MinimumChainPartition—Wolfram Language Documentation (original) (raw)
OBSOLETE COMBINATORICA PACKAGE SYMBOL
Combinatorica`
MinimumChainPartition
As of Version 10, most of the functionality of the Combinatorica package is built into the Wolfram System. »
MinimumChainPartition[g]
partitions partial-order g into a minimum number of chains.
Related Guides
▪
- Graph Algorithms ▪
- Graphs & Networks ▪
- Graph Visualization ▪
- Computation on Graphs ▪
- Graph Construction & Representation ▪
- Graphs and Matrices ▪
- Graph Properties & Measurements ▪
- Graph Operations and Modifications ▪
- Statistical Analysis ▪
- Social Network Analysis ▪
- Graph Properties ▪
- Mathematical Data Formats ▪
- Discrete Mathematics
Wolfram Research (2012), MinimumChainPartition, Wolfram Language function, https://reference.wolfram.com/language/Combinatorica/ref/MinimumChainPartition.html.
Text
Wolfram Research (2012), MinimumChainPartition, Wolfram Language function, https://reference.wolfram.com/language/Combinatorica/ref/MinimumChainPartition.html.
CMS
Wolfram Language. 2012. "MinimumChainPartition." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/Combinatorica/ref/MinimumChainPartition.html.
APA
Wolfram Language. (2012). MinimumChainPartition. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/Combinatorica/ref/MinimumChainPartition.html
BibTeX
@misc{reference.wolfram_2025_minimumchainpartition, author="Wolfram Research", title="{MinimumChainPartition}", year="2012", howpublished="\url{https://reference.wolfram.com/language/Combinatorica/ref/MinimumChainPartition.html}", note=[Accessed: 01-May-2025 ]}
BibLaTeX
@online{reference.wolfram_2025_minimumchainpartition, organization={Wolfram Research}, title={MinimumChainPartition}, year={2012}, url={https://reference.wolfram.com/language/Combinatorica/ref/MinimumChainPartition.html}, note=[Accessed: 01-May-2025 ]}