PermutationListQ—Wolfram Language Documentation (original) (raw)
BUILT-IN SYMBOL
PermutationListQ
Details
- A valid permutation list {p1,…,pn} is a rearrangement of the integers {1,…,n}.
Examples
open allclose all
Basic Examples (1)
A valid permutation list:
Invalid permutation lists:
Scope (2)
PermutationListQ works efficiently with large permutation lists:
The empty list is considered a permutation list of length and degree 0:
Properties & Relations (4)
RandomSample[Range[n]] always gives a valid permutation list:
A possible, but less efficient, Wolfram Language implementation:
Validity of permutations in cyclic form is checked with PermutationCyclesQ. A permutation list can always be obtained as a permutation of the elements in canonical order using Permute:
Ordering always returns a permutation list, even if the elements of the expression are repeated:
Neat Examples (1)
There are 409113 integer numbers up to whose decimal digits form permutation lists. This is how the first 153 (the largest being 54321) are distributed:
Wolfram Research (2010), PermutationListQ, Wolfram Language function, https://reference.wolfram.com/language/ref/PermutationListQ.html.
Text
Wolfram Research (2010), PermutationListQ, Wolfram Language function, https://reference.wolfram.com/language/ref/PermutationListQ.html.
CMS
Wolfram Language. 2010. "PermutationListQ." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/PermutationListQ.html.
APA
Wolfram Language. (2010). PermutationListQ. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/PermutationListQ.html
BibTeX
@misc{reference.wolfram_2025_permutationlistq, author="Wolfram Research", title="{PermutationListQ}", year="2010", howpublished="\url{https://reference.wolfram.com/language/ref/PermutationListQ.html}", note=[Accessed: 17-June-2025 ]}
BibLaTeX
@online{reference.wolfram_2025_permutationlistq, organization={Wolfram Research}, title={PermutationListQ}, year={2010}, url={https://reference.wolfram.com/language/ref/PermutationListQ.html}, note=[Accessed: 17-June-2025 ]}