(original) (raw)

%!PS-Adobe-2.0 %%Creator: dvips 5.516 Copyright 1986, 1993 Radical Eye Software %%Title: nips95.dvi %%CreationDate: Tue Jan 23 18:20:34 1996 %%Pages: 7 %%PageOrder: Ascend %%BoundingBox: 0 0 612 792 %%EndComments %DVIPSCommandLine: dvips -o nips95.ps nips95 %DVIPSSource: TeX output 1996.01.23:1820 %%BeginProcSet: tex.pro /TeXDict 250 dict def TeXDict begin /N{def}def /B{bind def}N /S{exch}N /X{S N}B /TR{translate}N /isls false N /vsize 11 72 mul N /hsize 8.5 72 mul N /landplus90{false}def /@rigin{isls{[0 landplus90{1 -1}{-1 1} ifelse 0 0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize mul 0}ifelse TR}if Resolution VResolution vsize -72 div 1 add mul TR matrix currentmatrix dup dup 4 get round 4 exch put dup dup 5 get round 5 exch put setmatrix}N /@landscape{/isls true N}B /@manualfeed{ statusdict /manualfeed true put}B /@copies{/#copies X}B /FMat[1 0 0 -1 0 0]N /FBB[0 0 0 0]N /nn 0 N /IE 0 N /ctr 0 N /df-tail{/nn 8 dict N nn begin /FontType 3 N /FontMatrix fntrx N /FontBBox FBB N string /base X array /BitMaps X /BuildChar{CharBuilder}N /Encoding IE N end dup{/foo setfont}2 array copy cvx N load 0 nn put /ctr 0 N[}B /df{/sf 1 N /fntrx FMat N df-tail}B /dfs{div /sf X /fntrx[sf 0 0 sf neg 0 0]N df-tail}B /E{ pop nn dup definefont setfont}B /ch-width{ch-data dup length 5 sub get} B /ch-height{ch-data dup length 4 sub get}B /ch-xoff{128 ch-data dup length 3 sub get sub}B /ch-yoff{ch-data dup length 2 sub get 127 sub}B /ch-dx{ch-data dup length 1 sub get}B /ch-image{ch-data dup type /stringtype ne{ctr get /ctr ctr 1 add N}if}B /id 0 N /rw 0 N /rc 0 N /gp 0 N /cp 0 N /G 0 N /sf 0 N /CharBuilder{save 3 1 roll S dup /base get 2 index get S /BitMaps get S get /ch-data X pop /ctr 0 N ch-dx 0 ch-xoff ch-yoff ch-height sub ch-xoff ch-width add ch-yoff setcachedevice ch-width ch-height true[1 0 0 -1 -.1 ch-xoff sub ch-yoff .1 add]{ ch-image}imagemask restore}B /D{/cc X dup type /stringtype ne{]}if nn /base get cc ctr put nn /BitMaps get S ctr S sf 1 ne{dup dup length 1 sub dup 2 index S get sf div put}if put /ctr ctr 1 add N}B /I{cc 1 add D }B /bop{userdict /bop-hook known{bop-hook}if /SI save N @rigin 0 0 moveto /V matrix currentmatrix dup 1 get dup mul exch 0 get dup mul add .99 lt{/QV}{/RV}ifelse load def pop pop}N /eop{SI restore showpage userdict /eop-hook known{eop-hook}if}N /@start{userdict /start-hook known{start-hook}if pop /VResolution X /Resolution X 1000 div /DVImag X /IE 256 array N 0 1 255{IE S 1 string dup 0 3 index put cvn put}for 65781.76 div /vsize X 65781.76 div /hsize X}N /p{show}N /RMat[1 0 0 -1 0 0]N /BDot 260 string N /rulex 0 N /ruley 0 N /v{/ruley X /rulex X V}B /V {}B /RV statusdict begin /product where{pop product dup length 7 ge{0 7 getinterval dup(Display)eq exch 0 4 getinterval(NeXT)eq or}{pop false} ifelse}{false}ifelse end{{gsave TR -.1 -.1 TR 1 1 scale rulex ruley false RMat{BDot}imagemask grestore}}{{gsave TR -.1 -.1 TR rulex ruley scale 1 1 false RMat{BDot}imagemask grestore}}ifelse B /QV{gsave transform round exch round exch itransform moveto rulex 0 rlineto 0 ruley neg rlineto rulex neg 0 rlineto fill grestore}B /a{moveto}B /delta 0 N /tail{dup /delta X 0 rmoveto}B /M{S p delta add tail}B /b{S p tail} B /c{-4 M}B /d{-3 M}B /e{-2 M}B /f{-1 M}B /g{0 M}B /h{1 M}B /i{2 M}B /j{ 3 M}B /k{4 M}B /w{0 rmoveto}B /l{p -4 w}B /m{p -3 w}B /n{p -2 w}B /o{p -1 w}B /q{p 1 w}B /r{p 2 w}B /s{p 3 w}B /t{p 4 w}B /x{0 S rmoveto}B /y{ 3 2 roll p a}B /bos{/SS save N}B /eos{SS restore}B end %%EndProcSet %%BeginProcSet: special.pro TeXDict begin /SDict 200 dict N SDict begin /@SpecialDefaults{/hs 612 N /vs 792 N /ho 0 N /vo 0 N /hsc 1 N /vsc 1 N /ang 0 N /CLIP 0 N /rwiSeen false N /rhiSeen false N /letter{}N /note{}N /a4{}N /legal{}N}B /@scaleunit 100 N /@hscale{@scaleunit div /hsc X}B /@vscale{@scaleunit div /vsc X}B /@hsize{/hs X /CLIP 1 N}B /@vsize{/vs X /CLIP 1 N}B /@clip{ /CLIP 2 N}B /@hoffset{/ho X}B /@voffset{/vo X}B /@angle{/ang X}B /@rwi{ 10 div /rwi X /rwiSeen true N}B /@rhi{10 div /rhi X /rhiSeen true N}B /@llx{/llx X}B /@lly{/lly X}B /@urx{/urx X}B /@ury{/ury X}B /magscale true def end /@MacSetUp{userdict /md known{userdict /md get type /dicttype eq{userdict begin md length 10 add md maxlength ge{/md md dup length 20 add dict copy def}if end md begin /letter{}N /note{}N /legal{} N /od{txpose 1 0 mtx defaultmatrix dtransform S atan/pa X newpath clippath mark{transform{itransform moveto}}{transform{itransform lineto} }{6 -2 roll transform 6 -2 roll transform 6 -2 roll transform{ itransform 6 2 roll itransform 6 2 roll itransform 6 2 roll curveto}}{{ closepath}}pathforall newpath counttomark array astore /gc xdf pop ct 39 0 put 10 fz 0 fs 2 F/|______Courier fnt invertflag{PaintBlack}if}N /txpose{pxs pys scale ppr aload pop por{noflips{pop S neg S TR pop 1 -1 scale}if xflip yflip and{pop S neg S TR 180 rotate 1 -1 scale ppr 3 get ppr 1 get neg sub neg ppr 2 get ppr 0 get neg sub neg TR}if xflip yflip not and{pop S neg S TR pop 180 rotate ppr 3 get ppr 1 get neg sub neg 0 TR}if yflip xflip not and{ppr 1 get neg ppr 0 get neg TR}if}{noflips{TR pop pop 270 rotate 1 -1 scale}if xflip yflip and{TR pop pop 90 rotate 1 -1 scale ppr 3 get ppr 1 get neg sub neg ppr 2 get ppr 0 get neg sub neg TR}if xflip yflip not and{TR pop pop 90 rotate ppr 3 get ppr 1 get neg sub neg 0 TR}if yflip xflip not and{TR pop pop 270 rotate ppr 2 get ppr 0 get neg sub neg 0 S TR}if}ifelse scaleby96{ppr aload pop 4 -1 roll add 2 div 3 1 roll add 2 div 2 copy TR .96 dup scale neg S neg S TR}if}N /cp {pop pop showpage pm restore}N end}if}if}N /normalscale{Resolution 72 div VResolution 72 div neg scale magscale{DVImag dup scale}if 0 setgray} N /psfts{S 65781.76 div N}N /startTexFig{/psf$SavedState save N userdict maxlength dict begin /magscale false def normalscale currentpoint TR /psf$ury psfts /psf$urx psfts /psf$lly psfts /psf$llx psfts /psf$y psfts /psf$x psfts currentpoint /psf$cy X /psf$cx X /psf$sx psf$x psf$urx psf$llx sub div N /psf$sy psf$y psf$ury psf$lly sub div N psf$sx psf$sy scale psf$cx psf$sx div psf$llx sub psf$cy psf$sy div psf$ury sub TR /showpage{}N /erasepage{}N /copypage{}N /p 3 def @MacSetUp}N /doclip{ psf$llx psf$lly psf$urx psf$ury currentpoint 6 2 roll newpath 4 copy 4 2 roll moveto 6 -1 roll S lineto S lineto S lineto closepath clip newpath moveto}N /endTexFig{end psf$SavedState restore}N /@beginspecial{SDict begin /SpecialSave save N gsave normalscale currentpoint TR @SpecialDefaults count /ocount X /dcount countdictstack N}N /@setspecial {CLIP 1 eq{newpath 0 0 moveto hs 0 rlineto 0 vs rlineto hs neg 0 rlineto closepath clip}if ho vo TR hsc vsc scale ang rotate rwiSeen{rwi urx llx sub div rhiSeen{rhi ury lly sub div}{dup}ifelse scale llx neg lly neg TR }{rhiSeen{rhi ury lly sub div dup scale llx neg lly neg TR}if}ifelse CLIP 2 eq{newpath llx lly moveto urx lly lineto urx ury lineto llx ury lineto closepath clip}if /showpage{}N /erasepage{}N /copypage{}N newpath }N /@endspecial{count ocount sub{pop}repeat countdictstack dcount sub{ end}repeat grestore SpecialSave restore end}N /@defspecial{SDict begin} N /@fedspecial{end}B /li{lineto}B /rl{rlineto}B /rc{rcurveto}B /np{ /SaveX currentpoint /SaveY X N 1 setlinecap newpath}N /st{stroke SaveX SaveY moveto}N /fil{fill SaveX SaveY moveto}N /ellipse{/endangle X /startangle X /yrad X /xrad X /savematrix matrix currentmatrix N TR