zeroth order logic (original) (raw)

\PMlinkescapephrase

calculus\PMlinkescapephraseCalculus\PMlinkescapephrasecolumn\PMlinkescapephraseColumn\PMlinkescapephrasecolumns\PMlinkescapephraseColumns\PMlinkescapephrasecompact \PMlinkescapephraseCompact\PMlinkescapephrasedegree\PMlinkescapephraseDegree\PMlinkescapephraseformal logicPlanetmathPlanetmath \PMlinkescapephraseFormal logic\PMlinkescapephraselevel\PMlinkescapephraseLevel\PMlinkescapephraseorder\PMlinkescapephraseOrder\PMlinkescapephrasereference\PMlinkescapephraseReference\PMlinkescapephrasetranslation\PMlinkescapephraseTranslation

Note. This entry overlaps to some degree with other entries on boolean functionsMathworldPlanetmath (http://planetmath.org/BooleanValuedFunction) and propositional logicPlanetmathPlanetmath (http://planetmath.org/PropositionalCalculus), but serves as a compact reference and a translation manual for several different styles of notation.

Contents:

1 Propositional forms

Table 1 lists equivalentMathworldPlanetmathPlanetmathPlanetmathPlanetmath expressions for the four functions of concrete type X→𝔹 and abstract type 𝔹→𝔹 in a number of different languagesPlanetmathPlanetmath for zeroth order logic.

Table 1. Propositional Forms on One Variable
ℒ1 ℒ2 ℒ3 ℒ4 ℒ5 ℒ6
x= 1 0
f0 f00 0 0 () false 0
f1 f01 0 1 (x) not x ¬⁢x
f2 f10 1 0 x x x
f3 f11 1 1 (()) true 1

Table 2 lists equivalent expressions for the sixteen functions of concrete type X×Y→𝔹 and abstract type 𝔹×𝔹→𝔹 in the same set of languages.

Table 2. Propositional Forms on Two Variables
ℒ1 ℒ2 ℒ3 ℒ4 ℒ5 ℒ6
x= 1 1 0 0
y= 1 0 1 0
f0 f0000 0 0 0 0 () false 0
f1 f0001 0 0 0 1 (x)⁢(y) neither x nor y ¬⁢x∧¬⁢y
f2 f0010 0 0 1 0 (x)⁢y y and not x ¬⁢x∧y
f3 f0011 0 0 1 1 (x) not x ¬⁢x
f4 f0100 0 1 0 0 x⁢(y) x and not y x∧¬⁢y
f5 f0101 0 1 0 1 (y) not y ¬⁢y
f6 f0110 0 1 1 0 (x,y) x not equal to y x≠y
f7 f0111 0 1 1 1 (x⁢y) not both x and y ¬⁢x∨¬⁢y
f8 f1000 1 0 0 0 x⁢y x and y x∧y
f9 f1001 1 0 0 1 ((x,y)) x equal to y x=y
f10 f1010 1 0 1 0 y y y
f11 f1011 1 0 1 1 (x⁢(y)) not x without y x⇒y
f12 f1100 1 1 0 0 x x x
f13 f1101 1 1 0 1 ((x)⁢y) not y without x x⇐y
f14 f1110 1 1 1 0 ((x)⁢(y)) x or y x∨y
f15 f1111 1 1 1 1 (()) true 1

The columns of Tables 1 and 2 are conveniently described in the following order:

Title zeroth order logic
Canonical name ZerothOrderLogic
Date of creation 2013-03-22 17:55:47
Last modified on 2013-03-22 17:55:47
Owner Jon Awbrey (15246)
Last modified by Jon Awbrey (15246)
Numerical id 19
Author Jon Awbrey (15246)
Entry type Definition
Classification msc 03G05
Classification msc 03B05
Related topic PropositionalCalculus
Related topic LogicalConnective
Related topic LogicalGraph
Related topic LogicalGraphFormalDevelopment
Related topic TruthFunction
Related topic TruthTable
Related topic DifferentialLogic
Related topic DifferentialPropositionalCalculus
Related topic DifferentialPropositionalCalculusAppendices
Related topic DifferentialPropositionalCalculusAppendix2