 V 64 -6 V 64 -5 V 64 -5 V 64 -4 V 64 -4 V 64 -4 V 64 -3 V 64 -3 V 64 -3 V 64 -2 V 64 -2 V 64 -3 V 64 -2 V 64 -1 V 64 -2 V 64 -2 V 64 -1 V 64 -2 V 64 -1 V 64 -2 V 64 -1 V 63 -1 V 64 -1 V 64 -1 V 64 -1 V 64 -1 V 64 -1 V 64 -1 V 64 -1 V 64 -1 V 64 -1 V 64 -1 V 64 -1 V 64 0 V 64 -1 V 64 -1 V 64 -1 V 64 0 V 64 -1 V 64 -1 V 64 0 V 64 -1 V 64 0 V 64 -1 V 64 -1 V 63 0 V 64 -1 V 64 0 V 64 -1 V 64 0 V 64 -1 V 64 0 V 64 -1 V 64 0 V 64 -1 V 64 0 V 64 -1 V 64 0 V 64 -1 V 64 0 V 64 -1 V 64 0 V 64 0 V 64 -1 V 64 0 V 64 -1 V 64 0 V 64 0 V 64 -1 V 64 0 V 63 -1 V 64 0 V 64 0 V 64 -1 V 64 0 V 64 0 V 64 -1 V 64 0 V 64 0 V 64 -1 V 64 0 V 64 0 V 64 -1 V 1.000 UL LT2 6311 4459 M (c=2.5) Rshow 6395 4459 M 399 0 V 694 3642 M 64 -259 V 64 -186 V 64 -142 V 64 -111 V 64 -88 V 64 -71 V 64 -58 V 64 -47 V 64 -39 V 64 -33 V 64 -27 V 63 -24 V 64 -20 V 64 -18 V 64 -15 V 64 -13 V 64 -12 V 64 -11 V 64 -9 V 64 -8 V 64 -8 V 64 -7 V 64 -6 V 64 -6 V 64 -5 V 64 -5 V 64 -4 V 64 -4 V 64 -4 V 64 -4 V 64 -3 V 64 -3 V 64 -3 V 64 -3 V 64 -3 V 64 -2 V 63 -3 V 64 -2 V 64 -2 V 64 -2 V 64 -2 V 64 -2 V 64 -2 V 64 -1 V 64 -2 V 64 -2 V 64 -1 V 64 -2 V 64 -1 V 64 -2 V 64 -1 V 64 -1 V 64 -1 V 64 -2 V 64 -1 V 64 -1 V 64 -1 V 64 -1 V 64 -1 V 64 -1 V 63 -1 V 64 -1 V 64 -1 V 64 -1 V 64 -1 V 64 -1 V 64 -1 V 64 0 V 64 -1 V 64 -1 V 64 -1 V 64 -1 V 64 0 V 64 -1 V 64 -1 V 64 -1 V 64 0 V 64 -1 V 64 -1 V 64 0 V 64 -1 V 64 -1 V 64 0 V 64 -1 V 64 -1 V 63 0 V 64 -1 V 64 0 V 64 -1 V 64 -1 V 64 0 V 64 -1 V 64 0 V 64 -1 V 64 0 V 64 -1 V 64 0 V 64 -1 V 1.000 UL LT3 6311 4319 M (c=5) Rshow 6395 4319 M 399 0 V 694 3051 M 64 -320 V 64 -223 V 64 -170 V 64 -134 V 64 -108 V 64 -88 V 64 -73 V 64 -62 V 64 -52 V 64 -45 V 64 -39 V 63 -34 V 64 -30 V 64 -26 V 64 -24 V 64 -20 V 64 -19 V 64 -17 V 64 -15 V 64 -14 V 64 -12 V 64 -12 V 64 -10 V 64 -10 V 64 -9 V 64 -8 V 64 -7 V 64 -7 V 64 -7 V 64 -6 V 64 -6 V 64 -5 V 64 -5 V 64 -5 V 64 -4 V 64 -4 V 63 -4 V 64 -4 V 64 -4 V 64 -3 V 64 -3 V 64 -3 V 64 -3 V 64 -3 V 64 -3 V 64 -2 V 64 -3 V 64 -2 V 64 -2 V 64 -2 V 64 -2 V 64 -2 V 64 -2 V 64 -2 V 64 -2 V 64 -1 V 64 -2 V 64 -2 V 64 -1 V 64 -2 V 63 -1 V 64 -2 V 64 -1 V 64 -1 V 64 -1 V 64 -2 V 64 -1 V 64 -1 V 64 -1 V 64 -1 V 64 -1 V 64 -2 V 64 -1 V 64 -1 V 64 -1 V 64 -1 V 64 0 V 64 -1 V 64 -1 V 64 -1 V 64 -1 V 64 -1 V 64 -1 V 64 -1 V 64 0 V 63 -1 V 64 -1 V 64 -1 V 64 0 V 64 -1 V 64 -1 V 64 -1 V 64 0 V 64 -1 V 64 -1 V 64 0 V 64 -1 V 64 -1 V 1.000 UL LT4 6311 4179 M (c=10) Rshow 6395 4179 M 399 0 V 694 2622 M 64 -337 V 64 -229 V 64 -172 V 64 -136 V 64 -109 V 64 -89 V 64 -76 V 64 -63 V 64 -55 V 64 -47 V 64 -42 V 63 -36 V 64 -33 V 64 -29 V 64 -26 V 64 -23 V 64 -22 V 64 -19 V 64 -18 V 64 -17 V 64 -15 V 64 -14 V 64 -13 V 64 -12 V 64 -11 V 64 -10 V 64 -10 V 64 -9 V 64 -9 V 64 -8 V 64 -7 V 64 -8 V 64 -6 V 64 -7 V 64 -6 V 64 -5 V 63 -6 V 64 -5 V 64 -5 V 64 -5 V 64 -4 V 64 -4 V 64 -4 V 64 -4 V 64 -4 V 64 -3 V 64 -4 V 64 -3 V 64 -3 V 64 -3 V 64 -3 V 64 -3 V 64 -2 V 64 -3 V 64 -2 V 64 -3 V 64 -2 V 64 -2 V 64 -2 V 64 -3 V 63 -2 V 64 -1 V 64 -2 V 64 -2 V 64 -2 V 64 -2 V 64 -1 V 64 -2 V 64 -1 V 64 -2 V 64 -1 V 64 -2 V 64 -1 V 64 -2 V 64 -1 V 64 -1 V 64 -1 V 64 -2 V 64 -1 V 64 -1 V 64 -1 V 64 -1 V 64 -1 V 64 -1 V 64 -1 V 63 -1 V 64 -1 V 64 -1 V 64 -1 V 64 -1 V 64 -1 V 64 -1 V 64 -1 V 64 -1 V 64 -1 V 64 0 V 64 -1 V 64 -1 V stroke grestore end showpage %%Trailer %%DocumentFonts: Helvetica %%Pages: 1 %%EndDocument @endspecial 1426 -69 a currentpoint grestore moveto 1426 -69 a 757 1397 a Fr(\(a\))19 b Fq(\032)f Fr(vs)h Fq(r)i Fr(for)e Fq(l)1187 1405 y Fo(1)2006 -69 y gsave currentpoint currentpoint translate -90 neg rotate neg exch neg exch translate 2006 -69 a @beginspecial 50 @llx 50 @lly 554 @urx 770 @ury 1587 @rwi 2126 @rhi @setspecial %%BeginDocument: r_var_l2.ps %!PS-Adobe-2.0 %%Title: r_var_l2.ps %%Creator: gnuplot 3.7 patchlevel 1 %%CreationDate: Wed Nov 27 00:52:31 2002 %%DocumentFonts: (atend) %%BoundingBox: 50 50 554 770 %%Orientation: Landscape %%Pages: (atend) %%EndComments /gnudict 256 dict def gnudict begin /Color false def /Solid false def /gnulinewidth 5.000 def /userlinewidth gnulinewidth def /vshift -46 def /dl {10 mul} def /hpt_ 31.5 def /vpt_ 31.5 def /hpt hpt_ def /vpt vpt_ def /M {moveto} bind def /L {lineto} bind def /R {rmoveto} bind def /V {rlineto} bind def /vpt2 vpt 2 mul def /hpt2 hpt 2 mul def /Lshow { currentpoint stroke M 0 vshift R show } def /Rshow { currentpoint stroke M dup stringwidth pop neg vshift R show } def /Cshow { currentpoint stroke M dup stringwidth pop -2 div vshift R show } def /UP { dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def } def /DL { Color {setrgbcolor Solid {pop []} if 0 setdash } {pop pop pop Solid {pop []} if 0 setdash} ifelse } def /BL { stroke userlinewidth 2 mul setlinewidth } def /AL { stroke userlinewidth 2 div setlinewidth } def /UL { dup gnulinewidth mul /userlinewidth exch def 10 mul /udl exch def } def /PL { stroke userlinewidth setlinewidth } def /LTb { BL [] 0 0 0 DL } def /LTa { AL [1 udl mul 2 udl mul] 0 setdash 0 0 0 setrgbcolor } def /LT0 { PL [] 1 0 0 DL } def /LT1 { PL [4 dl 2 dl] 0 1 0 DL } def /LT2 { PL [2 dl 3 dl] 0 0 1 DL } def /LT3 { PL [1 dl 1.5 dl] 1 0 1 DL } def /LT4 { PL [5 dl 2 dl 1 dl 2 dl] 0 1 1 DL } def /LT5 { PL [4 dl 3 dl 1 dl 3 dl] 1 1 0 DL } def /LT6 { PL [2 dl 2 dl 2 dl 4 dl] 0 0 0 DL } def /LT7 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 1 0.3 0 DL } def /LT8 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 0.5 0.5 0.5 DL } def /Pnt { stroke [] 0 setdash gsave 1 setlinecap M 0 0 V stroke grestore } def /Dia { stroke [] 0 setdash 2 copy vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke Pnt } def /Pls { stroke [] 0 setdash vpt sub M 0 vpt2 V currentpoint stroke M hpt neg vpt neg R hpt2 0 V stroke } def /Box { stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke Pnt } def /Crs { stroke [] 0 setdash exch hpt sub exch vpt add M hpt2 vpt2 neg V currentpoint stroke M hpt2 neg 0 R hpt2 vpt2 V stroke } def /TriU { stroke [] 0 setdash 2 copy vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke Pnt } def /Star { 2 copy Pls Crs } def /BoxF { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath fill } def /TriUF { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath fill } def /TriD { stroke [] 0 setdash 2 copy vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke Pnt } def /TriDF { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath fill} def /DiaF { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath fill } def /Pent { stroke [] 0 setdash 2 copy gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore Pnt } def /PentF { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath fill grestore } def /Circle { stroke [] 0 setdash 2 copy hpt 0 360 arc stroke Pnt } def /CircleF { stroke [] 0 setdash hpt 0 360 arc fill } def /C0 { BL [] 0 setdash 2 copy moveto vpt 90 450 arc } bind def /C1 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill vpt 0 360 arc closepath } bind def /C2 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath } bind def /C3 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill vpt 0 360 arc closepath } bind def /C4 { BL [] 0 setdash 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc closepath } bind def /C5 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc } bind def /C6 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 270 arc closepath fill vpt 0 360 arc closepath } bind def /C7 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 270 arc closepath fill vpt 0 360 arc closepath } bind def /C8 { BL [] 0 setdash 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath } bind def /C9 { BL [] 0 setdash 2 copy moveto 2 copy vpt 270 450 arc closepath fill vpt 0 360 arc closepath } bind def /C10 { BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath } bind def /C11 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath } bind def /C12 { BL [] 0 setdash 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath } bind def /C13 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath } bind def /C14 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 360 arc closepath fill vpt 0 360 arc } bind def /C15 { BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill vpt 0 360 arc closepath } bind def /Rec { newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto neg 0 rlineto closepath } bind def /Square { dup Rec } bind def /Bsquare { vpt sub exch vpt sub exch vpt2 Square } bind def /S0 { BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare } bind def /S1 { BL [] 0 setdash 2 copy vpt Square fill Bsquare } bind def /S2 { BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S3 { BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def /S4 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def /S5 { BL [] 0 setdash 2 copy 2 copy vpt Square fill exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def /S6 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare } bind def /S7 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill 2 copy vpt Square fill Bsquare } bind def /S8 { BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare } bind def /S9 { BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare } bind def /S10 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S11 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def /S12 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare } bind def /S13 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy vpt Square fill Bsquare } bind def /S14 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S15 { BL [] 0 setdash 2 copy Bsquare fill Bsquare } bind def /D0 { gsave translate 45 rotate 0 0 S0 stroke grestore } bind def /D1 { gsave translate 45 rotate 0 0 S1 stroke grestore } bind def /D2 { gsave translate 45 rotate 0 0 S2 stroke grestore } bind def /D3 { gsave translate 45 rotate 0 0 S3 stroke grestore } bind def /D4 { gsave translate 45 rotate 0 0 S4 stroke grestore } bind def /D5 { gsave translate 45 rotate 0 0 S5 stroke grestore } bind def /D6 { gsave translate 45 rotate 0 0 S6 stroke grestore } bind def /D7 { gsave translate 45 rotate 0 0 S7 stroke grestore } bind def /D8 { gsave translate 45 rotate 0 0 S8 stroke grestore } bind def /D9 { gsave translate 45 rotate 0 0 S9 stroke grestore } bind def /D10 { gsave translate 45 rotate 0 0 S10 stroke grestore } bind def /D11 { gsave translate 45 rotate 0 0 S11 stroke grestore } bind def /D12 { gsave translate 45 rotate 0 0 S12 stroke grestore } bind def /D13 { gsave translate 45 rotate 0 0 S13 stroke grestore } bind def /D14 { gsave translate 45 rotate 0 0 S14 stroke grestore } bind def /D15 { gsave translate 45 rotate 0 0 S15 stroke grestore } bind def /DiaE { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke } def /BoxE { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke } def /TriUE { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke } def /TriDE { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke } def /PentE { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore } def /CircE { stroke [] 0 setdash hpt 0 360 arc stroke } def /Opaque { gsave closepath 1 setgray fill grestore 0 setgray closepath } def /DiaW { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V Opaque stroke } def /BoxW { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V Opaque stroke } def /TriUW { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V Opaque stroke } def /TriDW { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V Opaque stroke } def /PentW { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat Opaque stroke grestore } def /CircW { stroke [] 0 setdash hpt 0 360 arc Opaque stroke } def /BoxFill { gsave Rec 1 setgray fill grestore } def end %%EndProlog %%Page: 1 1 gnudict begin gsave 50 50 translate 0.100 0.100 scale 90 rotate 0 -5040 translate 0 setgray newpath (Helvetica) findfont 140 scalefont setfont 1.000 UL LTb 630 420 M 63 0 V 6269 0 R -63 0 V 546 420 M (0) Rshow 630 865 M 63 0 V 6269 0 R -63 0 V 546 865 M (0.1) Rshow 630 1310 M 63 0 V 6269 0 R -63 0 V -6353 0 R (0.2) Rshow 630 1756 M 63 0 V 6269 0 R -63 0 V -6353 0 R (0.3) Rshow 630 2201 M 63 0 V 6269 0 R -63 0 V -6353 0 R (0.4) Rshow 630 2646 M 63 0 V 6269 0 R -63 0 V -6353 0 R (0.5) Rshow 630 3091 M 63 0 V 6269 0 R -63 0 V -6353 0 R (0.6) Rshow 630 3536 M 63 0 V 6269 0 R -63 0 V -6353 0 R (0.7) Rshow 630 3982 M 63 0 V 6269 0 R -63 0 V -6353 0 R (0.8) Rshow 630 4427 M 63 0 V 6269 0 R -63 0 V -6353 0 R (0.9) Rshow 630 4872 M 63 0 V 6269 0 R -63 0 V -6353 0 R (1) Rshow 630 420 M 0 63 V 0 4389 R 0 -63 V 630 280 M (0) Cshow 2213 420 M 0 63 V 0 4389 R 0 -63 V 0 -4529 R (5) Cshow 3796 420 M 0 63 V 0 4389 R 0 -63 V 0 -4529 R (10) Cshow 5379 420 M 0 63 V 0 4389 R 0 -63 V 0 -4529 R (15) Cshow 6962 420 M 0 63 V 0 4389 R 0 -63 V 0 -4529 R (20) Cshow 1.000 UL LTb 630 420 M 6332 0 V 0 4452 V -6332 0 V 630 420 L 140 2646 M currentpoint gsave translate 90 rotate 0 0 M (pxe) Cshow grestore 3796 70 M (r) Cshow 1.000 UL LT0 6311 4739 M (c=1.1) Rshow 6395 4739 M 399 0 V 694 4711 M 64 -53 V 64 -47 V 64 -42 V 64 -38 V 64 -33 V 64 -29 V 64 -23 V 64 -17 V 64 -13 V 64 -8 V 64 -4 V 63 -2 V 64 1 V 64 2 V 64 2 V 64 3 V 64 4 V 64 3 V 64 2 V 64 3 V 64 2 V 64 3 V 64 1 V 64 2 V 64 2 V 64 1 V 64 2 V 64 1 V 64 1 V 64 1 V 64 1 V 64 1 V 64 1 V 64 1 V 64 1 V 64 0 V 63 1 V 64 1 V 64 0 V 64 1 V 64 1 V 64 0 V 64 1 V 64 0 V 64 1 V 64 0 V 64 0 V 64 1 V 64 0 V 64 0 V 64 1 V 64 0 V 64 0 V 64 1 V 64 0 V 64 0 V 64 1 V 64 0 V 64 0 V 64 0 V 63 1 V 64 0 V 64 0 V 64 0 V 64 1 V 64 0 V 64 0 V 64 0 V 64 0 V 64 0 V 64 1 V 64 0 V 64 0 V 64 0 V 64 0 V 64 0 V 64 1 V 64 0 V 64 0 V 64 0 V 64 0 V 64 0 V 64 0 V 64 0 V 64 1 V 63 0 V 64 0 V 64 0 V 64 0 V 64 0 V 64 0 V 64 0 V 64 0 V 64 1 V 64 0 V 64 0 V 64 0 V 64 0 V 1.000 UL LT1 6311 4599 M (c=1.5) Rshow 6395 4599 M 399 0 V 694 4258 M 64 -178 V 64 -150 V 64 -133 V 64 -118 V 64 -104 V 64 -91 V 64 -76 V 64 -63 V 64 -50 V 64 -37 V 64 -27 V 63 -18 V 64 -11 V 64 -5 V 64 0 V 64 2 V 64 5 V 64 6 V 64 7 V 64 7 V 64 7 V 64 7 V 64 7 V 64 6 V 64 6 V 64 6 V 64 5 V 64 4 V 64 5 V 64 4 V 64 4 V 64 3 V 64 3 V 64 3 V 64 3 V 64 3 V 63 3 V 64 2 V 64 2 V 64 3 V 64 2 V 64 2 V 64 1 V 64 2 V 64 2 V 64 1 V 64 2 V 64 1 V 64 2 V 64 1 V 64 1 V 64 2 V 64 1 V 64 1 V 64 1 V 64 1 V 64 1 V 64 1 V 64 1 V 64 1 V 63 1 V 64 1 V 64 0 V 64 1 V 64 1 V 64 1 V 64 0 V 64 1 V 64 1 V 64 0 V 64 1 V 64 1 V 64 0 V 64 1 V 64 0 V 64 1 V 64 1 V 64 0 V 64 1 V 64 0 V 64 1 V 64 0 V 64 1 V 64 0 V 64 0 V 63 1 V 64 0 V 64 1 V 64 0 V 64 0 V 64 1 V 64 0 V 64 1 V 64 0 V 64 0 V 64 1 V 64 0 V 64 0 V 1.000 UL LT2 6311 4459 M (c=2.5) Rshow 6395 4459 M 399 0 V 694 3688 M 64 -284 V 64 -227 V 64 -193 V 64 -169 V 64 -147 V 64 -128 V 64 -109 V 64 -93 V 64 -79 V 64 -64 V 64 -53 V 63 -42 V 64 -34 V 64 -27 V 64 -20 V 64 -15 V 64 -11 V 64 -7 V 64 -5 V 64 -2 V 64 -1 V 64 1 V 64 2 V 64 3 V 64 4 V 64 4 V 64 5 V 64 5 V 64 5 V 64 5 V 64 5 V 64 5 V 64 5 V 64 5 V 64 4 V 64 5 V 63 4 V 64 4 V 64 4 V 64 4 V 64 4 V 64 3 V 64 4 V 64 3 V 64 3 V 64 3 V 64 3 V 64 3 V 64 2 V 64 3 V 64 2 V 64 2 V 64 3 V 64 2 V 64 2 V 64 2 V 64 1 V 64 2 V 64 2 V 64 2 V 63 1 V 64 2 V 64 1 V 64 2 V 64 1 V 64 2 V 64 1 V 64 1 V 64 1 V 64 2 V 64 1 V 64 1 V 64 1 V 64 1 V 64 1 V 64 1 V 64 1 V 64 1 V 64 1 V 64 1 V 64 1 V 64 1 V 64 1 V 64 0 V 64 1 V 63 1 V 64 1 V 64 1 V 64 0 V 64 1 V 64 1 V 64 0 V 64 1 V 64 1 V 64 0 V 64 1 V 64 0 V 64 1 V 1.000 UL LT3 6311 4319 M (c=5) Rshow 6395 4319 M 399 0 V 694 3140 M 64 -337 V 64 -253 V 64 -208 V 64 -176 V 64 -150 V 64 -128 V 64 -110 V 64 -94 V 64 -79 V 64 -67 V 64 -57 V 63 -48 V 64 -41 V 64 -35 V 64 -29 V 64 -25 V 64 -22 V 64 -18 V 64 -16 V 64 -14 V 64 -12 V 64 -10 V 64 -9 V 64 -8 V 64 -7 V 64 -6 V 64 -4 V 64 -5 V 64 -3 V 64 -3 V 64 -3 V 64 -1 V 64 -2 V 64 -1 V 64 -1 V 64 0 V 63 -1 V 64 0 V 64 1 V 64 0 V 64 1 V 64 1 V 64 1 V 64 1 V 64 1 V 64 1 V 64 2 V 64 1 V 64 2 V 64 1 V 64 2 V 64 1 V 64 2 V 64 2 V 64 1 V 64 2 V 64 2 V 64 2 V 64 1 V 64 2 V 63 2 V 64 1 V 64 2 V 64 2 V 64 1 V 64 2 V 64 2 V 64 1 V 64 2 V 64 1 V 64 2 V 64 1 V 64 2 V 64 1 V 64 1 V 64 2 V 64 1 V 64 1 V 64 1 V 64 2 V 64 1 V 64 1 V 64 1 V 64 1 V 64 1 V 63 2 V 64 1 V 64 1 V 64 1 V 64 1 V 64 1 V 64 0 V 64 1 V 64 1 V 64 1 V 64 1 V 64 1 V 64 1 V 1.000 UL LT4 6311 4179 M (c=10) Rshow 6395 4179 M 399 0 V 694 2749 M 64 -346 V 64 -249 V 64 -199 V 64 -164 V 64 -138 V 64 -116 V 64 -99 V 64 -83 V 64 -71 V 64 -60 V 64 -51 V 63 -43 V 64 -37 V 64 -32 V 64 -28 V 64 -24 V 64 -21 V 64 -19 V 64 -16 V 64 -15 V 64 -14 V 64 -12 V 64 -10 V 64 -10 V 64 -9 V 64 -9 V 64 -7 V 64 -7 V 64 -6 V 64 -6 V 64 -6 V 64 -5 V 64 -5 V 64 -4 V 64 -4 V 64 -4 V 63 -3 V 64 -3 V 64 -3 V 64 -3 V 64 -3 V 64 -2 V 64 -2 V 64 -2 V 64 -2 V 64 -2 V 64 -2 V 64 -1 V 64 -2 V 64 -1 V 64 -1 V 64 -1 V 64 -1 V 64 -1 V 64 -1 V 64 -1 V 64 -1 V 64 0 V 64 -1 V 64 0 V 63 -1 V 64 0 V 64 -1 V 64 0 V 64 0 V 64 0 V 64 0 V 64 -1 V 64 0 V 64 0 V 64 0 V 64 0 V 64 0 V 64 0 V 64 1 V 64 0 V 64 0 V 64 0 V 64 0 V 64 1 V 64 0 V 64 0 V 64 0 V 64 1 V 64 0 V 63 0 V 64 1 V 64 0 V 64 0 V 64 1 V 64 0 V 64 1 V 64 0 V 64 0 V 64 1 V 64 0 V 64 1 V 64 0 V stroke grestore end showpage %%Trailer %%DocumentFonts: Helvetica %%Pages: 1 %%EndDocument @endspecial 3329 -69 a currentpoint grestore moveto 3329 -69 a 2658 1397 a Fr(\(b\))g Fq(\032)f Fr(vs)h Fq(r)h Fr(for)f Fq(l)3091 1405 y Fo(2)1693 1638 y Fd(Figur)o(e)f(2:)24 b Fq(\032)18 b Fd(vs)h Fq(r)-152 1962 y Fr(sion)e(w)o(ould)g(be)g(chosen)h(independently)h(and)e (uniformly)g(at)f(random)i(from)-152 2049 y(a)29 b(certain)g(range)g Fn([)p Fl(\000)p Fq(a;)13 b(a)p Fn(])p Fr(.)53 b(Ho)n(we)n(v)o(er)m(,) 32 b(if)c(we)h(did)g(that,)h(gi)n(v)o(en)g(a)f(query)-152 2136 y(point)20 b(all)f(the)g(data)g(points)h(w)o(ould)g(be)f(sharply)h (concentrated)h(at)e(the)g(same)-152 2223 y(distance)25 b(from)f(the)g(query)h(point)g(as)f(we)g(are)g(operating)h(in)f(high)g (dimen-)-152 2310 y(sions.)41 b(Therefore,)26 b(the)f(approximate)h (nearest)f(neighbor)h(search)f(w)o(ould)-152 2398 y(not)j(mak)o(e)h (sense)g(on)f(such)h(a)f(data)g(set.)49 b(T)-5 b(esting)28 b(approximate)h(nearest)-152 2485 y(neighbor)d(requires)f(that)g(for)f (e)n(v)o(ery)i(query)f(point)g Fq(q)s Fr(,)h(there)e(are)h(fe)n(w)f (data)-152 2572 y(points)19 b(within)f(distance)h Fq(R)g Fr(from)f Fq(q)j Fr(and)e(most)g(of)f(the)g(points)h(are)f(at)h(a)f (dis-)-152 2659 y(tance)e(no)f(less)g(than)h Fn(\(1)s(+)s Fq(\017)p Fn(\))p Fq(R)q Fr(.)k(W)-6 b(e)15 b(call)g(this)g(a)g (\223planted)h(nearest)f(neighbor)-152 2746 y(model\224.)-77 2834 y(In)h(order)h(to)f(ensure)h(this)f(property)i(we)e(generate)h (our)g(points)f(as)h(follo)n(ws)-152 2921 y(\(a)22 b(similar)f (approach)i(w)o(as)f(used)g(in)g([30]\).)32 b(W)-6 b(e)21 b(\002rst)f(generate)j(the)f(query)-152 3008 y(points)28 b(at)e(random,)k(as)d(abo)o(v)o(e.)48 b(W)-6 b(e)26 b(then)i(generate)f (the)g(data)g(points)h(in)-152 3095 y(such)18 b(a)e(w)o(ay)h(that)g (for)f(e)n(v)o(ery)i(query)f(point,)h(we)e(guarantee)i(at)e(least)h(a)f (single)-152 3182 y(point)f(within)g(distance)g Fq(R)g Fr(and)h(all)e(other)h(points)g(are)g(distance)g(no)h(less)e(than)-152 3269 y Fn(\(1)24 b(+)e Fq(\017)p Fn(\))p Fq(R)q Fr(.)46 b(This)27 b(no)o(v)o(el)g(w)o(ay)g(of)g(generating)h(data)f(sets)f (ensures)i(e)n(v)o(ery)-152 3357 y(query)e(point)f(has)g(a)g(fe)n(w)f (\(in)h(our)g(case,)h(just)e(one\))h(approximate)h(nearest)-152 3444 y(neighbors,)20 b(while)f(most)g(points)g(are)g(f)o(ar)g(from)g (the)g(query)-5 b(.)