Binomial: Symmetric coefficients—Wolfram Documentation (original) (raw)

BUILT-IN SYMBOL

Binomial

Binomial[n,m]

gives the binomial coefficient TemplateBox[{n, m}, Binomial].

Details

Background & Context

Examples

open allclose all

Basic Examples (5)

Evaluate numerically:

Evaluate symbolically:

Construct Pascal's triangle:

Plot over a subset of the reals as a function of its first parameter:

Plot over a subset of the reals as a function of its second parameter:

Plot over a subset of the complexes:

Scope (35)

Numerical Evaluation (7)

Evaluate numerically:

Evaluate for half-integer arguments:

Evaluate to high precision:

The precision of the output tracks the precision of the input:

Complex number inputs:

Evaluate efficiently at high precision:

Compute worst-case guaranteed intervals using Interval and CenteredInterval objects:

Or compute average-case statistical intervals using Around:

Compute the elementwise values of an array:

Or compute the matrix Binomial function using MatrixFunction:

Specific Values (4)

Values of Binomial at particular points:

Binomial for symbolic n:

Values at zero:

Note that this is zero on all integers away from :

Find a value of n for which Binomial[n,2]=15:

Visualization (3)

Plot the Binomial as a function of its parameter n:

Plot the Binomial as a function of its parameter :

Plot the real part of TemplateBox[{z, 5}, Binomial]:

Plot the imaginary part of TemplateBox[{z, 5}, Binomial]:

Function Properties (12)

Real domain of Binomial as a function of its parameter n:

Real domain of Binomial as a function of its parameter m:

Complex domains:

Function range of Binomial:

Binomial has the mirror property ![TemplateBox[{TemplateBox[{z}, Conjugate, SyntaxForm -> SuperscriptBox], 2}, Binomial]=TemplateBox[{TemplateBox[{z, 2}, Binomial]}, Conjugate]](http://reference.wolfram.com/language/ref/Files/Binomial.en/58.png "TemplateBox[{TemplateBox[{z}, Conjugate, SyntaxForm -> SuperscriptBox], 2}, Binomial]=TemplateBox[{TemplateBox[{z, 2}, Binomial]}, Conjugate]"):

Compute sums involving Binomial:

When is positive, TemplateBox[{x, y}, Binomial] is an analytic function of both variables:

This is not true for negative :

TemplateBox[{x, 7}, Binomial] is neither non-decreasing nor non-increasing:

TemplateBox[{x, 7}, Binomial] is not injective:

TemplateBox[{x, 7}, Binomial] is surjective:

Binomial is neither non-negative nor non-positive:

TemplateBox[{x, y}, Binomial] has singularities and discontinuities where is a negative integer:

TemplateBox[{x, 7}, Binomial] is neither convex nor concave:

TraditionalForm formatting:

Differentiation (3)

First derivative with respect to :

Higher derivatives with respect to :

Plot the higher derivatives with respect to for :

First derivative with respect to :

Series Expansions (4)

Find the Taylor expansion using Series:

Plots of the first three approximations around :

Find the series expansion at Infinity:

Find series expansion for an arbitrary symbolic direction :

Taylor expansion at a generic point:

Function Identities and Simplifications (2)

Functional identity:

Recurrence relations:

Generalizations & Extensions (2)

Infinite arguments give symbolic results:

Binomial threads elementwise over lists:

Applications (11)

There are TemplateBox[{n, m}, Binomial] ways to choose elements without replacements from a set of elements:

Check with direct enumeration:

There are TemplateBox[{{m, +, n, -, 1}, m}, Binomial] ways to choose elements with replacement from a set of elements:

Check with direct enumeration:

There are TemplateBox[{{m, +, n}, m}, Binomial] ways to arrange indistinguishable objects of one kind, and indistinguishable objects of another kind:

Illustrate the binomial theorem:

Fractional binomial theorem:

Binomial coefficients mod 2:

Plot Binomial in the arguments' plane:

Plot the logarithm of the number of ways to pick elements out of :

Compute higher derivatives of a product of two functions:

PDF of the binomial probability distribution:

Bernstein polynomials are defined in terms of Binomial:

Properties & Relations (11)

On the integers, Binomial[n,m] equals ![TemplateBox[{{{(, TemplateBox[{{n, +, epsilon, +, 1}}, Gamma], )}, /, {(, {TemplateBox[{{m, +, epsilon, +, 1}}, Gamma], , TemplateBox[{{{-, m}, +, n, +, epsilon, +, 1}}, Gamma]}, )}}, epsilon, 0, TemplateBox[{}, Complexes]}, LimitWithTooltip]](http://reference.wolfram.com/language/ref/Files/Binomial.en/86.png "TemplateBox[{{{(, TemplateBox[{{n, +, epsilon, +, 1}}, Gamma], )}, /, {(, {TemplateBox[{{m, +, epsilon, +, 1}}, Gamma], , TemplateBox[{{{-, m}, +, n, +, epsilon, +, 1}}, Gamma]}, )}}, epsilon, 0, TemplateBox[{}, Complexes]}, LimitWithTooltip]"):

This can be expressed as (-1)^m TemplateBox[{{-, n}, m}, Pochhammer]/m! for and (-1)^(n-m) TemplateBox[{{-, n}, {n, -, m}}, Pochhammer]/(n-m)! for :

An alternative formula on the integers:

Pascal's identity is satisfied almost everywhere:

It is violated at the origin:

PascalBinomial satisfies the identity everywhere, including the origin:

The symmetry rule TemplateBox[{n, m}, PascalBinomial]=TemplateBox[{n, {n, -, m}}, PascalBinomial] holds for all values of and :

PascalBinomial performs simple evaluations for symbolic arguments:

For more complex expressions, it will avoid automatic expansion:

Use FunctionExpand with conditions to achieve appropriate simplifications:

Use FullSimplify to simplify expressions involving binomial coefficients:

Use FunctionExpand to expand into Gamma functions:

Sums involving Binomial:

Find the generating function Binomial:

Binomial can be represented as a DifferenceRoot:

The generating function for Binomial:

The exponential generating function for Binomial:

Possible Issues (3)

Large arguments can give results too large to be computed explicitly:

Machine-number inputs can give high‐precision results:

As a bivariate function, Binomial is not continuous in both variables at negative integers:

The value of Binomial at negative integers is determined via Binomial[n,m]Binomial[n,n-m]:

Neat Examples (7)

Construct a graphical version of Pascal's triangle:

Extend the triangle to negative integers; unlabeled points indicate a zero value:

PascalBinomial, by contrast, zeroes out the top-left sector where both inputs are negative:

Binomial coefficient mod :

Closed‐form inverse of Hilbert matrices:

Nested binomials over the complex plane:

Plot Binomial at infinity:

Plot Binomial for complex arguments:

Plot Binomial at Gaussian integers:

History

Introduced in 1988 (1.0)

Wolfram Research (1988), Binomial, Wolfram Language function, https://reference.wolfram.com/language/ref/Binomial.html.

Text

Wolfram Research (1988), Binomial, Wolfram Language function, https://reference.wolfram.com/language/ref/Binomial.html.

CMS

Wolfram Language. 1988. "Binomial." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/Binomial.html.

APA

Wolfram Language. (1988). Binomial. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/Binomial.html

BibTeX

@misc{reference.wolfram_2025_binomial, author="Wolfram Research", title="{Binomial}", year="1988", howpublished="\url{https://reference.wolfram.com/language/ref/Binomial.html}", note=[Accessed: 02-May-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_binomial, organization={Wolfram Research}, title={Binomial}, year={1988}, url={https://reference.wolfram.com/language/ref/Binomial.html}, note=[Accessed: 02-May-2025 ]}