xrad yrad scale 0 0 1 startangle endangle arc savematrix setmatrix}N end %%EndProcSet TeXDict begin 40258431 52099146 1000 300 300 (/tmp_mnt/home/u1/tommi/papers/nips95/nips95.dvi) @start /Fa 2 104 df<00001F800000FF800003F8000007C000000F8000001F0000001F000000 3E0000003E0000003E0000003E0000003E0000003E0000003E0000003E0000003E000000 3E0000003E0000003E0000003E0000003E0000003E0000003E0000003E0000003E000000 3E0000003E0000003E0000003E0000003C0000007C000000F8000000F0000003E000000F C00000FF000000FF0000000FC0000003E0000000F0000000F80000007C0000003C000000 3E0000003E0000003E0000003E0000003E0000003E0000003E0000003E0000003E000000 3E0000003E0000003E0000003E0000003E0000003E0000003E0000003E0000003E000000 3E0000003E0000003E0000003E0000001F0000001F0000000F80000007C0000003F80000 00FF8000001F8019487BB524>102 DI E /Fb 2 104 df<007001C003800700070007000700070007000700070007000700070007000700 0E001C00F0001C000E000700070007000700070007000700070007000700070007000700 038001C000700C257D9B13>102 DI E /Fc 4 91 df<60F0F07010101020204080040B7D830B>59 D<001F080060D800803801003803 001006001006001006001006000007000007C00003FC0001FF00007F800007C00001C000 01C00000C02000C02000C0600180600180600300700600CC0C0083F000151A7E9917>83 D<01FF83FE003C00F0003C00C0001C0080001E0100000E0200000E040000070800000710 000007A0000003C0000003C0000001C0000003C0000007E0000004E0000008F000001070 0000207000004038000080380001003C0002001C0006001E001E001E00FF80FFC01F1A7F 9920>88 D<01FFFF01E00701800E01001C0300380200700200E00201C00001C000038000 0700000E00001C0000380000780000700000E01001C0100380100700200E00201E00601C 00C03801C0700780FFFF80181A7E991A>90 D E /Fd 27 127 df<60F0F0701010102020 4080040B7D830B>44 D<60F0F06004047D830B>46 D<7FFFFF00701C0700401C0100401C 0100C01C0180801C0080801C0080801C0080001C0000001C0000001C0000001C0000001C 0000001C0000001C0000001C0000001C0000001C0000001C0000001C0000001C0000001C 0000001C0000001C0000001C000003FFE000191A7F991C>84 D87 D<3F8070C070E020700070007007F01C70 30707070E070E071E071E0F171FB1E3C10107E8F13>97 DI<07F80C1C381C30087000E000E000E000E000E000E0007000300438080C1807E00E107F 8F11>I<007E00000E00000E00000E00000E00000E00000E00000E00000E00000E0003CE 000C3E00380E00300E00700E00E00E00E00E00E00E00E00E00E00E00E00E00600E00700E 00381E001C2E0007CFC0121A7F9915>I<07C01C3030187018600CE00CFFFCE000E000E0 00E0006000300438080C1807E00E107F8F11>I<01F0031807380E100E000E000E000E00 0E000E00FFC00E000E000E000E000E000E000E000E000E000E000E000E000E000E007FE0 0D1A80990C>I<0FCE187330307038703870387038303018602FC02000600070003FF03F FC1FFE600FC003C003C003C0036006381C07E010187F8F13>II<18003C003C001800000000000000000000000000FC001C001C001C001C001C001C 001C001C001C001C001C001C001C001C00FF80091A80990A>I108 DII<07E01C 38300C700E6006E007E007E007E007E007E0076006700E381C1C3807E010107F8F13>I< FCF8001F0E001E07001C03801C03801C01C01C01C01C01C01C01C01C01C01C01C01C0380 1C03001E07001F0C001CF0001C00001C00001C00001C00001C00001C0000FF800012177F 8F15>I114 D<1F2060E04020C020C020F0007F003FC01FE000F080708030C030C0 20F0408F800C107F8F0F>I<0400040004000C000C001C003C00FFC01C001C001C001C00 1C001C001C001C001C201C201C201C201C200E4003800B177F960F>IIII121 D123 D<1C103E2047C083800C047D9813>126 D E /Fe 2 51 df<0C003C00CC000C000C000C000C000C000C000C000C000C000C000C00 0C00FF8009107E8F0F>49 D<1F00618040C08060C0600060006000C00180030006000C00 102020207FC0FFC00B107F8F0F>I E /Ff 4 117 df<1FC3F80600C00600C00600C00C01 800C01800FFF800C0180180300180300180300180300300600FC1F80150E7E8D17>72 D<0808000000007098B0303060646870060F7D8E0B>105 D<00C0008000000000000000 000F0011801180030003000300030006000600060006008C00F0000A137F8E0C>I<0C0C 0C18FE1818303030323438070D7E8C0C>116 D E /Fg 2 51 df<18F818181818181818 181818FF080D7D8C0E>49 D<3E00418080C0C0C000C000C0018003000400084030407F80 FF800A0D7E8C0E>I E /Fh 3 50 df0 D<040004000400C460E4E03F800E003F80E4E0C4600400040004000B0D7E8D11>3 D<0F001E003BC061806060804040310040801A0020800E0020800E0020800E0020800B00 20401180404020C0C030C07B800F001E001B0D7E8C21>49 D E /Fi 2 42 df<00020004000800100030006000C000C0018001800300070006000E000E000C00 1C001C001800380038003800700070007000700070007000F000F000E000E000E000E000 E000E000E000E000E000E000E000E000E000F000F0007000700070007000700070003800 3800380018001C001C000C000E000E000600070003000180018000C000C0006000300010 0008000400020F497AB519>40 D<800040002000100018000C0006000600030003000180 01C000C000E000E00060007000700030003800380038001C001C001C001C001C001C001E 001E000E000E000E000E000E000E000E000E000E000E000E000E000E001E001E001C001C 001C001C001C001C003800380038003000700070006000E000E000C001C0018003000300 060006000C00180010002000400080000F497CB519>I E /Fj 5 91 df80 DI88 DI<000000038000000006600000000C700000 000CF00000000CF00000001C600000001800000000380000000038000000003800000000 7000000000700000000070000000007000000000F000000000E000000000E000000000E0 00000001E000000001E000000001C000000001C000000003C000000003C000000003C000 000003C000000007800000000780000000078000000007800000000F800000000F800000 000F000000000F000000001F000000001F000000001F000000001F000000001E00000000 3E000000003E000000003E000000003E000000003C000000007C000000007C000000007C 000000007C000000007800000000F800000000F800000000F800000000F800000000F000 000001F000000001F000000001F000000001F000000001E000000001E000000003E00000 0003E000000003C000000003C000000003C000000003C000000007800000000780000000 07800000000780000000070000000007000000000F000000000F000000000E000000000E 000000000E000000001E000000001C000000001C000000001C0000000018000000003800 00000038000000003000000000700000006060000000F060000000F0C0000000E1800000 0063000000001E00000000245C7E7F17>I E /Fk 20 123 df<038004400C6018601060 30603060606060607FE0FFC0C0C0C0C0C180C180C100C300C600440038000B147E9310> 18 D<00200060006000C000C000C0018001800180030003000300060006000C000C000C 00180018001800300030003000600060006000C000C000C0000B1D7E9511>61 D<07FC7FC000E00E0001C01C0001C01C0001C01C0001C01C000380380003803800038038 0003FFF800070070000700700007007000070070000E00E0000E00E0000E00E0000E00E0 001C01C000FF8FF8001A147F931B>72 D<01FF001C003800380038003800700070007000 7000E000E000E000E001C071C0F1C0E380C7007C0010147E9312>74 D<00F8800305800603000401000C01000C01000C00000E00000FE00007F80001FC00001C 00000E00000E00400C00400C00400800601800D020008FC00011147E9314>83 D86 DI<07FC7F8000E01C0000F010000070200000784000 0038800000390000003E0000001C0000001E0000001E0000003F00000067000000C70000 01838000030380000603C0000401C0001C01E000FE07F80019147F931B>I<07FFF00700 E00C01C00C0380080700080F00100E00001C0000380000700000E00001C0000380800701 000F01000E01001C0200380600701E00FFFC0014147E9317>90 D<007C000C0018001800 180018003007B00C7010703060606060606060C0C0C0C8C0C841C862D03C700E147E9311 >100 D<07800C401020304060407F8060004000C0004020604021801E000B0D7E8C10>I< 0038006C007C004C00C000C000C007F800C0018001800180018001800300030003000300 03000300060006006600E400C80070000E1A7F9310>I<3E0006000C000C000C000C0018 0019E01E30183038303030303030306060606460C460C4C0C8C0700E147E9313>104 D<06070600000000384C4C8C98181830326262643808147F930C>I<0060007000600000 000000000000038004C0046008C008C000C000C001800180018001800300030003000300 6600E600CC0078000C1A81930E>I<3E0006000C000C000C000C001800187018B8193832 30340038003E006300631063106310C320C1C00D147E9312>I<30F8590C4E0C9C0C980C 180C180C30183019303130316032601C100D7F8C15>110 D<02000600060006000C00FF 800C000C001800180018001800300031003100320032001C0009127F910D>116 