-77 3531 y(The)22 b(resulting)g(data)g(set)f(has)i (se)n(v)o(eral)f(interesting)g(properties.)32 b(Firstly)-5 b(,)-152 3618 y(it)23 b(constitutes)g(the)g(w)o(orst-case)g(input)h(to) f(LSH)f(\(since)h(there)g(is)f(only)i(one)-152 3705 y(correct)g (nearest)g(neighbor)m(,)h(and)f(all)f(other)h(points)f(are)h (\223almost\224)f(correct)-152 3792 y(nearest)h(neighbors\).)37 b(Moreo)o(v)o(er)m(,)25 b(it)d(captures)i(the)f(typical)g(situation)g (oc-)-152 3880 y(curring)18 b(in)f(real)g(life)f(similarity)g(search)i (applications,)g(in)f(which)g(there)h(are)-152 3967 y(fe)n(w)k(points)g (that)f(are)h(relati)n(v)o(ely)f(close)h(to)f(the)h(query)h(point,)f (and)g(most)g(of)-152 4054 y(the)d(database)h(points)g(lie)e(quite)h(f) o(ar)g(from)g(the)g(query)h(point.)-77 4141 y(F)o(or)f(our)g(e)o (xperiments)h(the)g(range)g Fn([)p Fl(\000)p Fq(a;)12 b(a)p Fn(])19 b Fr(w)o(as)h(set)f(to)g Fn([)p Fl(\000)p Fn(50)p Fq(;)14 b Fn(50])p Fr(.)25 b(The)-152 4228 y(total)19 b(number)i(of)f(data)f(points)h(w)o(as)g(v)n(aried)g(between)h Fn(10)1359 4197 y Fo(4)1413 4228 y Fr(and)f Fn(10)1616 4197 y Fo(5)1652 4228 y Fr(.)25 b(Both)-152 4315 y(our)15 b(algorithm)g(and)h(the)e Fq(k)r(d)p Fr(-tree)h(tak)o(e)g(as)f(input)h (the)g(approximation)h(f)o(actor)-152 4403 y Fq(c)23 b Fn(=)g(\(1)18 b(+)f Fq(\017)p Fn(\))p Fr(.)25 b(Ho)n(we)n(v)o(er)m(,) 20 b(in)g(addition)g(to)g Fq(c)f Fr(our)h(algorithm)g(also)g(requires) -152 4490 y(as)26 b(input)f(the)h(v)n(alue)g(of)f(the)g(distance)h Fq(R)g Fr(\(upper)g(bound\))h(to)e(the)g(nearest)-152 4577 y(neighbor)l(.)58 b(This)30 b(can)h(be)f(a)o(v)o(oided)g(by)h (guessing)g(the)g(v)n(alue)f(of)g Fq(R)h Fr(and)-152 4664 y(doing)19 b(a)g(binary)f(search.)24 b(W)-6 b(e)18 b(feel)f(that)h(for)h(most)f(real)g(life)f(applications)i(it)-152 4751 y(is)i(easy)h(to)g(guess)g(a)f(range)h(for)f Fq(R)h Fr(that)f(is)g(not)h(too)g(lar)o(ge.)30 b(As)21 b(a)g(result)h(the)-152 4838 y(additional)g(multiplicati)n(v)o(e)e(o)o(v)o(erhead)i(of)f(doing) g(a)g(binary)g(search)h(should)-152 4926 y(not)d(be)h(much)f(and)h (will)e(not)h(cancel)h(the)f(gains)g(that)f(we)h(report.)-77 5013 y Fd(Experimental)c(Results:)20 b Fr(W)-6 b(e)15 b(did)g(three)g(sets)g(of)g(e)o(xperiments)h(to)f(e)n(v)n(al-)-152 5100 y(uate)25 b(the)g(performance)h(of)f(our)g(algorithm)g(v)o(ersus)h (that)e(of)h Fq(k)r(d)p Fr(-tree:)35 b(we)-152 5187 y(increased)22 b(the)f(number)h Fq(n)f Fr(of)g(data)g(points,)g(the)g(dimensionality)h Fq(d)f Fr(of)g(the)-152 5274 y(data)h(set,)g(and)g(the)f(approximation) i(f)o(actor)f Fq(c)k Fn(=)g(\(1)20 b(+)e Fq(\017)p Fn(\))p Fr(.)31 b(In)21 b(each)h(set)g(of)-152 5362 y(e)o(xperiments)i(we)f (report)g(the)g(a)o(v)o(erage)g(query)h(processing)g(times)f(for)f(our) 2040 1962 y(algorithm)i(and)f(the)h Fq(k)r(d)p Fr(-tree)e(algorithm,)j (and)e(also)h(the)f(ratio)g(of)g(the)g(tw)o(o)2040 2049 y(\(\(a)o(v)o(erage)h(query)h(time)e(for)h Fq(k)r(d)p Fr(-tree\)/\()f(a)o(v)o(erage)h(query)h(time)e(for)h(our)g(al-)2040 2136 y(gorithm\)\),)d(i.e.)28 b(the)21 b(speedup)h(achie)n(v)o(ed)g(by) f(our)g(algorithm.)29 b(W)-6 b(e)20 b(ran)h(our)2040 2223 y(e)o(xperiments)g(on)f(a)g(Sun)f(w)o(orkstation)i(with)e(650)i (MHz)f(UltraSP)-7 b(ARC-IIi,)2040 2310 y(512KB)27 b(L2)g(cache)h (processor)m(,)h(ha)o(ving)e(no)h(special)f(support)g(for)g(v)o(ector) 2040 2398 y(computations,)20 b(with)f(512)g(MB)g(of)g(main)g(memory)-5 b(.)2115 2485 y(F)o(or)22 b(all)g(our)h(e)o(xperiments)h(we)e(set)h (the)f(parameters)h Fq(k)31 b Fn(=)d(10)23 b Fr(and)h Fq(`)k Fn(=)2040 2572 y(30)p Fr(.)e(Moreo)o(v)o(er)m(,)21 b(we)f(set)f(the)h(percentage)h(of)f(f)o(alse)g(ne)o(gati)n(v)o(es)g (that)f(we)h(can)2040 2659 y(tolerate)c(up)h(to)f Fn(10\045)h Fr(and)g(indeed)g(for)g(all)e(the)i(e)o(xperiments)g(that)f(we)g (report)2040 2746 y(belo)n(w)f(we)g(did)g(not)g(get)f(the)h(more)g (than)g Fn(7)p Fq(:)p Fn(5\045)h Fr(f)o(alse)f(ne)o(gati)n(v)o(es,)g (in)g(f)o(act)g(less)2040 2834 y(in)k(most)g(cases.)2115 2921 y(F)o(or)h(all)f(the)i(query)g(time)f(graphs)h(that)f(we)h (present,)f(the)h(curv)o(e)g(that)f(lies)2040 3008 y(abo)o(v)o(e)g(is)e (that)h(of)g Fq(k)r(d)p Fr(-tree)g(and)g(the)g(one)h(belo)n(w)f(is)g (for)g(our)g(algorithm.)2115 3095 y(F)o(or)29 b(the)g(\002rst)f(e)o (xperiment)i(we)g(\002x)o(ed)f Fq(\017)41 b Fn(=)g(1)p Fr(,)32 b Fq(d)41 b Fn(=)g(100)30 b Fr(and)g Fq(r)43 b Fn(=)2040 3182 y(4)p Fr(.)54 b(W)-6 b(e)28 b(v)n(aried)i(the)f (number)h(of)f(data)g(points)h(from)f Fn(10)3574 3150 y Fo(4)3638 3182 y Fr(to)g Fn(10)3801 3150 y Fo(5)3836 3182 y Fr(.)53 b(Fig-)2040 3269 y(ures)22 b(4\(a\))h(and)f(4\(b\))h (sho)n(w)f(the)g(processing)i(times)e(and)g(speedup)i(respec-)2040 3357 y(ti)n(v)o(ely)15 b(as)g Fq(n)g Fr(is)g(v)n(aried.)22 b(As)15 b(we)g(see)g(from)g(the)g(Figures,)g(the)g(speedup)i(seems)2040 3444 y(to)i(increase)g(linearly)g(with)g Fq(n)p Fr(.)2115 3531 y(F)o(or)g(the)h(second)i(e)o(xperiment)e(we)g(\002x)o(ed)g Fq(\017)k Fn(=)f(1)p Fr(,)d Fq(n)k Fn(=)f(10)3649 3499 y Fo(5)3704 3531 y Fr(and)e Fq(r)k Fn(=)f(4)p Fr(.)2040 3618 y(W)-6 b(e)22 b(v)n(aried)h(the)f(dimensionality)h(of)f(the)h (data)f(set)g(from)g Fn(20)h Fr(to)f Fn(500)p Fr(.)34 b(Fig-)2040 3705 y(ures)22 b(5\(a\))h(and)f(5\(b\))h(sho)n(w)f(the)g (processing)i(times)e(and)g(speedup)i(respec-)2040 3792 y(ti)n(v)o(ely)16 b(as)f Fq(d)g Fr(is)g(v)n(aried.)23 b(As)15 b(we)h(see)f(from)h(the)f(Figures,)h(the)g(speedup)h(seems)2040 3880 y(to)i(increase)g(with)g(the)g(dimension.)2115 3967 y(F)o(or)j(the)i(third)f(e)o(xperiment)h(we)f(\002x)o(ed)g Fq(n)30 b Fn(=)f(10)3399 3935 y Fo(5)3457 3967 y Fr(and)24 b Fq(d)29 b Fn(=)h(100)p Fr(.)36 b(The)2040 4054 y(approximation)19 b(f)o(actor)e Fn(\(1)10 b(+)g Fq(\017)p Fn(\))18 b Fr(w)o(as)f(v)n (aried)h(from)f Fn(1)p Fq(:)p Fn(5)h Fr(to)f Fn(4)p Fr(.)23 b(The)17 b(width)g Fq(r)2040 4141 y Fr(w)o(as)g(set)g(appropriately)h (as)f(a)g(function)h(of)f Fq(\017)p Fr(.)22 b(Figures)17 b(6\(a\))g(and)h(6\(b\))f(sho)n(w)2040 4228 y(the)i(processing)h(times) f(and)h(speedup)g(respecti)n(v)o(ely)g(as)f Fq(\017)f Fr(is)h(v)n(aried.)2040 4315 y Fd(Memory)29 b(Requir)o(ement:)40 b Fr(The)28 b(memory)h(requirement)g(for)g(our)f(algo-)2040 4403 y(rithm)e(equals)h(the)f(memory)h(to)f(store)g(the)g(data)g (points)h(themselv)o(es)g(and)2040 4490 y(the)i(memory)g(required)g(to) g(store)f(the)h(hash)g(tables.)52 b(From)28 b(our)h(e)o(xperi-)2040 4577 y(ments,)24 b(typical)f(v)n(alues)g(of)g Fq(k)h Fr(and)g Fq(l)f Fr(are)g Fn(10)g Fr(and)h Fn(30)f Fr(respecti)n(v)o (ely)-5 b(.)35 b(If)23 b(we)2040 4664 y(insert)17 b(each)h(point)g(in)f (the)h(hash)g(tables)f(along)h(with)f(their)g(hash)i(v)n(alues)f(and) 2040 4751 y(a)25 b(pointer)g(to)f(the)h(data)g(point)g(itself,)g(it)f (will)f(require)i Fq(l)e Fl(\001)f Fn(\()p Fq(k)h Fn(+)e(1\))k Fr(w)o(ords)2040 4838 y(\(int\))c(of)g(memory)-5 b(,)22 b(which)f(for)g(our)g(typical)g Fq(k)r(;)14 b(l)22 b Fr(v)n(alues)f(e)n(v)n(aluates)i(to)d Fn(330)2040 4926 y Fr(w)o(ords.)31 b(W)-6 b(e)21 b(can)h(reduce)g(the)g(memory)g (requirement)g(by)g(not)g(storing)f(the)2040 5013 y(hash)g(v)n(alue)f (e)o(xplicitly)g(as)g(concatenation)h(of)f Fq(k)i Fr(projections,)e(b)o (ut)g(instead)2040 5100 y(hash)j(these)f Fq(k)h Fr(v)n(alues)g(in)f (turn)f(to)h(get)g(a)g(single)g(w)o(ord)g(for)g(the)f(hash.)33 b(This)2040 5187 y(w)o(ould)16 b(reduce)g(the)f(memory)h(requirement)g (to)f Fq(l)t Fl(\001)r Fn(2)p Fr(,)g(i.e.)22 b Fn(60)15 b Fr(w)o(ords)h(per)f(data)2040 5274 y(point.)36 b(If)22 b(the)h(data)g(points)g(belong)h(to)f(a)g(high)h(dimensional)g(space)f (\(e.g.,)2040 5362 y(with)17 b Fn(500)h Fr(dimension)h(or)e(more\),)h (then)g(the)f(o)o(v)o(erhead)i(of)e(maintaining)h(the)p eop %%Page: 6 6 6 5 bop 103 -69 a gsave currentpoint currentpoint translate -90 neg rotate neg exch neg exch translate 103 -69 a @beginspecial 50 @llx 50 @lly 554 @urx 770 @ury 1587 @rwi 2126 @rhi @setspecial %%BeginDocument: c_var_l1.ps %!PS-Adobe-2.0 %%Title: c_var_l1.ps %%Creator: gnuplot 3.7 patchlevel 1 %%CreationDate: Tue Dec 3 22:52:05 2002 %%DocumentFonts: (atend) %%BoundingBox: 50 50 554 770 %%Orientation: Landscape %%Pages: (atend) %%EndComments /gnudict 256 dict def gnudict begin /Color false def /Solid false def /gnulinewidth 5.000 def /userlinewidth gnulinewidth def /vshift -46 def /dl {10 mul} def /hpt_ 31.5 def /vpt_ 31.5 def /hpt hpt_ def /vpt vpt_ def /M {moveto} bind def /L {lineto} bind def /R {rmoveto} bind def /V {rlineto} bind def /vpt2 vpt 2 mul def /hpt2 hpt 2 mul def /Lshow { currentpoint stroke M 0 vshift R show } def /Rshow { currentpoint stroke M dup stringwidth pop neg vshift R show } def /Cshow { currentpoint stroke M dup stringwidth pop -2 div vshift R show } def /UP { dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def } def /DL { Color {setrgbcolor Solid {pop []} if 0 setdash } {pop pop pop Solid {pop []} if 0 setdash} ifelse } def /BL { stroke userlinewidth 2 mul setlinewidth } def /AL { stroke userlinewidth 2 div setlinewidth } def /UL { dup gnulinewidth mul /userlinewidth exch def 10 mul /udl exch def } def /PL { stroke userlinewidth setlinewidth } def /LTb { BL [] 0 0 0 DL } def /LTa { AL [1 udl mul 2 udl mul] 0 setdash 0 0 0 setrgbcolor } def /LT0 { PL [] 1 0 0 DL } def /LT1 { PL [4 dl 2 dl] 0 1 0 DL } def /LT2 { PL [2 dl 3 dl] 0 0 1 DL } def /LT3 { PL [1 dl 1.5 dl] 1 0 1 DL } def /LT4 { PL [5 dl 2 dl 1 dl 2 dl] 0 1 1 DL } def /LT5 { PL [4 dl 3 dl 1 dl 3 dl] 1 1 0 DL } def /LT6 { PL [2 dl 2 dl 2 dl 4 dl] 0 0 0 DL } def /LT7 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 1 0.3 0 DL } def /LT8 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 0.5 0.5 0.5 DL } def /Pnt { stroke [] 0 setdash gsave 1 setlinecap M 0 0 V stroke grestore } def /Dia { stroke [] 0 setdash 2 copy vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke Pnt } def /Pls { stroke [] 0 setdash vpt sub M 0 vpt2 V currentpoint stroke M hpt neg vpt neg R hpt2 0 V stroke } def /Box { stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke Pnt } def /Crs { stroke [] 0 setdash exch hpt sub exch vpt add M hpt2 vpt2 neg V currentpoint stroke M hpt2 neg 0 R hpt2 vpt2 V stroke } def /TriU { stroke [] 0 setdash 2 copy vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke Pnt } def /Star { 2 copy Pls Crs } def /BoxF { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath fill } def /TriUF { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath fill } def /TriD { stroke [] 0 setdash 2 copy vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke Pnt } def /TriDF { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath fill} def /DiaF { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath fill } def /Pent { stroke [] 0 setdash 2 copy gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore Pnt } def /PentF { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath fill grestore } def /Circle { stroke [] 0 setdash 2 copy hpt 0 360 arc stroke Pnt } def /CircleF { stroke [] 0 setdash hpt 0 360 arc fill } def /C0 { BL [] 0 setdash 2 copy moveto vpt 90 450 arc } bind def /C1 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill vpt 0 360 arc closepath } bind def /C2 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath } bind def /C3 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill vpt 0 360 arc closepath } bind def /C4 { BL [] 0 setdash 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc closepath } bind def /C5 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc } bind def /C6 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 270 arc closepath fill vpt 0 360 arc closepath } bind def /C7 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 270 arc closepath fill vpt 0 360 arc closepath } bind def /C8 { BL [] 0 setdash 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath } bind def /C9 { BL [] 0 setdash 2 copy moveto 2 copy vpt 270 450 arc closepath fill vpt 0 360 arc closepath } bind def /C10 { BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath } bind def /C11 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath } bind def /C12 { BL [] 0 setdash 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath } bind def /C13 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath } bind def /C14 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 360 arc closepath fill vpt 0 360 arc } bind def /C15 { BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill vpt 0 360 arc closepath } bind def /Rec { newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto neg 0 rlineto closepath } bind def /Square { dup Rec } bind def /Bsquare { vpt sub exch vpt sub exch vpt2 Square } bind def /S0 { BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare } bind def /S1 { BL [] 0 setdash 2 copy vpt Square fill Bsquare } bind def /S2 { BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S3 { BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def /S4 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def /S5 { BL [] 0 setdash 2 copy 2 copy vpt Square fill exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def /S6 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare } bind def /S7 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill 2 copy vpt Square fill Bsquare } bind def /S8 { BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare } bind def /S9 { BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare } bind def /S10 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S11 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def /S12 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare } bind def /S13 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy vpt Square fill Bsquare } bind def /S14 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S15 { BL [] 0 setdash 2 copy Bsquare fill Bsquare } bind def /D0 { gsave translate 45 rotate 0 0 S0 stroke grestore } bind def /D1 { gsave translate 45 rotate 0 0 S1 stroke grestore } bind def /D2 { gsave translate 45 rotate 0 0 S2 stroke grestore } bind def /D3 { gsave translate 45 rotate 0 0 S3 stroke grestore } bind def /D4 { gsave translate 45 rotate 0 0 S4 stroke grestore } bind def /D5 { gsave translate 45 rotate 0 0 S5 stroke grestore } bind def /D6 { gsave translate 45 rotate 0 0 S6 stroke grestore } bind def /D7 { gsave translate 45 rotate 0 0 S7 stroke grestore } bind def /D8 { gsave translate 45 rotate 0 0 S8 stroke grestore } bind def /D9 { gsave translate 45 rotate 0 0 S9 stroke grestore } bind def /D10 { gsave translate 45 rotate 0 0 S10 stroke grestore } bind def /D11 { gsave translate 45 rotate 0 0 S11 stroke grestore } bind def /D12 { gsave translate 45 rotate 0 0 S12 stroke grestore } bind def /D13 { gsave translate 45 rotate 0 0 S13 stroke grestore } bind def /D14 { gsave translate 45 rotate 0 0 S14 stroke grestore } bind def /D15 { gsave translate 45 rotate 0 0 S15 stroke grestore } bind def /DiaE { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke } def /BoxE { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke } def /TriUE { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke } def /TriDE { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke } def /PentE { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore } def /CircE { stroke [] 0 setdash hpt 0 360 arc stroke } def /Opaque { gsave closepath 1 setgray fill grestore 0 setgray closepath } def /DiaW { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V Opaque stroke } def /BoxW { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V Opaque stroke } def /TriUW { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V Opaque stroke } def /TriDW { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V Opaque stroke } def /PentW { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat Opaque stroke grestore } def /CircW { stroke [] 0 setdash hpt 0 360 arc Opaque stroke } def /BoxFill { gsave Rec 1 setgray fill grestore } def end %%EndProlog %%Page: 1 1 gnudict begin gsave 50 50 translate 0.100 0.100 scale 90 rotate 0 -5040 translate 0 setgray newpath (Helvetica) findfont 140 scalefont setfont 1.000 UL LTb 630 420 M 63 0 V 6269 0 R -63 0 V 546 420 M (0) Rshow 630 865 M 63 0 V 6269 0 R -63 0 V 546 865 M (0.1) Rshow 630 1310 M 63 0 V 6269 0 R -63 0 V -6353 0 R (0.2) Rshow 630 1756 M 63 0 V 6269 0 R -63 0 V -6353 0 R (0.3) Rshow 630 2201 M 63 0 V 6269 0 R -63 0 V -6353 0 R (0.4) Rshow 630 2646 M 63 0 V 6269 0 R -63 0 V -6353 0 R (0.5) Rshow 630 3091 M 63 0 V 6269 0 R -63 0 V -6353 0 R (0.6) Rshow 630 3536 M 63 0 V 6269 0 R -63 0 V -6353 0 R (0.7) Rshow 630 3982 M 63 0 V 6269 0 R -63 0 V -6353 0 R (0.8) Rshow 630 4427 M 63 0 V 6269 0 R -63 0 V -6353 0 R (0.9) Rshow 630 4872 M 63 0 V 6269 0 R -63 0 V -6353 0 R (1) Rshow 963 420 M 0 63 V 0 4389 R 0 -63 V 963 280 M (2) Cshow 1630 420 M 0 63 V 0 4389 R 0 -63 V 0 -4529 R (4) Cshow 2296 420 M 0 63 V 0 4389 R 0 -63 V 0 -4529 R (6) Cshow 2963 420 M 0 63 V 0 4389 R 0 -63 V 0 -4529 R (8) Cshow 3629 420 M 0 63 V 0 4389 R 0 -63 V 0 -4529 R (10) Cshow 4296 420 M 0 63 V 0 4389 R 0 -63 V 0 -4529 R (12) Cshow 4962 420 M 0 63 V 0 4389 R 0 -63 V 0 -4529 R (14) Cshow 5629 420 M 0 63 V 0 4389 R 0 -63 V 0 -4529 R (16) Cshow 6295 420 M 0 63 V 0 4389 R 0 -63 V 0 -4529 R (18) Cshow 6962 420 M 0 63 V 0 4389 R 0 -63 V 0 -4529 R (20) Cshow 1.000 UL LTb 630 420 M 6332 0 V 0 4452 V -6332 0 V 630 420 L 140 2646 M currentpoint gsave translate 90 rotate 0 0 M (pxe) Cshow grestore 3796 70 M (c) Cshow 1.000 UL LT0 6311 4739 M (r=1.5) Rshow 6395 4739 M 399 0 V 630 4872 M 64 -493 V 64 -363 V 64 -279 V 64 -221 V 64 -180 V 64 -150 V 64 -126 V 64 -109 V 64 -93 V 64 -83 V 64 -73 V 64 -65 V 63 -58 V 64 -53 V 64 -48 V 64 -44 V 64 -40 V 64 -37 V 64 -35 V 64 -32 V 64 -30 V 64 -27 V 64 -27 V 64 -24 V 64 -23 V 64 -22 V 64 -21 V 64 -19 V 64 -19 V 64 -18 V 64 -16 V 64 -17 V 64 -15 V 64 -15 V 64 -14 V 64 -13 V 64 -13 V 63 -13 V 64 -11 V 64 -12 V 64 -11 V 64 -11 V 64 -10 V 64 -10 V 64 -10 V 64 -9 V 64 -9 V 64 -9 V 64 -9 V 64 -8 V 64 -8 V 64 -8 V 64 -7 V 64 -8 V 64 -7 V 64 -7 V 64 -7 V 64 -6 V 64 -7 V 64 -6 V 64 -6 V 63 -6 V 64 -6 V 64 -6 V 64 -5 V 64 -6 V 64 -5 V 64 -5 V 64 -6 V 64 -5 V 64 -5 V 64 -4 V 64 -5 V 64 -5 V 64 -4 V 64 -5 V 64 -4 V 64 -4 V 64 -4 V 64 -5 V 64 -4 V 64 -4 V 64 -4 V 64 -3 V 64 -4 V 64 -4 V 63 -3 V 64 -4 V 64 -4 V 64 -3 V 64 -3 V 64 -4 V 64 -3 V 64 -3 V 64 -4 V 64 -3 V 64 -3 V 64 -3 V 64 -3 V 1.000 UP 1.000 UL LT1 6311 4599 M (r=3.5) Rshow 6395 4599 M 399 0 V 630 4872 M 64 -548 V 64 -407 V 64 -315 V 64 -252 V 64 -205 V 64 -172 V 64 -145 V 64 -124 V 64 -108 V 64 -95 V 64 -83 V 64 -75 V 63 -66 V 64 -60 V 64 -55 V 64 -49 V 64 -46 V 64 -41 V 64 -39 V 64 -35 V 64 -33 V 64 -31 V 64 -28 V 64 -27 V 64 -25 V 64 -24 V 64 -22 V 64 -21 V 64 -19 V 64 -19 V 64 -18 V 64 -17 V 64 -16 V 64 -15 V 64 -15 V 64 -14 V 64 -13 V 63 -13 V 64 -12 V 64 -12 V 64 -11 V 64 -11 V 64 -10 V 64 -11 V 64 -9 V 64 -10 V 64 -9 V 64 -8 V 64 -9 V 64 -8 V 64 -8 V 64 -8 V 64 -7 V 64 -7 V 64 -7 V 64 -7 V 64 -7 V 64 -6 V 64 -6 V 64 -6 V 64 -6 V 63 -6 V 64 -5 V 64 -6 V 64 -5 V 64 -5 V 64 -6 V 64 -4 V 64 -5 V 64 -5 V 64 -5 V 64 -4 V 64 -5 V 64 -4 V 64 -4 V 64 -4 