lattice (original) (raw)

A sublattice of L is a subposet of L which is a lattice, that is, which is closed under the operations ∧ and ∨ as defined in L.

Conspicuously absent from the above list of properties is distributivity (http://planetmath.org/DistributiveLattice). While many nice lattices, such as face lattices of polytopes, are distributive, there are also important classes of lattices, such as partitionPlanetmathPlanetmath lattices (http://planetmath.org/PartitionLattice), that are usually not distributive.

Lattices, like posets, can be visualized by diagrams called Hasse diagrams. Below are two diagrams, both posets. The one on the left is a lattice, while the one on the right is not:

\entrymodifiers=[o]⁢\xymatrix⁢@!=1⁢p⁢t⁢&⁢&∙\ar⁢@-[l⁢d]⁢\ar⁢@-[r⁢d]⁢&⁢&⁢&∙\ar⁢@-[l⁢d]⁢\ar⁢@-[r⁢d]⁢&⁢&∙\ar⁢@-[l⁢d]⁢\ar⁢@-[r⁢d]⁢&∙\ar⁢@-[r⁢d]⁢&⁢&∙\ar⁢@-[l⁢d]⁢\ar⁢@-[r⁢d]⁢&⁢&∙\ar⁢@-[l⁢d]⁢&∙\ar⁢@-[r⁢d]⁢&⁢&∙\ar⁢@-[l⁢d]⁢&⁢&⁢&∙&⁢& \entrymodifiers=[o]⁢\xymatrix⁢@!=1⁢p⁢t⁢&⁢&∙\ar⁢@-[l⁢d]⁢\ar⁢@-[r⁢d]⁢&⁢&⁢&∙\ar⁢@-[l⁢d]⁢\ar⁢@-[r⁢d]⁢\ar⁢@-[d]⁢&⁢&∙\ar⁢@-[l⁢d]⁢\ar⁢@-[r⁢d]⁢\ar⁢@-[d]⁢&∙\ar⁢@-[r⁢d]⁢&⁢\ar⁢@-[d]⁢&⁢\ar⁢@-[l⁢d]⁢\ar⁢@-[r⁢d]⁢&⁢\ar⁢@-[d]⁢&∙\ar⁢@-[l⁢d]⁢&∙\ar⁢@-[r⁢d]⁢&⁢&∙\ar⁢@-[l⁢d]⁢&⁢&⁢&∙&⁢&

The vertices of a lattice diagram can also be labelled, so the lattice diagram looks like

\xymatrix⁢@!=1⁢p⁢t⁢&⁢&⁢a⁢\ar⁢@-[l⁢d]⁢\ar⁢@-[r⁢d]⁢&⁢&⁢&⁢b⁢\ar⁢@-[l⁢d]⁢\ar⁢@-[r⁢d]⁢&⁢&⁢c⁢\ar⁢@-[l⁢d]⁢\ar⁢@-[r⁢d]⁢&⁢d⁢\ar⁢@-[r⁢d]⁢&⁢&⁢e⁢\ar⁢@-[l⁢d]⁢\ar⁢@-[r⁢d]⁢&⁢&⁢f⁢\ar⁢@-[l⁢d]⁢&⁢g⁢\ar⁢@-[r⁢d]⁢&⁢&⁢h⁢\ar⁢@-[l⁢d]⁢&⁢&⁢&⁢i⁢&⁢&

Remark. Alternatively, a lattice can be defined as an algebraic system. Please see the link below for details.