Conjunction—Wolfram Language Documentation (original) (raw)
BUILT-IN SYMBOL
Conjunction
Conjunction[expr,{a1,a2,…}]
gives the conjunction of expr over all choices of the Boolean variables ai.
Details
- Conjunction[expr,{a1,a2,…}] effectively applies And to the results of substituting all possible combinations of True and False for the ai in expr.
- Conjunction gives a resolved form of ∀a1,a2,…expr.
- Conjunction is to And what Product is to Times.
Examples
open allclose all
Basic Examples (3)
The conjunction over a set of variables:
Show that a formula is a tautology:
Find the conditions on a for ab to be true for any b:
Properties & Relations (5)
Wolfram Research (2008), Conjunction, Wolfram Language function, https://reference.wolfram.com/language/ref/Conjunction.html.
Text
Wolfram Research (2008), Conjunction, Wolfram Language function, https://reference.wolfram.com/language/ref/Conjunction.html.
CMS
Wolfram Language. 2008. "Conjunction." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/Conjunction.html.
APA
Wolfram Language. (2008). Conjunction. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/Conjunction.html
BibTeX
@misc{reference.wolfram_2025_conjunction, author="Wolfram Research", title="{Conjunction}", year="2008", howpublished="\url{https://reference.wolfram.com/language/ref/Conjunction.html}", note=[Accessed: 30-April-2025 ]}
BibLaTeX
@online{reference.wolfram_2025_conjunction, organization={Wolfram Research}, title={Conjunction}, year={2008}, url={https://reference.wolfram.com/language/ref/Conjunction.html}, note=[Accessed: 30-April-2025 ]}