V 64 -4 V 64 -4 V 64 -4 V 64 -4 V 64 -4 V 64 -3 V 64 -4 V 64 -3 V 64 -4 V 64 -3 V 63 -4 V 64 -3 V 64 -3 V 64 -3 V 64 -3 V 64 -3 V 64 -3 V 64 -3 V 64 -3 V 64 -3 V 64 -3 V 64 -3 V 64 -2 V 630 4872 Pls 694 4324 Pls 758 3917 Pls 822 3602 Pls 886 3350 Pls 950 3145 Pls 1014 2973 Pls 1078 2828 Pls 1142 2704 Pls 1206 2596 Pls 1270 2501 Pls 1334 2418 Pls 1398 2343 Pls 1461 2277 Pls 1525 2217 Pls 1589 2162 Pls 1653 2113 Pls 1717 2067 Pls 1781 2026 Pls 1845 1987 Pls 1909 1952 Pls 1973 1919 Pls 2037 1888 Pls 2101 1860 Pls 2165 1833 Pls 2229 1808 Pls 2293 1784 Pls 2357 1762 Pls 2421 1741 Pls 2485 1722 Pls 2549 1703 Pls 2613 1685 Pls 2677 1668 Pls 2741 1652 Pls 2805 1637 Pls 2869 1622 Pls 2933 1608 Pls 2997 1595 Pls 3060 1582 Pls 3124 1570 Pls 3188 1558 Pls 3252 1547 Pls 3316 1536 Pls 3380 1526 Pls 3444 1515 Pls 3508 1506 Pls 3572 1496 Pls 3636 1487 Pls 3700 1479 Pls 3764 1470 Pls 3828 1462 Pls 3892 1454 Pls 3956 1446 Pls 4020 1439 Pls 4084 1432 Pls 4148 1425 Pls 4212 1418 Pls 4276 1411 Pls 4340 1405 Pls 4404 1399 Pls 4468 1393 Pls 4532 1387 Pls 4595 1381 Pls 4659 1376 Pls 4723 1370 Pls 4787 1365 Pls 4851 1360 Pls 4915 1354 Pls 4979 1350 Pls 5043 1345 Pls 5107 1340 Pls 5171 1335 Pls 5235 1331 Pls 5299 1326 Pls 5363 1322 Pls 5427 1318 Pls 5491 1314 Pls 5555 1310 Pls 5619 1306 Pls 5683 1302 Pls 5747 1298 Pls 5811 1294 Pls 5875 1291 Pls 5939 1287 Pls 6003 1284 Pls 6067 1280 Pls 6131 1277 Pls 6194 1273 Pls 6258 1270 Pls 6322 1267 Pls 6386 1264 Pls 6450 1261 Pls 6514 1258 Pls 6578 1255 Pls 6642 1252 Pls 6706 1249 Pls 6770 1246 Pls 6834 1243 Pls 6898 1240 Pls 6962 1238 Pls 6594 4599 Pls 1.000 UP 1.000 UL LT2 6311 4459 M (r=10) Rshow 630 4872 Crs 694 4298 Crs 758 3871 Crs 822 3540 Crs 886 3274 Crs 950 3057 Crs 1014 2874 Crs 1078 2719 Crs 1142 2586 Crs 1206 2469 Crs 1270 2367 Crs 1334 2276 Crs 1398 2195 Crs 1461 2122 Crs 1525 2056 Crs 1589 1997 Crs 1653 1942 Crs 1717 1892 Crs 1781 1845 Crs 1845 1803 Crs 1909 1763 Crs 1973 1726 Crs 2037 1692 Crs 2101 1660 Crs 2165 1630 Crs 2229 1602 Crs 2293 1575 Crs 2357 1551 Crs 2421 1527 Crs 2485 1505 Crs 2549 1484 Crs 2613 1464 Crs 2677 1445 Crs 2741 1427 Crs 2805 1410 Crs 2869 1393 Crs 2933 1378 Crs 2997 1363 Crs 3060 1348 Crs 3124 1335 Crs 3188 1322 Crs 3252 1309 Crs 3316 1297 Crs 3380 1286 Crs 3444 1274 Crs 3508 1264 Crs 3572 1253 Crs 3636 1243 Crs 3700 1234 Crs 3764 1225 Crs 3828 1216 Crs 3892 1207 Crs 3956 1199 Crs 4020 1191 Crs 4084 1183 Crs 4148 1175 Crs 4212 1168 Crs 4276 1161 Crs 4340 1154 Crs 4404 1147 Crs 4468 1141 Crs 4532 1134 Crs 4595 1128 Crs 4659 1122 Crs 4723 1116 Crs 4787 1111 Crs 4851 1105 Crs 4915 1100 Crs 4979 1095 Crs 5043 1090 Crs 5107 1085 Crs 5171 1080 Crs 5235 1075 Crs 5299 1071 Crs 5363 1066 Crs 5427 1062 Crs 5491 1057 Crs 5555 1053 Crs 5619 1049 Crs 5683 1045 Crs 5747 1041 Crs 5811 1037 Crs 5875 1034 Crs 5939 1030 Crs 6003 1026 Crs 6067 1023 Crs 6131 1019 Crs 6194 1016 Crs 6258 1013 Crs 6322 1009 Crs 6386 1006 Crs 6450 1003 Crs 6514 1000 Crs 6578 997 Crs 6642 994 Crs 6706 991 Crs 6770 988 Crs 6834 986 Crs 6898 983 Crs 6962 980 Crs 6594 4459 Crs 1.000 UL LT3 6311 4319 M (1/c) Rshow 6395 4319 M 399 0 V 630 4872 M 64 -717 V 64 -518 V 64 -392 V 64 -306 V 64 -247 V 64 -203 V 64 -169 V 64 -144 V 64 -124 V 64 -107 V 64 -94 V 64 -83 V 63 -74 V 64 -66 V 64 -60 V 64 -54 V 64 -50 V 64 -45 V 64 -41 V 64 -38 V 64 -35 V 64 -32 V 64 -31 V 64 -28 V 64 -26 V 64 -25 V 64 -23 V 64 -22 V 64 -20 V 64 -19 V 64 -18 V 64 -18 V 64 -16 V 64 -15 V 64 -15 V 64 -14 V 64 -13 V 63 -13 V 64 -12 V 64 -12 V 64 -11 V 64 -11 V 64 -10 V 64 -10 V 64 -9 V 64 -9 V 64 -9 V 64 -8 V 64 -8 V 64 -8 V 64 -7 V 64 -8 V 64 -6 V 64 -7 V 64 -7 V 64 -6 V 64 -6 V 64 -6 V 64 -6 V 64 -5 V 64 -6 V 63 -5 V 64 -5 V 64 -5 V 64 -5 V 64 -4 V 64 -5 V 64 -4 V 64 -4 V 64 -5 V 64 -4 V 64 -4 V 64 -3 V 64 -4 V 64 -4 V 64 -3 V 64 -4 V 64 -3 V 64 -4 V 64 -3 V 64 -3 V 64 -3 V 64 -3 V 64 -3 V 64 -3 V 64 -3 V 63 -2 V 64 -3 V 64 -3 V 64 -2 V 64 -3 V 64 -2 V 64 -3 V 64 -2 V 64 -3 V 64 -2 V 64 -2 V 64 -2 V 64 -2 V stroke grestore end showpage %%Trailer %%DocumentFonts: Helvetica %%Pages: 1 %%EndDocument @endspecial 1426 -69 a currentpoint grestore moveto 1426 -69 a 759 1397 a Fr(\(a\))19 b Fq(\032)f Fr(vs)h Fq(c)g Fr(for)g Fq(l)1185 1405 y Fo(1)2006 -69 y gsave currentpoint currentpoint translate -90 neg rotate neg exch neg exch translate 2006 -69 a @beginspecial 50 @llx 50 @lly 554 @urx 770 @ury 1587 @rwi 2126 @rhi @setspecial %%BeginDocument: c_var_l2.ps %!PS-Adobe-2.0 %%Title: c_var_l2.ps %%Creator: gnuplot 3.7 patchlevel 1 %%CreationDate: Tue Dec 3 22:48:58 2002 %%DocumentFonts: (atend) %%BoundingBox: 50 50 554 770 %%Orientation: Landscape %%Pages: (atend) %%EndComments /gnudict 256 dict def gnudict begin /Color false def /Solid false def /gnulinewidth 5.000 def /userlinewidth gnulinewidth def /vshift -46 def /dl {10 mul} def /hpt_ 31.5 def /vpt_ 31.5 def /hpt hpt_ def /vpt vpt_ def /M {moveto} bind def /L {lineto} bind def /R {rmoveto} bind def /V {rlineto} bind def /vpt2 vpt 2 mul def /hpt2 hpt 2 mul def /Lshow { currentpoint stroke M 0 vshift R show } def /Rshow { currentpoint stroke M dup stringwidth pop neg vshift R show } def /Cshow { currentpoint stroke M dup stringwidth pop -2 div vshift R show } def /UP { dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def } def /DL { Color {setrgbcolor Solid {pop []} if 0 setdash } {pop pop pop Solid {pop []} if 0 setdash} ifelse } def /BL { stroke userlinewidth 2 mul setlinewidth } def /AL { stroke userlinewidth 2 div setlinewidth } def /UL { dup gnulinewidth mul /userlinewidth exch def 10 mul /udl exch def } def /PL { stroke userlinewidth setlinewidth } def /LTb { BL [] 0 0 0 DL } def /LTa { AL [1 udl mul 2 udl mul] 0 setdash 0 0 0 setrgbcolor } def /LT0 { PL [] 1 0 0 DL } def /LT1 { PL [4 dl 2 dl] 0 1 0 DL } def /LT2 { PL [2 dl 3 dl] 0 0 1 DL } def /LT3 { PL [1 dl 1.5 dl] 1 0 1 DL } def /LT4 { PL [5 dl 2 dl 1 dl 2 dl] 0 1 1 DL } def /LT5 { PL [4 dl 3 dl 1 dl 3 dl] 1 1 0 DL } def /LT6 { PL [2 dl 2 dl 2 dl 4 dl] 0 0 0 DL } def /LT7 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 1 0.3 0 DL } def /LT8 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 0.5 0.5 0.5 DL } def /Pnt { stroke [] 0 setdash gsave 1 setlinecap M 0 0 V stroke grestore } def /Dia { stroke [] 0 setdash 2 copy vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke Pnt } def /Pls { stroke [] 0 setdash vpt sub M 0 vpt2 V currentpoint stroke M hpt neg vpt neg R hpt2 0 V stroke } def /Box { stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke Pnt } def /Crs { stroke [] 0 setdash exch hpt sub exch vpt add M hpt2 vpt2 neg V currentpoint stroke M hpt2 neg 0 R hpt2 vpt2 V stroke } def /TriU { stroke [] 0 setdash 2 copy vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke Pnt } def /Star { 2 copy Pls Crs } def /BoxF { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath fill } def /TriUF { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath fill } def /TriD { stroke [] 0 setdash 2 copy vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke Pnt } def /TriDF { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath fill} def /DiaF { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath fill } def /Pent { stroke [] 0 setdash 2 copy gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore Pnt } def /PentF { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath fill grestore } def /Circle { stroke [] 0 setdash 2 copy hpt 0 360 arc stroke Pnt } def /CircleF { stroke [] 0 setdash hpt 0 360 arc fill } def /C0 { BL [] 0 setdash 2 copy moveto vpt 90 450 arc } bind def /C1 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill vpt 0 360 arc closepath } bind def /C2 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath } bind def /C3 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill vpt 0 360 arc closepath } bind def /C4 { BL [] 0 setdash 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc closepath } bind def /C5 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc } bind def /C6 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 270 arc closepath fill vpt 0 360 arc closepath } bind def /C7 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 270 arc closepath fill vpt 0 360 arc closepath } bind def /C8 { BL [] 0 setdash 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath } bind def /C9 { BL [] 0 setdash 2 copy moveto 2 copy vpt 270 450 arc closepath fill vpt 0 360 arc closepath } bind def /C10 { BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath } bind def /C11 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath } bind def /C12 { BL [] 0 setdash 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath } bind def /C13 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath } bind def /C14 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 360 arc closepath fill vpt 0 360 arc } bind def /C15 { BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill vpt 0 360 arc closepath } bind def /Rec { newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto neg 0 rlineto closepath } bind def /Square { dup Rec } bind def /Bsquare { vpt sub exch vpt sub exch vpt2 Square } bind def /S0 { BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare } bind def /S1 { BL [] 0 setdash 2 copy vpt Square fill Bsquare } bind def /S2 { BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S3 { BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def /S4 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def /S5 { BL [] 0 setdash 2 copy 2 copy vpt Square fill exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def /S6 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare } bind def /S7 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill 2 copy vpt Square fill Bsquare } bind def /S8 { BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare } bind def /S9 { BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare } bind def /S10 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S11 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def /S12 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare } bind def /S13 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy vpt Square fill Bsquare } bind def /S14 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S15 { BL [] 0 setdash 2 copy Bsquare fill Bsquare } bind def /D0 { gsave translate 45 rotate 0 0 S0 stroke grestore } bind def /D1 { gsave translate 45 rotate 0 0 S1 stroke grestore } bind def /D2 { gsave translate 45 rotate 0 0 S2 stroke grestore } bind def /D3 { gsave translate 45 rotate 0 0 S3 stroke grestore } bind def /D4 { gsave translate 45 rotate 0 0 S4 stroke grestore } bind def /D5 { gsave translate 45 rotate 0 0 S5 stroke grestore } bind def /D6 { gsave translate 45 rotate 0 0 S6 stroke grestore } bind def /D7 { gsave translate 45 rotate 0 0 S7 stroke grestore } bind def /D8 { gsave translate 45 rotate 0 0 S8 stroke grestore } bind def /D9 { gsave translate 45 rotate 0 0 S9 stroke grestore } bind def /D10 { gsave translate 45 rotate 0 0 S10 stroke grestore } bind def /D11 { gsave translate 45 rotate 0 0 S11 stroke grestore } bind def /D12 { gsave translate 45 rotate 0 0 S12 stroke grestore } bind def /D13 { gsave translate 45 rotate 0 0 S13 stroke grestore } bind def /D14 { gsave translate 45 rotate 0 0 S14 stroke grestore } bind def /D15 { gsave translate 45 rotate 0 0 S15 stroke grestore } bind def /DiaE { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke } def /BoxE { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke } def /TriUE { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke } def /TriDE { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke } def /PentE { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore } def /CircE { stroke [] 0 setdash hpt 0 360 arc stroke } def /Opaque { gsave closepath 1 setgray fill grestore 0 setgray closepath } def /DiaW { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V Opaque stroke } def /BoxW { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V Opaque stroke } def /TriUW { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V Opaque stroke } def /TriDW { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V Opaque stroke } def /PentW { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat Opaque stroke grestore } def /CircW { stroke [] 0 setdash hpt 0 360 arc Opaque stroke } def /BoxFill { gsave Rec 1 setgray fill grestore } def end %%EndProlog %%Page: 1 1 gnudict begin gsave 50 50 translate 0.100 0.100 scale 90 rotate 0 -5040 translate 0 setgray newpath (Helvetica) findfont 140 scalefont setfont 1.000 UL LTb 630 420 M 63 0 V 6269 0 R -63 0 V 546 420 M (0) Rshow 630 865 M 63 0 V 6269 0 R -63 0 V 546 865 M (0.1) Rshow 630 1310 M 63 0 V 6269 0 R -63 0 V -6353 0 R (0.2) Rshow 630 1756 M 63 0 V 6269 0 R -63 0 V -6353 0 R (0.3) Rshow 630 2201 M 63 0 V 6269 0 R -63 0 V -6353 0 R (0.4) Rshow 630 2646 M 63 0 V 6269 0 R -63 0 V -6353 0 R (0.5) Rshow 630 3091 M 63 0 V 6269 0 R -63 0 V -6353 0 R (0.6) Rshow 630 3536 M 63 0 V 6269 0 R -63 0 V -6353 0 R (0.7) Rshow 630 3982 M 63 0 V 6269 0 R -63 0 V -6353 0 R (0.8) Rshow 630 4427 M 63 0 V 6269 0 R -63 0 V -6353 0 R (0.9) Rshow 630 4872 M 63 0 V 6269 0 R -63 0 V -6353 0 R (1) Rshow 963 420 M 0 63 V 0 4389 R 0 -63 V 963 280 M (2) Cshow 1630 420 M 0 63 V 0 4389 R 0 -63 V 0 -4529 R (4) Cshow 2296 420 M 0 63 V 0 4389 R 0 -63 V 0 -4529 R (6) Cshow 2963 420 M 0 63 V 0 4389 R 0 -63 V 0 -4529 R (8) Cshow 3629 420 M 0 63 V 0 4389 R 0 -63 V 0 -4529 R (10) Cshow 4296 420 M 0 63 V 0 4389 R 0 -63 V 0 -4529 R (12) Cshow 4962 420 M 0 63 V 0 4389 R 0 -63 V 0 -4529 R (14) Cshow 5629 420 M 0 63 V 0 4389 R 0 -63 V 0 -4529 R (16) Cshow 6295 420 M 0 63 V 0 4389 R 0 -63 V 0 -4529 R (18) Cshow 6962 420 M 0 63 V 0 4389 R 0 -63 V 0 -4529 R (20) Cshow 1.000 UL LTb 630 420 M 6332 0 V 0 4452 V -6332 0 V 630 420 L 140 2646 M currentpoint gsave translate 90 rotate 0 0 M (pxe) Cshow grestore 3796 70 M (c) Cshow 1.000 UL LT0 6311 4739 M (r=1.5) Rshow 6395 4739 M 399 0 V 630 4872 M 64 -719 V 64 -483 V 64 -343 V 64 -257 V 64 -199 V 64 -159 V 64 -131 V 64 -108 V 64 -92 V 64 -79 V 64 -69 V 64 -61 V 63 -54 V 64 -48 V 64 -43 V 64 -40 V 64 -35 V 64 -33 V 64 -30 V 64 -28 V 64 -26 V 64 -24 V 64 -23 V 64 -21 V 64 -19 V 64 -19 V 64 -17 V 64 -17 V 64 -15 V 64 -15 V 64 -14 V 64 -14 V 64 -12 V 64 -13 V 64 -11 V 64 -11 V 64 -11 V 63 -10 V 64 -10 V 64 -10 V 64 -9 V 64 -9 V 64 -8 V 64 -8 V 64 -8 V 64 -8 V 64 -7 V 64 -7 V 64 -7 V 64 -7 V 64 -6 V 64 -7 V 64 -6 V 64 -6 V 64 -6 V 64 -5 V 64 -6 V 64 -5 V 64 -5 V 64 -5 V 64 -5 V 63 -5 V 64 -5 V 64 -4 V 64 -5 V 64 -4 V 64 -4 V 64 -5 V 64 -4 V 64 -4 V 64 -4 V 64 -3 V 64 -4 V 64 -4 V 64 -3 V 64 -4 V 64 -3 V 64 -4 V 64 -3 V 64 -3 V 64 -4 V 64 -3 V 64 -3 V 64 -3 V 64 -3 V 64 -3 V 63 -3 V 64 -3 V 64 -2 V 64 -3 V 64 -3 V 64 -2 V 64 -3 V 64 -3 V 64 -2 V 64 -3 V 64 -2 V 64 -2 V 64 -3 V 1.000 UP 1.000 UL LT1 6311 4599 M (r=3.5) Rshow 6395 4599 M 399 0 V 630 4872 M 64 -815 V 64 -581 V 64 -430 V 64 -326 V 64 -252 V 64 -199 V 64 -160 V 64 -131 V 64 -109 V 64 -91 V 64 -77 V 64 -67 V 63 -58 V 64 -51 V 64 -45 V 64 -40 V 64 -36 V 64 -32 V 64 -29 V 64 -27 V 64 -24 V 64 -22 V 64 -21 V 64 -19 V 64 -18 V 64 -16 V 64 -15 V 64 -15 V 64 -13 V 64 -13 V 64 -12 V 64 -11 V 64 -10 V 64 -10 V 64 -10 V 64 -9 V 64 -9 V 63 -8 V 64 -8 V 64 -7 V 64 -7 V 64 -7 V 64 -7 V 64 -6 V 64 -6 V 64 -6 V 64 -6 V 64 -5 V 64 -5 V 64 -5 V 64 -5 V 64 -5 V 64 -4 V 64 -5 V 64 -4 V 64 -4 V 64 -4 V 64 -4 V 64 -4 V 64 -3 V 64 -4 V 63 -3 V 64 -4 V 64 -3 V 64 -3 V 64 -3 V 64 -3 V 64 -3 V 64 -3 V 64 -3 V 64 -3 V 64 -2 V 64 -3 V 64 -3 V 64 -2 V 64 -2 V 64 -3 V 64 -2 V 64 -2 V 64 -3 V 64 -2 V 64 -2 V 64 -2 V 64 -2 V 64 -2 V 64 -2 V 63 -2 V 64 -2 V 64 -2 V 64 -2 V 64 -1 V 64 -2 V 64 -2 V 64 -2 V 64 -1 V 64 -2 V 64 -2 V 64 -1 V 64 -2 V 630 4872 Pls 694 4057 Pls 758 3476 Pls 822 3046 Pls 886 2720 Pls 950 2468 Pls 1014 2269 Pls 1078 2109 Pls 1142 1978 Pls 1206 1869 Pls 1270 1778 Pls 1334 1701 Pls 1398 1634 Pls 1461 1576 Pls 1525 1525 Pls 1589 1480 Pls 1653 1440 Pls 1717 1404 Pls 1781 1372 Pls 1845 1343 Pls 1909 1316 Pls 1973 1292 Pls 2037 1270 Pls 2101 1249 Pls 2165 1230 Pls 2229 1212 Pls 2293 1196 Pls 2357 1181 Pls 2421 1166 Pls 2485 1153 Pls 2549 1140 Pls 2613 1128 Pls 2677 1117 Pls 2741 1107 Pls 2805 1097 Pls 2869 1087 Pls 2933 1078 Pls 2997 1069 Pls 3060 1061 Pls 3124 1053 Pls 3188 1046 Pls 3252 1039 Pls 3316 1032 Pls 3380 1025 Pls 3444 1019 Pls 3508 1013 Pls 3572 1007 Pls 3636 1001 Pls 3700 996 Pls 3764 991 Pls 3828 986 Pls 3892 981 Pls 3956 976 Pls 4020 972 Pls 4084 967 Pls 4148 963 Pls 4212 959 Pls 4276 955 Pls 4340 951 Pls 4404 947 Pls 4468 944 Pls 4532 940 Pls 4595 937 Pls 4659 933 Pls 4723 930 Pls 4787 927 Pls 4851 924 Pls 4915 921 Pls 4979 918 Pls 5043 915 Pls 5107 912 Pls 5171 909 Pls 5235 907 Pls 5299 904 Pls 5363 901 Pls 5427 899 Pls 5491 897 Pls 5555 894 Pls 5619 892 Pls 5683 890 Pls 5747 887 Pls 5811 885 Pls 5875 883 Pls 5939 881 Pls 6003 879 Pls 6067 877 Pls 6131 875 Pls 6194 873 Pls 6258 871 Pls 6322 869 Pls 6386 867 Pls 6450 866 Pls 6514 864 Pls 6578 862 Pls 6642 860 Pls 6706 859 Pls 6770 857 Pls 6834 855 Pls 6898 854 Pls 6962 852 Pls 6594 4599 Pls 1.000 UP 1.000 UL LT2 6311 4459 M (r=10) Rshow 630 4872 Crs 694 4124 Crs 758 3584 Crs 822 3175 Crs 886 2855 Crs 950 2597 Crs 1014 2386 Crs 1078 2208 Crs 1142 2058 Crs 1206 1929 Crs 1270 1816 Crs 1334 1718 Crs 1398 1631 Crs 1461 1554 Crs 1525 1486 Crs 1589 1424 Crs 1653 1369 Crs 1717 1319 Crs 1781 1274 Crs 1845 1234 Crs 1909 1197 Crs 1973 1163 Crs 2037 1132 Crs 2101 1103 Crs 2165 1077 Crs 2229 1053 Crs 2293 1031 Crs 2357 1011 Crs 2421 992 Crs 2485 974 Crs 2549 958 Crs 2613 942 Crs 2677 928 Crs 2741 915 Crs 2805 902 Crs 2869 890 Crs 2933 879 Crs 2997 869 Crs 3060 859 Crs 3124 850 Crs 3188 841 Crs 3252 832 Crs 3316 825 Crs 3380 817 Crs 3444 810 Crs 3508 803 Crs 3572 797 Crs 3636 790 Crs 3700 785 Crs 3764 779 Crs 3828 773 Crs 3892 768 Crs 3956 763 Crs 4020 759 Crs 4084 754 Crs 4148 750 Crs 4212 745 Crs 4276 741 Crs 4340 737 Crs 4404 734 Crs 4468 730 Crs 4532 726 Crs 4595 723 Crs 4659 720 Crs 4723 716 Crs 4787 713 Crs 4851 710 Crs 4915 708 Crs 4979 705 Crs 5043 702 Crs 5107 699 Crs 5171 697 Crs 5235 694 Crs 5299 692 Crs 5363 690 Crs 5427 687 Crs 5491 685 Crs 5555 683 Crs 5619 681 Crs 5683 679 Crs 5747 677 Crs 5811 675 Crs 5875 673 Crs 5939 671 Crs 6003 669 Crs 6067 668 Crs 6131 666 Crs 6194 664 Crs 6258 663 Crs 6322 661 Crs 6386 659 Crs 6450 658 Crs 6514 656 Crs 6578 655 Crs 6642 653 Crs 6706 652 Crs 6770 651 Crs 6834 649 Crs 6898 648 Crs 6962 647 Crs 6594 4459 Crs 1.000 UL LT3 6311 4319 M (1/c) Rshow 6395 4319 M 399 0 V 630 4872 M 64 -717 V 64 -518 V 64 -392 V 64 -306 V 64 -247 V 64 -203 V 64 -169 V 64 -144 V 64 -124 V 64 -107 V 64 -94 V 64 -83 V 63 -74 V 64 -66 V 64 -60 V 64 -54 V 64 -50 V 64 -45 V 64 -41 V 64 -38 V 64 -35 V 64 -32 V 64 -31 V 64 -28 V 64 -26 V 64 -25 V 64 -23 V 64 -22 V 64 -20 V 64 -19 V 64 -18 V 64 -18 V 64 -16 V 64 -15 V 64 -15 V 64 -14 V 64 -13 V 63 -13 V 64 -12 V 64 -12 V 64 -11 V 64 -11 V 64 -10 V 64 -10 V 64 -9 V 64 -9 V 64 -9 V 64 -8 V 64 -8 V 64 -8 V 64 -7 V 64 -8 V 64 -6 V 64 -7 V 64 -7 V 64 -6 V 64 -6 V 64 -6 V 64 -6 V 64 -5 V 64 -6 V 63 -5 V 64 -5 V 64 -5 V 64 -5 V 64 -4 V 64 -5 V 64 -4 V 64 -4 V 64 -5 V 64 -4 V 64 -4 V 64 -3 V 64 -4 V 64 -4 V 64 -3 V 64 -4 V 64 -3 V 64 -4 V 64 -3 V 64 -3 V 64 -3 V 64 -3 V 64 -3 V 64 -3 V 64 -3 V 63 -2 V 64 -3 V 64 -3 V 64 -2 V 64 -3 V 64 -2 V 64 -3 V 64 -2 V 64 -3 V 64 -2 V 64 -2 V 64 -2 V 64 -2 V stroke grestore end showpage %%Trailer %%DocumentFonts: Helvetica %%Pages: 1 %%EndDocument @endspecial 3329 -69 a currentpoint grestore moveto 3329 -69 a 2659 1397 a Fr(\(b\))g Fq(\032)g Fr(vs)g Fq(c)g Fr(for)f Fq(l)3089 1405 y Fo(2)1695 1638 y Fd(Figur)o(e)g(3:)23 b Fq(\032)c Fd(vs)g Fq(c)-152 1962 y Fr(hash)24 b(table)e(is)g(not)h(much)g(\(around)h Fn(12\045)f Fr(with)f(the)h(optimization)g(abo)o(v)o(e\))-152 2049 y(as)i(compared)h(to)f(storing)g(the)g(points)g(themselv)o(es.)41 b(Thus,)26 b(the)f(memory)-152 2136 y(o)o(v)o(erhead)c(of)e(our)g (algorithm)g(is)g(small.)