D<0E3C13CE238E430C43000300030006000608C608E610CA2071C00F0D7F8C13>120 D<07100F2010E000400080010002000C00102020203840478083000C0D7F8C10>122 D E /Fl 9 127 df<01020408103020606040C0C0C0C0C0C0C0C0C0C040606020301008 040201081E7E950D>40 D<80402010080C0406060203030303030303030303020606040C 0810204080081E7E950D>I<0F0030C0606060604020C030C030C030C030C030C030C030 C030C03040206060606030C00F000C137E9211>48 D<0C001C00EC000C000C000C000C00 0C000C000C000C000C000C000C000C000C000C000C00FFC00A137D9211>I<1F0060C060 60F070F030603000700070006000C001C00180020004000810101020207FE0FFE00C137E 9211>I<7FFFE0FFFFF0000000000000000000000000000000000000FFFFF07FFFE0140A 7E8B19>61 D91 D93 D<38407F8087000A037D9311>126 D E /Fm 25 123 df<007800CC0186030606060E060C061C07180738063806300E700E700E7FFEE01C E01CE01CE018E038C038C070C060C060C0C0C180618062003C00101D7E9C13>18 D<07800001C00000E00000E00000F000007000007000007000003800003800003800003C 00001C00001C00001E00000E00001E00003F0000670000C7000187800303800703800E03 801C03C03801C07001C0E001E06000E0131D7E9C18>21 D<0FFFF81FFFF83FFFF0608400 408400808C00010C00010C00030C00030C00020C00061C00061C000E1C000C1C001C0E00 1C0E00180C0015127E9118>25 D<60F0F06004047C830C>58 D<60F0F070101010102020 4080040C7C830C>I<00010003000600060006000C000C000C0018001800180030003000 300060006000C000C000C0018001800180030003000300060006000C000C000C00180018 001800300030003000600060006000C000C00010297E9E15>61 D<0001F808000E061800 380138006000F001C0007003800070070000300F0000200E0000201C0000203C0000203C 000000780000007800000078000000F0000000F0000000F0007FF0F0000780F0000700F0 000700F00007007000070070000E0030000E0038000E001C001E000E0064000701840000 FE00001D1E7E9C21>71 D<007FF80003C000038000038000038000038000070000070000 0700000700000E00000E00000E00000E00001C00001C00001C00001C0000380000380000 3800203800707000F07000E0600080E00081C0004380003E0000151D7D9B17>74 D<01FFFF00003C03C0003800E0003800F00038007000380070007000F0007000F0007000 F0007000E000E001E000E003C000E0078000E01E0001FFF00001C0000001C0000001C000 0003800000038000000380000003800000070000000700000007000000070000000F0000 00FFE000001C1C7E9B1B>80 D<0003F800000E0E000038038000E001C001C001C0038000 E0070000E00F0000F01E0000F01C0000F03C0000F03C0000F0780000F0780000F0780000 F0F00001E0F00001E0F00001E0F00003C0F00003C0F0000380F0000780F0000F00703C0E 0070421C0038823800388270001C83C0000787810001FF0100000303000003020000038E 000003FC000003F8000001F8000001E0001C257E9C21>I<000FC100303300400F008006 01800603000603000606000406000407000007000007800003F00001FF0000FFC0003FE0 0003E00000F00000700000300000302000302000306000606000606000C0600080F00300 CC060083F800181E7E9C19>83 D87 D<01FFC0FF80001E003C00001E00 3000000E002000000F00400000070080000007010000000782000000038400000003C800 000001D000000001F000000000E000000000E000000000F0000000017000000002700000 0004380000000838000000103C000000201C000000401E000000800E000001800E000003 000F000006000700001E000F8000FF803FF000211C7F9B22>I<00FFFFE000F001C001C0 03800180070001000E0001001E0002001C0002003800020070000000E0000001C0000003 800000070000000F0000001E0000001C0000003800000070020000E0040001C004000380 0400070008000F0008000E0018001C003000380070007001E000FFFFE0001B1C7E9B1C> 90 D<01E3000717000C0F00180F00380E00300E00700E00700E00E01C00E01C00E01C00 E01C00E03880E03880E038806078803199001E0E0011127E9116>97 D<0007E00000E00000E00001C00001C00001C00001C000038000038000038000038001E7 000717000C0F00180F00380E00300E00700E00700E00E01C00E01C00E01C00E01C00E038 80E03880E038806078803199001E0E00131D7E9C16>100 D<01F007080C081804380830 0870307FC0E000E000E000E000E000E0046008601030600F800E127E9113>I<00718001 8B800307800607800E07000C07001C07001C0700380E00380E00380E00380E00381C0038 1C00381C00183C0008F800073800003800003800007000607000F06000F0E000E180007E 0000111A7F9114>103 D<0FC00001C00001C00003800003800003800003800007000007 00000700000700000E3E000EC3000F03800E03801E03801C03801C03801C038038070038 0700380700380E00700E20700E20701C20701C40E00C80600700131D7E9C18>I<01C003 C003C001800000000000000000000000001C00270047004700870087000E000E001C001C 001C003800388038807080710032001C000A1C7E9B0E>I<0FC00001C00001C000038000 0380000380000380000700000700000700000700000E07000E18800E21C00E23C01C4780 1C83001D00001E00003F800039C00038E00038E00070E10070E10070E10070E200E06200 603C00121D7E9C16>107 D<07078009C86008D03008E03011C03011C03801C03801C038 0380700380700380700380600700E00700C00701800783000E86000E78000E00000E0000 1C00001C00001C00001C00003C0000FF8000151A819115>112 D<01C206260C1E181E38 1C301C701C701CE038E038E038E038E070E070E07060F023E01CE000E000E001C001C001 C001C003C01FF80F1A7E9113>I<07878008C84010F0C020F1E020E3C040E18000E00000 E00001C00001C00001C00001C000638080F38080F38100E5810084C60078780013127E91 18>120 D<038107C10FE6081C10080010002000400080010002000400080410042C1877 F843F081C010127E9113>122 D E /Fn 10 113 df0 D<60F0F06004047C8B0C>I21 D<000000040000000002000000000200000000010000000000 800000000040FFFFFFFFF8FFFFFFFFF80000000040000000008000000001000000000200 00000002000000000400250E7E902A>33 D<003C00E001C0018003800380038003800380 03800380038003800380038003800380030007001C00F0001C0007000300038003800380 0380038003800380038003800380038003800380018001C000E0003C0E297D9E15>102 DI<008001800300030003000600060006000C00 0C000C00180018001800300030003000600060006000C000C00060006000600030003000 30001800180018000C000C000C0006000600060003000300030001800080092A7C9E10> III<00000000 4000000000C0000000018000000001800000000300000000030000000006000000000600 0000000C000000000C000000001800000000180000000030000000003000000000600000 00006000000000C000000000C0000000018000000001800000000300000C000300003C00 0600004E000600008E000C000007000C0000070018000003801800000380300000038030 000001C060000001C060000000E0C0000000E0C0000000718000000071800000003B0000 00003B000000001E000000001E000000000C000000000C000000222A7E8123>112 D E /Fo 36 122 df<000FF83F00007FFDFFC001F81FE3E003E03F87E007C03F87E00F80 3F07E00F803F03C00F801F00000F801F00000F801F00000F801F00000F801F00000F801F 0000FFFFFFFC00FFFFFFFC000F801F00000F801F00000F801F00000F801F00000F801F00 000F801F00000F801F00000F801F00000F801F00000F801F00000F801F00000F801F0000 0F801F00000F801F00000F801F00000F801F00000F801F00000F801F00007FF0FFF0007F F0FFF00023237FA221>11 D<00180000780001F800FFF800FFF80001F80001F80001F800 01F80001F80001F80001F80001F80001F80001F80001F80001F80001F80001F80001F800 01F80001F80001F80001F80001F80001F80001F80001F80001F80001F8007FFFE07FFFE0 13207C9F1C>49 D<03FC000FFF003C1FC07007E07C07F0FE03F0FE03F8FE03F8FE01F87C 01F83803F80003F80003F00003F00007E00007C0000F80001F00003E0000380000700000 E01801C0180380180700180E00380FFFF01FFFF03FFFF07FFFF0FFFFF0FFFFF015207D9F 1C>I<00FE0007FFC00F07E01E03F03F03F03F81F83F81F83F81F81F03F81F03F00003F0 0003E00007C0001F8001FE0001FF000007C00001F00001F80000FC0000FC3C00FE7E00FE FF00FEFF00FEFF00FEFF00FC7E01FC7801F81E07F00FFFC001FE0017207E9F1C>I<0000 E00001E00003E00003E00007E0000FE0001FE0001FE00037E00077E000E7E001C7E00187 E00307E00707E00E07E00C07E01807E03807E07007E0E007E0FFFFFEFFFFFE0007E00007 E00007E00007E00007E00007E00007E000FFFE00FFFE17207E9F1C>I<1000201E01E01F FFC01FFF801FFF001FFE001FF8001BC00018000018000018000018000019FC001FFF001E 0FC01807E01803E00003F00003F00003F80003F83803F87C03F8FE03F8FE03F8FC03F0FC 03F07007E03007C01C1F800FFF0003F80015207D9F1C>I<001F8000FFE003F07007C0F0 0F01F81F01F83E01F83E01F87E00F07C00007C0000FC0800FC7FC0FCFFE0FD80F0FF00F8 