special elements in a relation algebra (original) (raw)
Let A be a relation algebra with operators (∨,∧,;,′,-,0,1,i) of type (2,2,2,1,1,0,0,0). Then a∈A is called a
- •
- •
injective element if it is a function element such that e;e-≤i, - •
surjective element if e-;e=i, - •
reflexive element if i≤a, - •
- •
transitive element if a;a≤a, - •
subidentity if a≤i, - •
antisymmetric element if a∧a- is a subidentity, - •
- •
domain element if a;1=a, - •
range element if 1;a=a, - •
ideal element if 1;a;1=a, - •
rectangle if a=b;1;c for some b,c∈A, and - •
square if it is a rectangle where b=c (using the notations above).
These special elements are so named because they are the names of the corresponding binary relations on a set. The following table shows the correspondence.
References 1 S.R.Givant,The Structure of Relation Algebras Generated by Relativizations,AmericanMathematicalSociety(1994).Titlespecial elements in a relation algebraCanonical nameSpecialElementsInARelationAlgebraDate of creation2013-03-22 17:48:43Last modified on2013-03-22 17:48:43OwnerCWoo (3771)Last modified byCWoo (3771)Numerical id9AuthorCWoo (3771)Entry typeDefinitionClassificationmsc 03G15Definesfunction elementDefinesinjective elementDefinessurjective elementDefinesreflexive elementDefinessymmetric elementDefinestransitive elementDefinesequivalence elementDefinesdomain elementDefinesrange elementDefinesideal elementDefinesrectangleDefinessquareDefinesantisymmetric elementDefinessubidentity