-152 2338 y Fs(6.)100 b(CONCLUSIONS)-77 2446 y Fr(In)27 b(this)f(paper)i(we)f(present)g(a)g(ne)n(w)g(LSH)f (scheme)i(for)e(the)h(similarity)-152 2533 y(search)g(in)g (high-dimensional)h(spaces.)46 b(The)27 b(algorithm)g(is)f(easy)h(to)f (im-)-152 2620 y(plement,)g(and)e(generalizes)h(to)f(arbitrary)g Fq(l)1010 2628 y Fp(p)1069 2620 y Fr(norm,)i(for)d Fq(p)31 b Fl(2)g Fn([0)p Fq(;)14 b Fn(2])p Fr(.)38 b(W)-6 b(e)-152 2707 y(pro)o(vide)19 b(theoretical,)g(computational)g(and)g(e)o (xperimental)g(e)n(v)n(aluations)h(of)-152 2794 y(the)f(algorithm.)-77 2881 y(Although)d(the)e(e)o(xperimental)h(comparison)h(of)e(LSH)g(and)h (kd-tree-based)-152 2969 y(algorithm)20 b(suggests)h(that)f(the)f (former)h(outperforms)h(the)f(latter)m(,)f(there)h(are)-152 3056 y(se)n(v)o(eral)g(ca)o(v)o(eats)f(that)f(one)i(needs)g(to)f(k)o (eep)h(in)e(mind:)-41 3204 y Fl(\017)38 b Fr(W)-6 b(e)21 b(used)h(the)g(kd-tree)g(structure)g(\223as)f(is\224.)31 b(T)-6 b(weaking)22 b(its)f(parame-)35 3291 y(ters)e(w)o(ould)g(lik)o (ely)h(impro)o(v)o(e)f(its)f(performance.)-41 3440 y Fl(\017)38 b Fr(LSH)13 b(solv)o(es)i(the)g(decision)g(v)o(ersion)g(of)g (the)f(nearest)h(neighbor)h(prob-)35 3527 y(lem,)h(while)g(kd-tree)g (solv)o(es)g(the)g(optimization)h(v)o(ersion.)23 b(Although)35 3614 y(the)j(latter)g(reduces)h(to)f(the)h(former)m(,)h(the)e (reduction)h(o)o(v)o(erhead)h(in-)35 3702 y(creases)20 b(the)e(running)j(time.)-41 3851 y Fl(\017)38 b Fr(The)23 b(approximate)h(kd-tree)f(algorithm)f(can)i(be)e(ran)h(with)f(approx-) 35 3938 y(imation)30 b(parameter)h Fq(c)f Fr(that)f(is)h(much)h(lar)o (ger)e(than)i(the)f(intended)35 4025 y(approximation.)25 b(Although)19 b(the)g(resulting)g(algorithm)g(w)o(ould)g(pro-)35 4112 y(vide)c(v)o(ery)g(weak)g(guarantee)g(on)g(the)g(quality)g(of)f (the)g(returned)i(neigh-)35 4199 y(bor)m(,)21 b(typically)g(the)f (actual)h(error)f(is)g(much)h(smaller)f(than)h(the)g(guar)o(-)35 4287 y(antee.)-152 4488 y Fs(7.)100 b(REFERENCES)-114 4539 y Fr([1])37 b(C.)18 b(Aggarw)o(al)i(and)f(D.)f(K)n(eim)h(A.)g (Hinneb)o(ur)o(g.)g(On)g(the)g(surprising)10 4614 y(beha)o(vior)h(of)f (distance)g(metrics)g(in)g(high)g(dimensional)h(spaces.)10 4689 y Fm(Pr)m(oceedings)g(of)f(the)g(International)h(Confer)m(ence)g (on)g(Database)10 4763 y(Theory)p Fr(,)f(pages)h(420\226434,)h(2001.) -114 4846 y([2])37 b(S.)18 b(Arya)h(and)h(D.)e(Mount.)i(Ann:)j(Library) c(for)g(approximate)h(nearest)10 4921 y(neighbor)g(searching.)g Fm(available)g(at)10 4996 y Ft(http://www.cs.umd.edu/\\230mount/ANN/)p Fr(.)-114 5079 y([3])37 b(S.)18 b(Arya,)h(D.M.)f(Mount,)i(N.S.)d(Netan) o(yahu,)j(R.)e(Silv)o(erman,)h(and)10 5153 y(A.)f(W)l(u.)h(An)g (optimal)g(algorithm)g(for)g(approximate)h(nearest)10 5228 y(neighbor)g(searching.)g Fm(Pr)m(oceedings)g(of)f(the)g(F)m(ifth) e(Annual)10 5303 y(A)n(CM-SIAM)h(Symposium)i(on)g(Discr)m(ete)f (Algorithms)p Fr(,)f(pages)10 5378 y(573\226582,)j(1994.)2077 1962 y([4])38 b(K.)18 b(S.)g(Be)o(yer)m(,)h(J.)f(Goldstein,)h(R.)f (Ramakrishnan,)i(and)g(U.)e(Shaft.)2202 2036 y(When)h(is)g(nearest)g (neighbor)h(meaningful?)25 b Fm(Pr)m(oceedings)20 b(of)e(the)2202 2111 y(International)i(Confer)m(ence)g(on)g(Database)g(Theory)p Fr(,)f(pages)2202 2186 y(217\226235,)i(1999.)2077 2269 y([5])38 b(J.)18 b(Buhler)l(.)h(Ef)n(\002cient)f(lar)o(ge-scale)h (sequence)i(comparison)f(by)2202 2344 y(locality-sensiti)n(v)o(e)f (hashing.)h Fm(Bioinformatics)p Fr(,)f(17:419\226428,)2202 2418 y(2001.)2077 2501 y([6])38 b(J.)18 b(Buhler)l(.)h(Pro)o(v)n(ably)h (sensiti)n(v)o(e)f(inde)o(xing)h(strate)o(gies)f(for)2202 2576 y(biosequence)i(similarity)d(search.)h Fm(Pr)m(oceedings)h(of)f (the)g(Annual)2202 2651 y(International)h(Confer)m(ence)g(on)g (Computational)g(Molecular)2202 2726 y(Biolo)o(gy)f(\(RECOMB02\))p Fr(,)f(2002.)2077 2809 y([7])38 b(J.)18 b(Buhler)h(and)h(M.)f(T)-6 b(ompa.)19 b(Finding)g(motifs)g(using)g(random)2202 2883 y(projections.)g Fm(Pr)m(oceedings)h(of)f(the)g(Annual)h(International) 2202 2958 y(Confer)m(ence)g(on)g(Computational)g(Molecular)g(Biolo)o (gy)2202 3033 y(\(RECOMB01\))p Fr(,)e(2001.)2077 3116 y([8])38 b(J.)18 b(M.)h(Chambers,)g(C.)g(L.)f(Mallo)n(ws,)h(and)g(B.)f (W)-7 b(.)19 b(Stuck.)f(A)h(method)2202 3191 y(for)g(simulating)g (stable)g(random)h(v)n(ariables.)f Fm(J)n(.)g(Amer)-8 b(.)18 b(Statist.)2202 3265 y(Assoc.)p Fr(,)g(71:340\226344,)k(1976.) 2077 3348 y([9])38 b(K.)18 b(Clarkson.)h(Nearest)g(neighbor)i(queries)e (in)g(metric)f(spaces.)2202 3423 y Fm(Pr)m(oceedings)i(of)f(the)g(T)-6 b(wenty-Ninth)19 b(Annual)g(A)n(CM)f(Symposium)2202 3498 y(on)h(Theory)h(of)f(Computing)p Fr(,)g(pages)h(609\226617,)h(1997.) 2040 3581 y([10])38 b(E.)18 b(Cohen,)h(M.)g(Datar)m(,)g(S.)e(Fujiw)o (ara,)i(A.)f(Gionis,)h(P)-8 b(.)17 b(Indyk,)2202 3655 y(R.)h(Motw)o(ani,)i(J.)e(Ullman,)h(and)g(C.)f(Y)-7 b(ang.)19 b(Finding)g(interesting)2202 3730 y(associations)h(without)f(support)h (prunning.)g Fm(Pr)m(oceedings)g(of)e(the)2202 3805 y(16th)h (International)i(Confer)m(ence)f(on)f(Data)g(Engineering)h(\(ICDE\))p Fr(,)2202 3880 y(2000.)2040 3963 y([11])38 b(G.)18 b(Cormode,)i(P)-8 b(.)17 b(Indyk,)j(N.)e(K)m(oudas,)i(and)g(S.)e(Muthukrishnan.)2202 4037 y(F)o(ast)g(mining)h(of)g(massi)n(v)o(e)h(tab)o(ular)f(data)g(via) g(approximate)h(distance)2202 4112 y(computations.)g Fm(Pr)m(oc.)e(18th)i(International)g(Confer)m(ence)g(on)g(Data)2202 4187 y(Engineering)g(\(ICDE\))p Fr(,)d(2002.)2040 4270 y([12])38 b(T)-6 b(.)18 b(Darrell,)g(P)-8 b(.)18 b(Indyk,)i(G.)e (Shakhnaro)o(vich,)i(and)g(P)-8 b(.)18 b(V)l(iola.)2202 4345 y(Approximate)i(nearest)2202 4419 y(neighbors)e(methods)f(for)g (learning)g(and)g(vision.)f Fm(NIPS)g(W)-7 b(orkshop)18 b(at)2202 4494 y Ft(http://www.ai.mit.edu/projects/vip/nips)o(03ann)p Fr(,)2202 4569 y(2003.)2040 4652 y([13])38 b(B.)18 b(Geor)o(gescu,)i (I.)e(Shimshoni,)h(and)h(P)-8 b(.)17 b(Meer)l(.)i(Mean)h(shift)e(based) 2202 4726 y(clustering)h(in)g(high)h(dimensions:)k(A)19 b(te)o(xture)g(classi\002catio)f(n)2202 4801 y(e)o(xample.)h Fm(Pr)m(oceedings)h(of)f(the)g(9th)g(International)h(Confer)m(ence)h (on)2202 4876 y(Computer)e(V)-6 b(ision)p Fr(,)19 b(2003.)2040 4959 y([14])38 b(A.)18 b(Gionis,)h(P)-8 b(.)17 b(Indyk,)j(and)g(R.)e (Motw)o(ani.)h(Similarity)f(search)i(in)2202 5034 y(high)f(dimensions)i (via)e(hashing.)g Fm(Pr)m(oceedings)h(of)f(the)g(25th)2202 5108 y(International)h(Confer)m(ence)g(on)g(V)-8 b(ery)18 b(Lar)m(g)o(e)i(Data)f(Bases)g(\(VLDB\))p Fr(,)2202 5183 y(1999.)2040 5266 y([15])38 b(S.)18 b(Har)o(-Peled.)g(A)g(replacement)i (for)f(v)o(oronoi)h(diagrams)f(of)g(near)2202 5341 y(linear)g(size.)f Fm(Pr)m(oceedings)i(of)f(the)g(Symposium)h(on)f(F)-8 b(oundations)21 b(of)p eop %%Page: 7 7 7 6 bop 103 1254 a @beginspecial 70 @llx 196 @lly 549 @urx 589 @ury 2126 @rwi 1587 @rhi @setspecial %%BeginDocument: n_time.eps %!PS-Adobe-2.0 EPSF-1.2 %%Creator: MATLAB, The Mathworks, Inc. %%Title: /afs/athena.mit.edu/user/m/i/mirrokni/research/pstable/mayur/test2/n_time.eps %%CreationDate: 02/18/2003 03:22:14 %%DocumentNeededFonts: Helvetica %%DocumentProcessColors: Cyan Magenta Yellow Black %%Pages: 1 %%BoundingBox: 70 196 549 589 %%EndComments %%BeginProlog % MathWorks dictionary /MathWorks 160 dict begin % definition operators /bdef {bind def} bind def /ldef {load def} bind def /xdef {exch def} bdef /xstore {exch store} bdef % operator abbreviations /c /clip ldef /cc /concat ldef /cp /closepath ldef /gr /grestore ldef /gs /gsave ldef /mt /moveto ldef /np /newpath ldef /cm /currentmatrix ldef /sm /setmatrix ldef /rm /rmoveto ldef /rl /rlineto ldef /s {show newpath} bdef /sc {setcmykcolor} bdef /sr /setrgbcolor ldef /sg /setgray ldef /w /setlinewidth ldef /j /setlinejoin ldef /cap /setlinecap ldef /rc {rectclip} bdef /rf {rectfill} bdef % page state control /pgsv () def /bpage {/pgsv save def} bdef /epage {pgsv restore} bdef /bplot /gsave ldef /eplot {stroke grestore} bdef % orientation switch /portraitMode 0 def /landscapeMode 1 def /rotateMode 2 def % coordinate system mappings /dpi2point 0 def % font control /FontSize 0 def /FMS {/FontSize xstore findfont [FontSize 0 0 FontSize neg 0 0] makefont setfont} bdef /reencode {exch dup where {pop load} {pop StandardEncoding} ifelse exch dup 3 1 roll findfont dup length dict begin { 1 index /FID ne {def}{pop pop} ifelse } forall /Encoding exch def currentdict end definefont pop} bdef /isroman {findfont /CharStrings get /Agrave known} bdef /FMSR {3 1 roll 1 index dup isroman {reencode} {pop pop} ifelse exch FMS} bdef /csm {1 dpi2point div -1 dpi2point div scale neg translate dup landscapeMode eq {pop -90 rotate} {rotateMode eq {90 rotate} if} ifelse} bdef % line types: solid, dotted, dashed, dotdash /SO { [] 0 setdash } bdef /DO { [.5 dpi2point mul 4 dpi2point mul] 0 setdash } bdef /DA { [6 dpi2point mul] 0 setdash } bdef /DD { [.5 dpi2point mul 4 dpi2point mul 6 dpi2point mul 4 dpi2point mul] 0 setdash } bdef % macros for lines and objects /L {lineto stroke} bdef /MP {3 1 roll moveto 1 sub {rlineto} repeat} bdef /AP {{rlineto} repeat} bdef /PDlw -1 def /W {/PDlw currentlinewidth def setlinewidth} def /PP {closepath eofill} bdef /DP {closepath stroke} bdef /MR {4 -2 roll moveto dup 0 exch rlineto exch 0 rlineto neg 0 exch rlineto closepath} bdef /FR {MR stroke} bdef /PR {MR fill} bdef /L1i {{currentfile picstr readhexstring pop} image} bdef /tMatrix matrix def /MakeOval {newpath tMatrix currentmatrix pop translate scale 0 0 1 0 360 arc tMatrix setmatrix} bdef /FO {MakeOval stroke} bdef /PO {MakeOval fill} bdef /PD {currentlinewidth 2 div 0 360 arc fill PDlw -1 eq not {PDlw w /PDlw -1 def} if} def /FA {newpath tMatrix currentmatrix pop translate scale 0 0 1 5 -2 roll arc tMatrix setmatrix stroke} bdef /PA {newpath tMatrix currentmatrix pop translate 0 0 moveto scale 0 0 1 5 -2 roll arc closepath tMatrix setmatrix fill} bdef /FAn {newpath tMatrix currentmatrix pop translate scale 0 0 1 5 -2 roll arcn tMatrix setmatrix stroke} bdef /PAn {newpath tMatrix currentmatrix pop translate 0 0 moveto scale 0 0 1 5 -2 roll arcn closepath tMatrix setmatrix fill} bdef /vradius 0 def /hradius 0 def /lry 0 def /lrx 0 def /uly 0 def /ulx 0 def /rad 0 def /MRR {/vradius xdef /hradius xdef /lry xdef /lrx xdef /uly xdef /ulx xdef newpath tMatrix currentmatrix pop ulx hradius add uly vradius add translate hradius vradius scale 0 0 1 180 270 arc tMatrix setmatrix lrx hradius sub uly vradius add translate hradius vradius scale 0 0 1 270 360 arc tMatrix setmatrix lrx hradius sub lry vradius sub translate hradius vradius scale 0 0 1 0 90 arc tMatrix setmatrix ulx hradius add lry vradius sub translate hradius vradius scale 0 0 1 90 180 arc tMatrix setmatrix closepath} bdef /FRR {MRR stroke } bdef /PRR {MRR fill } bdef /MlrRR {/lry xdef /lrx xdef /uly xdef /ulx xdef /rad lry uly sub 2 div def newpath tMatrix currentmatrix pop ulx rad add uly rad add translate rad rad scale 0 0 1 90 270 arc tMatrix setmatrix lrx rad sub lry rad sub translate rad rad scale 0 0 1 270 90 arc tMatrix setmatrix closepath} bdef /FlrRR {MlrRR stroke } bdef /PlrRR {MlrRR fill } bdef /MtbRR {/lry xdef /lrx xdef /uly xdef /ulx xdef /rad lrx ulx sub 2 div def newpath tMatrix currentmatrix pop ulx rad add uly rad add translate rad rad scale 0 0 1 180 360 arc tMatrix setmatrix lrx rad sub lry rad sub translate rad rad scale 0 0 1 0 180 arc tMatrix setmatrix closepath} bdef /FtbRR {MtbRR stroke } bdef /PtbRR {MtbRR fill } bdef /stri 6 array def /dtri 6 array def /smat 6 array def /dmat 6 array def /tmat1 6 array def /tmat2 6 array def /dif 3 array def /asub {/ind2 exch def /ind1 exch def dup dup ind1 get exch ind2 get sub exch } bdef /tri_to_matrix { 2 0 asub 3 1 asub 4 0 asub 5 1 asub dup 0 get exch 1 get 7 -1 roll astore } bdef /compute_transform { dmat dtri tri_to_matrix tmat1 invertmatrix smat stri tri_to_matrix tmat2 concatmatrix } bdef /ds {stri astore pop} bdef /dt {dtri astore pop} bdef /db {2 copy /cols xdef /rows xdef mul dup string currentfile exch readhexstring pop /bmap xdef pop pop} bdef /it {gs np dtri aload pop moveto lineto lineto cp c cols rows 8 compute_transform {bmap} image gr}bdef /il {newpath moveto lineto stroke}bdef currentdict end def %%EndProlog %%BeginSetup MathWorks begin 0 cap end %%EndSetup %%Page: 1 1 %%BeginPageSetup %%PageBoundingBox: 70 196 549 589 MathWorks begin bpage %%EndPageSetup %%BeginObject: obj1 bplot /dpi2point 12 def portraitMode 0216 7344 csm 631 274 5746 4716 MR c np 91 dict begin %Colortable dictionary /c0 { 0 0 0 sr} bdef /c1 { 1 1 1 sr} bdef /c2 { 1 0 0 sr} bdef /c3 { 0 1 0 sr} bdef /c4 { 0 0 1 sr} bdef /c5 { 1 1 0 sr} bdef /c6 { 1 0 1 sr} bdef /c7 { 0 1 1 sr} bdef c0 1 j 1 sg 0 0 6913 5186 PR 6 w 0 4226 5356 0 0 -4226 899 4615 4 MP PP -5356 0 0 4226 5356 0 0 -4226 899 4615 5 MP stroke 4 w DO SO 6 w 0 sg 899 4615 mt 6255 4615 L 899 389 mt 6255 389 L 899 4615 mt 899 389 L 6255 4615 mt 6255 389 L 899 4615 mt 6255 4615 L 899 4615 mt 899 389 L 899 4615 mt 899 4561 L 899 389 mt 899 442 L %%IncludeResource: font Helvetica /Helvetica /ISOLatin1Encoding 120 FMSR 866 4760 mt (1) s 1494 4615 mt 1494 4561 L 1494 389 mt 1494 442 L 1461 4760 mt (2) s 2089 4615 mt 2089 4561 L 2089 389 mt 2089 442 L 2056 4760 mt (3) s 2684 4615 mt 2684 4561 L 2684 389 mt 2684 442 L 2651 4760 mt (4) s 3279 4615 mt 3279 4561 L 3279 389 mt 3279 442 L 3246 4760 mt (5) s 3874 4615 mt 3874 4561 L 3874 389 mt 3874 442 L 3841 4760 mt (6) s 4469 4615 mt 4469 4561 L 4469 389 mt 4469 442 L 4436 4760 mt (7) s 5064 4615 mt 5064 4561 L 5064 389 mt 5064 442 L 5031 4760 mt (8) s 5659 4615 mt 5659 4561 L 5659 389 mt 5659 442 L 5626 4760 mt (9) s 6255 4615 mt 6255 4561 L 6255 389 mt 6255 442 L 6189 4760 mt (10) s 5985 4962 mt (x 10) s %%IncludeResource: font Helvetica /Helvetica /ISOLatin1Encoding 80 FMSR 6211 4888 mt (4) s 899 4615 mt 952 4615 L 6255 4615 mt 6201 4615 L %%IncludeResource: font Helvetica /Helvetica /ISOLatin1Encoding 120 FMSR 798 4659 mt (0) s 899 4011 mt 952 4011 L 6255 4011 mt 6201 4011 L 631 4055 mt (0.02) s 899 3407 mt 952 3407 L 6255 3407 mt 6201 3407 L 631 3451 mt (0.04) s 899 2803 mt 952 2803 L 6255 2803 mt 6201 2803 L 631 2847 mt (0.06) s 899 2200 mt 952 2200 L 6255 2200 mt 6201 2200 L 631 2244 mt (0.08) s 899 1596 mt 952 1596 L 6255 1596 mt 6201 1596 L 698 1640 mt (0.1) s 899 992 mt 952 992 L 6255 992 mt 6201 992 L 631 1036 mt (0.12) s 899 389 mt 952 389 L 6255 389 mt 6201 389 L 631 433 mt (0.14) s 899 4615 mt 6255 4615 L 899 389 mt 6255 389 L 899 4615 mt 899 389 L 6255 4615 mt 6255 389 L gs 899 389 5357 4227 MR c np 596 -767 595 -262 595 -535 595 -184 595 -383 595 -353 595 -302 595 -344 595 -323 899 4273 10 MP stroke gr 863 4273 mt 935 4273 L 899 4237 mt 899 4309 L 1458 3950 mt 1530 3950 L 1494 3914 mt 1494 3986 L 2053 3606 mt 2125 3606 L 2089 3570 mt 2089 3642 L 2648 3304 mt 2720 3304 L 2684 3268 mt 2684 3340 L 3243 2951 mt 3315 2951 L 3279 2915 mt 3279 2987 L 3838 2568 mt 3910 2568 L 3874 2532 mt 3874 2604 L 4433 2384 mt 4505 2384 L 4469 2348 mt 4469 2420 L 5028 1849 mt 5100 1849 L 5064 1813 mt 5064 1885 L 5623 1587 mt 5695 1587 L 5659 1551 mt 5659 1623 L 6219 820 mt 6291 820 L 6255 784 mt 6255 856 L gs 899 389 5357 4227 MR c np 596 0 595 -12 595 -6 595 -3 595 -9 595 -6 595 -9 595 -6 595 -3 899 4536 10 MP stroke gr 36 36 899 4536 FO 36 36 1494 4533 FO 36 36 2089 4527 FO 36 36 2684 4518 FO 36 36 3279 4512 FO 36 36 3874 4503 FO 36 36 4469 4500 FO 36 36 5064 4494 FO 36 36 5659 4482 FO 36 36 6255 4482 FO gs 899 389 5357 4227 MR c np gr end eplot %%EndObject epage end showpage %%Trailer %%EOF %%EndDocument @endspecial 703 1424 a Fr(\(a\))18 b(query)i(time)f(vs)g Fq(n)2006 1254 y @beginspecial 78 @llx 196 @lly 548 @urx 589 @ury 2126 @rwi 1587 @rhi @setspecial %%BeginDocument: n_speedup.eps %!PS-Adobe-2.0 EPSF-1.2 %%Creator: MATLAB, The Mathworks, Inc. %%Title: /afs/athena.mit.edu/user/m/i/mirrokni/research/pstable/mayur/test2/n_speedup.eps %%CreationDate: 02/18/2003 03:22:56 %%DocumentNeededFonts: Helvetica %%DocumentProcessColors: Cyan Magenta Yellow Black %%Pages: 1 %%BoundingBox: 78 196 548 589 %%EndComments %%BeginProlog % MathWorks dictionary /MathWorks 160 dict begin % definition operators /bdef {bind def} bind def /ldef {load def} bind def /xdef {exch def} bdef /xstore {exch store} bdef % operator abbreviations /c /clip ldef /cc /concat ldef /cp /closepath ldef /gr /grestore ldef /gs /gsave ldef /mt /moveto ldef /np /newpath ldef /cm /currentmatrix ldef /sm /setmatrix ldef /rm /rmoveto ldef /rl /rlineto ldef /s {show newpath} bdef /sc {setcmykcolor} bdef /sr /setrgbcolor ldef /sg /setgray ldef /w /setlinewidth ldef /j /setlinejoin ldef /cap /setlinecap ldef /rc {rectclip} bdef /rf {rectfill} bdef % page state control /pgsv () def /bpage {/pgsv save def} bdef /epage {pgsv restore} bdef /bplot /gsave ldef /eplot {stroke grestore} bdef % orientation switch /portraitMode 0 def /landscapeMode 1 def /rotateMode 2 def % coordinate system mappings /dpi2point 0 def % font control /FontSize 0 def /FMS {/FontSize xstore findfont [FontSize 0 0 FontSize neg 0 0] makefont setfont} bdef /reencode {exch dup where {pop load} {pop StandardEncoding} ifelse exch dup 3 1 roll findfont dup length dict begin { 1 index /FID ne {def}{pop pop} ifelse } forall /Encoding exch def currentdict end definefont pop} bdef /isroman {findfont /CharStrings get /Agrave known} bdef /FMSR {3 1 roll 1 index dup isroman {reencode} {pop pop} ifelse exch FMS} bdef /csm {1 dpi2point div -1 dpi2point div scale neg translate dup landscapeMode eq {pop -90 rotate} {rotateMode eq {90 rotate} if} ifelse} bdef % line types: solid, dotted, dashed, dotdash /SO { [] 0 setdash } bdef /DO { [.5 dpi2point mul 4 dpi2point mul] 0 setdash } bdef /DA { [6 dpi2point mul] 0 setdash } bdef /DD { [.5 dpi2point mul 4 dpi2point mul 6 dpi2point mul 4 dpi2point mul] 0 setdash } bdef % macros for lines and objects /L {lineto stroke} bdef /MP {3 1 roll moveto 1 sub {rlineto} repeat} bdef /AP {{rlineto} repeat} bdef /PDlw -1 def /W {/PDlw currentlinewidth def setlinewidth} def /PP {closepath eofill} bdef /DP {closepath stroke} bdef /MR {4 -2 roll moveto dup 0 exch rlineto exch 0 rlineto neg 0 exch rlineto closepath} bdef /FR {MR stroke} bdef /PR {MR fill} bdef /L1i {{currentfile picstr readhexstring pop} image} bdef /tMatrix matrix def /MakeOval {newpath tMatrix currentmatrix pop translate scale 0 0 1 0 360 arc tMatrix setmatrix} bdef /FO {MakeOval stroke} bdef /PO {MakeOval fill} bdef /PD {currentlinewidth 2 div 0 360 arc fill PDlw -1 eq not {PDlw w /PDlw -1 def} if} def /FA {newpath tMatrix currentmatrix pop translate scale 0 0 1 5 -2 roll arc tMatrix setmatrix stroke} bdef /PA {newpath tMatrix currentmatrix pop translate 0 0 moveto scale 0 0 1 5 -2 roll arc closepath tMatrix setmatrix fill} bdef /FAn {newpath tMatrix currentmatrix pop translate scale 0 0 1 5 -2 roll arcn tMatrix setmatrix stroke} bdef /PAn {newpath tMatrix currentmatrix pop translate 0 0 moveto scale 0 0 1 5 -2 roll arcn closepath tMatrix setmatrix fill} bdef /vradius 0 def /hradius 0 def /lry 0 def /lrx 0 def /uly 0 def /ulx 0 def /rad 0 def /MRR {/vradius xdef /hradius xdef /lry xdef /lrx xdef /uly xdef /ulx xdef newpath tMatrix currentmatrix pop ulx hradius add uly vradius add translate hradius vradius scale 0 0 1 180 270 arc tMatrix setmatrix lrx hradius sub uly vradius add translate hradius vradius scale 0 0 1 270 360 arc tMatrix setmatrix lrx hradius sub lry vradius sub translate hradius vradius scale 0 0 1 0 90 arc tMatrix setmatrix ulx hradius add lry vradius sub translate hradius vradius scale 0 0 1 90 180 arc tMatrix setmatrix closepath} bdef /FRR {MRR stroke } bdef /PRR {MRR fill } bdef /MlrRR {/lry xdef /lrx xdef /uly xdef /ulx xdef /rad lry uly sub 2 div def newpath tMatrix currentmatrix pop ulx rad add uly rad add translate rad rad scale 0 0 1 90 270 arc tMatrix setmatrix lrx rad sub lry rad sub translate rad rad scale 0 0 1 270 90 arc tMatrix setmatrix closepath} bdef /FlrRR {MlrRR stroke } bdef /PlrRR {MlrRR fill } bdef /MtbRR {/lry xdef /lrx xdef /uly xdef /ulx xdef /rad lrx ulx sub 2 div def newpath tMatrix currentmatrix pop ulx rad add uly rad add translate rad rad scale 0 0 1 180 360 arc tMatrix setmatrix lrx rad sub lry rad sub translate rad rad scale 0 0 1 0 180 arc tMatrix setmatrix closepath} bdef /FtbRR {MtbRR stroke } bdef /PtbRR {MtbRR fill } bdef /stri 6 array def /dtri 6 array def /smat 6 array def /dmat 6 array def /tmat1 6 array def /tmat2 6 array def /dif 3 array def /asub {/ind2 exch def /ind1 exch def dup dup ind1 get exch ind2 get sub exch } bdef /tri_to_matrix { 2 0 asub 3 1 asub 4 0 asub 5 1 asub dup 0 get exch 1 get 7 -1 roll astore } bdef /compute_transform { dmat dtri tri_to_matrix tmat1 invertmatrix smat stri tri_to_matrix tmat2 concatmatrix } bdef /ds {stri astore pop} bdef /dt {dtri astore pop} bdef /db {2 copy /cols xdef /rows xdef mul dup string currentfile exch readhexstring pop /bmap xdef pop pop} bdef /it {gs np dtri aload pop moveto lineto lineto cp c cols rows 8 compute_transform {bmap} image gr}bdef /il {newpath moveto lineto stroke}bdef currentdict end def %%EndProlog %%BeginSetup MathWorks begin 0 cap end %%EndSetup %%Page: 1 1 %%BeginPageSetup %%PageBoundingBox: 78 196 548 589 MathWorks begin bpage %%EndPageSetup %%BeginObject: obj1 bplot /dpi2point 12 def portraitMode 0216 7344 csm 731 274 5640 4716 MR c np 91 dict begin %Colortable dictionary /c0 { 0 0 0 sr} bdef /c1 { 1 1 1 sr} bdef /c2 { 1 0 0 sr} bdef /c3 { 0 1 0 sr} bdef /c4 { 0 0 1 sr} bdef /c5 { 1 1 0 sr} bdef /c6 { 1 0 1 sr} bdef /c7 { 0 1 1 sr} bdef c0 1 j 1 sg 0 0 6913 5186 PR 6 w 0 4226 5356 0 0 -4226 899 4615 4 MP PP -5356 0 0 4226 5356 0 0 -4226 899 4615 5 MP stroke 4 w DO SO 6 w 0 sg 899 4615 mt 6255 4615 L 899 389 mt 6255 389 L 899 4615 mt 899 389 L 6255 4615 mt 6255 389 L 899 4615 mt 6255 4615 L 899 4615 mt 899 389 L 899 4615 mt 899 4561 L 899 389 mt 899 442 L %%IncludeResource: font Helvetica /Helvetica /ISOLatin1Encoding 120 FMSR 866 4760 mt (1) s 1494 4615 mt 1494 4561 L 1494 389 mt 1494 442 L 1461 4760 mt (2) s 2089 4615 mt 2089 4561 L 2089 389 mt 2089 442 L 2056 4760 mt (3) s 2684 4615 mt 2684 4561 L 2684 389 mt 2684 442 L 2651 4760 mt (4) s 3279 4615 mt 3279 4561 L 3279 389 mt 3279 442 L 3246 4760 mt (5) s 3874 4615 mt 3874 4561 L 3874 389 mt 3874 442 L 3841 4760 mt (6) s 4469 4615 mt 4469 4561 L 4469 389 mt 4469 442 L 4436 4760 mt (7) s 5064 4615 mt 5064 4561 L 5064 389 mt 5064 442 L 5031 4760 mt (8) s 5659 4615 mt 5659 4561 L 5659 389 mt 5659 442 L 5626 4760 mt (9) s 6255 4615 mt 6255 4561 L 6255 389 mt 6255 442 L 6189 4760 mt (10) s 5985 4962 mt (x 10) s %%IncludeResource: font Helvetica /Helvetica /ISOLatin1Encoding 80 FMSR 6211 4888 mt (4) s 899 4615 mt 952 4615 L 6255 4615 mt 6201 4615 L %%IncludeResource: font Helvetica /Helvetica /ISOLatin1Encoding 120 FMSR 798 4659 mt (0) s 899 3910 mt 952 3910 L 6255 3910 mt 6201 3910 L 798 3954 mt (5) s 899 3206 mt 952 3206 L 6255 3206 mt 6201 3206 L 731 3250 mt (10) s 899 2502 mt 952 2502 L 6255 2502 mt 6201 2502 L 731 2546 mt (15) s 899 1797 mt 952 1797 L 6255 1797 mt 6201 1797 L 731 1841 mt (20) s 899 1093 mt 952 1093 L 6255 1093 mt 6201 1093 L 731 1137 mt (25) s 899 389 mt 952 389 L 6255 389 mt 6201 389 L 731 433 mt (30) s 899 4615 mt 6255 4615 L 899 389 mt 6255 389 L 899 4615 mt 899 389 L 6255 4615 mt 6255 389 L gs 899 389 5357 4227 MR c np 596 -813 595 14 595 -486 595 -158 595 -299 595 -372 595 -288 595 -475 595 -535 899 4002 10 MP stroke gr end eplot %%EndObject epage end showpage %%Trailer %%EOF %%EndDocument @endspecial 2641 1424 a Fr(\(b\))g(speedup)i(vs)e Fq(n)1410 1666 y Fd(Figur)o(e)f(4:)23 b(Gain)c(as)g(data)g(size)g(v)o(aries)10 1990 y Fm(Computer)h(Science)p Fr(,)f(2001.)-152 2073 y([16])38 b(T)-6 b(.)19 b(Ha)o(v)o(eliw)o(ala,)f(A.)g(Gionis,)h(and)g (P)-8 b(.)18 b(Indyk.)i(Scalable)f(techniques)10 2148 y(for)g(clustering)g(the)g(web)m(.)g Fm(W)-7 b(ebDB)19 b(W)-7 b(orkshop)p Fr(,)21 b(2000.)-152 2231 y([17])38 b(A.)18 b(Hinneb)o(ur)o(g,)i(C.)e(C.)g(Aggarw)o(al,)h(and)g(D.)g(A.)f (K)n(eim.)h(What)f(is)h(the)10 2306 y(nearest)g(neighbor)i(in)e(high)g (dimensional)h(spaces?)k Fm(Pr)m(oceedings)c(of)10 2381 y(the)f(International)h(Confer)m(ence)h(on)e(V)-8 b(ery)18 b(Lar)m(g)o(e)i(Databases)10 2455 y(\(VLDB\))p Fr(,)d(pages)j (506\226515,)h(2000.)-152 2538 y([18])38 b(P)-8 b(.)18 b(Indyk.)h(Stable)g(distrib)o(utions,)f(pseudorandom)k(generators,)10 2613 y(embeddings)e(and)f(data)g(stream)f(computation.)h Fm(Pr)m(oceedings)g(of)g(the)10 2688 y(Symposium)h(on)g(F)-8 b(oundations)20 b(of)f(Computer)h(Science)p Fr(,)f(2000.)-152 2771 y([19])38 b(P)-8 b(.)18 b(Indyk)i(and)f(R.)g(Motw)o(ani.)g (Approximate)h(nearest)f(neighbor:)10 2846 y(to)n(w)o(ards)h(remo)o (ving)g(the)f(curse)g(of)g(dimensionality)-5 b(.)20 b Fm(Pr)m(oceedings)10 2920 y(of)f(the)g(Symposium)h(on)f(Theory)h(of)f (Computing)p Fr(,)g(1998.)-152 3003 y([20])38 b(P)-8 b(.)18 b(Indyk)i(and)f(N.)g(Thaper)l(.)g(F)o(ast)f(color)h(image)g (retrie)n(v)n(al)g(via)10 3078 y(embeddings.)i Fm(W)-7 b(orkshop)20 b(on)g(Statistical)e(and)i(Computational)10 3153 y(Theories)f(of)g(V)-6 b(ision)19 b(\(at)g(ICCV\))p Fr(,)e(2003.)-152 3236 y([21])38 b(D.)18 b(Kar)o(ger)h(and)h(M)f(Ruhl.) g(Finding)g(nearest)g(neighbors)h(in)10 3310 y(gro)n(wth-restricted)g (metrics.)e Fm(Pr)m(oceedings)i(of)f(the)g(Symposium)h(on)10 3385 y(Theory)g(of)e(Computing)p Fr(,)i(2002.)-152 3468 y([22])38 b(J.)19 b(Kleinber)o(g.)f(T)-6 b(w)o(o)19 b(algorithms)h(for) e(nearest-neighbor)j(search)f(in)10 3543 y(high)g(dimensions.)f Fm(Pr)m(oceedings)h(of)f(the)g(T)-6 b(wenty-Ninth)19 b(Annual)10 3618 y(A)n(CM)f(Symposium)i(on)g(Theory)f(of)g(Computing)p Fr(,)g(1997.)-152 3701 y([23])38 b(R.)18 b(Krauthgamer)i(and)f(J.)g(R.) f(Lee.)g(Na)o(vigating)h(nets:)24 b(Simple)10 3775 y(algorithms)19 b(for)g(proximity)h(search.)f Fm(Pr)m(oceedings)h(of)f(the)10 3850 y(A)n(CM-SIAM)f(Symposium)i(on)g(Discr)m(ete)f(Algorithms)p Fr(,)f(2004.)-152 3933 y([24])38 b(E.)18 b(K)o(ushile)n(vitz,)h(R.)f (Ostro)o(vsk)o(y)-5 b(,)20 b(and)f(Y)-10 b(.)19 b(Rabani.)g(Ef)n (\002cient)f(search)10 4008 y(for)h(approximate)h(nearest)f(neighbor)i (in)e(high)g(dimensional)10 4083 y(spaces.)h Fm(Pr)m(oceedings)f(of)g (the)g(Thirtieth)f(A)n(CM)h(Symposium)h(on)10 4157 y(Theory)g(of)e (Computing)p Fr(,)i(pages)g(614\226623,)h(1998.)-152 4240 y([25])38 b(J.)19 b(P)-8 b(.)17 b(Nolan.)i(An)g(introduction)h(to) f(stable)g(distrib)o(utions.)f Fm(available)10 4315 y(at)10 4390 y Ft(http://www.cas.american.edu/\\230jpnolan/cha)o(p1.ps)p Fr(.)-152 4473 y([26])38 b(Z.)18 b(Ouyang,)i(N.)e(Memon,)i(T)-6 b(.)19 b(Suel,)f(and)h(D.)g(T)m(renda\002lo)o(v)-5 b(.)10 4547 y(Cluster)o(-based)19 b(delta)g(compression)i(of)d(collections)i (of)f(\002les.)10 4622 y Fm(Pr)m(oceedings)h(of)f(the)g(International)h (Confer)m(ence)g(on)g(W)-7 b(eb)10 4697 y(Information)20 b(Systems)f(Engineering)h(\(WISE\))p Fr(,)e(2002.)-152 4780 y([27])38 b(N.)18 b(Shi)n(v)n(akumar)l(.)i Fm(Detecting)f(digital) g(copyright)h(violations)g(on)f(the)10 4855 y(Internet)g(\(Ph.D.)f (thesis\))p Fr(.)h(Department)g(of)g(Computer)h(Science,)10 4929 y(Stanford)f(Uni)n(v)o(ersity)-5 b(,)19 b(2000.)-152 5012 y([28])38 b(Roger)19 b(W)-6 b(eber)m(,)19 b(Hans)g(J.)g(Schek,)g (and)g(Stephen)h(Blott.)d(A)10 5087 y(quantitati)n(v)o(e)j(analysis)f (and)h(performance)g(study)g(for)10 5162 y(similarity-search)f(methods) h(in)f(high-dimensional)h(spaces.)10 5237 y Fm(Pr)m(oceedings)g(of)f (the)g(24th)g(Int.)g(Conf)o(.)f(V)-8 b(ery)19 b(Lar)m(g)o(e)g(Data)h (Bases)10 5311 y(\(VLDB\))p Fr(,)d(1998.)2040 1990 y([29])38 b(C.)18 b(Y)-7 b(ang.)19 b(Macs:)24 b(Music)19 b(audio)h (characteristic)f(sequence)2202 2065 y(inde)o(xing)h(for)f(similarity)f (retrie)n(v)n(al.)h Fm(Pr)m(oceedings)g(of)g(the)2202 2140 y(W)-7 b(orkshop)21 b(on)e(Applications)h(of)e(Signal)i(Pr)m (ocessing)f(to)g(A)o(udio)g(and)2202 2215 y(Acoustics)p Fr(,)g(2001.)2040 2298 y([30])38 b(P)-8 b(.N.)17 b(Y)l(iannilos.)i (Locally)f(lifting)g(the)h(curse)g(of)g(dimensionality)h(for)2202 2372 y(nearest)f(neighbor)i(search.)e Fm(Pr)m(oceedings)h(of)e(the)h(A) n(CM-SIAM)2202 2447 y(Symposium)h(on)f(Discr)m(ete)g(Algorithms)p Fr(,)g(2000.)2040 2530 y([31])38 b(V)-10 b(.M.)19 b(Zolotare)n(v)-5 b(.)19 b Fm(One-Dimensional)h(Stable)f(Distrib)o(utions)p Fr(.)g(V)-10 b(ol.)2202 2605 y(65)19 b(of)g(T)m(ranslations)h(of)f (Mathematical)g(Monographs,)i(American)2202 2679 y(Mathematical)e (Society)-5 b(,)19 b(1986.)2040 3043 y Fs(APPENDIX)2040 3192 y(A.)100 b(GR)m(O)-5 b(WTH\255RESTRICTED)25 b(D)m(A)-9 b(T)g(A)24 b(SETS)2115 3300 y Fr(In)d(this)h(section)g(we)g(focus)g(e)o (xclusi)n(v)o(ely)g(on)h(data)f(sets)f(li)n(ving)h(in)g(the)f Fq(l)3996 3268 y Fp(d)3995 3313 y Fo(2)2040 3387 y Fr(norm.)2115 3474 y(Consider)28 b(a)g(data)g(set)g Fq(P)11 b Fr(,)29 b(query)g Fq(q)s Fr(,)g(and)g(let)e Fq(p)g Fr(be)h(the)g(closest)g (point)2040 3561 y(in)23 b Fq(P)34 b Fr(to)23 b Fq(q)s Fr(.)37 b(Assume)23 b(we)h(kno)n(w)g(the)f(distance)h Fl(k)p Fq(p)d Fl(\000)f Fq(q)s Fl(k)p Fr(,)k(in)f(which)h(case)2040 3649 y(we)j(can)g(assume)g(that)g(it)f(is)g(equal)h(to)g Fn(1)p Fr(,)h(by)f(scaling)3483 3617 y Fa(1)3513 3649 y Fr(.)46 b(F)o(or)26 b Fq(c)37 b Fl(\025)e Fn(1)p Fr(,)29 b(let)2040 3736 y Fq(P)11 b Fn(\()p Fq(q)s(;)i(c)p Fn(\))21 b(=)g Fq(P)28 b Fl(\\)17 b Fq(B)t Fn(\()p Fq(q)s(;)c(c)p Fn(\))19 b Fr(and)h(let)e Fq(N)8 b Fn(\()p Fq(q)s(;)13 b(c)p Fn(\))22 b(=)f Fl(j)p Fq(P)11 b Fn(\()p Fq(q)s(;)i(c)p Fn(\))p Fl(j)p Fr(.)2115 3823 y(W)-6 b(e)22 b(consider)i(a)f (\223single)h(shot\224)f(LSH)f(algorithm,)j(i.e.,)d(that)h(uses)h(only) 2040 3910 y Fq(L)37 b Fn(=)g(1)27 b Fr(indices,)i(b)o(ut)e(e)o(xamines) h(all)f(points)g(in)g(the)g(b)o(uck)o(et)h(containing)2040 3997 y Fq(q)s Fr(.)47 b(W)-6 b(e)27 b(use)g(the)g(parameters)g Fq(k)39 b Fn(=)e Fq(r)h Fn(=)e Fq(T)24 b Fn(log)15 b Fq(n)p Fr(,)28 b(for)f(some)h(constant)2040 4085 y Fq(T)k(>)21 b Fn(1)p Fr(.)h(This)17 b(implies)f(that)h(the)g(hash)g(function)h(can) f(be)g(e)n(v)n(aluated)h(in)f(time)2040 4172 y Fq(O)r Fn(\(log)f Fq(n)p Fn(\))p Fr(.)2125 4458 y(T)t Fg(H)t(E)t(O)t(R)t(E)t (M)41 b Fr(2.)c Fm(If)27 b Fq(N)8 b Fn(\()p Fq(q)s(;)13 b(c)p Fn(\))38 b(=)f Fq(O)r Fn(\()p Fq(c)3146 4426 y Fp(b)3179 4458 y Fn(\))27 b Fm(for)g(some)h Fq(b)38 b(>)f Fn(1)p Fm(,)29 b(then)f(the)2040 4545 y(\223single)e(shot\224)f(LSH)h (algorithm)g(\002nds)h Fq(p)e Fm(with)g(constant)i(pr)m(obability)f(in) 2040 4632 y(e)o(xpected)20 b(time)e Fq(d)p Fn(\(log)d Fq(n)i Fn(+)g(2)2826 4601 y Fp(O)r Fo(\()p Fp(b)p Fo(\))2954 4632 y Fn(\))p Fm(.)2040 4919 y Fd(Pr)o(oof:)36 b Fr(F)o(or)25 b(an)o(y)h(point)g Fq(p)2756 4887 y Ff(0)2804 4919 y Fr(such)g(that)f Fl(k)p Fq(p)3180 4887 y Ff(0)3225 4919 y Fl(\000)c Fq(q)s Fl(k)35 b Fn(=)e Fq(c)p Fr(,)27 b(the)f(probability) 2040 5006 y(that)20 b Fq(h)p Fn(\()p Fq(p)2285 4974 y Ff(0)2307 5006 y Fn(\))j(=)g Fq(h)p Fn(\()p Fq(q)s Fn(\))d Fr(is)g(equal)g(to)g Fq(p)p Fn(\()p Fq(c)p Fn(\))j(=)3171 4946 y Fj(R)3223 4966 y Fp(r)3208 5033 y Fo(0)3280 4975 y(1)p 3280 4989 31 4 v 3281 5031 a Fp(c)3320 5006 y Fq(f)3357 5014 y Fo(2)3392 5006 y Fn(\()3434 4975 y Fp(t)p 3432 4989 28 4 v 3432 5031 a(c)3470 5006 y Fn(\)\(1)18 b Fl(\000)3677 4975 y Fp(t)p 3674 4989 31 4 v 3674 5031 a(r)3714 5006 y Fn(\))p Fq(dt)p Fr(,)h(where)p 2040 5216 797 4 v 2048 5271 a Fa(1)2077 5303 y Fr(Similar)h(guarantees)j(can)e(be)g(pro)o(v)o (ed)h(when)g(we)f(only)h(kno)n(w)g(a)f(constant)2040 5378 y(approximation)g(to)d(the)h(distance.)p eop %%Page: 8 8 8 7 bop 103 1254 a @beginspecial 76 @llx 213 @lly 551 @urx 589 @ury 2126 @rwi 1587 @rhi @setspecial %%BeginDocument: dim_time.eps %!PS-Adobe-2.0 EPSF-1.2 %%Creator: MATLAB, The Mathworks, Inc. %%Title: /afs/athena.mit.edu/user/m/i/mirrokni/research/pstable/mayur/dim_report/dim_time.eps %%CreationDate: 02/18/2003 04:15:08 %%DocumentNeededFonts: Helvetica %%DocumentProcessColors: Cyan Magenta Yellow Black %%Pages: 1 %%BoundingBox: 76 213 551 589 %%EndComments %%BeginProlog % MathWorks dictionary /MathWorks 160 dict begin % definition operators /bdef {bind def} bind def /ldef {load def} bind def /xdef {exch def} bdef /xstore {exch store} bdef % operator abbreviations /c /clip ldef /cc /concat ldef /cp /closepath ldef /gr /grestore ldef /gs /gsave ldef /mt /moveto ldef /np /newpath ldef /cm /currentmatrix ldef /sm /setmatrix ldef /rm /rmoveto ldef /rl /rlineto ldef /s {show newpath} bdef /sc {setcmykcolor} bdef /sr /setrgbcolor ldef /sg /setgray ldef /w /setlinewidth ldef /j /setlinejoin ldef /cap /setlinecap ldef /rc {rectclip} bdef /rf {rectfill} bdef % page state control /pgsv () def /bpage {/pgsv save def} bdef /epage {pgsv restore} bdef /bplot /gsave ldef /eplot {stroke grestore} bdef % orientation switch /portraitMode 0 def /landscapeMode 1 def /rotateMode 2 def % coordinate system mappings /dpi2point 0 def % font control /FontSize 0 def /FMS {/FontSize xstore findfont [FontSize 0 0 FontSize neg 0 0] makefont setfont} bdef /reencode {exch dup where {pop load} {pop StandardEncoding} ifelse exch dup 3 1 roll findfont dup length dict begin { 1 index /FID ne {def}{pop pop} ifelse } forall /Encoding exch def currentdict end definefont pop} bdef /isroman {findfont /CharStrings get /Agrave known} bdef /FMSR {3 1 roll 1 index dup isroman {reencode} {pop pop} ifelse exch FMS} bdef /csm {1 dpi2point div -1 dpi2point div scale neg translate dup landscapeMode eq {pop -90 rotate} {rotateMode eq {90 rotate} if} ifelse} bdef % line types: solid, dotted, dashed, dotdash /SO { [] 0 setdash } bdef /DO { [.5 dpi2point mul 4 dpi2point mul] 0 setdash } bdef /DA { [6 dpi2point mul] 0 setdash } bdef /DD { [.5 dpi2point mul 4 dpi2point mul 6 dpi2point mul 4 dpi2point mul] 0 setdash } bdef % macros for lines and objects /L {lineto stroke} bdef /MP {3 1 roll moveto 1 sub {rlineto} repeat} bdef /AP {{rlineto} repeat} bdef /PDlw -1 def /W {/PDlw currentlinewidth def setlinewidth} def /PP {closepath eofill} bdef /DP {closepath stroke} bdef /MR {4 -2 roll moveto dup 0 exch rlineto exch 0 rlineto neg 0 exch rlineto closepath} bdef /FR {MR stroke} bdef /PR {MR fill} bdef /L1i {{currentfile picstr readhexstring pop} image} bdef /tMatrix matrix def /MakeOval {newpath tMatrix currentmatrix pop translate scale 0 0 1 0 360 arc tMatrix setmatrix} bdef /FO {MakeOval stroke} bdef /PO {MakeOval fill} bdef /PD {currentlinewidth 2 div 0 360 arc fill PDlw -1 eq not {PDlw w /PDlw -1 def} if} def /FA {newpath tMatrix currentmatrix pop translate scale 0 0 1 5 -2 roll arc tMatrix setmatrix stroke} bdef /PA {newpath tMatrix currentmatrix pop translate 0 0 moveto scale 0 0 1 5 -2 roll arc closepath tMatrix setmatrix fill} bdef /FAn {newpath tMatrix currentmatrix pop translate scale 0 0 1 5 -2 roll arcn tMatrix setmatrix stroke} bdef /PAn {newpath tMatrix currentmatrix pop translate 0 0 moveto scale 0 0 1 5 -2 roll arcn closepath tMatrix setmatrix fill} bdef /vradius 0 def /hradius 0 def /lry 0 def /lrx 0 def /uly 0 def /ulx 0 def /rad 0 def /MRR {/vradius xdef /hradius xdef /lry xdef /lrx xdef /uly xdef /ulx xdef newpath tMatrix currentmatrix pop ulx hradius add uly vradius add translate hradius vradius scale 0 0 1 180 270 arc tMatrix setmatrix lrx hradius sub uly vradius add translate hradius vradius scale 0 0 1 270 360 arc tMatrix setmatrix lrx hradius sub lry vradius sub translate hradius vradius scale 0 0 1 0 90 arc tMatrix setmatrix ulx hradius add lry vradius sub translate hradius vradius scale 0 0 1 90 180 arc tMatrix setmatrix closepath} bdef /FRR {MRR stroke } bdef /PRR {MRR fill } bdef /MlrRR {/lry xdef /lrx xdef /uly xdef /ulx xdef /rad lry uly sub 2 div def newpath tMatrix currentmatrix pop ulx rad add uly rad add translate rad rad scale 0 0 1 90 270 arc tMatrix setmatrix lrx rad sub lry rad sub translate rad rad scale 0 0 1 270 90 arc tMatrix setmatrix closepath} bdef /FlrRR {MlrRR stroke } bdef /PlrRR {MlrRR fill } bdef /MtbRR {/lry xdef /lrx xdef /uly xdef /ulx xdef /rad lrx ulx sub 2 div def newpath tMatrix currentmatrix pop ulx rad add uly rad add translate rad rad scale 0 0 1 180 360 arc tMatrix setmatrix lrx rad sub lry rad sub translate rad rad scale 0 0 1 0 180 arc tMatrix setmatrix closepath} bdef /FtbRR {MtbRR stroke } bdef /PtbRR {MtbRR fill } bdef /stri 6 array def /dtri 6 array def /smat 6 array def /dmat 6 array def /tmat1 6 array def /tmat2 6 array def /dif 3 array def /asub {/ind2 exch def /ind1 exch def dup dup ind1 get exch ind2 get sub exch } bdef /tri_to_matrix { 2 0 asub 3 1 asub 4 0 asub 5 1 asub dup 0 get exch 1 get 7 -1 roll astore } bdef /compute_transform { dmat dtri tri_to_matrix tmat1 invertmatrix smat stri tri_to_matrix tmat2 concatmatrix } bdef /ds {stri astore pop} bdef /dt {dtri astore pop} bdef /db {2 copy /cols xdef /rows xdef mul dup string currentfile exch readhexstring pop /bmap xdef pop pop} bdef /it {gs np dtri aload pop moveto lineto lineto cp c cols rows 8 compute_transform {bmap} image gr}bdef /il {newpath moveto lineto stroke}bdef currentdict end def %%EndProlog %%BeginSetup MathWorks begin 0 cap end %%EndSetup %%Page: 1 1 %%BeginPageSetup %%PageBoundingBox: 76 213 551 589 MathWorks begin bpage %%EndPageSetup %%BeginObject: obj1 bplot /dpi2point 12 def portraitMode 0216 7344 csm 698 274 5706 4514 MR c np 91 dict begin %Colortable dictionary /c0 { 0 0 0 sr} bdef /c1 { 1 1 1 sr} bdef /c2 { 1 0 0 sr} bdef /c3 { 0 1 0 sr} bdef /c4 { 0 0 1 sr} bdef /c5 { 1 1 0 sr} bdef /c6 { 1 0 1 sr} bdef /c7 { 0 1 1 sr} bdef c0 1 j 1 sg 0 0 6913 5186 PR 6 w 0 4226 5356 0 0 -4226 899 4615 4 MP PP -5356 0 0 4226 5356 0 0 -4226 899 4615 5 MP stroke 4 w DO SO 6 w 0 sg 899 4615 mt 6255 4615 L 899 389 mt 6255 389 L 899 4615 mt 899 389 L 6255 4615 