FE007CFE007CFC007EFC007EFC007EFC007E7C007E7C007E7C007E3C007C3E007C1E00F8 0F00F00783E003FFC000FF0017207E9F1C>I<000070000000007000000000F800000000 F800000000F800000001FC00000001FC00000003FE00000003FE00000003FE00000006FF 000000067F0000000E7F8000000C3F8000000C3F800000183FC00000181FC00000381FE0 0000300FE00000300FE00000600FF000006007F00000E007F80000FFFFF80000FFFFF800 018001FC00018001FC00038001FE00030000FE00030000FE000600007F000600007F00FF E00FFFF8FFE00FFFF825227EA12A>65 D<0003FE0080001FFF818000FF01E38001F8003F 8003E0001F8007C0000F800F800007801F800007803F000003803F000003807F00000180 7E000001807E00000180FE00000000FE00000000FE00000000FE00000000FE00000000FE 00000000FE00000000FE000000007E000000007E000001807F000001803F000001803F00 0003801F800003000F8000030007C000060003F0000C0001F800380000FF00F000001FFF C0000003FE000021227DA128>67 D73 D76 D78 D82 D<7FFFFFFF807FFFFFFF807E03F80F807803F807807003F8 03806003F80180E003F801C0E003F801C0C003F800C0C003F800C0C003F800C0C003F800 C00003F800000003F800000003F800000003F800000003F800000003F800000003F80000 0003F800000003F800000003F800000003F800000003F800000003F800000003F8000000 03F800000003F800000003F800000003F800000003F800000003F8000003FFFFF80003FF FFF80022227EA127>84 D<07FC001FFF803F07C03F03E03F01E03F01F01E01F00001F000 01F0003FF003FDF01FC1F03F01F07E01F0FC01F0FC01F0FC01F0FC01F07E02F07E0CF81F F87F07E03F18167E951B>97 DI<00FF8007FFE00F83F01F03F03E03F07E03F07C01 E07C0000FC0000FC0000FC0000FC0000FC0000FC00007C00007E00007E00003E00301F00 600FC0E007FF8000FE0014167E9519>I<0001FE000001FE0000003E0000003E0000003E 0000003E0000003E0000003E0000003E0000003E0000003E0000003E0000003E0001FC3E 0007FFBE000F81FE001F007E003E003E007E003E007C003E00FC003E00FC003E00FC003E 00FC003E00FC003E00FC003E00FC003E00FC003E007C003E007C003E003E007E001E00FE 000F83BE0007FF3FC001FC3FC01A237EA21F>I<00FE0007FF800F87C01E01E03E01F07C 00F07C00F8FC00F8FC00F8FFFFF8FFFFF8FC0000FC0000FC00007C00007C00007E00003E 00181F00300FC07003FFC000FF0015167E951A>I<003F8000FFC001E3E003C7E007C7E0 0F87E00F83C00F80000F80000F80000F80000F80000F8000FFFC00FFFC000F80000F8000 0F80000F80000F80000F80000F80000F80000F80000F80000F80000F80000F80000F8000 0F80000F80000F80000F80007FF8007FF80013237FA211>I<03FC1E0FFF7F1F0F8F3E07 CF3C03C07C03E07C03E07C03E07C03E07C03E03C03C03E07C01F0F801FFF0013FC003000 003000003800003FFF801FFFF00FFFF81FFFFC3800FC70003EF0001EF0001EF0001EF000 1E78003C7C007C3F01F80FFFE001FF0018217E951C>II<1C003F007F007F007F00 3F001C000000000000000000000000000000FF00FF001F001F001F001F001F001F001F00 1F001F001F001F001F001F001F001F001F001F001F00FFE0FFE00B247EA310>I107 DIII<00FE0007FFC00F83E01E 00F03E00F87C007C7C007C7C007CFC007EFC007EFC007EFC007EFC007EFC007EFC007E7C 007C7C007C3E00F81F01F00F83E007FFC000FE0017167E951C>II114 D<0FF3003FFF00781F00600700E00300 E00300F00300FC00007FE0007FF8003FFE000FFF0001FF00000F80C00780C00380E00380 E00380F00700FC0E00EFFC00C7F00011167E9516>I<0180000180000180000180000380 000380000780000780000F80003F8000FFFF00FFFF000F80000F80000F80000F80000F80 000F80000F80000F80000F80000F80000F80000F81800F81800F81800F81800F81800F83 0007C30003FE0000F80011207F9F16>II119 DII E /Fp 31 120 df<78FCFCFCFC7806067D850D>46 D<03F8000F1E001C07003C07803803 807803C07803C07803C0F803E0F803E0F803E0F803E0F803E0F803E0F803E0F803E0F803 E0F803E0F803E0F803E07803C07803C03803803C07801C07000F1E0003F800131B7E9A18 >48 D<00600001E0000FE000FFE000F3E00003E00003E00003E00003E00003E00003E000 03E00003E00003E00003E00003E00003E00003E00003E00003E00003E00003E00003E000 03E00003E0007FFF807FFF80111B7D9A18>I<07F8001FFE00383F80780FC0FC07C0FC07 E0FC03E0FC03E07803E00007E00007C00007C0000F80001F00001E0000380000700000E0 000180600300600600600800E01FFFC03FFFC07FFFC0FFFFC0FFFFC0131B7E9A18>I<03 F8001FFE003C1F003C0F807C07C07E07C07C07C03807C0000F80000F80001E00003C0003 F800001E00000F800007C00007C00007E03007E07807E0FC07E0FC07E0FC07C0780F8078 1F001FFE0007F800131B7E9A18>I<1801801FFF001FFE001FFC001FF8001FC000180000 18000018000018000019F8001E0E00180F801007800007C00007E00007E00007E07807E0 F807E0F807E0F807C0F007C0600F80381F001FFE0007F000131B7E9A18>53 D<007E0003FF000781800F03C01E07C03C07C03C0380780000780000F80000F8F800FB0E 00FA0780FC0380FC03C0F803E0F803E0F803E0F803E07803E07803E07803C03C03C03C07 801E0F0007FE0003F800131B7E9A18>I<6000007FFFE07FFFE07FFFC07FFF807FFF80E0 0300C00600C00C00C0180000300000300000600000E00000E00001E00001C00003C00003 C00003C00003C00007C00007C00007C00007C00007C00007C000038000131C7D9B18>I< 03F8000FFE001E0F803807803803C07803C07803C07E03C07F83807FC7003FFE001FFC00 0FFE0007FF801DFF80387FC0781FE0F007E0F003E0F001E0F001E0F001E07801C0780380 3E07801FFE0003F800131B7E9A18>I<03F8000FFE001E0F003C07807807807803C0F803 C0F803C0F803E0F803E0F803E0F803E07807E03807E03C0BE00E1BE003E3E00003E00003 C00003C03807C07C07807C0700780F00383C001FF8000FE000131B7E9A18>I73 D<07FFF007FFF0001F80001F80 001F80001F80001F80001F80001F80001F80001F80001F80001F80001F80001F80001F80 001F80001F80001F80001F80301F80781F80FC1F80FC1F80FC1F00783E00387C000FF000 141C7F9B19>IIII<07F8201FFEE03C07E07801E07000E0F000E0F00060F00060F80000FE0000FFE0 007FFE003FFF003FFF800FFFC007FFE0007FE00003F00001F00000F0C000F0C000F0C000 E0E000E0F001C0FC03C0EFFF0083FC00141C7D9B1B>83 D<7FFFFFE07FFFFFE0781F81E0 701F80E0601F8060E01F8070C01F8030C01F8030C01F8030C01F8030001F8000001F8000 001F8000001F8000001F8000001F8000001F8000001F8000001F8000001F8000001F8000 001F8000001F8000001F8000001F8000001F800007FFFE0007FFFE001C1C7E9B21>I<0F F8001C1E003E0F803E07803E07C01C07C00007C0007FC007E7C01F07C03C07C07C07C0F8 07C0F807C0F807C0780BC03E13F80FE1F815127F9117>97 D<03FC000E0E001C1F003C1F 00781F00780E00F80000F80000F80000F80000F80000F800007800007801803C01801C03 000E0E0003F80011127E9115>99 D<000FF0000FF00001F00001F00001F00001F00001F0 0001F00001F00001F00001F001F9F00F07F01C03F03C01F07801F07801F0F801F0F801F0 F801F0F801F0F801F0F801F07801F07801F03C01F01C03F00F0FFE03F9FE171D7E9C1B> I<01FC000F07001C03803C01C07801C07801E0F801E0F801E0FFFFE0F80000F80000F800 007800007C00603C00601E00C00F038001FC0013127F9116>I104 D<1E003F003F003F003F001E0000000000000000000000 0000FF00FF001F001F001F001F001F001F001F001F001F001F001F001F001F001F00FFE0 FFE00B1E7F9D0E>I107 DIII<01FC000F07801C01C03C01E07800F07800F0F800F8F800F8F800F8F8 00F8F800F8F800F87800F07800F03C01E01E03C00F078001FC0015127F9118>I114 D117 D119 D E /Fq 26 122 df66 D70 D76 D78 D<001FF0018000FFFF038003FFFFC78007F00FFF800F8001FF801F00007F803F 00001F803E00000F807E00000F807E00000780FE00000780FE00000780FE00000380FF00 000380FF00000380FF80000000FFE00000007FFC0000007FFFE000007FFFFE00003FFFFF C0001FFFFFF0001FFFFFF8000FFFFFFC0003FFFFFE0001FFFFFF00007FFFFF80001FFFFF 800000FFFFC0000007FFC0000000FFE00000003FE00000003FE00000001FE06000001FE0 E000000FE0E000000FE0E000000FE0E000000FC0F000000FC0F000000FC0F800001F80FC 00001F80FF00003F00FFC0007E00FFFC01FC00F1FFFFF800E03FFFE000C007FF00002331 7BB02E>83 D<3FFFFFFFFFFF003FFFFFFFFFFF003FFFFFFFFFFF003FE00FFC01FF007F00 0FFC003F807E000FFC001F807C000FFC000F8078000FFC00078078000FFC00078070000F FC00038070000FFC00038070000FFC00038070000FFC000380E0000FFC0001C0E0000FFC 0001C0E0000FFC0001C0E0000FFC0001C000000FFC00000000000FFC00000000000FFC00 000000000FFC00000000000FFC00000000000FFC00000000000FFC00000000000FFC0000 0000000FFC00000000000FFC00000000000FFC00000000000FFC00000000000FFC000000 00000FFC00000000000FFC00000000000FFC00000000000FFC00000000000FFC00000000 000FFC00000000000FFC00000000000FFC00000000000FFC00000000000FFC0000000000 0FFC00000000000FFC00000000000FFC00000000000FFC00000000000FFC000000007FFF