submodule (original) (raw)

Examples

    1. The subsets {0} and T are always submodules of the module T.

There are some operationsMathworldPlanetmath on submodules. Given the submodules A and B of T, the sum A+B:={a+b∈T:a∈A∧b∈B} and the intersectionDlmfMathworldPlanetmath A∩B are submodules of T.

The notion of sum may be extended for any family {Aj:j∈J} of submodules: the sum ∑j∈JAj of submodules consists of all finite sums ∑jaj where every aj belongs to one Aj of those submodules. The sum of submodules as well as the intersection ⋂j∈JAj are submodules of T. The submodule R⁢X is the intersection of all submodules containing the subset X.

If T is a ring and R is a subring of T, then T is an R-module; then one can consider the productPlanetmathPlanetmath and the quotient of the left R-submodules A and B of T:

Also these are left R-submodules of T.

Title submodule
Canonical name Submodule
Date of creation 2013-03-22 15:15:26
Last modified on 2013-03-22 15:15:26
Owner PrimeFan (13766)
Last modified by PrimeFan (13766)
Numerical id 19
Author PrimeFan (13766)
Entry type Definition
Classification msc 20-00
Classification msc 16-00
Classification msc 13-00
Related topic SumOfIdeals
Related topic QuotientOfIdeals
Defines R-submodule
Defines generated submodule
Defines generator
Defines sum of submodules
Defines product submodule
Defines quotient of submodules