mt 6255 389 L 899 4615 mt 6255 4615 L 899 4615 mt 899 389 L 899 4615 mt 899 4561 L 899 389 mt 899 442 L %%IncludeResource: font Helvetica /Helvetica /ISOLatin1Encoding 120 FMSR 866 4760 mt (0) s 1434 4615 mt 1434 4561 L 1434 389 mt 1434 442 L 1368 4760 mt (50) s 1970 4615 mt 1970 4561 L 1970 389 mt 1970 442 L 1870 4760 mt (100) s 2505 4615 mt 2505 4561 L 2505 389 mt 2505 442 L 2405 4760 mt (150) s 3041 4615 mt 3041 4561 L 3041 389 mt 3041 442 L 2941 4760 mt (200) s 3577 4615 mt 3577 4561 L 3577 389 mt 3577 442 L 3477 4760 mt (250) s 4112 4615 mt 4112 4561 L 4112 389 mt 4112 442 L 4012 4760 mt (300) s 4648 4615 mt 4648 4561 L 4648 389 mt 4648 442 L 4548 4760 mt (350) s 5183 4615 mt 5183 4561 L 5183 389 mt 5183 442 L 5083 4760 mt (400) s 5719 4615 mt 5719 4561 L 5719 389 mt 5719 442 L 5619 4760 mt (450) s 6255 4615 mt 6255 4561 L 6255 389 mt 6255 442 L 6155 4760 mt (500) s 899 4615 mt 952 4615 L 6255 4615 mt 6201 4615 L 798 4659 mt (0) s 899 4011 mt 952 4011 L 6255 4011 mt 6201 4011 L 698 4055 mt (0.1) s 899 3407 mt 952 3407 L 6255 3407 mt 6201 3407 L 698 3451 mt (0.2) s 899 2803 mt 952 2803 L 6255 2803 mt 6201 2803 L 698 2847 mt (0.3) s 899 2200 mt 952 2200 L 6255 2200 mt 6201 2200 L 698 2244 mt (0.4) s 899 1596 mt 952 1596 L 6255 1596 mt 6201 1596 L 698 1640 mt (0.5) s 899 992 mt 952 992 L 6255 992 mt 6201 992 L 698 1036 mt (0.6) s 899 389 mt 952 389 L 6255 389 mt 6201 389 L 698 433 mt (0.7) s 899 4615 mt 6255 4615 L 899 389 mt 6255 389 L 899 4615 mt 899 389 L 6255 4615 mt 6255 389 L gs 899 389 5357 4227 MR c np 3214 -52 1071 -18 536 -7 321 0 1113 4595 5 MP stroke gr 1077 4595 mt 1149 4595 L 1113 4559 mt 1113 4631 L 1398 4595 mt 1470 4595 L 1434 4559 mt 1434 4631 L 1934 4588 mt 2006 4588 L 1970 4552 mt 1970 4624 L 3005 4570 mt 3077 4570 L 3041 4534 mt 3041 4606 L 6219 4518 mt 6291 4518 L 6255 4482 mt 6255 4554 L gs 899 389 5357 4227 MR c np 3214 -1898 1071 -578 536 -627 321 0 1113 4483 5 MP stroke gr 36 36 1113 4483 FO 36 36 1434 4483 FO 36 36 1970 3856 FO 36 36 3041 3278 FO 36 36 6255 1380 FO gs 899 389 5357 4227 MR c np gr end eplot %%EndObject epage end showpage %%Trailer %%EOF %%EndDocument @endspecial 570 1424 a Fr(\(a\))19 b(query)h(time)e(vs)h(dimension) 2006 1254 y @beginspecial 78 @llx 213 @lly 551 @urx 589 @ury 2126 @rwi 1587 @rhi @setspecial %%BeginDocument: dim_speedup.eps %!PS-Adobe-2.0 EPSF-1.2 %%Creator: MATLAB, The Mathworks, Inc. %%Title: /afs/athena.mit.edu/user/m/i/mirrokni/research/pstable/mayur/dim_report/dim_speedup.eps %%CreationDate: 02/18/2003 04:16:13 %%DocumentNeededFonts: Helvetica %%DocumentProcessColors: Cyan Magenta Yellow Black %%Pages: 1 %%BoundingBox: 78 213 551 589 %%EndComments %%BeginProlog % MathWorks dictionary /MathWorks 160 dict begin % definition operators /bdef {bind def} bind def /ldef {load def} bind def /xdef {exch def} bdef /xstore {exch store} bdef % operator abbreviations /c /clip ldef /cc /concat ldef /cp /closepath ldef /gr /grestore ldef /gs /gsave ldef /mt /moveto ldef /np /newpath ldef /cm /currentmatrix ldef /sm /setmatrix ldef /rm /rmoveto ldef /rl /rlineto ldef /s {show newpath} bdef /sc {setcmykcolor} bdef /sr /setrgbcolor ldef /sg /setgray ldef /w /setlinewidth ldef /j /setlinejoin ldef /cap /setlinecap ldef /rc {rectclip} bdef /rf {rectfill} bdef % page state control /pgsv () def /bpage {/pgsv save def} bdef /epage {pgsv restore} bdef /bplot /gsave ldef /eplot {stroke grestore} bdef % orientation switch /portraitMode 0 def /landscapeMode 1 def /rotateMode 2 def % coordinate system mappings /dpi2point 0 def % font control /FontSize 0 def /FMS {/FontSize xstore findfont [FontSize 0 0 FontSize neg 0 0] makefont setfont} bdef /reencode {exch dup where {pop load} {pop StandardEncoding} ifelse exch dup 3 1 roll findfont dup length dict begin { 1 index /FID ne {def}{pop pop} ifelse } forall /Encoding exch def currentdict end definefont pop} bdef /isroman {findfont /CharStrings get /Agrave known} bdef /FMSR {3 1 roll 1 index dup isroman {reencode} {pop pop} ifelse exch FMS} bdef /csm {1 dpi2point div -1 dpi2point div scale neg translate dup landscapeMode eq {pop -90 rotate} {rotateMode eq {90 rotate} if} ifelse} bdef % line types: solid, dotted, dashed, dotdash /SO { [] 0 setdash } bdef /DO { [.5 dpi2point mul 4 dpi2point mul] 0 setdash } bdef /DA { [6 dpi2point mul] 0 setdash } bdef /DD { [.5 dpi2point mul 4 dpi2point mul 6 dpi2point mul 4 dpi2point mul] 0 setdash } bdef % macros for lines and objects /L {lineto stroke} bdef /MP {3 1 roll moveto 1 sub {rlineto} repeat} bdef /AP {{rlineto} repeat} bdef /PDlw -1 def /W {/PDlw currentlinewidth def setlinewidth} def /PP {closepath eofill} bdef /DP {closepath stroke} bdef /MR {4 -2 roll moveto dup 0 exch rlineto exch 0 rlineto neg 0 exch rlineto closepath} bdef /FR {MR stroke} bdef /PR {MR fill} bdef /L1i {{currentfile picstr readhexstring pop} image} bdef /tMatrix matrix def /MakeOval {newpath tMatrix currentmatrix pop translate scale 0 0 1 0 360 arc tMatrix setmatrix} bdef /FO {MakeOval stroke} bdef /PO {MakeOval fill} bdef /PD {currentlinewidth 2 div 0 360 arc fill PDlw -1 eq not {PDlw w /PDlw -1 def} if} def /FA {newpath tMatrix currentmatrix pop translate scale 0 0 1 5 -2 roll arc tMatrix setmatrix stroke} bdef /PA {newpath tMatrix currentmatrix pop translate 0 0 moveto scale 0 0 1 5 -2 roll arc closepath tMatrix setmatrix fill} bdef /FAn {newpath tMatrix currentmatrix pop translate scale 0 0 1 5 -2 roll arcn tMatrix setmatrix stroke} bdef /PAn {newpath tMatrix currentmatrix pop translate 0 0 moveto scale 0 0 1 5 -2 roll arcn closepath tMatrix setmatrix fill} bdef /vradius 0 def /hradius 0 def /lry 0 def /lrx 0 def /uly 0 def /ulx 0 def /rad 0 def /MRR {/vradius xdef /hradius xdef /lry xdef /lrx xdef /uly xdef /ulx xdef newpath tMatrix currentmatrix pop ulx hradius add uly vradius add translate hradius vradius scale 0 0 1 180 270 arc tMatrix setmatrix lrx hradius sub uly vradius add translate hradius vradius scale 0 0 1 270 360 arc tMatrix setmatrix lrx hradius sub lry vradius sub translate hradius vradius scale 0 0 1 0 90 arc tMatrix setmatrix ulx hradius add lry vradius sub translate hradius vradius scale 0 0 1 90 180 arc tMatrix setmatrix closepath} bdef /FRR {MRR stroke } bdef /PRR {MRR fill } bdef /MlrRR {/lry xdef /lrx xdef /uly xdef /ulx xdef /rad lry uly sub 2 div def newpath tMatrix currentmatrix pop ulx rad add uly rad add translate rad rad scale 0 0 1 90 270 arc tMatrix setmatrix lrx rad sub lry rad sub translate rad rad scale 0 0 1 270 90 arc tMatrix setmatrix closepath} bdef /FlrRR {MlrRR stroke } bdef /PlrRR {MlrRR fill } bdef /MtbRR {/lry xdef /lrx xdef /uly xdef /ulx xdef /rad lrx ulx sub 2 div def newpath tMatrix currentmatrix pop ulx rad add uly rad add translate rad rad scale 0 0 1 180 360 arc tMatrix setmatrix lrx rad sub lry rad sub translate rad rad scale 0 0 1 0 180 arc tMatrix setmatrix closepath} bdef /FtbRR {MtbRR stroke } bdef /PtbRR {MtbRR fill } bdef /stri 6 array def /dtri 6 array def /smat 6 array def /dmat 6 array def /tmat1 6 array def /tmat2 6 array def /dif 3 array def /asub {/ind2 exch def /ind1 exch def dup dup ind1 get exch ind2 get sub exch } bdef /tri_to_matrix { 2 0 asub 3 1 asub 4 0 asub 5 1 asub dup 0 get exch 1 get 7 -1 roll astore } bdef /compute_transform { dmat dtri tri_to_matrix tmat1 invertmatrix smat stri tri_to_matrix tmat2 concatmatrix } bdef /ds {stri astore pop} bdef /dt {dtri astore pop} bdef /db {2 copy /cols xdef /rows xdef mul dup string currentfile exch readhexstring pop /bmap xdef pop pop} bdef /it {gs np dtri aload pop moveto lineto lineto cp c cols rows 8 compute_transform {bmap} image gr}bdef /il {newpath moveto lineto stroke}bdef currentdict end def %%EndProlog %%BeginSetup MathWorks begin 0 cap end %%EndSetup %%Page: 1 1 %%BeginPageSetup %%PageBoundingBox: 78 213 551 589 MathWorks begin bpage %%EndPageSetup %%BeginObject: obj1 bplot /dpi2point 12 def portraitMode 0216 7344 csm 731 274 5673 4514 MR c np 91 dict begin %Colortable dictionary /c0 { 0 0 0 sr} bdef /c1 { 1 1 1 sr} bdef /c2 { 1 0 0 sr} bdef /c3 { 0 1 0 sr} bdef /c4 { 0 0 1 sr} bdef /c5 { 1 1 0 sr} bdef /c6 { 1 0 1 sr} bdef /c7 { 0 1 1 sr} bdef c0 1 j 1 sg 0 0 6913 5186 PR 6 w 0 4226 5356 0 0 -4226 899 4615 4 MP PP -5356 0 0 4226 5356 0 0 -4226 899 4615 5 MP stroke 4 w DO SO 6 w 0 sg 899 4615 mt 6255 4615 L 899 389 mt 6255 389 L 899 4615 mt 899 389 L 6255 4615 mt 6255 389 L 899 4615 mt 6255 4615 L 899 4615 mt 899 389 L 899 4615 mt 899 4561 L 899 389 mt 899 442 L %%IncludeResource: font Helvetica /Helvetica /ISOLatin1Encoding 120 FMSR 866 4760 mt (0) s 1434 4615 mt 1434 4561 L 1434 389 mt 1434 442 L 1368 4760 mt (50) s 1970 4615 mt 1970 4561 L 1970 389 mt 1970 442 L 1870 4760 mt (100) s 2505 4615 mt 2505 4561 L 2505 389 mt 2505 442 L 2405 4760 mt (150) s 3041 4615 mt 3041 4561 L 3041 389 mt 3041 442 L 2941 4760 mt (200) s 3577 4615 mt 3577 4561 L 3577 389 mt 3577 442 L 3477 4760 mt (250) s 4112 4615 mt 4112 4561 L 4112 389 mt 4112 442 L 4012 4760 mt (300) s 4648 4615 mt 4648 4561 L 4648 389 mt 4648 442 L 4548 4760 mt (350) s 5183 4615 mt 5183 4561 L 5183 389 mt 5183 442 L 5083 4760 mt (400) s 5719 4615 mt 5719 4561 L 5719 389 mt 5719 442 L 5619 4760 mt (450) s 6255 4615 mt 6255 4561 L 6255 389 mt 6255 442 L 6155 4760 mt (500) s 899 4615 mt 952 4615 L 6255 4615 mt 6201 4615 L 798 4659 mt (5) s 899 3910 mt 952 3910 L 6255 3910 mt 6201 3910 L 731 3954 mt (10) s 899 3206 mt 952 3206 L 6255 3206 mt 6201 3206 L 731 3250 mt (15) s 899 2502 mt 952 2502 L 6255 2502 mt 6201 2502 L 731 2546 mt (20) s 899 1797 mt 952 1797 L 6255 1797 mt 6201 1797 L 731 1841 mt (25) s 899 1093 mt 952 1093 L 6255 1093 mt 6201 1093 L 731 1137 mt (30) s 899 389 mt 952 389 L 6255 389 mt 6201 389 L 731 433 mt (35) s 899 4615 mt 6255 4615 L 899 389 mt 6255 389 L 899 4615 mt 899 389 L 6255 4615 mt 6255 389 L gs 899 389 5357 4227 MR c np 3214 -446 1071 -247 536 -3064 321 -5 1113 4364 5 MP stroke gr 36 36 1113 4364 FO 36 36 1434 4359 FO 36 36 1970 1295 FO 36 36 3041 1048 FO 36 36 6255 602 FO gs 899 389 5357 4227 MR c np gr end eplot %%EndObject epage end showpage %%Trailer %%EOF %%EndDocument @endspecial 2509 1424 a(\(b\))g(speedup)h(vs)f(dimension)1384 1666 y Fd(Figur)o(e)f(5:)23 b(Gain)c(as)g(dimension)f(v)o(aries)-152 1990 y Fq(f)-115 1998 y Fo(2)-80 1990 y Fn(\()p Fq(x)p Fn(\))j(=)180 1960 y Fo(2)p 136 1974 119 4 v 136 1982 a Ff(p)p 186 1982 69 3 v 41 x Fo(2)p Fp(\031)264 1990 y Fq(e)300 1959 y Ff(\000)p Fp(x)383 1938 y Fe(2)415 1959 y Fp(=)p Fo(2)481 1990 y Fr(.)i(Therefore)183 2239 y Fq(p)p Fn(\()p Fq(c)p Fn(\))74 b(=)g(1)18 b Fl(\000)721 2191 y Fn(2)p 666 2222 150 4 v 666 2238 a Fl(p)p 730 2238 86 4 v 62 x Fn(2)p Fq(\031)837 2138 y Fj(Z)914 2158 y Fp(r)880 2308 y Fo(0)972 2191 y Fn(1)p 972 2222 39 4 v 975 2290 a Fq(c)1020 2239 y(e)1056 2203 y Ff(\000)p Fo(\()1139 2184 y Fi(t)p 1138 2192 27 3 v 1138 2225 a(c)1175 2203 y Fo(\))1199 2182 y Fe(2)1231 2203 y Fp(=)p Fo(2)1312 2191 y Fq(t)p 1307 2222 37 4 v 1307 2290 a(r)1354 2239 y(dt)389 2445 y Fn(=)74 b(1)18 b Fl(\000)721 2397 y Fn(2)p 666 2428 150 4 v 666 2444 a Fl(p)p 730 2444 86 4 v 62 x Fn(2)p Fq(\031)842 2445 y Fl(\001)892 2397 y Fq(c)p 890 2428 37 4 v 890 2496 a(r)950 2344 y Fj(Z)1026 2364 y Fp(r)992 2514 y Fo(0)1074 2445 y Fq(e)1110 2409 y Ff(\000)p Fo(\()1193 2390 y Fi(t)p 1191 2398 27 3 v 1191 2431 a(c)1228 2409 y Fo(\))1252 2389 y Fe(2)1285 2409 y Fp(=)p Fo(2)1381 2397 y Fq(t)p 1361 2428 68 4 v 1361 2496 a(c)1394 2475 y Fo(2)1439 2445 y Fq(dt)389 2678 y Fn(=)74 b(1)18 b Fl(\000)721 2629 y Fn(2)p 666 2661 150 4 v 666 2676 a Fl(p)p 730 2676 86 4 v 62 x Fn(2)p Fq(\031)842 2678 y Fl(\001)892 2629 y Fq(c)p 890 2661 37 4 v 890 2728 a(r)950 2576 y Fj(Z)1026 2596 y Fp(r)1057 2576 y Fe(2)1089 2596 y Fp(=)p Fo(\(2)p Fp(c)1203 2576 y Fe(2)1236 2596 y Fo(\))992 2746 y(0)1277 2678 y Fq(e)1313 2642 y Ff(\000)p Fp(y)1398 2678 y Fq(dy)389 2878 y Fn(=)74 b(1)18 b Fl(\000)721 2829 y Fn(2)p 666 2860 150 4 v 666 2876 a Fl(p)p 730 2876 86 4 v 62 x Fn(2)p Fq(\031)836 2829 y(c)p 835 2860 37 4 v 835 2928 a(r)881 2878 y Fn([1)g Fl(\000)f Fq(e)1071 2842 y Ff(\000)p Fp(r)1150 2821 y Fe(2)1181 2842 y Fp(=)p Fo(\(2)p Fp(c)1295 2821 y Fe(2)1328 2842 y Fo(\))1356 2878 y Fn(])-77 3119 y Fr(If)h Fq(c)24 3088 y Fo(2)81 3119 y Fl(\024)j Fq(r)199 3088 y Fo(2)233 3119 y Fq(=)p Fn(2)p Fr(,)e(then)h(we)e(ha)o(v)o(e)166 3342 y Fn(1)g Fl(\000)364 3294 y Fn(2)p 308 3325 150 4 v 308 3341 a Fl(p)p 372 3341 86 4 v 62 x Fn(2)p Fq(\031)479 3294 y(c)p 477 3325 37 4 v 477 3393 a(r)546 3342 y Fl(\024)j Fq(p)p Fn(\()p Fq(c)p Fn(\))f Fl(\024)h Fn(1)d Fl(\000)1058 3294 y Fn(2)p 1003 3325 150 4 v 1003 3341 a Fl(p)p 1067 3341 86 4 v 62 x Fn(2)p Fq(\031)1173 3294 y(c)p 1172 3325 37 4 v 1172 3393 a(r)1218 3342 y Fn(\(1)g Fl(\000)f Fn(1)p Fq(=e)p Fn(\))-152 3576 y Fr(or)g(equi)n(v)n(alently)h Fn(1)9 b Fl(\000)g Fq(Ac=r)23 b Fl(\024)e Fq(p)p Fn(\()p Fq(c)p Fn(\))g Fl(\024)g Fn(1)9 b Fl(\000)g Fq(B)t(c=r)r Fr(,)16 b(for)g(proper)i(constants)-152 3664 y Fq(A;)13 b(B)25 b(>)c Fn(0)p Fr(.)-77 3751 y(The)i(probability)g(that)f Fq(p)g Fr(collides)h(with)f Fq(q)k Fr(is)c(at)g(least)g Fn(\(1)e Fl(\000)g Fq(A=r)r Fn(\))1715 3719 y Fp(k)1781 3751 y Fl(\031)-152 3838 y Fq(e)-116 3806 y Ff(\000)p Fp(A)-18 3838 y Fr(,)d(which)g(is)f(constant.)23 b(Thus)16 b(the)h(algorithm)g(is)f(correct)h(with)f(constant)-152 3925 y(probability)-5 b(.)-77 4012 y(No)n(w)27 b(consider)g(the)g(e)o (xpected)h(number)g(of)f(points)g(colliding)g(with)f Fq(q)s Fr(.)-152 4100 y(Let)18 b Fq(C)24 b Fr(be)18 b(a)h(multiset)f (containing)i(all)e(v)n(alues)h(of)f Fq(c)k Fn(=)f Fl(k)p Fq(p)1371 4068 y Ff(0)1409 4100 y Fl(\000)15 b Fq(q)s Fl(k)p Fq(=)p Fl(k)p Fq(p)h Fl(\000)f Fq(q)s Fl(k)-152 4187 y Fr(o)o(v)o(er)20 b Fq(p)37 4155 y Ff(0)80 4187 y Fl(2)h Fq(P)11 b Fr(.)23 b(W)-6 b(e)18 b(ha)o(v)o(e)-152 4387 y Fq(E)t Fn([)p Fl(j)p Fq(P)29 b Fl(\\)17 b Fq(g)137 4352 y Ff(\000)p Fo(1)219 4387 y Fn(\()p Fq(q)s Fn(\))p Fl(j)p Fn(])75 b(=)570 4317 y Fj(X)567 4475 y Fp(c)p Ff(2)p Fp(C)697 4387 y Fq(p)p Fn(\()p Fq(c)p Fn(\))829 4352 y Fp(k)433 4599 y Fn(=)687 4528 y Fj(X)567 4699 y Fp(c)p Ff(2)p Fp(C;c)p Ff(\024)p Fp(r)r(=)839 4658 y Ff(p)p 888 4658 31 3 v 888 4699 a Fo(2)931 4599 y Fq(p)p Fn(\()p Fq(c)p Fn(\))1063 4564 y Fp(k)1118 4599 y Fn(+)1314 4528 y Fj(X)1194 4699 y Fp(c)p Ff(2)p Fp(C;c>r)r(=)1466 4658 y Ff(p)p 1515 4658 V 1515 4699 a Fo(2)1558 4599 y Fq(p)p Fn(\()p Fq(c)p Fn(\))1690 4564 y Fp(k)433 4832 y Fl(\024)687 4761 y Fj(X)567 4932 y Fp(c)p Ff(2)p Fp(C;c)p Ff(\024)p Fp(r)r(=)839 4890 y Ff(p)p 888 4890 V 888 4932 a Fo(2)918 4832 y Fn(\(1)17 b Fl(\000)g Fq(B)t(c=r)r Fn(\))1280 4796 y Fp(k)1336 4832 y Fn(+)f(\(1)i Fl(\000)e Fq(B)t Fn(\))1666 4796 y Fp(r)1701 4832 y Fq(n)433 5113 y Fl(\024)567 5011 y Fj(Z)644 5032 y Fp(r)r(=)707 4991 y Ff(p)p 756 4991 V 756 5032 a Fo(2)610 5182 y(1)791 5113 y Fn(\(1)h Fl(\000)g Fq(B)t(c=r)r Fn(\))1153 5077 y Fp(k)1191 5113 y Fq(N)8 b Fn(\()p Fq(q)s(;)14 b(c)j Fn(+)g(1\))p Fq(dc)g Fn(+)g Fq(O)r Fn(\(1\))433 5342 y Fl(\024)567 5241 y Fj(Z)644 5261 y Fp(r)r(=)707 5220 y Ff(p)p 756 5220 V 756 5261 a Fo(2)610 5411 y(1)804 5342 y Fq(e)840 5306 y Ff(\000)p Fp(B)r(c)968 5342 y Fq(N)8 b Fn(\()p Fq(q)s(;)13 b(c)k Fn(+)g(1\))p Fq(dc)h Fn(+)e Fq(O)r Fn(\(1\))2115 1990 y Fr(If)i Fq(N)8 b Fn(\()p Fq(q)s(;)14 b(t)p Fn(\))21 b(=)g Fq(O)r Fn(\()p Fq(c)2637 1959 y Fp(b)2669 1990 y Fn(\))p Fr(,)d(then)h(we)g(ha)o(v)o(e)2134 2209 y Fq(E)t Fn([)p Fl(j)p Fq(P)28 b Fl(\\)17 b Fq(g)2422 2173 y Ff(\000)p Fo(1)2504 2209 y Fn(\()p Fq(q)s Fn(\))p Fl(j)p Fn(])22 b(=)f Fq(O)2819 2081 y Fj( )2880 2107 y(Z)2957 2128 y Fp(r)r(=)3020 2087 y Ff(p)p 3069 2087 V 3069 2128 a Fo(2)2922 2278 y(1)3116 2209 y Fq(e)3152 2173 y Ff(\000)p Fp(B)r(c)3280 2209 y Fn(\()p Fq(c)d Fn(+)e(1\))3505 2173 y Fp(b)3537 2209 y Fq(dc)3610 2081 y Fj(!)3692 2209 y Fn(=)21 b(2)3811 2173 y Fp(O)r Fo(\()p Fp(b)p Fo(\))2040 2484 y Fs(B.)100 b(ASYMPT)n(O)l(TIC)15 b(AN)n(AL)-9 b(YSIS)15 b(FOR)g(THE)g(GEN\255)2231 2600 y(ERAL)26 b(CASE)2125 2801 y Fr(T)t Fg(H)t(E)t(O)t(R)t(E)t(M)41 b Fr(3.)c Fm(F)-8 b(or)31 b(any)h Fq(p)45 b Fl(2)g Fn(\(0)p Fq(;)14 b Fn(2])31 b Fm(ther)m(e)h(is)f(a)h Fn(\()p Fq(r)3626 2809 y Fo(1)3660 2801 y Fq(;)13 b(r)3729 2809 y Fo(2)3763 2801 y Fq(;)g(p)3836 2809 y Fo(1)3871 2801 y Fq(;)g(p)3944 2809 y Fo(2)3978 2801 y Fn(\))p Fm(-)2040 2888 y(sensitive)19 b(family)g Fl(H)g Fm(for)g Fq(l)2736 2856 y Fp(d)2735 2901 y(p)2791 2888 y Fm(suc)o(h)g(that)g(for)g(any)h Fq(\015)25 b(>)c Fn(0)p Fm(,)2403 3088 y Fq(\032)g Fn(=)2555 3040 y(ln)13 b(1)p Fq(=p)2747 3048 y Fo(1)p 2555 3071 227 4 v 2555 3139 a Fn(ln)g(1)p Fq(=p)2747 3147 y Fo(2)2813 3088 y Fl(\024)21 b Fn(\(1)c(+)g Fq(\015)t Fn(\))g Fl(\001)g Fn(max)3341 2983 y Fj(\022)3423 3040 y Fn(1)p 3407 3071 70 4 v 3407 3139 a Fq(c)3440 3117 y Fp(p)3487 3088 y Fq(;)3531 3040 y Fn(1)p 3531 3071 39 4 v 3534 3139 a Fq(c)3579 2983 y Fj(\023)3649 3088 y Fq(:)2115 3317 y Fr(W)-6 b(e)17 b(pro)o(v)o(e)h(that)f(for)g(the)g(general)h(case)g(\()p Fq(p)j Fl(2)g Fn(\(0)p Fq(;)14 b Fn(2])p Fr(\))j(the)h(ratio)f Fq(\032)p Fn(\()p Fq(c)p Fn(\))f Fr(gets)2040 3404 y(arbitrarily)h (close)h(to)f Fn(max)2757 3343 y Fj(\000)2819 3373 y Fo(1)p 2803 3387 63 4 v 2803 3429 a Fp(c)2831 3415 y Fi(p)2875 3404 y Fq(;)2919 3373 y Fo(1)p 2919 3387 31 4 v 2920 3429 a Fp(c)2960 3343 y Fj(\001)2995 3404 y Fr(.)22 b(F)o(or)17 b(the)g(case)h Fq(p)j(<)g Fn(1)p Fr(,)c(our)h(algorithm)2040 3491 y(is)24 b(the)g(\002rst)f(algorithm)i (to)f(solv)o(e)g(this)g(problem,)i(and)f(so)f(there)g(is)g(no)g(e)o(x-) 2040 3578 y(isting)19 b(ratio)g(against)g(which)g(we)g(can)g(compare)h (our)f(result.)k(Ho)n(we)n(v)o(er)m(,)d(we)2040 3665 y(sho)n(w)c(that)f(for)g(this)f(case)i Fq(\032)e Fr(is)h(arbitrarily)f (close)i(to)3406 3635 y Fo(1)p 3389 3649 63 4 v 3389 3691 a Fp(c)3417 3677 y Fi(p)3462 3665 y Fr(.)22 b(The)15 b(proof)g(follo)n(ws)2040 3752 y(from)i(the)g(follo)n(wing)h(tw)o(o)f (Lemmas,)g(which)h(together)g(imply)f(Theorem)h(3.)2115 3850 y(Let)h Fq(l)24 b Fn(=)2373 3817 y Fo(1)p Ff(\000)p Fp(p)2483 3827 y Fe(2)p 2373 3833 143 4 v 2373 3875 a Fo(1)p Ff(\000)p Fp(p)2483 3885 y Fe(1)2526 3850 y Fr(,)19 b Fq(x)j Fn(=)g(1)c Fl(\000)g Fq(p)2885 3858 y Fo(1)2919 3850 y Fr(.)25 b(Then)19 b Fq(\032)k Fn(=)3300 3814 y Fo(log)q(\(1)p Ff(\000)p Fp(x)p Fo(\))p 3290 3833 261 4 v 3290 3875 a(log)q(\(1)p Ff(\000)p Fp(lx)p Fo(\))3583 3850 y Fl(\024)3675 3817 y Fo(1)p Ff(\000)p Fp(p)3785 3827 y Fe(1)p 3675 3833 143 4 v 3675 3875 a Fo(1)p Ff(\000)p Fp(p)3785 3885 y Fe(2)3847 3850 y Fr(by)d(the)2040 3947 y(follo)n(wing)f(lemma.)2125 4127 y(L)t Fg(E)t(M)t(M)t(A)42 b Fr(1.)37 b Fm(F)-8 b(or)19 b Fq(x)i Fl(2)g Fn([0)p Fq(;)14 b Fn(1\))19 b Fm(and)h Fq(l)j Fl(\025)e Fn(1)e Fm(suc)o(h)g(that)g Fn(1)f Fl(\000)e Fq(l)q(x)21 b(>)g Fn(0)p Fm(,)2778 4271 y Fn(log)r(\(1)d Fl(\000)e Fq(x)p Fn(\))p 2766 4303 359 4 v 2766 4370 a(log)r(\(1)h Fl(\000)g Fq(l)q(x)p Fn(\))3156 4320 y Fl(\024)3247 4271 y Fn(1)p 3247 4303 39 4 v 3254 4370 a Fq(l)3295 4320 y(:)2040 4546 y Fd(Pr)o(oof:)22 b Fr(Noting)17 b Fn(log)r(\(1)8 b Fl(\000)g Fq(l)q(x)p Fn(\))22 b Fq(<)f Fn(0)p Fr(,)c(the)f(claim)h (is)f(equi)n(v)n(alent)i(to)e Fq(l)e Fn(log)r(\(1)8 b Fl(\000)2040 4633 y Fq(x)p Fn(\))21 b Fl(\025)g Fn(log)r(\(1)c Fl(\000)g Fq(l)q(x)p Fn(\))p