FFFF8000007FFFFFFF8000007FFFFFFF800032307DAF39>I<007FF8000003FFFF000007 FFFFC0000FE01FE0001FF007F0001FF003F8001FF003FC001FF001FE000FE001FE0007C0 01FE00010001FE00000001FE00000001FE000001FFFE00003FFFFE0001FFF1FE0007FE01 FE000FF001FE001FC001FE003F8001FE007F8001FE00FF0001FE00FF0001FE00FF0001FE 00FF0001FE00FF0003FE007F8003FE007FC00EFE003FF03CFF000FFFF87FF807FFF03FF8 00FF800FF825207E9F28>97 D<01F8000000FFF8000000FFF8000000FFF80000000FF800 000007F800000007F800000007F800000007F800000007F800000007F800000007F80000 0007F800000007F800000007F800000007F800000007F800000007F800000007F80FF000 07F87FFE0007F9FFFF8007FFE03FC007FF000FE007FE0007F007F80003F807F80003FC07 F80003FC07F80001FE07F80001FE07F80001FE07F80001FF07F80001FF07F80001FF07F8 0001FF07F80001FF07F80001FF07F80001FF07F80001FF07F80001FE07F80001FE07F800 01FE07F80003FC07F80003FC07FC0007F807FE0007F007F7001FE007E3E07FC007C1FFFF 0007807FFE0007001FE00028327EB12E>I<00000007E0000003FFE0000003FFE0000003 FFE00000003FE00000001FE00000001FE00000001FE00000001FE00000001FE00000001F E00000001FE00000001FE00000001FE00000001FE00000001FE00000001FE00000001FE0 000FF81FE0007FFF1FE001FFFFDFE003FE03FFE007F800FFE00FE0003FE01FE0001FE03F C0001FE03FC0001FE07F80001FE07F80001FE07F80001FE0FF80001FE0FF80001FE0FF80 001FE0FF80001FE0FF80001FE0FF80001FE0FF80001FE0FF80001FE07F80001FE07F8000 1FE07F80001FE03FC0001FE03FC0001FE01FC0003FE00FE0007FE007F001FFE003FC07DF F001FFFF9FFF007FFE1FFF000FF01FFF28327DB12E>100 D<0007FC0000003FFF800000 FFFFE00003FC07F00007F801F8000FE000FC001FE0007E003FC0007E003FC0003F007FC0 003F007F80003F007F80003F80FF80003F80FF80003F80FFFFFFFF80FFFFFFFF80FFFFFF FF80FF80000000FF80000000FF800000007F800000007F800000003FC00000003FC00003 801FC00003801FE00007800FF0000F0007F8001E0003FE00FC0000FFFFF800003FFFE000 0003FF000021207E9F26>I<0000FF000007FFC0001FFFE0003FC7F0007F0FF800FE0FF8 01FE0FF801FC0FF803FC07F003FC03E003FC01C003FC000003FC000003FC000003FC0000 03FC000003FC000003FC0000FFFFF800FFFFF800FFFFF80003FC000003FC000003FC0000 03FC000003FC000003FC000003FC000003FC000003FC000003FC000003FC000003FC0000 03FC000003FC000003FC000003FC000003FC000003FC000003FC000003FC000003FC0000 03FC000003FC000003FC000003FC000003FC00007FFFF0007FFFF0007FFFF0001D327EB1 19>I<001FF007E000FFFE3FF001FFFF7FF807F83FF1F80FE00FE1F80FE00FE0F01FC007 F0601FC007F0003FC007F8003FC007F8003FC007F8003FC007F8003FC007F8001FC007F0 001FC007F0000FE00FE0000FE00FE00007F83FC00007FFFF000006FFFE00000E1FF00000 0E000000001E000000001E000000001F000000001F800000001FFFFFC0000FFFFFF8000F FFFFFE0007FFFFFF0003FFFFFF8007FFFFFFC01FFFFFFFE03F00007FE07E00000FF0FC00 0007F0FC000003F0FC000003F0FC000003F0FC000003F07E000007E03F00000FC01FC000 3F800FF801FF0007FFFFFE0000FFFFF000001FFF8000252F7E9F29>I<01F800000000FF F800000000FFF800000000FFF8000000000FF80000000007F80000000007F80000000007 F80000000007F80000000007F80000000007F80000000007F80000000007F80000000007 F80000000007F80000000007F80000000007F80000000007F80000000007F807F8000007 F83FFF000007F87FFF800007F8F03FC00007F9C01FE00007FB000FE00007FE000FF00007 FE000FF00007FC000FF00007FC000FF00007F8000FF00007F8000FF00007F8000FF00007 F8000FF00007F8000FF00007F8000FF00007F8000FF00007F8000FF00007F8000FF00007 F8000FF00007F8000FF00007F8000FF00007F8000FF00007F8000FF00007F8000FF00007 F8000FF00007F8000FF00007F8000FF00007F8000FF000FFFFC1FFFF80FFFFC1FFFF80FF FFC1FFFF8029327DB12E>I<03C0000FF0000FF0001FF8001FF8001FFC001FF8001FF800 0FF0000FF00003C00000000000000000000000000000000000000000000000000001F800 FFF800FFF800FFF8000FF80007F80007F80007F80007F80007F80007F80007F80007F800 07F80007F80007F80007F80007F80007F80007F80007F80007F80007F80007F80007F800 07F80007F80007F80007F800FFFF80FFFF80FFFF8011337DB217>I<01F8000000FFF800 0000FFF8000000FFF80000000FF800000007F800000007F800000007F800000007F80000 0007F800000007F800000007F800000007F800000007F800000007F800000007F8000000 07F800000007F800000007F8007FFC07F8007FFC07F8007FFC07F8001FC007F8001F0007 F8003E0007F800780007F801F00007F803E00007F807800007F81F000007F83E000007F8 7C000007F9FE000007FBFF000007FFFF800007FF7FC00007FE3FE00007F81FE00007F01F F00007F00FF80007F007FC0007F003FE0007F001FF0007F000FF0007F000FF8007F0007F C007F0003FE007F0003FF0FFFF80FFFFFFFF80FFFFFFFF80FFFF28327EB12C>107 D<01F800FFF800FFF800FFF8000FF80007F80007F80007F80007F80007F80007F80007F8 0007F80007F80007F80007F80007F80007F80007F80007F80007F80007F80007F80007F8 0007F80007F80007F80007F80007F80007F80007F80007F80007F80007F80007F80007F8 0007F80007F80007F80007F80007F80007F80007F80007F80007F80007F80007F800FFFF C0FFFFC0FFFFC012327DB117>I<03F007F8000FF000FFF03FFF007FFE00FFF07FFF80FF FF00FFF0F03FC1E07F800FF1C01FE3803FC007F3000FE6001FC007F6000FFC001FE007FE 000FFC001FE007FC000FF8001FE007FC000FF8001FE007F8000FF0001FE007F8000FF000 1FE007F8000FF0001FE007F8000FF0001FE007F8000FF0001FE007F8000FF0001FE007F8 000FF0001FE007F8000FF0001FE007F8000FF0001FE007F8000FF0001FE007F8000FF000 1FE007F8000FF0001FE007F8000FF0001FE007F8000FF0001FE007F8000FF0001FE007F8 000FF0001FE007F8000FF0001FE007F8000FF0001FE007F8000FF0001FE0FFFFC1FFFF83 FFFFFFFFC1FFFF83FFFFFFFFC1FFFF83FFFF40207D9F45>I<03F007F80000FFF03FFF00 00FFF07FFF8000FFF0F03FC0000FF1C01FE00007F3000FE00007F6000FF00007FE000FF0 0007FC000FF00007FC000FF00007F8000FF00007F8000FF00007F8000FF00007F8000FF0 0007F8000FF00007F8000FF00007F8000FF00007F8000FF00007F8000FF00007F8000FF0 0007F8000FF00007F8000FF00007F8000FF00007F8000FF00007F8000FF00007F8000FF0 0007F8000FF00007F8000FF00007F8000FF000FFFFC1FFFF80FFFFC1FFFF80FFFFC1FFFF 8029207D9F2E>I<0007FE0000003FFFC00000FFFFF00003FC03FC0007F000FE000FE000 7F001FC0003F803FC0003FC03FC0003FC07F80001FE07F80001FE07F80001FE0FF80001F F0FF80001FF0FF80001FF0FF80001FF0FF80001FF0FF80001FF0FF80001FF0FF80001FF0 7F80001FE07F80001FE07F80001FE03FC0003FC03FC0003FC01FE0007F800FE0007F0007 F801FE0003FE07FC0001FFFFF800003FFFC0000007FE000024207E9F29>I<01F80FF000 FFF87FFE00FFF9FFFF80FFFFE07FC00FFF001FE007FE000FF007F80007F807F80007FC07 F80003FC07F80003FE07F80003FE07F80001FE07F80001FF07F80001FF07F80001FF07F8 0001FF07F80001FF07F80001FF07F80001FF07F80001FF07F80001FE07F80003FE07F800 03FE07F80003FC07F80007FC07FC0007F807FE000FF007FF001FE007FBE07FC007F9FFFF 0007F87FFE0007F81FE00007F800000007F800000007F800000007F800000007F8000000 07F800000007F800000007F800000007F800000007F800000007F8000000FFFFC00000FF FFC00000FFFFC00000282E7E9F2E>I<03F03F00FFF07FC0FFF1FFE0FFF3C7F00FF38FF8 07F70FF807F60FF807FE0FF807FC07F007FC03E007FC008007F8000007F8000007F80000 07F8000007F8000007F8000007F8000007F8000007F8000007F8000007F8000007F80000 07F8000007F8000007F8000007F8000007F8000007F80000FFFFE000FFFFE000FFFFE000 1D207E9F22>114 D<00FF870007FFEF001FFFFF003F007F003C001F0078000F00F80007 00F8000700F8000700FC000700FF000000FFF800007FFFC0003FFFF0003FFFFC000FFFFE 0007FFFF0001FFFF80001FFF800000FFC000001FC060000FC0E00007C0E00007C0F00007 C0F8000780F8000F80FE000F00FF803E00FFFFFC00F3FFF800C07FC0001A207D9F21>I< 00380000380000380000380000380000780000780000780000F80000F80001F80003F800 07F8001FF800FFFFFEFFFFFEFFFFFE07F80007F80007F80007F80007F80007F80007F800 07F80007F80007F80007F80007F80007F80007F80007F80007F80007F80707F80707F807 07F80707F80707F80707F80703F80E03FC0E01FE1C00FFF8007FF0000FE0182E7EAD20> I<01F80003F000FFF801FFF000FFF801FFF000FFF801FFF0000FF8001FF00007F8000FF0 0007F8000FF00007F8000FF00007F8000FF00007F8000FF00007F8000FF00007F8000FF0 0007F8000FF00007F8000FF00007F8000FF00007F8000FF00007F8000FF00007F8000FF0 0007F8000FF00007F8000FF00007F8000FF00007F8000FF00007F8000FF00007F8000FF0 