BipartiteGraphQ—Wolfram Language Documentation (original) (raw)

BUILT-IN SYMBOL

BipartiteGraphQ

Background & Context

Examples

open allclose all

Basic Examples (2)

Test whether a graph is bipartite:

Not all graphs are bipartite:

Scope (6)

Properties & Relations (8)

A bipartite graph has no self-loops:

Any tree is bipartite:

A PathGraph with different start and end vertices is bipartite:

Any planar graph whose faces all consist of an even number of edges is bipartite:

A CycleGraph with an even number of vertices is bipartite:

A CompleteGraph is bipartite:

A TuranGraph is bipartite:

A graph is bipartite iff it has no odd cycle:

Wolfram Research (2010), BipartiteGraphQ, Wolfram Language function, https://reference.wolfram.com/language/ref/BipartiteGraphQ.html.

Text

Wolfram Research (2010), BipartiteGraphQ, Wolfram Language function, https://reference.wolfram.com/language/ref/BipartiteGraphQ.html.

CMS

Wolfram Language. 2010. "BipartiteGraphQ." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/BipartiteGraphQ.html.

APA

Wolfram Language. (2010). BipartiteGraphQ. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/BipartiteGraphQ.html

BibTeX

@misc{reference.wolfram_2025_bipartitegraphq, author="Wolfram Research", title="{BipartiteGraphQ}", year="2010", howpublished="\url{https://reference.wolfram.com/language/ref/BipartiteGraphQ.html}", note=[Accessed: 01-May-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_bipartitegraphq, organization={Wolfram Research}, title={BipartiteGraphQ}, year={2010}, url={https://reference.wolfram.com/language/ref/BipartiteGraphQ.html}, note=[Accessed: 01-May-2025 ]}