Fr(.)23 b(This)18 b(in)h(turn)g(is)g(equi) n(v)n(alent)h(to)2526 4792 y Fq(g)s Fn(\()p Fq(x)p Fn(\))g Fl(\021)h Fn(\(1)d Fl(\000)e Fq(l)q(x)p Fn(\))h Fl(\000)g Fn(\(1)g Fl(\000)g Fq(x)p Fn(\))3361 4756 y Fp(l)3406 4792 y Fl(\024)k Fn(0)p Fq(:)2040 4940 y Fr(This)f(is)f(tri)n(vially)h (true)f(for)h Fq(x)j Fn(=)g(0)p Fr(.)j(Furthermore,)20 b(taking)h(the)f(deri)n(v)n(ati)n(v)o(e,)2040 5027 y(we)i(see)g Fq(g)2306 4995 y Ff(0)2328 5027 y Fn(\()p Fq(x)p Fn(\))k(=)g Fl(\000)p Fq(l)21 b Fn(+)e Fq(l)q Fn(\(1)g Fl(\000)g Fq(x)p Fn(\))2991 4995 y Fp(l)p Ff(\000)p Fo(1)3093 5027 y Fr(,)j(which)h(is)e(non-positi)n(v)o(e)i(for)f Fq(x)k Fl(2)2040 5114 y Fn([0)p Fq(;)14 b Fn(1\))25 b Fr(and)h Fq(l)35 b Fl(\025)f Fn(1)p Fr(.)42 b(Therefore,)27 b Fq(g)h Fr(is)d(non-increasing)i(in)e(the)h(re)o(gion)f(in)2040 5201 y(which)k(we)f(are)g(interested,)j(and)e(so)g Fq(g)s Fn(\()p Fq(x)p Fn(\))38 b Fl(\024)h Fn(0)28 b Fr(for)g(all)g(v)n(alues) h(in)g(this)2040 5289 y(re)o(gion.)2115 5376 y(No)n(w)19 b(our)g(goal)h(is)e(to)h(upper)h(bound)3092 5343 y Fo(1)p Ff(\000)p Fp(p)3202 5353 y Fe(1)p 3092 5359 143 4 v 3092 5401 a Fo(1)p Ff(\000)p Fp(p)3202 5411 y Fe(2)3245 5376 y Fr(.)p eop %%Page: 9 9 9 8 bop 103 1254 a @beginspecial 70 @llx 213 @lly 549 @urx 589 @ury 2126 @rwi 1587 @rhi @setspecial %%BeginDocument: eps_time.eps %!PS-Adobe-2.0 EPSF-1.2 %%Creator: MATLAB, The Mathworks, Inc. %%Title: /afs/athena.mit.edu/user/m/i/mirrokni/research/pstable/mayur/eps_report/eps_time.eps %%CreationDate: 02/18/2003 04:36:16 %%DocumentNeededFonts: Helvetica %%DocumentProcessColors: Cyan Magenta Yellow Black %%Pages: 1 %%BoundingBox: 70 213 549 589 %%EndComments %%BeginProlog % MathWorks dictionary /MathWorks 160 dict begin % definition operators /bdef {bind def} bind def /ldef {load def} bind def /xdef {exch def} bdef /xstore {exch store} bdef % operator abbreviations /c /clip ldef /cc /concat ldef /cp /closepath ldef /gr /grestore ldef /gs /gsave ldef /mt /moveto ldef /np /newpath ldef /cm /currentmatrix ldef /sm /setmatrix ldef /rm /rmoveto ldef /rl /rlineto ldef /s {show newpath} bdef /sc {setcmykcolor} bdef /sr /setrgbcolor ldef /sg /setgray ldef /w /setlinewidth ldef /j /setlinejoin ldef /cap /setlinecap ldef /rc {rectclip} bdef /rf {rectfill} bdef % page state control /pgsv () def /bpage {/pgsv save def} bdef /epage {pgsv restore} bdef /bplot /gsave ldef /eplot {stroke grestore} bdef % orientation switch /portraitMode 0 def /landscapeMode 1 def /rotateMode 2 def % coordinate system mappings /dpi2point 0 def % font control /FontSize 0 def /FMS {/FontSize xstore findfont [FontSize 0 0 FontSize neg 0 0] makefont setfont} bdef /reencode {exch dup where {pop load} {pop StandardEncoding} ifelse exch dup 3 1 roll findfont dup length dict begin { 1 index /FID ne {def}{pop pop} ifelse } forall /Encoding exch def currentdict end definefont pop} bdef /isroman {findfont /CharStrings get /Agrave known} bdef /FMSR {3 1 roll 1 index dup isroman {reencode} {pop pop} ifelse exch FMS} bdef /csm {1 dpi2point div -1 dpi2point div scale neg translate dup landscapeMode eq {pop -90 rotate} {rotateMode eq {90 rotate} if} ifelse} bdef % line types: solid, dotted, dashed, dotdash /SO { [] 0 setdash } bdef /DO { [.5 dpi2point mul 4 dpi2point mul] 0 setdash } bdef /DA { [6 dpi2point mul] 0 setdash } bdef /DD { [.5 dpi2point mul 4 dpi2point mul 6 dpi2point mul 4 dpi2point mul] 0 setdash } bdef % macros for lines and objects /L {lineto stroke} bdef /MP {3 1 roll moveto 1 sub {rlineto} repeat} bdef /AP {{rlineto} repeat} bdef /PDlw -1 def /W {/PDlw currentlinewidth def setlinewidth} def /PP {closepath eofill} bdef /DP {closepath stroke} bdef /MR {4 -2 roll moveto dup 0 exch rlineto exch 0 rlineto neg 0 exch rlineto closepath} bdef /FR {MR stroke} bdef /PR {MR fill} bdef /L1i {{currentfile picstr readhexstring pop} image} bdef /tMatrix matrix def /MakeOval {newpath tMatrix currentmatrix pop translate scale 0 0 1 0 360 arc tMatrix setmatrix} bdef /FO {MakeOval stroke} bdef /PO {MakeOval fill} bdef /PD {currentlinewidth 2 div 0 360 arc fill PDlw -1 eq not {PDlw w /PDlw -1 def} if} def /FA {newpath tMatrix currentmatrix pop translate scale 0 0 1 5 -2 roll arc tMatrix setmatrix stroke} bdef /PA {newpath tMatrix currentmatrix pop translate 0 0 moveto scale 0 0 1 5 -2 roll arc closepath tMatrix setmatrix fill} bdef /FAn {newpath tMatrix currentmatrix pop translate scale 0 0 1 5 -2 roll arcn tMatrix setmatrix stroke} bdef /PAn {newpath tMatrix currentmatrix pop translate 0 0 moveto scale 0 0 1 5 -2 roll arcn closepath tMatrix setmatrix fill} bdef /vradius 0 def /hradius 0 def /lry 0 def /lrx 0 def /uly 0 def /ulx 0 def /rad 0 def /MRR {/vradius xdef /hradius xdef /lry xdef /lrx xdef /uly xdef /ulx xdef newpath tMatrix currentmatrix pop ulx hradius add uly vradius add translate hradius vradius scale 0 0 1 180 270 arc tMatrix setmatrix lrx hradius sub uly vradius add translate hradius vradius scale 0 0 1 270 360 arc tMatrix setmatrix lrx hradius sub lry vradius sub translate hradius vradius scale 0 0 1 0 90 arc tMatrix setmatrix ulx hradius add lry vradius sub translate hradius vradius scale 0 0 1 90 180 arc tMatrix setmatrix closepath} bdef /FRR {MRR stroke } bdef /PRR {MRR fill } bdef /MlrRR {/lry xdef /lrx xdef /uly xdef /ulx xdef /rad lry uly sub 2 div def newpath tMatrix currentmatrix pop ulx rad add uly rad add translate rad rad scale 0 0 1 90 270 arc tMatrix setmatrix lrx rad sub lry rad sub translate rad rad scale 0 0 1 270 90 arc tMatrix setmatrix closepath} bdef /FlrRR {MlrRR stroke } bdef /PlrRR {MlrRR fill } bdef /MtbRR {/lry xdef /lrx xdef /uly xdef /ulx xdef /rad lrx ulx sub 2 div def newpath tMatrix currentmatrix pop ulx rad add uly rad add translate rad rad scale 0 0 1 180 360 arc tMatrix setmatrix lrx rad sub lry rad sub translate rad rad scale 0 0 1 0 180 arc tMatrix setmatrix closepath} bdef /FtbRR {MtbRR stroke } bdef /PtbRR {MtbRR fill } bdef /stri 6 array def /dtri 6 array def /smat 6 array def /dmat 6 array def /tmat1 6 array def /tmat2 6 array def /dif 3 array def /asub {/ind2 exch def /ind1 exch def dup dup ind1 get exch ind2 get sub exch } bdef /tri_to_matrix { 2 0 asub 3 1 asub 4 0 asub 5 1 asub dup 0 get exch 1 get 7 -1 roll astore } bdef /compute_transform { dmat dtri tri_to_matrix tmat1 invertmatrix smat stri tri_to_matrix tmat2 concatmatrix } bdef /ds {stri astore pop} bdef /dt {dtri astore pop} bdef /db {2 copy /cols xdef /rows xdef mul dup string currentfile exch readhexstring pop /bmap xdef pop pop} bdef /it {gs np dtri aload pop moveto lineto lineto cp c cols rows 8 compute_transform {bmap} image gr}bdef /il {newpath moveto lineto stroke}bdef currentdict end def %%EndProlog %%BeginSetup MathWorks begin 0 cap end %%EndSetup %%Page: 1 1 %%BeginPageSetup %%PageBoundingBox: 70 213 549 589 MathWorks begin bpage %%EndPageSetup %%BeginObject: obj1 bplot /dpi2point 12 def portraitMode 0216 7344 csm 631 274 5742 4514 MR c np 91 dict begin %Colortable dictionary /c0 { 0 0 0 sr} bdef /c1 { 1 1 1 sr} bdef /c2 { 1 0 0 sr} bdef /c3 { 0 1 0 sr} bdef /c4 { 0 0 1 sr} bdef /c5 { 1 1 0 sr} bdef /c6 { 1 0 1 sr} bdef /c7 { 0 1 1 sr} bdef c0 1 j 1 sg 0 0 6913 5186 PR 6 w 0 4226 5356 0 0 -4226 899 4615 4 MP PP -5356 0 0 4226 5356 0 0 -4226 899 4615 5 MP stroke 4 w DO SO 6 w 0 sg 899 4615 mt 6255 4615 L 899 389 mt 6255 389 L 899 4615 mt 899 389 L 6255 4615 mt 6255 389 L 899 4615 mt 6255 4615 L 899 4615 mt 899 389 L 899 4615 mt 899 4561 L 899 389 mt 899 442 L %%IncludeResource: font Helvetica /Helvetica /ISOLatin1Encoding 120 FMSR 816 4760 mt (0.5) s 1970 4615 mt 1970 4561 L 1970 389 mt 1970 442 L 1937 4760 mt (1) s 3041 4615 mt 3041 4561 L 3041 389 mt 3041 442 L 2958 4760 mt (1.5) s 4112 4615 mt 4112 4561 L 4112 389 mt 4112 442 L 4079 4760 mt (2) s 5183 4615 mt 5183 4561 L 5183 389 mt 5183 442 L 5100 4760 mt (2.5) s 6255 4615 mt 6255 4561 L 6255 389 mt 6255 442 L 6222 4760 mt (3) s 899 4615 mt 952 4615 L 6255 4615 mt 6201 4615 L 798 4659 mt (0) s 899 3769 mt 952 3769 L 6255 3769 mt 6201 3769 L 631 3813 mt (0.05) s 899 2924 mt 952 2924 L 6255 2924 mt 6201 2924 L 698 2968 mt (0.1) s 899 2079 mt 952 2079 L 6255 2079 mt 6201 2079 L 631 2123 mt (0.15) s 899 1234 mt 952 1234 L 6255 1234 mt 6201 1234 L 698 1278 mt (0.2) s 899 389 mt 952 389 L 6255 389 mt 6201 389 L 631 433 mt (0.25) s 899 4615 mt 6255 4615 L 899 389 mt 6255 389 L 899 4615 mt 899 389 L 6255 4615 mt 6255 389 L gs 899 389 5357 4227 MR c np 2143 10 2142 38 1071 265 899 4273 4 MP stroke gr 863 4273 mt 935 4273 L 899 4237 mt 899 4309 L 1934 4538 mt 2006 4538 L 1970 4502 mt 1970 4574 L 4076 4576 mt 4148 4576 L 4112 4540 mt 4112 4612 L 6219 4586 mt 6291 4586 L 6255 4550 mt 6255 4622 L 874 4248 mt 924 4298 L 924 4248 mt 874 4298 L 1945 4513 mt 1995 4563 L 1995 4513 mt 1945 4563 L 4087 4551 mt 4137 4601 L 4137 4551 mt 4087 4601 L 6230 4561 mt 6280 4611 L 6280 4561 mt 6230 4611 L gs 899 389 5357 4227 MR c np 2143 387 2142 1015 1071 1535 899 1093 4 MP stroke gr 36 36 899 1093 FO 36 36 1970 2628 FO 36 36 4112 3643 FO 36 36 6255 4030 FO gs 899 389 5357 4227 MR c np gr end eplot %%EndObject epage end showpage %%Trailer %%EOF %%EndDocument @endspecial 710 1424 a Fr(\(a\))19 b(query)h(time)e(vs)h Fq(\017)2006 1254 y @beginspecial 78 @llx 213 @lly 549 @urx 589 @ury 2126 @rwi 1587 @rhi @setspecial %%BeginDocument: eps_speedup.eps %!PS-Adobe-2.0 EPSF-1.2 %%Creator: MATLAB, The Mathworks, Inc. %%Title: /afs/athena.mit.edu/user/m/i/mirrokni/research/pstable/mayur/eps_report/eps_speedup.eps %%CreationDate: 02/18/2003 04:36:40 %%DocumentNeededFonts: Helvetica %%DocumentProcessColors: Cyan Magenta Yellow Black %%Pages: 1 %%BoundingBox: 78 213 549 589 %%EndComments %%BeginProlog % MathWorks dictionary /MathWorks 160 dict begin % definition operators /bdef {bind def} bind def /ldef {load def} bind def /xdef {exch def} bdef /xstore {exch store} bdef % operator abbreviations /c /clip ldef /cc /concat ldef /cp /closepath ldef /gr /grestore ldef /gs /gsave ldef /mt /moveto ldef /np /newpath ldef /cm /currentmatrix ldef /sm /setmatrix ldef /rm /rmoveto ldef /rl /rlineto ldef /s {show newpath} bdef /sc {setcmykcolor} bdef /sr /setrgbcolor ldef /sg /setgray ldef /w /setlinewidth ldef /j /setlinejoin ldef /cap /setlinecap ldef /rc {rectclip} bdef /rf {rectfill} bdef % page state control /pgsv () def /bpage {/pgsv save def} bdef /epage {pgsv restore} bdef /bplot /gsave ldef /eplot {stroke grestore} bdef % orientation switch /portraitMode 0 def /landscapeMode 1 def /rotateMode 2 def % coordinate system mappings /dpi2point 0 def % font control /FontSize 0 def /FMS {/FontSize xstore findfont [FontSize 0 0 FontSize neg 0 0] makefont setfont} bdef /reencode {exch dup where {pop load} {pop StandardEncoding} ifelse exch dup 3 1 roll findfont dup length dict begin { 1 index /FID ne {def}{pop pop} ifelse } forall /Encoding exch def currentdict end definefont pop} bdef /isroman {findfont /CharStrings get /Agrave known} bdef /FMSR {3 1 roll 1 index dup isroman {reencode} {pop pop} ifelse exch FMS} bdef /csm {1 dpi2point div -1 dpi2point div scale neg translate dup landscapeMode eq {pop -90 rotate} {rotateMode eq {90 rotate} if} ifelse} bdef % line types: solid, dotted, dashed, dotdash /SO { [] 0 setdash } bdef /DO { [.5 dpi2point mul 4 dpi2point mul] 0 setdash } bdef /DA { [6 dpi2point mul] 0 setdash } bdef /DD { [.5 dpi2point mul 4 dpi2point mul 6 dpi2point mul 4 dpi2point mul] 0 setdash } bdef % macros for lines and objects /L {lineto stroke} bdef /MP {3 1 roll moveto 1 sub {rlineto} repeat} bdef /AP {{rlineto} repeat} bdef /PDlw -1 def /W {/PDlw currentlinewidth def setlinewidth} def /PP {closepath eofill} bdef /DP {closepath stroke} bdef /MR {4 -2 roll moveto dup 0 exch rlineto exch 0 rlineto neg 0 exch rlineto closepath} bdef /FR {MR stroke} bdef /PR {MR fill} bdef /L1i {{currentfile picstr readhexstring pop} image} bdef /tMatrix matrix def /MakeOval {newpath tMatrix currentmatrix pop translate scale 0 0 1 0 360 arc tMatrix setmatrix} bdef /FO {MakeOval stroke} bdef /PO {MakeOval fill} bdef /PD {currentlinewidth 2 div 0 360 arc fill PDlw -1 eq not {PDlw w /PDlw -1 def} if} def /FA {newpath tMatrix currentmatrix pop translate scale 0 0 1 5 -2 roll arc tMatrix setmatrix stroke} bdef /PA {newpath tMatrix currentmatrix pop translate 0 0 moveto scale 0 0 1 5 -2 roll arc closepath tMatrix setmatrix fill} bdef /FAn {newpath tMatrix currentmatrix pop translate scale 0 0 1 5 -2 roll arcn tMatrix setmatrix stroke} bdef /PAn {newpath tMatrix currentmatrix pop translate 0 0 moveto scale 0 0 1 5 -2 roll arcn closepath tMatrix setmatrix fill} bdef /vradius 0 def /hradius 0 def /lry 0 def /lrx 0 def /uly 0 def /ulx 0 def /rad 0 def /MRR {/vradius xdef /hradius xdef /lry xdef /lrx xdef /uly xdef /ulx xdef newpath tMatrix currentmatrix pop ulx hradius add uly vradius add translate hradius vradius scale 0 0 1 180 270 arc tMatrix setmatrix lrx hradius sub uly vradius add translate hradius vradius scale 0 0 1 270 360 arc tMatrix setmatrix lrx hradius sub lry vradius sub translate hradius vradius scale 0 0 1 0 90 arc tMatrix setmatrix ulx hradius add lry vradius sub translate hradius vradius scale 0 0 1 90 180 arc tMatrix setmatrix closepath} bdef /FRR {MRR stroke } bdef /PRR {MRR fill } bdef /MlrRR {/lry xdef /lrx xdef /uly xdef /ulx xdef /rad lry uly sub 2 div def newpath tMatrix currentmatrix pop ulx rad add uly rad add translate rad rad scale 0 0 1 90 270 arc tMatrix setmatrix lrx rad sub lry rad sub translate rad rad scale 0 0 1 270 90 arc tMatrix setmatrix closepath} bdef /FlrRR {MlrRR stroke } bdef /PlrRR {MlrRR fill } bdef /MtbRR {/lry xdef /lrx xdef /uly xdef /ulx xdef /rad lrx ulx sub 2 div def newpath tMatrix currentmatrix pop ulx rad add uly rad add translate rad rad scale 0 0 1 180 360 arc tMatrix setmatrix lrx rad sub lry rad sub translate rad rad scale 0 0 1 0 180 arc tMatrix setmatrix closepath} bdef /FtbRR {MtbRR stroke } bdef /PtbRR {MtbRR fill } bdef /stri 6 array def /dtri 6 array def /smat 6 array def /dmat 6 array def /tmat1 6 array def /tmat2 6 array def /dif 3 array def /asub {/ind2 exch def /ind1 exch def dup dup ind1 get exch ind2 get sub exch } bdef /tri_to_matrix { 2 0 asub 3 1 asub 4 0 asub 5 1 asub dup 0 get exch 1 get 7 -1 roll astore } bdef /compute_transform { dmat dtri tri_to_matrix tmat1 invertmatrix smat stri tri_to_matrix tmat2 concatmatrix } bdef /ds {stri astore pop} bdef /dt {dtri astore pop} bdef /db {2 copy /cols xdef /rows xdef mul dup string currentfile exch readhexstring pop /bmap xdef pop pop} bdef /it {gs np dtri aload pop moveto lineto lineto cp c cols rows 8 compute_transform {bmap} image gr}bdef /il {newpath moveto lineto stroke}bdef currentdict end def %%EndProlog %%BeginSetup MathWorks begin 0 cap end %%EndSetup %%Page: 1 1 %%BeginPageSetup %%PageBoundingBox: 78 213 549 589 MathWorks begin bpage %%EndPageSetup %%BeginObject: obj1 bplot /dpi2point 12 def portraitMode 0216 7344 csm 731 274 5642 4514 MR c np 91 dict begin %Colortable dictionary /c0 { 0 0 0 sr} bdef /c1 { 1 1 1 sr} bdef /c2 { 1 0 0 sr} bdef /c3 { 0 1 0 sr} bdef /c4 { 0 0 1 sr} bdef /c5 { 1 1 0 sr} bdef /c6 { 1 0 1 sr} bdef /c7 { 0 1 1 sr} bdef c0 1 j 1 sg 0 0 6913 5186 PR 6 w 0 4226 5356 0 0 -4226 899 4615 4 MP PP -5356 0 0 4226 5356 0 0 -4226 899 4615 5 MP stroke 4 w DO SO 6 w 0 sg 899 4615 mt 6255 4615 L 899 389 mt 6255 389 L 899 4615 mt 899 389 L 6255 4615 mt 6255 389 L 899 4615 mt 6255 4615 L 899 4615 mt 899 389 L 899 4615 mt 899 4561 L 899 389 mt 899 442 L %%IncludeResource: font Helvetica /Helvetica /ISOLatin1Encoding 120 FMSR 816 4760 mt (0.5) s 1970 4615 mt 1970 4561 L 1970 389 mt 1970 442 L 1937 4760 mt (1) s 3041 4615 mt 3041 4561 L 3041 389 mt 3041 442 L 2958 4760 mt (1.5) s 4112 4615 mt 4112 4561 L 4112 389 mt 4112 442 L 4079 4760 mt (2) s 5183 4615 mt 5183 4561 L 5183 389 mt 5183 442 L 5100 4760 mt (2.5) s 6255 4615 mt 6255 4561 L 6255 389 mt 6255 442 L 6222 4760 mt (3) s 899 4615 mt 952 4615 L 6255 4615 mt 6201 4615 L 731 4659 mt (10) s 899 4145 mt 952 4145 L 6255 4145 mt 6201 4145 L 731 4189 mt (12) s 899 3675 mt 952 3675 L 6255 3675 mt 6201 3675 L 731 3719 mt (14) s 899 3206 mt 952 3206 L 6255 3206 mt 6201 3206 L 731 3250 mt (16) s 899 2736 mt 952 2736 L 6255 2736 mt 6201 2736 L 731 2780 mt (18) s 899 2267 mt 952 2267 L 6255 2267 mt 6201 2267 L 731 2311 mt (20) s 899 1797 mt 952 1797 L 6255 1797 mt 6201 1797 L 731 1841 mt (22) s 899 1328 mt 952 1328 L 6255 1328 mt 6201 1328 L 731 1372 mt (24) s 899 858 mt 952 858 L 6255 858 mt 6201 858 L 731 902 mt (26) s 899 389 mt 952 389 L 6255 389 mt 6201 389 L 731 433 mt (28) s 899 4615 mt 6255 4615 L 899 389 mt 6255 389 L 899 4615 mt 899 389 L 6255 4615 mt 6255 389 L gs 899 389 5357 4227 MR c np 2143 1091 2142 261 1071 -3709 899 4541 4 MP stroke gr 863 4541 mt 935 4541 L 899 4505 mt 899 4577 L 1934 832 mt 2006 832 L 1970 796 mt 1970 868 L 4076 1093 mt 4148 1093 L 4112 1057 mt 4112 1129 L 6219 2184 mt 6291 2184 L 6255 2148 mt 6255 2220 L 874 4516 mt 924 4566 L 924 4516 mt 874 4566 L 1945 807 mt 1995 857 L 1995 807 mt 1945 857 L 4087 1068 mt 4137 1118 L 4137 1068 mt 4087 1118 L 6230 2159 mt 6280 2209 L 6280 2159 mt 6230 2209 L gs 899 389 5357 4227 MR c np gr end eplot %%EndObject epage end showpage %%Trailer %%EOF %%EndDocument @endspecial 2649 1424 a Fr(\(b\))g(speedup)h(vs)f Fq(\017)1532 1666 y Fd(Figur)o(e)g(6:)k(Gain)18 b(as)i Fq(\017)e Fd(v)o(aries)-67 1990 y Fr(L)t Fg(E)t(M)t(M)t(A)42 b Fr(2.)37 b Fm(F)-8 b(or)19 b(any)h Fq(\015)25 b(>)c Fn(0)p Fm(,)e(ther)m(e)g(is)g Fq(r)k Fn(=)e Fq(r)r Fn(\()p Fq(c;)13 b(p;)g(\015)t Fn(\))18 b Fm(suc)o(h)i(that)303 2127 y Fn(1)d Fl(\000)g Fq(p)474 2135 y Fo(1)p 303 2158 206 4 v 303 2226 a Fn(1)g Fl(\000)g Fq(p)474 2234 y Fo(2)539 2176 y Fl(\024)k Fn(\(1)d(+)f Fq(\015)t Fn(\))f Fl(\001)i Fn(max)1068 2070 y Fj(\022)1150 2127 y Fn(1)p 1134 2158 70 4 v 1134 2226 a Fq(c)1167 2205 y Fp(p)1213 2176 y Fq(;)1257 2127 y Fn(1)p 1257 2158 39 4 v 1260 2226 a Fq(c)1306 2070 y Fj(\023)1375 2176 y Fq(:)-152 2383 y Fd(Pr)o(oof:)42 b Fr(Using)28 b(the)g(v)n(alues)h(of)f Fq(p)763 2391 y Fo(1)797 2383 y Fq(;)13 b(p)870 2391 y Fo(2)932 2383 y Fr(calculated)28 b(in)g(Sub-section)h(3.2,)-152 2470 y(follo)n(wed)20 b(by)f(a)g(change)h(of)f(v)n(ariables,)g(we)g(get)70 2698 y Fn(1)e Fl(\000)g Fq(p)241 2706 y Fo(1)p 70 2729 206 4 v 70 2797 a Fn(1)g Fl(\000)g Fq(p)241 2805 y Fo(2)360 2746 y Fn(=)537 2690 y(1)h Fl(\000)670 2630 y Fj(R)721 2650 y Fp(r)706 2717 y Fo(0)755 2690 y Fn(\(1)g Fl(\000)927 2659 y Fp(t)951 2638 y Fb(0)p 927 2673 47 4 v 935 2715 a Fp(r)984 2690 y Fn(\))p Fq(f)8 b Fn(\()p Fq(t)1117 2658 y Ff(0)1139 2690 y Fn(\))p Fq(dt)1237 2658 y Ff(0)p 504 2729 788 4 v 504 2807 a Fn(1)18 b Fl(\000)636 2747 y Fj(R)688 2767 y Fp(r)673 2834 y Fo(0)722 2807 y Fn(\(1)f Fl(\000)894 2776 y Fp(t)918 2762 y Fb(0)p 894 2790 47 4 v 902 2832 a Fp(r)950 2807 y Fn(\))990 2776 y Fo(1)p 990 2790 31 4 v 991 2832 a Fp(c)1031 2807 y Fq(f)8 b Fn(\()1116 2776 y Fp(t)1140 2762 y Fb(0)p 1116 2790 47 4 v 1125 2832 a Fp(c)1172 2807 y Fn(\))p Fq(dt)1270 2785 y Ff(0)360 2960 y Fn(=)544 2903 y(1)18 b Fl(\000)677 2843 y Fj(R)728 2864 y Fp(r)713 2930 y Fo(0)763 2903 y Fn(\(1)f Fl(\000)938 2873 y Fp(t)p 935 2887 31 4 v 935 2929 