0007F8001FF00007F8001FF00003F8003FF00003F8006FF00001FE03CFF80000FFFF8FFF 80007FFF0FFF80000FFC0FFF8029207D9F2E>I119 D121 D E /Fr 35 122 df<0001FC000703000C03001C07001C0300180000380000380000380000380000 700007FFFC00701C00701C00701C00E03800E03800E03800E03800E07001C07001C07001 C07001C0E201C0E201C0E20380E4038064038038038000030000070000060000C60000E4 0000CC00007000001825819C17>12 D<3078F06005047C830D>46 D<001E000061000081800180800300C00300C006018006018006018007030007860003CC 0003F00001F000037800063C00081E00180E00300E00600600600600600600C00C00C00C 00C0180060100060200030C0000F0000121D7C9B15>56 D<000018000000180000003800 0000380000007800000078000000B8000001B800000138000002380000023C0000041C00 00041C0000081C0000181C0000101C0000201C0000201C00007FFC0000401C0000801C00 01801C0001001C0002001C0002001C0004000E000C000E001C001E00FF00FFC01A1D7E9C 1F>65 D<01FFFE00003C0780003803C0003801C0003801C0003801C0007001C0007003C0 007003C00070078000E0070000E00E0000E03C0000FFF80001C01C0001C00E0001C00F00 01C00F0003800F0003800F0003800F0003800F0007001E0007001C0007003C0007007800 0E01E000FFFF80001A1C7D9B1D>I<0003F020001E0C60003002E000E003C001C001C003 8001C0070000C00E0000801E0000801C0000803C0000803C000000780000007800000078 000000F0000000F0000000F0000000F0000000F0000400F0000400F0000400F000080070 0008007000100038002000180040000C0180000706000001F800001B1E7A9C1E>I<01FF C0003C0000380000380000380000380000700000700000700000700000E00000E00000E0 0000E00001C00001C00001C00001C0000380000380000380000380000700000700000700 000700000F0000FFE000121C7E9B10>73 D<007FF0000780000700000700000700000700 000E00000E00000E00000E00001C00001C00001C00001C00003800003800003800003800 00700000700000700000700060E000E0E000C0C00081C0008380004700003C0000141D7B 9B16>I<01FE0007F8003E000780002E000F00002E001700002E001700002E002700004E 002E00004E004E00004E004E00004E008E00008E011C00008E011C00008E021C00008E02 1C0001070438000107043800010708380001071038000207107000020720700002072070 000207407000040740E000040780E000040700E0000C0700E0001C0601E000FF861FFC00 251C7D9B25>77 D<01FC03FE001C0070003C0060002E0040002E0040002E004000470080 0047008000470080004380800083810000838100008181000081C1000101C2000101C200 0100E2000100E2000200E400020074000200740002007400040038000400380004003800 0C0018001C001000FF8010001F1C7D9B1F>I<01FFFC00003C070000380380003801C000 3801C0003801C0007003C0007003C0007003C00070038000E0078000E0070000E00E0000 E0380001FFE00001C0000001C0000001C000000380000003800000038000000380000007 0000000700000007000000070000000F000000FFE000001A1C7D9B1C>80 D<01FFF800003C0E00003807000038038000380380003803800070078000700780007007 8000700F0000E00E0000E01C0000E0700000FFC00001C0C00001C0600001C0700001C070 00038070000380700003807000038070000700F0000700F0400700F0400700F0800F0078 80FFE0790000001E001A1D7D9B1E>82 D<000F8400304C00403C00801801001803001803 001806001006001006000007000007000003E00003FC0001FF00007F800007C00001C000 01C00000C00000C02000C02000C0600180600180600300600200F00400CC180083E00016 1E7D9C17>I<1FFFFFC01C0701C0300E00C0200E0080600E0080400E0080401C0080801C 0080801C0080001C00000038000000380000003800000038000000700000007000000070 00000070000000E0000000E0000000E0000000E0000001C0000001C0000001C0000001C0 000003C000007FFE00001A1C799B1E>I<03CC063C0C3C181C3838303870387038E070E0 70E070E070E0E2C0E2C0E261E462643C380F127B9115>97 D<3F00070007000E000E000E 000E001C001C001C001C0039C03E60383038307038703870387038E070E070E070E060E0 E0C0C0C1C0618063003C000D1D7B9C13>I<01F007080C08181C3838300070007000E000 E000E000E000E000E008E010602030C01F000E127B9113>I<001F800003800003800007 00000700000700000700000E00000E00000E00000E0003DC00063C000C3C00181C003838 00303800703800703800E07000E07000E07000E07000E0E200C0E200C0E20061E4006264 003C3800111D7B9C15>I<01E007100C1018083810701070607F80E000E000E000E000E0 00E0086010602030C01F000D127B9113>I<0003C0000670000C70001C60001C00001C00 00380000380000380000380000380003FF8000700000700000700000700000700000E000 00E00000E00000E00000E00001C00001C00001C00001C00001C000038000038000038000 030000030000070000C60000E60000CC00007800001425819C0D>I<00F3018F030F0607 0E0E0C0E1C0E1C0E381C381C381C381C383830383038187818F00F700070007000E000E0 C0C0E1C0C3007E00101A7D9113>I<0FC00001C00001C000038000038000038000038000 0700000700000700000700000E78000E8C000F0E000E0E001C0E001C0E001C0E001C0E00 381C00381C00381C00383800703880703880707080707100E03200601C00111D7D9C15> I<01800380010000000000000000000000000000001C002600470047008E008E000E001C 001C001C0038003800710071007100720072003C00091C7C9B0D>I<1F80038003800700 0700070007000E000E000E000E001C001C001C001C003800380038003800700070007000 7000E400E400E400E40068003800091D7C9C0B>108 D<3C1E0780266318C04683A0E047 03C0E08E0380E08E0380E00E0380E00E0380E01C0701C01C0701C01C0701C01C07038038 0E0388380E0388380E0708380E0710701C0320300C01C01D127C9122>I<3C3C00264600 4687004707008E07008E07000E07000E07001C0E001C0E001C0E001C1C00381C40381C40 383840383880701900300E0012127C9117>I<01E007180C0C180C380C300E700E700EE0 1CE01CE01CE018E038E030E06060C031801E000F127B9115>I<07870004D98008E0C008 E0C011C0E011C0E001C0E001C0E00381C00381C00381C003818007038007030007070007 06000E8C000E70000E00000E00001C00001C00001C00001C00003C0000FF8000131A7F91 15>I<3C3C26C2468747078E068E000E000E001C001C001C001C00380038003800380070 00300010127C9112>114 D<01F006080C080C1C18181C001F001FC00FF007F000780038 6030E030C030806060C01F000E127D9111>I<00C001C001C001C00380038003800380FF E00700070007000E000E000E000E001C001C001C001C00384038403840388019000E000B 1A7D990E>I<1E0300270700470700470700870E00870E000E0E000E0E001C1C001C1C00 1C1C001C1C003838803838801838801839001C5900078E0011127C9116>I<1E06270E47 0E4706870287020E020E021C041C041C041C0818083808181018200C4007800F127C9113 >I<070E0019910010E38020E38041C30041C00001C00001C00003800003800003800003 8000070200670200E70400CB04008B080070F00011127D9113>120 D<1E03270747074707870E870E0E0E0E0E1C1C1C1C1C1C1C1C38383838183818381C7007 F00070007000E0E0C0E1C0818047003C00101A7C9114>I E /Fs 85 127 df6 D<007E1F0001C1B1800303E3C00703C3C00E03C1 800E01C0000E01C0000E01C0000E01C0000E01C0000E01C000FFFFFC000E01C0000E01C0 000E01C0000E01C0000E01C0000E01C0000E01C0000E01C0000E01C0000E01C0000E01C0 000E01C0000E01C0000E01C0000E01C0000E01C0007F87FC001A1D809C18>11 D<007E0001C1800301800703C00E03C00E01800E00000E00000E00000E00000E0000FFFF C00E01C00E01C00E01C00E01C00E01C00E01C00E01C00E01C00E01C00E01C00E01C00E01 C00E01C00E01C00E01C00E01C07F87F8151D809C17>I<007FC001C1C00303C00703C00E 01C00E01C00E01C00E01C00E01C00E01C00E01C0FFFFC00E01C00E01C00E01C00E01C00E 01C00E01C00E01C00E01C00E01C00E01C00E01C00E01C00E01C00E01C00E01C00E01C07F CFF8151D809C17>I<003F07E00001C09C18000380F018000701F03C000E01E03C000E00 E018000E00E000000E00E000000E00E000000E00E000000E00E00000FFFFFFFC000E00E0 1C000E00E01C000E00E01C000E00E01C000E00E01C000E00E01C000E00E01C000E00E01C 000E00E01C000E00E01C000E00E01C000E00E01C000E00E01C000E00E01C000E00E01C00 0E00E01C007FC7FCFF80211D809C23>I22 D<6060F0F0F8F8686808 0808080808101010102020404080800D0C7F9C15>34 D<00E00000019000000308000003 080000070800000708000007080000070800000710000007100000072000000740000003 C03FE003800F00038006000380040005C0040009C0080010E0100030E010006070200060 702000E0384000E03C4000E01C8000E00F0020E0070020700780403009C0401830E18007 C03E001B1F7E9D20>38 D<60F0F8680808081010204080050C7C9C0C>I<004000800100 020006000C000C0018001800300030007000600060006000E000E000E000E000E000E000 