Pandas DataFrame concat vs append (original) (raw)

I have a list of 4 pandas dataframes containing a day of tick data that I want to merge into a single data frame. I cannot understand the behavior of concat on my timestamps. See details below:

data

[<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 35228 entries, 2013-03-28 00:00:07.089000+02:00 to 2013-03-28 18:59:20.357000+02:00
Data columns:
Price       4040  non-null values
Volume      4040  non-null values
BidQty      35228  non-null values
BidPrice    35228  non-null values
AskPrice    35228  non-null values
AskQty      35228  non-null values
dtypes: float64(6),
<class 'pandas.core.frame.DataFrame'>

DatetimeIndex: 33088 entries, 2013-04-01 00:03:17.047000+02:00 to 2013-04-01 18:59:58.175000+02:00
Data columns:
Price       3969  non-null values
Volume      3969  non-null values
BidQty      33088  non-null values
BidPrice    33088  non-null values
AskPrice    33088  non-null values
AskQty      33088  non-null values
dtypes: float64(6),
<class 'pandas.core.frame.DataFrame'>

DatetimeIndex: 50740 entries, 2013-04-02 00:03:27.470000+02:00 to 2013-04-02 18:59:58.172000+02:00
Data columns:
Price       7326  non-null values
Volume      7326  non-null values
BidQty      50740  non-null values
BidPrice    50740  non-null values
AskPrice    50740  non-null values
AskQty      50740  non-null values
dtypes: float64(6),
<class 'pandas.core.frame.DataFrame'>

DatetimeIndex: 60799 entries, 2013-04-03 00:03:06.994000+02:00 to 2013-04-03 18:59:58.180000+02:00
Data columns:
Price       8258  non-null values
Volume      8258  non-null values
BidQty      60799  non-null values
BidPrice    60799  non-null values
AskPrice    60799  non-null values
AskQty      60799  non-null values
dtypes: float64(6)]

Using append I get:

pd.DataFrame().append(data)

<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 179855 entries, 2013-03-28 00:00:07.089000+02:00 to 2013-04-03 18:59:58.180000+02:00
Data columns:
AskPrice    179855  non-null values
AskQty      179855  non-null values
BidPrice    179855  non-null values
BidQty      179855  non-null values
Price       23593  non-null values
Volume      23593  non-null values
dtypes: float64(6)

Using concat I get:

pd.concat(data)

<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 179855 entries, 2013-03-27 22:00:07.089000+02:00 to 2013-04-03 16:59:58.180000+02:00
Data columns:
Price       23593  non-null values
Volume      23593  non-null values
BidQty      179855  non-null values
BidPrice    179855  non-null values
AskPrice    179855  non-null values
AskQty      179855  non-null values
dtypes: float64(6)

Notice how the index changes when using concat. Why is that happening and how would I go about using concat to reproduce the results obtained using append? (Since concat seems so much faster; 24.6 ms per loop vs 3.02 s per loop)