a(r)975 2903 y Fn(\))p Fq(f)8 b Fn(\()p Fq(t)p Fn(\))p Fq(dt)p 504 2943 742 4 v 504 3029 a Fn(1)18 b Fl(\000)636 2969 y Fj(R)688 2990 y Fp(r)r(=c)673 3056 y Fo(0)782 3029 y Fn(\(1)f Fl(\000)954 2999 y Fp(tc)p 954 3013 52 4 v 964 3055 a(r)1015 3029 y Fn(\))p Fq(f)8 b Fn(\()p Fq(t)p Fn(\))p Fq(dt)360 3184 y Fn(=)564 3127 y(\(1)17 b Fl(\000)726 3067 y Fj(R)777 3088 y Fp(r)762 3154 y Fo(0)825 3127 y Fq(f)8 b Fn(\()p Fq(t)p Fn(\))p Fq(dt)p Fn(\))16 b(+)1159 3097 y Fo(1)p 1159 3111 31 4 v 1159 3153 a Fp(r)1212 3067 y Fj(R)1263 3088 y Fp(r)1248 3154 y Fo(0)1310 3127 y Fq(tf)8 b Fn(\()p Fq(t)p Fn(\))p Fq(dt)p 504 3167 1095 4 v 504 3253 a Fn(\(1)17 b Fl(\000)666 3193 y Fj(R)717 3214 y Fp(r)r(=c)702 3280 y Fo(0)825 3253 y Fq(f)8 b Fn(\()p Fq(t)p Fn(\))p Fq(dt)p Fn(\))16 b(+)1160 3223 y Fp(c)p 1159 3237 31 4 v 1159 3279 a(r)1212 3193 y Fj(R)1263 3214 y Fp(r)r(=c)1248 3280 y Fo(0)1370 3253 y Fq(tf)8 b Fn(\()p Fq(t)p Fn(\))p Fq(dt)1608 3184 y(:)-152 3390 y Fr(Setting)481 3566 y Fq(F)j Fn(\()p Fq(x)p Fn(\))21 b(=)g(1)c Fl(\000)879 3465 y Fj(Z)956 3485 y Fp(x)922 3635 y Fo(0)1007 3566 y Fq(f)8 b Fn(\()p Fq(t)p Fn(\))p Fq(dt)-152 3744 y Fr(and)495 3906 y Fq(G)p Fn(\()p Fq(x)p Fn(\))21 b(=)774 3857 y(1)p 771 3888 44 4 v 771 3956 a Fq(x)837 3804 y Fj(Z)914 3824 y Fp(x)880 3974 y Fo(0)966 3906 y Fq(tf)8 b Fn(\()p Fq(t)p Fn(\))p Fq(dt)-152 4066 y Fr(we)19 b(see)221 4181 y Fn(1)e Fl(\000)g Fq(p)392 4189 y Fo(1)p 221 4213 206 4 v 221 4280 a Fn(1)g Fl(\000)g Fq(p)392 4288 y Fo(2)511 4230 y Fn(=)727 4181 y Fq(F)11 b Fn(\()p Fq(r)r Fn(\))16 b(+)h Fq(G)p Fn(\()p Fq(r)r Fn(\))p 655 4213 551 4 v 655 4280 a Fq(F)11 b Fn(\()p Fq(r)r(=c)p Fn(\))17 b(+)g Fq(G)p Fn(\()p Fq(r)r(=c)p Fn(\))511 4416 y Fl(\024)74 b Fn(max)801 4311 y Fj(\022)903 4367 y Fq(F)11 b Fn(\()p Fq(r)r Fn(\))p 868 4399 228 4 v 868 4466 a Fq(F)g Fn(\()p Fq(r)r(=c)p Fn(\))1105 4416 y Fq(;)1185 4367 y(G)p Fn(\()p Fq(r)r Fn(\))p 1149 4399 229 4 v 1149 4466 a Fq(G)p Fn(\()p Fq(r)r(=c)p Fn(\))1388 4311 y Fj(\023)1457 4416 y Fq(:)-77 4601 y Fr(First,)16 b(we)i(consider)g Fq(p)j Fl(2)h Fn(\(0)p Fq(;)13 b Fn(2\))f Fl(\000)g(f)p Fn(1)p Fl(g)19 b Fr(and)f(discuss)h(the)e(special)h (cases)-152 4688 y Fq(p)j Fn(=)g(1)16 b Fr(and)g Fq(p)21 b Fn(=)g(2)15 b Fr(to)n(w)o(ards)h(the)f(end.)23 b(W)-6 b(e)15 b(bound)i Fq(F)11 b Fn(\()p Fq(r)r Fn(\))p Fq(=F)g Fn(\()p Fq(r)r(=c)p Fn(\))p Fr(.)21 b(Notice)-152 4775 y Fq(F)11 b Fn(\()p Fq(x)p Fn(\))28 b(=)h(Pr)211 4783 y Fp(a)249 4775 y Fn([)p Fq(a)g(>)f(x)p Fn(])23 b Fr(for)g Fq(a)f Fr(dra)o(wn)h(according)h(to)f(the)g(absolute)h(v)n(alue)-152 4862 y(of)i(a)g Fq(p)p Fr(-stable)f(distrib)o(ution)g(with)h(density)g (function)h Fq(f)8 b Fn(\()p Fl(\001)p Fn(\))p Fr(.)43 b(T)-6 b(o)26 b(estimate)-152 4950 y Fq(F)11 b Fn(\()p Fq(x)p Fn(\))p Fr(,)25 b(we)f(can)i(use)f(the)g(P)o(areto)f(estimation) h(\([25]\))f(for)h(the)g(cumulati)n(v)o(e)-152 5037 y(distrib)o(ution) 19 b(function,)h(which)f(holds)g(for)g Fn(0)j Fq(<)f(p)g(<)g Fn(2)p Fr(,)-32 5208 y Fl(8)p Fq(\016)j(>)d Fn(0)e Fl(9)p Fq(x)294 5216 y Fo(0)346 5208 y Fn(s)p Fq(:)p Fn(t)p Fq(:)h Fl(8)p Fq(x)g Fl(\025)h Fq(x)700 5216 y Fo(0)735 5208 y Fq(;)5 5297 y(C)60 5305 y Fp(p)96 5297 y Fq(x)140 5266 y Ff(\000)p Fp(p)224 5297 y Fn(\(1)c Fl(\000)g Fq(\016)s Fn(\))k Fl(\024)g Fq(F)11 b Fn(\()p Fq(x)p Fn(\))20 b Fl(\024)h Fq(C)875 5305 y Fp(p)911 5297 y Fq(x)955 5266 y Ff(\000)p Fp(p)1039 5297 y Fn(\(1)c(+)g Fq(\016)s Fn(\))2040 1990 y Fr(where)k Fq(C)2298 1998 y Fp(p)2359 1990 y Fn(=)2457 1960 y Fo(2)p 2453 1974 38 4 v 2453 2016 a Fp(\031)2501 1990 y Fn(\000\()p Fq(p)p Fn(\))12 b(sin)q(\()p Fq(\031)s(p=)p Fn(2\))p Fr(.)28 b(Note)20 b(that)h(the)g(e)o(xtra)g(f)o(actor)g(2)f (is)h(due)2040 2078 y(to)f(the)g(f)o(act)g(that)g(the)g(distrib)o (ution)g(function)g(is)g(for)g(the)g(absolute)h(v)n(alue)f(of)2040 2165 y(the)e Fq(p)p Fr(-stable)g(distrib)o(ution.)23 b(Fix)17 b Fq(\016)25 b Fn(=)c(min)o(\()p Fq(\015)t(=)p Fn(4)p Fq(;)13 b Fn(1)p Fq(=)p Fn(2\))p Fr(.)24 b(F)o(or)18 b(this)f(v)n(alue)i(of)2040 2252 y Fq(\016)j Fr(let)c Fq(r)2224 2260 y Fo(0)2277 2252 y Fr(be)h(the)g Fq(x)2520 2260 y Fo(0)2573 2252 y Fr(in)g(the)g(equation)h(abo)o(v)o(e.)2115 2339 y(If)e(we)h(set)g Fq(r)k(>)e(r)2565 2347 y Fo(0)2618 2339 y Fr(we)e(get)2535 2476 y Fq(F)11 b Fn(\()p Fq(r)r Fn(\))p 2499 2507 228 4 v 2499 2575 a Fq(F)g Fn(\()p Fq(r)r(=c)p Fn(\))2812 2524 y Fl(\024)3022 2476 y Fq(C)3077 2484 y Fp(p)3113 2476 y Fq(r)3150 2444 y Ff(\000)p Fp(p)3234 2476 y Fn(\(1)17 b(+)g Fq(\016)s Fn(\))p 2956 2507 573 4 v 2956 2575 a Fq(C)3011 2583 y Fp(p)3047 2575 y Fn(\()p Fq(r)r(=c)p Fn(\))3215 2554 y Ff(\000)p Fp(p)3300 2575 y Fn(\(1)g Fl(\000)g Fq(\016)s Fn(\))2812 2714 y Fl(\024)2956 2666 y Fq(r)2993 2634 y Ff(\000)p Fp(p)3077 2666 y Fn(\(1)h(+)e Fq(\016)s Fn(\)\(1)h(+)g(2)p Fq(\016)s Fn(\))p 2956 2697 618 4 v 3139 2765 a(\()p Fq(r)r(=c)p Fn(\))3307 2743 y Ff(\000)p Fp(p)2812 2901 y Fl(\024)2946 2796 y Fj(\022)3013 2853 y Fn(1)p 3013 2884 39 4 v 3016 2952 a Fq(c)3061 2796 y Fj(\023)3118 2813 y Fp(p)3167 2901 y Fn(\(1)g(+)g(4)p Fq(\016)s Fn(\))2812 3090 y Fl(\024)2946 2984 y Fj(\022)3013 3041 y Fn(1)p 3013 3072 V 3016 3140 a Fq(c)3061 2984 y Fj(\023)3118 3002 y Fp(p)3167 3090 y Fn(\(1)g(+)g Fq(\015)t Fn(\))12 b Fq(:)2115 3274 y Fr(No)n(w)27 b(we)g(bound)h Fq(G)p Fn(\()p Fq(r)r Fn(\))p Fq(=G)p Fn(\()p Fq(r)r(=c)p Fn(\))p Fr(.)48 b(W)-6 b(e)26 b(break)i(the)f(proof)g(do)n(wn)h(into) 2040 3361 y(tw)o(o)19 b(cases)g(based)h(on)g(the)f(v)n(alue)g(of)g Fq(p)p Fr(.)2040 3535 y Fd(Case)j(1:)30 b Fq(p)c(>)h Fn(1)p Fr(.)33 b(F)o(or)21 b(these)h Fq(p)p Fr(-stable)g(distrib)o (utions,)3521 3475 y Fj(R)3572 3496 y Ff(1)3557 3562 y Fo(0)3650 3535 y Fq(tf)8 b Fn(\()p Fq(t)p Fn(\))p Fq(dt)21 b Fr(con-)2040 3623 y(v)o(er)o(ges)28 b(to,)i(say)-5 b(,)30 b Fq(k)2550 3631 y Fp(p)2613 3623 y Fr(\(since)e(the)g(random)h (v)n(ariables)f(dra)o(wn)g(from)g(those)2040 3710 y(distrib)o(utions)i (ha)o(v)o(e)g(\002nite)f(e)o(xpectations\).)57 b(As)29 b Fq(tf)8 b Fn(\()p Fq(t)p Fn(\))30 b Fr(is)f(non-ne)o(gati)n(v)o(e) 2040 3797 y(on)22 b Fn([0)p Fq(;)14 b Fl(1)p Fn(\))p Fr(,)2377 3737 y Fj(R)2428 3757 y Fp(x)2413 3824 y Fo(0)2480 3797 y Fq(tf)8 b Fn(\()p Fq(t)p Fn(\))p Fq(dt)20 b Fr(is)h(a)g (monotonically)i(increasing)g(function)f(of)f Fq(x)2040 3884 y Fr(which)26 b(con)m(v)o(er)o(ges)g(to)f Fq(k)2693 3892 y Fp(p)2729 3884 y Fr(.)41 b(Thus,)27 b(for)e(e)n(v)o(ery)h Fq(\016)3321 3852 y Ff(0)3376 3884 y Fq(>)33 b Fn(0)25 b Fr(there)g(is)g(some)g Fq(r)4000 3852 y Ff(0)3998 3897 y Fo(0)2040 3971 y Fr(such)20 b(that)2619 4153 y Fn(\(1)e Fl(\000)e Fq(\016)2818 4117 y Ff(0)2841 4153 y Fn(\))p Fq(k)2911 4161 y Fp(p)2968 4153 y Fl(\024)3049 4051 y Fj(Z)3126 4072 y Fp(r)3157 4051 y Fb(0)3155 4088 y Fe(0)3092 4221 y Fo(0)3204 4153 y Fq(tf)8 b Fn(\()p Fq(t)p Fn(\))p Fq(dt:)2040 4336 y Fr(Set)18 b Fq(\016)2191 4304 y Ff(0)2235 4336 y Fn(=)j(min)o(\()p Fq(\015)t(=)p Fn(2)p Fq(;)14 b Fn(1)p Fq(=)p Fn(2\))19 b Fr(and)h(choose)g Fq(r)3182 4304 y Ff(0)3226 4336 y Fq(>)h(cr)3377 4304 y Ff(0)3375 4349 y Fo(0)3409 4336 y Fr(.)i(Then)2316 4504 y Fq(G)p Fn(\()p Fq(r)2443 4472 y Ff(0)2466 4504 y Fn(\))p 2281 4535 251 4 v 2281 4603 a Fq(G)p Fn(\()p Fq(r)2408 4582 y Ff(0)2430 4603 y Fq(=c)p Fn(\))2616 4552 y(=)3080 4465 y Fo(1)p 3069 4479 53 4 v 3069 4521 a Fp(r)3100 4507 y Fb(0)3144 4435 y Fj(R)3196 4456 y Fp(r)3227 4435 y Fb(0)3181 4523 y Fo(0)3266 4496 y Fq(tf)8 b Fn(\()p Fq(t)p Fn(\))p Fq(dt)p 2760 4535 1032 4 v 2783 4594 a Fp(c)p 2770 4608 53 4 v 2770 4650 a(r)2801 4636 y Fb(0)2846 4564 y Fj(R)2897 4585 y Fp(r)2928 4568 y Fb(0)2926 4604 y Fe(0)2882 4652 y Fo(0)2976 4625 y Fq(tf)g Fn(\()p Fq(t)p Fn(\))p Fq(dt)16 b Fn(+)3320 4594 y Fp(c)p 3307 4608 V 3307 4650 a(r)3338 4636 y Fb(0)3383 4564 y Fj(R)3434 4585 y Fp(r)3465 4571 y Fb(0)3487 4585 y Fp(=c)3419 4652 y(r)3450 4634 y Fb(0)3448 4671 y Fe(0)3564 4625 y Fq(tf)8 b Fn(\()p Fq(t)p Fn(\))p Fq(dt)2616 4799 y Fl(\024)2782 4711 y Fo(1)p 2771 4725 V 2771 4767 a Fp(r)2802 4753 y Fb(0)2846 4682 y Fj(R)2897 4702 y Ff(1)2883 4769 y Fo(0)2975 4742 y Fq(tf)g Fn(\()p Fq(t)p Fn(\))p Fq(dt)p 2760 4781 444 4 v 2783 4840 a Fp(c)p 2770 4854 53 4 v 2770 4896 a(r)2801 4882 y Fb(0)2846 4811 y Fj(R)2897 4831 y Fp(r)2928 4814 y Fb(0)2926 4850 y Fe(0)2882 4898 y Fo(0)2976 4871 y Fq(tf)g Fn(\()p Fq(t)p Fn(\))p Fq(dt)2616 5024 y Fl(\024)2907 4938 y Fo(1)p 2896 4952 V 2896 4994 a Fp(r)2927 4980 y Fb(0)2959 4969 y Fq(k)2999 4977 y Fp(p)p 2760 5007 401 4 v 2783 5044 a(c)p 2770 5058 53 4 v 2770 5100 a(r)2801 5086 y Fb(0)2833 5075 y Fn(\(1)18 b Fl(\000)e Fq(\016)3032 5053 y Ff(0)3055 5075 y Fn(\))p Fq(k)3125 5083 y Fp(p)2616 5205 y Fl(\024)2760 5156 y Fn(1)p 2760 5188 39 4 v 2763 5255 a Fq(c)2809 5205 y Fn(\(1)h(+)g(2)p Fq(\016)3046 5169 y Ff(0)3069 5205 y Fn(\))2616 5360 y Fl(\024)2760 5312 y Fn(1)p 2760 5343 V 2763 5411 a Fq(c)2809 5360 y Fn(\(1)g(+)g Fq(\015)t Fn(\))p Fq(:)880 b Fr(\(1\))p eop %%Page: 10 10 10 9 bop -152 -69 a Fd(Case)19 b(2:)k Fq(p)d(<)h Fn(1)p Fr(.)i(F)o(or)18 b(this)f(case)i(we)f(will)f(choose)i(our)f(parameters) h(so)f(that)-152 19 y(we)k(can)g(use)g(the)g(P)o(areto)f(estimation)g (for)h(the)g(density)g(function.)32 b(Choose)-152 106 y Fq(x)-108 114 y Fo(0)-53 106 y Fr(lar)o(ge)21 b(enough)i(so)e(that)f (the)h(P)o(areto)g(estimation)g(is)f(accurate)i(to)f(within)-152 193 y(a)e(f)o(actor)g(of)g Fn(\(1)f Fl(\006)e Fq(\016)s Fn(\))j Fr(for)g Fq(x)h(>)i(x)717 201 y Fo(0)751 193 y Fr(.)h(Then)c(for)g Fq(x)h(>)h(x)1260 201 y Fo(0)1295 193 y Fr(,)-32 370 y Fq(G)p Fn(\()p Fq(x)p Fn(\))g(=)246 339 y Fo(1)p 244 353 35 4 v 244 395 a Fp(x)301 310 y Fj(R)352 330 y Fp(x)387 340 y Fe(0)337 397 y Fo(0)436 370 y Fq(tf)8 b Fn(\()p Fq(t)p Fn(\))p Fq(dt)17 b Fn(+)771 339 y Fo(1)p 768 353 V 768 395 a Fp(x)826 310 y Fj(R)877 330 y Fp(x)862 397 y(x)897 407 y Fe(0)946 370 y Fq(tf)8 b Fn(\()p Fq(t)p Fn(\))p Fq(dt)99 559 y(<)192 528 y Fo(1)p 190 542 V 190 584 a Fp(x)247 498 y Fj(R)298 519 y Fp(x)333 529 y Fe(0)283 586 y Fo(0)382 559 y Fq(tf)g Fn(\()p Fq(t)p Fn(\))p Fq(dt)17 b Fn(+)714 528 y Fo(1+)p Fp(\016)p 714 542 107 4 v 751 584 a(x)844 498 y Fj(R)895 519 y Fp(x)880 586 y(x)915 596 y Fe(0)965 559 y Fq(pC)1059 567 y Fp(p)1094 559 y Fq(t)1122 527 y Ff(\000)p Fp(p)1206 559 y Fq(dt)99 745 y Fn(=)192 715 y Fo(1)p 190 729 35 4 v 190 771 a Fp(x)247 685 y Fj(R)298 705 y Fp(x)333 715 y Fe(0)283 772 y Fo(0)382 745 y Fq(tf)8 b Fn(\()p Fq(t)p Fn(\))p Fq(dt)18 b Fn(+)155 846 y(\()236 806 y Fp(pC)312 814 y Fi(p)p 194 829 194 4 v 194 871 a Fp(x)p Fo(\(1)p Ff(\000)p Fp(p)p Fo(\))398 846 y Fq(x)442 814 y Ff(\000)p Fp(p)p Fo(+1)619 846 y Fl(\000)747 806 y Fp(pC)823 814 y Fi(p)p 706 829 V 706 871 a Fp(x)p Fo(\(1)p Ff(\000)p Fp(p)p Fo(\))909 846 y Fq(x)953 854 y Fo(0)987 814 y Ff(\000)p Fp(p)p Fo(+1)1148 846 y Fn(\)\(1)g(+)e Fq(\016)s Fn(\))99 1048 y(=)192 1017 y Fo(1)p 190 1031 35 4 v 190 1073 a Fp(x)234 1048 y Fn(\()264 988 y Fj(R)315 1008 y Fp(x)350 1018 y Fe(0)301 1075 y Fo(0)400 1048 y Fq(tf)8 b Fn(\()p Fq(t)p Fn(\))p Fq(dt)16 b Fl(\000)731 1008 y Fp(pC)807 1016 y Fi(p)842 1008 y Fo(\(1+)p Fp(\016)r Fo(\))p 731 1031 266 4 v 785 1073 a(\(1)p Ff(\000)p Fp(p)p Fo(\))1007 1048 y Fq(x)1051 1056 y Fo(0)1085 1016 y Ff(\000)p Fp(p)p Fo(+1)1247 1048 y Fn(\))i(+)184 1129 y Fo(1)p 165 1143 70 4 v 165 1185 a Fp(x)200 1171 y Fi(p)244 1160 y Fn(\()308 1120 y Fp(pC)384 1128 y Fi(p)p 284 1143 159 4 v 284 1185 a Fo(\(1)p Ff(\000)p Fp(p)p Fo(\))452 1160 y Fn(\(1)g(+)f Fq(\016)s Fn(\)\))p Fq(:)-152 1345 y Fr(Since)h Fq(x)76 1353 y Fo(0)129 1345 y Fr(is)g(a)g(constant)h(that)g(depends)h(on)e Fq(\016)s Fr(,)g(the)h(\002rst)e(term)h(decreases)i(as)-152 1432 y Fn(1)p Fq(=x)i Fr(while)g(the)f(second)i(term)f(decreases)h(as)e Fn(1)p Fq(=x)1189 1400 y Fp(p)1247 1432 y Fr(where)h Fq(p)k(<)h Fn(1)p Fr(.)k(Thus)-152 1519 y(for)18 b(e)n(v)o(ery)h Fq(\016)171 1487 y Ff(0)211 1519 y Fr(there)f(is)g(some)h Fq(x)666 1527 y Fo(1)718 1519 y Fr(such)f(that)g(for)g(all)g Fq(x)j(>)g(x)1390 1527 y Fo(1)1424 1519 y Fr(,)d(the)g(\002rst)f(term) -152 1606 y(is)22 b(at)h(most)f Fq(\016)201 1575 y Ff(0)246 1606 y Fr(times)g(the)h(second)g(term.)34 b(W)-6 b(e)22 b(choose)i Fq(\016)1350 1575 y Ff(0)1400 1606 y Fn(=)k Fq(\016)s Fr(.)34 b(Then)23 b(for)-152 1694 y Fq(x)e(>)g Fn(max)o(\()p Fq(x)211 1702 y Fo(1)245 1694 y Fq(;)13 b(x)323 1702 y Fo(0)357 1694 y Fn(\))p Fr(,)335 1881 y Fq(G)p Fn(\()p Fq(x)p Fn(\))21 b Fq(<)g Fn(\(1)c(+)g Fq(\016)s Fn(\))830 1845 y Fo(2)877 1776 y Fj(\022)1034 1832 y Fq(pC)1128 1840 y Fp(p)p 943 1864 311 4 v 943 1931 a Fn(\(1)h Fl(\000)f Fq(p)p Fn(\))p Fq(x)1219 1910 y Fp(p)1264 1776 y Fj(\023)1333 1881 y Fq(:)-152 2063 y Fr(In)i(the)g(same)g(w)o(ay)h(we)f(obtain)335 2248 y Fq(G)p Fn(\()p Fq(x)p Fn(\))i Fq(>)g Fn(\(1)c Fl(\000)g Fq(\016)s Fn(\))830 2212 y Fo(2)877 2142 y Fj(\022)1034 2199 y Fq(pC)1128 2207 y Fp(p)p 943 2231 V 943 2298 a Fn(\(1)h Fl(\000)f Fq(p)p Fn(\))p Fq(x)1219 2277 y Fp(p)1264 2142 y Fj(\023)1333 2248 y Fq(:)-152 2435 y Fr(Using)j(these)f(tw)o(o)g (bounds,)h(we)f(see)g(for)g Fq(r)k(>)e(c)13 b Fn(max)o(\()p Fq(x)1329 2443 y Fo(1)1363 2435 y Fq(;)g(x)1441 2443 y Fo(0)1475 2435 y Fn(\))p Fr(,)292 2630 y Fq(G)p Fn(\()p Fq(r)r Fn(\))p 256 2661 229 4 v 256 2729 a Fq(G)p Fn(\()p Fq(r)r(=c)p Fn(\))569 2678 y Fq(<)767 2600 y Fn(\(1)18 b(+)f Fq(\016)s Fn(\))997 2568 y Fo(2)1044 2517 y Fj(\020)1156 2560 y Fp(pC)1232 2568 y Fi(p)p 1100 2583 224 4 v 1100 2625 a Fo(\(1)p Ff(\000)p Fp(p)p Fo(\))p Fp(r)1289 2611 y Fi(p)1333 2517 y Fj(\021)p 714 2661 720 4 v 714 2756 a Fn(\(1)g Fl(\000)g Fq(\016)s Fn(\))943 2735 y Fo(2)990 2674 y Fj(\020)1156 2716 y Fp(pC)1232 2724 y Fi(p)p 1046 2739 332 4 v 1046 2782 a Fo(\(1)p Ff(\000)p Fp(p)p Fo(\)\()p Fp(r)r(=c)p Fo(\))1343 2768 y Fi(p)1387 2674 y Fj(\021)569 2910 y Fl(\024)729 2861 y Fn(1)p 714 2893 70 4 v 714 2960 a Fq(c)747 2939 y Fp(p)793 2910 y Fn(\(1)g(+)g(9)p Fq(\016)s Fn(\))569 3065 y Fl(\024)729 3017 y Fn(1)p 714 3048 V 714 3116 a Fq(c)747 3094 y Fp(p)793 3065 y Fn(\(1)g(+)g Fq(\015)t Fn(\))-152 3232 y Fr(for)i Fq(\016)24 b(<)d Fn(min)o(\()p Fq(\015)t(=)p Fn(9)p Fq(;)14 b Fn(1)p Fq(=)p Fn(2\))p Fr(.)-77 3319 y(W)-6 b(e)23 b(no)n(w)h(consider)g(the)f (special)h(cases)f(of)h Fq(p)29 b Fl(2)h(f)p Fn(1)p Fq(;)14 b Fn(2)p Fl(g)p Fr(.)36 b(F)o(or)23 b(the)g(case)-152 3406 y(of)j Fq(p)35 b Fn(=)g(1)p Fr(,)28 b(we)e(ha)o(v)o(e)g(the)g (Cauchy)h(distrib)o(ution)f(and)h(we)f(can)h(compute)-152 3514 y(directly)e Fq(G)p Fn(\()p Fq(r)r Fn(\))33 b(=)393 3478 y Fo(ln)o(\()p Fp(r)499 3458 y Fe(2)531 3478 y Fo(+1\))p 393 3497 240 4 v 478 3540 a Fp(\031)r(r)667 3514 y Fr(and)25 b Fq(F)11 b Fn(\()p Fq(r)r Fn(\))32 b(=)h(1)22 b Fl(\000)1236 3484 y Fo(2)p 1232 3498 38 4 v 1232 3540 a Fp(\031)1293 3514 y Fn(tan)1404 3483 y Ff(\000)p Fo(1)1486 3514 y Fn(\()p Fq(r)r Fn(\))p Fr(.)41 b(In)25 b(f)o(act)-152 3621 y(for)18 b(the)g(ratio)256 3585 y Fp(F)8 b Fo(\()p Fp(r)r Fo(\))p 226 3604 185 4 v 226 3647 a Fp(F)g Fo(\()p Fp(r)r(=c)p Fo(\))421 3621 y Fr(,)17 b(the)h(pre)n(vious)g(analysis)h (for)e(general)h Fq(p)f Fr(w)o(orks)i(here.)-152 3741 y(As)j(for)h(the)f(ratio)375 3705 y Fp(G)p Fo(\()p Fp(r)r Fo(\))p 345 3723 186 4 v 345 3766 a Fp(G)p Fo(\()p Fp(r)r(=c)p Fo(\))541 3741 y Fr(,)g(we)h(can)f(pro)o(v)o(e)h(the)g(upper)g(bound)h (of)1616 3710 y Fo(1)p 1616 3724 31 4 v 1617 3766 a Fp(c)1679 3741 y Fr(using)-152 3838 y(L)-7 b('Hopital)19 b(rule,)f(as)h(follo)n (ws:)240 4097 y Fn(lim)217 4142 y Fp(r)r Ff(!1)399 4049 y Fq(G)p Fn(\()p Fq(r)r Fn(\))p 393 4080 171 4 v 393 4148 a Fq(G)p Fn(\()493 4117 y Fp(r)p 492 4131 31 4 v 493 4173 a(c)533 4148 y Fn(\))647 4097 y(=)98 b(lim)782 4142 y Fp(r)r Ff(!1)1046 4049 y Fn(ln\()p Fq(r)1177 4017 y Fo(2)1228 4049 y Fn(+)17 b(1\))p 957 4080 505 4 v 957 4148 a Fq(c)c Fn(ln\(\()p Fq(r)r(=c)p Fn(\))1265 4126 y Fo(2)1317 4148 y Fn(+)j(1\))647 4314 y(=)98 b(lim)782 4359 y Fp(r)r Ff(!1)1153 4214 y Fo(2)p Fp(r)p 1090 4228 188 4 v 1090 4271 a Fo(\()p Fp(r)1145 4257 y Fe(2)1176 4271 y Fo(+1\))p 957 4296 454 4 v 957 4369 a Fq(c)p Fn(\()1170 4338 y Fo(2)p Fp(r)p 1030 4352 341 4 v 1030 4396 a(c)1058 4382 y Fe(2)1090 4396 y Fo(\()p Fp(r)1145 4382 y Fe(2)1177 4396 y Fp(=c)1237 4382 y Fe(2)1269 4396 y Fo(+1\))1380 4369 y Fn(\))647 4529 y(=)g(lim)782 4574 y Fp(r)r Ff(!1)957 4480 y Fq(c)990 4449 y Fo(2)1025 4480 y Fn(\()p Fq(r)1092 4449 y Fo(2)1126 4480 y Fq(=c)1197 4449 y Fo(2)1249 4480 y Fn(+)17 b(1\))p 957 4512 438 4 v 1027 4579 a Fq(c)p Fn(\()p Fq(r)1127 4558 y Fo(2)1179 4579 y Fn(+)g(1\))647 4719 y(=)98 b(lim)782 4764 y Fp(r)r Ff(!1)957 4670 y Fq(c)990 4639 y Fo(2)1025 4670 y Fn(\(2)p Fq(r)r(=c)1201 4639 y Fo(2)1236 4670 y Fn(\))p 957 4702 309 4 v 1057 4769 a(2)p Fq(cr)647 4877 y Fn(=)792 4829 y(1)p 792 4860 39 4 v 795 4928 a Fq(c)840 4877 y(:)-77 5039 y Fr(Also)19 b(for)g(the)h(case)f Fq(p)j Fn(=)f(2)p Fr(,)e(i.e.)24 b(the)19 b(normal)g(distrib)o(ution,)g(the)h(compu-)-152 5126 y(tation)g(is)f(straightforw)o(ard.)26 b(W)-6 b(e)19 b(use)h(the)g(f)o(act)g(that)f(for)h(this)f(case)h Fq(F)11 b Fn(\()p Fq(r)r Fn(\))22 b Fl(')-152 5275 y Fq(f)8 b Fn(\()p Fq(r)r Fn(\))p Fq(=r)24 b Fr(and)e Fq(G)p Fn(\()p Fq(r)r Fn(\))27 b(=)540 5244 y Fo(2)p 496 5258 119 4 v 496 5266 a Ff(p)p 546 5266 69 3 v 41 x Fo(2)p Fp(\031)634 5244 y Fo(1)p Ff(\000)p Fp(e)752 5196 y Fb(\000)p Fi(r)826 5180 y Fe(2)p 752 5207 107 3 v 791 5239 a(2)p 634 5258 239 4 v 738 5300 a Fp(r)883 5275 y Fr(,)21 b(where)h Fq(f)8 b Fn(\()p Fq(r)r Fn(\))22 b Fr(is)f(the)h(normal)g(den-)-152 5378 y(sity)f(function.)30 b(F)o(or)21 b(lar)o(ge)g(v)n(alues)h(of)f Fq(r)r Fr(,)f Fq(G)p Fn(\()p Fq(r)r Fn(\))h Fr(clearly)g(dominates)h Fq(F)11 b Fn(\()p Fq(r)r Fn(\))p Fr(,)2040 -69 y(because)34 b Fq(F)11 b Fn(\()p Fq(r)r Fn(\))32 b Fr(decreases)h(e)o(xponentially)h (\()p Fq(e)3315 -100 y Ff(\000)p Fp(r)3394 -121 y Fe(2)3426 -100 y Fp(=)p Fo(2)3492 -69 y Fr(\))f(while)f Fq(G)p Fn(\()p Fq(r)r Fn(\))g Fr(de-)2040 32 y(creases)26 b(as)f Fn(1)p Fq(=r)r Fr(.)42 b(Thus,)26 b(we)f(need)h(to)f(approximate)3536 -4 y Fp(G)p Fo(\()p Fp(r)r Fo(\))p 3506 14 186 4 v 3506 57 a Fp(G)p Fo(\()p Fp(r)r(=c)p Fo(\))3726 32 y Fr(as)g Fq(r)i Fr(tends)2040 140 y(to)19 b(in\002nity)-5 b(,)18 b(which)i(is)e(clearly)2867 110 y Fo(1)p 2867 124 31 4 v 2868 166 a Fp(c)2908 140 y Fr(.)2447 432 y Fn(lim)2424 477 y Fp(r)r Ff(!1)2606 384 y Fq(G)p Fn(\()p Fq(r)r Fn(\))p 2599 415 171 4 v 2599 483 a Fq(G)p Fn(\()2699 452 y Fp(r)p 2699 466 31 4 v 2700 508 a(c)2740 483 y Fn(\))2801 432 y(=)44 b(lim)2882 477 y Fp(r)r Ff(!1)3118 384 y Fn(1)17 b Fl(\000)g Fq(e)3296 329 y Fb(\000)p Fi(r)3370 312 y Fe(2)p 3296 341 107 3 v 3335 374 a(2)p 3057 415 421 4 v 3057 521 a Fq(c)p Fn(\(1)h Fl(\000)e Fq(e)3288 483 y Ff(\000)3359 464 y Fi(r)3388 452 y Fe(2)p 3346 472 88 3 v 3346 513 a(2)p Fi(c)3401 501 y Fe(2)3448 521 y Fn(\))3509 432 y(=)3600 384 y(1)p 3600 415 39 4 v 3603 483 a Fq(c)2115 649 y Fr(Notice)21 b(that)h(similar)f(to)h(the)f(pre)n (vious)i(parts,)f(we)g(can)g(\002nd)g(the)g(appro-)2040 736 y(priate)d Fq(r)r Fn(\()p Fq(c;)13 b(p;)g(\015)t Fn(\))18 b Fr(such)i(that)2824 703 y Fo(1)p Ff(\000)p Fp(p)2934 713 y Fe(1)p 2824 719 143 4 v 2824 762 a Fo(1)p Ff(\000)p Fp(p)2934 772 y Fe(2)2996 736 y Fr(is)e(at)h(most)g(most)g Fn(\(1)e(+)g Fq(\015)t Fn(\))3711 706 y Fo(1)p 3711 720 31 4 v 3712 762 a Fp(c)3751 736 y Fr(.)p eop %%Trailer end userdict /end-hook known{end-hook}if %%EOF