E000E000E000E000E000E000600060006000700030003000180018000C000C0006000200 0100008000400A2A7D9E10>I<800040002000100018000C000C00060006000300030003 8001800180018001C001C001C001C001C001C001C001C001C001C001C001C00180018001 80038003000300060006000C000C00180010002000400080000A2A7E9E10>I<00060000 000600000006000000060000000600000006000000060000000600000006000000060000 000600000006000000060000FFFFFFE0FFFFFFE000060000000600000006000000060000 000600000006000000060000000600000006000000060000000600000006000000060000 1B1C7E9720>43 D<60F0F0701010101020204080040C7C830C>II<60F0F06004047C830C>I<00010003000600060006000C000C000C0018001800180030 003000300060006000C000C000C0018001800180030003000300060006000C000C000C00 180018001800300030003000600060006000C000C00010297E9E15>I<03C00C30181830 0C300C700E60066006E007E007E007E007E007E007E007E007E007E007E007E007E00760 066006700E300C300C18180C3007E0101D7E9B15>I<030007003F00C700070007000700 070007000700070007000700070007000700070007000700070007000700070007000700 07000F80FFF80D1C7C9B15>I<07C01830201C400C400EF00FF80FF807F8077007000F00 0E000E001C001C00380070006000C00180030006010C01180110023FFE7FFEFFFE101C7E 9B15>I<07E01830201C201C781E780E781E381E001C001C00180030006007E00030001C 001C000E000F000F700FF80FF80FF80FF00E401C201C183007E0101D7E9B15>I<000C00 000C00001C00003C00003C00005C0000DC00009C00011C00031C00021C00041C000C1C00 081C00101C00301C00201C00401C00C01C00FFFFC0001C00001C00001C00001C00001C00 001C00001C0001FFC0121C7F9B15>I<300C3FF83FF03FC0200020002000200020002000 23E024302818301C200E000E000F000F000F600FF00FF00FF00F800E401E401C20381870 07C0101D7E9B15>I<00F0030C06040C0E181E301E300C700070006000E3E0E430E818F0 0CF00EE006E007E007E007E007E007600760077006300E300C18180C3003E0101D7E9B15 >I<4000007FFF807FFF007FFF0040020080040080040080080000100000100000200000 600000400000C00000C00001C00001800001800003800003800003800003800007800007 8000078000078000078000078000030000111D7E9B15>I<03E00C301008200C20066006 600660067006780C3E083FB01FE007F007F818FC307E601E600FC007C003C003C003C003 60026004300C1C1007E0101D7E9B15>I<03C00C301818300C700C600EE006E006E007E0 07E007E007E0076007700F300F18170C2707C700060006000E300C780C78187010203030 C00F80101D7E9B15>I<60F0F0600000000000000000000060F0F06004127C910C>I<60F0 F0600000000000000000000060F0F0701010101020204080041A7C910C>I<7FFFFFC0FF FFFFE00000000000000000000000000000000000000000000000000000000000000000FF FFFFE07FFFFFC01B0C7E8F20>61 D<003F800000C0600003001800040004000800020010 000100201F00802070808040E0404040C0384041C0384081803820838038208380382083 80382083803820838038208180382041C0382040C0384040E0784020709880201F0F0010 0000000800000004000000030001E000C01F80003FF0001B1D7E9C20>64 D<000600000006000000060000000F0000000F0000000F00000017800000178000001780 000023C0000023C0000023C0000041E0000041E0000041E0000080F0000080F0000180F8 000100780001FFF80003007C0002003C0002003C0006003E0004001E0004001E000C001F 001E001F00FF80FFF01C1D7F9C1F>II<00 1F808000E0618001801980070007800E0003801C0003801C000180380001807800008078 00008070000080F0000000F0000000F0000000F0000000F0000000F0000000F0000000F0 000000700000807800008078000080380000801C0001001C0001000E0002000700040001 80080000E03000001FC000191E7E9C1E>IIII<001F808000 E0618001801980070007800E0003801C0003801C00018038000180780000807800008070 000080F0000000F0000000F0000000F0000000F0000000F0000000F000FFF0F0000F8070 0007807800078078000780380007801C0007801C0007800E00078007000B800180118000 E06080001F80001C1E7E9C21>III<1FFF00F800780078007800780078007800780078 007800780078007800780078007800780078007800787078F878F878F878F0F040E021C0 1F00101D7F9B15>IIIII<003F800000E0E0000380380007001C000E000E 001C0007003C00078038000380780003C0780003C0700001C0F00001E0F00001E0F00001 E0F00001E0F00001E0F00001E0F00001E0F00001E0700001C0780003C0780003C0380003 803C0007801C0007000E000E0007001C000380380000E0E000003F80001B1E7E9C20>I< FFFF800F00E00F00780F003C0F001C0F001E0F001E0F001E0F001E0F001E0F001C0F003C 0F00780F00E00FFF800F00000F00000F00000F00000F00000F00000F00000F00000F0000 0F00000F00000F0000FFF000171C7E9B1C>I82 D<07E0801C1980300580700380600180E00180E00080E00080E00080F00000F800007C00 007FC0003FF8001FFE0007FF0000FF80000F800007C00003C00001C08001C08001C08001 C0C00180C00180E00300D00200CC0C0083F800121E7E9C17>I<7FFFFFC0700F01C0600F 00C0400F0040400F0040C00F0020800F0020800F0020800F0020000F0000000F0000000F 0000000F0000000F0000000F0000000F0000000F0000000F0000000F0000000F0000000F 0000000F0000000F0000000F0000000F0000000F0000001F800003FFFC001B1C7F9B1E> IIII89 D<7FFFF07C01F07001E06003C06003C0400780400F80 400F00401E00001E00003C00007C0000780000F00000F00001E00003E00003C010078010 0780100F00101F00301E00203C00203C00607800E0F803E0FFFFE0141C7E9B19>II<08081010202040404040808080808080B0B0F8F8787830300D0C 7A9C15>II<1FC000307000783800781C00301C00001C0000 1C0001FC000F1C00381C00701C00601C00E01C40E01C40E01C40603C40304E801F870012 127E9115>97 DI<07E00C30187830 7870306000E000E000E000E000E000E00060007004300418080C3007C00E127E9112>I< 003F0000070000070000070000070000070000070000070000070000070000070003E700 0C1700180F00300700700700600700E00700E00700E00700E00700E00700E00700600700 700700300700180F000C370007C7E0131D7E9C17>I<03E00C301818300C700E6006E006 FFFEE000E000E000E00060007002300218040C1803E00F127F9112>I<00F8018C071E06 1E0E0C0E000E000E000E000E000E00FFE00E000E000E000E000E000E000E000E000E000E 000E000E000E000E000E000E007FE00F1D809C0D>I<00038003C4C00C38C01C38801818 00381C00381C00381C00381C001818001C38000C300013C0001000003000001800001FF8 001FFF001FFF803003806001C0C000C0C000C0C000C06001803003001C0E0007F800121C 7F9215>II<18003C003C00180000 00000000000000000000000000FC001C001C001C001C001C001C001C001C001C001C001C 001C001C001C001C001C00FF80091D7F9C0C>I<00C001E001E000C00000000000000000 0000000000000FE000E000E000E000E000E000E000E000E000E000E000E000E000E000E0 00E000E000E000E000E000E060E0F0C0F1C061803E000B25839C0D>IIIII<03F0000E1C001806003003007003 80600180E001C0E001C0E001C0E001C0E001C0E001C06001807003803003001806000E1C 0003F00012127F9115>II<03C1000C3300180B00300F00 700700700700E00700E00700E00700E00700E00700E00700600700700700300F00180F00 0C370007C700000700000700000700000700000700000700000700003FE0131A7E9116> II<1F9030704030C010C010E010F8007F803FE00FF000F880388018C018 C018E010D0608FC00D127F9110>I<04000400040004000C000C001C003C00FFE01C001C 001C001C001C001C001C001C001C001C101C101C101C101C100C100E2003C00C1A7F9910 >IIII<7F8FF00F03800F030007020003 840001C80001D80000F00000700000780000F800009C00010E00020E000607000403801E 07C0FF0FF81512809116>II<7FFC70386038407040F040 E041C003C0038007000F040E041C043C0C380870087038FFF80E127F9112>II<1C043F0843F080E00E047D9B15>126 D E end %%EndProlog %%BeginSetup %%Feature: *Resolution 300dpi TeXDict begin %%EndSetup %%Page: 1 1 1 0 bop 225 42 a Fs(T)m(o)13 b(app)q(ear)h(in)g Fr(A)n(dvanc)n(es)h(of) g(Neur)n(al)f(Information)h(Pr)n(o)n(c)n(essing)g(Systems)g(8)p Fs(.)p 225 370 1500 17 v 265 495 a Fq(F)-7 b(ast)27 b(Learning)g(b)n(y) g(Bounding)f(Lik)n(eliho)r(o)r(ds)376 578 y(in)h(Sigmoid)g(T)n(yp)r(e)g (Belief)g(Net)n(w)n(orks)p 225 658 1500 5 v 315 810 a Fp(T)l(ommi)15 b(Jaakk)o(ola)276 856 y Fs(tommi@psyc)o(he.m)o(it.)o (edu)791 810 y Fp(La)o(wrence)h(K.)g(Saul)772 856 y Fs(lksaul@psyc)o (he.mit.edu)1279 810 y Fp(Mic)o(hael)e(I.)j(Jordan)1255 856 y Fs(jordan@psyc)o(he.mit.edu)571 960 y(Departmen)o(t)c(of)g(Brain) h(and)g(Cognitiv)o(e)f(Sciences)628 1005 y(Massac)o(h)o(usetts)j (Institute)f(of)e(T)m(ec)o(hnology)770 1051 y(Cam)o(bridge,)f(MA)i (02139)868 1223 y Fo(Abstract)374 1323 y Fs(Sigmoid)h(t)o(yp)q(e)k(b)q (elief)e(net)o(w)o(orks,)i(a)f(class)g(of)f(probabilistic)g(neural)h (net-)374 1369 y(w)o(orks,)24 b(pro)o(vide)d(a)g(natural)g(framew)o (ork)f(for)i(compactly)e(represen)o(ting)374 1415 y(probabilistic)d (information)d(in)j(a)g(v)n(ariet)o(y)g(of)g(unsup)q(ervised)i(and)e (sup)q(er-)374 1460 y(vised)f(learning)f(problems.)22 b(Often)17 b(the)f(parameters)f(used)i(in)e(these)i(net-)374 1506 y(w)o(orks)f(need)g(to)g(b)q(e)g(learned)g(from)d(examples.)22 b(Unfortunately)m(,)15 b(estimat-)374 1552 y(ing)21 b(the)h(parameters) g(via)f(exact)h(probabilistic)e(calculations)h(\(i.e,)i(the)374 1597 y(EM-algorithm\))16 b(is)i(in)o(tractable)h(ev)o(en)f(for)g(net)o (w)o(orks)h(with)f(fairly)f(small)374 1643 y(n)o(um)o(b)q(ers)e(of)g (hidden)h(units.)22 b(W)m(e)15 b(prop)q(ose)h(to)f(a)o(v)o(oid)f(the)i (infeasibilit)o(y)d(of)374 1689 y(the)i(E)e(step)i(b)o(y)e(b)q(ounding) g(lik)o(eliho)q(o)q(ds)g(instead)h(of)f(computing)f(them)g(ex-)374 1734 y(actly)m(.)21 b(W)m(e)14 b(in)o(tro)q(duce)i(extended)g(and)f (complemen)o(tary)e(represen)o(tations)374 1780 y(for)19 b(these)g(net)o(w)o(orks)g(and)g(sho)o(w)f(that)h(the)g(estimation)d (of)i(the)h(net)o(w)o(ork)374 1826 y(parameters)d(can)f(b)q(e)h(made)e (fast)i(\(reduced)h(to)e(quadratic)g(optimization\))374 1871 y(b)o(y)f(p)q(erforming)f(the)i(estimation)d(in)i(either)h(of)e (the)i(alternativ)o(e)f(domains.)374 1917 y(The)k(complemen)o(tary)c (net)o(w)o(orks)j(can)g(b)q(e)h(used)f(for)g(con)o(tin)o(uous)f(densit) o(y)374 1963 y(estimation)d(as)h(w)o(ell.)225 2103 y Fo(1)56 b(In)n(tro)r(duction)225 2201 y Fs(The)17 b(app)q(eal)f(of)f (probabilistic)h(net)o(w)o(orks)g(for)g(kno)o(wledge)g(represen)o (tation,)i(inference,)g(and)225 2247 y(learning)d(\(P)o(earl,)h(1988\)) f(deriv)o(es)i(b)q(oth)f(from)e(the)j(sound)f(Ba)o(y)o(esian)g(framew)o (ork)e(and)i(from)225 2292 y(the)g(explicit)e(represen)o(tation)j(of)e (dep)q(endencies)i(among)c(the)j(net)o(w)o(ork)f(v)n(ariables)g(whic)o (h)g(al-)225 2338 y(lo)o(ws)f(ready)i(incorp)q(oration)e(of)h(prior)g (information)d(in)o(to)i(the)i(design)f(of)f(the)i(net)o(w)o(ork.)22 b(The)225 2384 y(Ba)o(y)o(esian)12 b(formalism)d(p)q(ermits)j(full)f (propagation)h(of)g(probabilistic)f(information)f(across)j(the)225 2429 y(net)o(w)o(ork)g(regardless)i(of)e(whic)o(h)g(v)n(ariables)f(in)h (the)h(net)o(w)o(ork)f(are)h(instan)o(tiated.)k(In)13 b(this)g(sense)225 2475 y(these)i(net)o(w)o(orks)g(can)f(b)q(e)g(\\in)o (v)o(erted")g(probabilistically)m(.)p eop %%Page: 2 2 2 1 bop 225 42 a Fs(This)16 b(in)o(v)o(ersion,)g(ho)o(w)o(ev)o(er,)g (relies)h(hea)o(vily)d(on)i(the)h(use)g(of)e(lo)q(ok-up)g(table)h (represen)o(tations)225 87 y(of)e(conditional)g(probabilities)g(or)h (represen)o(tations)h(equiv)n(alen)o(t)f(to)f(them)g(for)h(mo)q(deling) e(de-)225 133 y(p)q(endencies)18 b(b)q(et)o(w)o(een)f(the)f(v)n (ariables.)22 b(F)m(or)16 b(sparse)g(dep)q(endency)i(structures)g(suc)o (h)f(as)e(trees)225 178 y(or)g(c)o(hains)g(this)g(p)q(oses)h(no)f (di\016cult)o(y)m(.)k(In)c(more)f(realistic)h(cases)i(of)d(reasonably)h (in)o(terdep)q(en-)225 224 y(den)o(t)c(v)n(ariables)f(the)h(exact)h (algorithms)c(dev)o(elop)q(ed)j(for)g(these)h(b)q(elief)e(net)o(w)o (orks)h(\(Lauritzen)h(&)225 270 y(Spiegelhalter,)i(1988\))f(b)q(ecome)h (infeasible)g(due)g(to)g(the)h(exp)q(onen)o(tial)f(gro)o(wth)g(in)g (the)h(size)g(of)225 315 y(the)c(conditional)e(probabilit)o(y)g(tables) i(needed)h(to)e(store)i(the)f(exact)g(dep)q(endencies.)20 b(Therefore)225 361 y(the)11 b(use)f(of)g(compact)f(represen)o(tations) j(to)e(mo)q(del)e(probabilistic)h(in)o(teractions)i(is)e(una)o(v)o (oidable)225 407 y(in)15 b(large)f(problems.)21 b(As)15 b(b)q(elief)g(net)o(w)o(ork)g(mo)q(dels)f(mo)o(v)o(e)g(a)o(w)o(a)o(y)g (from)f(tables,)i(ho)o(w)o(ev)o(er,)g(the)225 452 y(represen)o(tations) i(can)f(b)q(e)g(harder)g(to)f(assess)i(from)d(exp)q(ert)i(kno)o(wledge) g(and)f(the)h(imp)q(ortan)o(t)225 498 y(role)e(of)f(learning)g(is)h (further)h(emphasized.)225 569 y(Compact)f(represen)o(tations)k(of)d (in)o(teractions)h(b)q(et)o(w)o(een)h(simple)d(units)i(ha)o(v)o(e)g (long)e(b)q(een)j(em-)225 614 y(phasized)d(in)f(neural)h(net)o(w)o (orks.)19 b(Lac)o(king)13 b(a)g(thorough)g(probabilistic)g(in)o (terpretation,)h(ho)o(w-)225 660 y(ev)o(er,)h(classical)f(feed-forw)o (ard)h(neural)f(net)o(w)o(orks)h(cannot)g(b)q(e)g(in)o(v)o(erted)g(in)f (the)h(ab)q(o)o(v)o(e)f(sense;)225 706 y(e.g.)30 b(giv)o(en)17 b(the)i(output)f(pattern)g(of)g(a)f(feed-forw)o(ard)h(neural)g(net)o(w) o(ork)g(it)g(is)f(not)h(feasible)225 751 y(to)d(compute)h(a)f (probabilit)o(y)f(distribution)h(o)o(v)o(er)h(the)g(p)q(ossible)g (input)f(patterns)i(that)f(w)o(ould)225 797 y(ha)o(v)o(e)h(resulted)i (in)e(the)h(observ)o(ed)g(output.)29 b(On)17 b(the)h(other)g(hand,)g (sto)q(c)o(hastic)g(neural)g(net-)225 843 y(w)o(orks)12 b(suc)o(h)g(as)f(Boltzman)g(mac)o(hines)f(admit)g(probabilistic)g(in)o (terpretations)j(and)e(therefore,)225 888 y(at)j(least)g(in)g (principle,)f(can)h(b)q(e)h(in)o(v)o(erted)f(and)g(used)h(as)f(a)g (basis)g(for)f(inference)j(and)e(learning)225 934 y(in)f(the)i (presence)h(of)e(uncertain)o(t)o(y)m(.)225 1005 y(Sigmoid)7 b(b)q(elief)i(net)o(w)o(orks)h(\(Neal,)g(1992\))f(form)f(a)h(sub)q (class)h(of)f(probabilistic)g(neural)g(net)o(w)o(orks)225 1050 y(where)16 b(the)g(activ)n(ation)d(function)i(has)g(a)g(sigmoidal) c(form)i({)i(usually)f(the)i(logistic)e(function.)225 1096 y(Neal)f(\(1992\))g(prop)q(osed)i(a)e(learning)g(algorithm)e(for)j (these)h(net)o(w)o(orks)f(whic)o(h)g(can)f(b)q(e)i(view)o(ed)225 1142 y(as)c(an)f(impro)o(v)o(emen)o(t)e(of)i(the)h(algorithm)d(for)i (Boltzmann)f(mac)o(hines.)16 b(Recen)o(tly)11 b(Hin)o(ton)f(et)h(al.) 225 1187 y(\(1995\))k(in)o(tro)q(duced)i(the)f(w)o(ak)o(e-sleep)g (algorithm)d(for)j(la)o(y)o(ered)f(bi-directional)g(probabilistic)225 1233 y(net)o(w)o(orks.)22 b(This)15 b(algorithm)d(relies)k(on)e(forw)o (ard)h(sampling)d(and)j(has)g(an)g(app)q(ealing)f(co)q(ding)225 1279 y(theoretic)k(motiv)n(ation.)25 b(The)17 b(Helmholtz)f(mac)o(hine) g(\(Da)o(y)o(an)g(et)h(al.,)f(1995\),)h(on)g(the)g(other)225 1324 y(hand,)g(can)h(b)q(e)g(seen)g(as)g(an)f(alternativ)o(e)g(tec)o (hnique)h(for)f(these)h(arc)o(hitectures)i(that)d(a)o(v)o(oids)225 1370 y(Gibbs)h(sampling)f(altogether.)32 b(Da)o(y)o(an)18 b(et)h(al.)31 b(also)18 b(in)o(tro)q(duced)i(the)f(imp)q(ortan)o(t)e (idea)i(of)225 1416 y(b)q(ounding)d(lik)o(eliho)q(o)q(ds)g(instead)h (of)f(computing)g(them)g(exactly)m(.)26 b(Saul)17 b(et)g(al.)27 b(\(1995\))16 b(sub-)225 1461 y(sequen)o(tly)g(deriv)o(ed)f(rigorous)f (mean)g(\014eld)h(b)q(ounds)g(for)g(the)g(lik)o(eliho)q(o)q(ds.)20 b(In)14 b(this)h(pap)q(er)h(w)o(e)225 1507 y(in)o(tro)q(duce)g(the)f (idea)g(of)f(alternativ)o(e)h({)f(extended)j(and)e(complemen)o(tary)d ({)j(represen)o(tations)225 1553 y(of)c(these)i(net)o(w)o(orks)f(b)o(y) f(rein)o(terpreting)i(the)f(nonlinearities)f(in)g(the)h(activ)n(ation)e (function.)17 b(W)m(e)225 1598 y(sho)o(w)d(that)g(deriving)f(lik)o (eliho)q(o)q(d)f(b)q(ounds)i(in)g(the)g(new)h(represen)o(tational)f (domains)e(leads)i(to)225 1644 y(e\016cien)o(t)g(\(quadratic\))g (estimation)f(pro)q(cedures)j(for)d(the)i(net)o(w)o(ork)f(parameters.) 225 1775 y Fo(2)56 b(The)18 b(probabilit)n(y)g(represen)n(tations)225 1880 y Fs(Belief)12 b(net)o(w)o(orks)g(represen)o(t)j(the)d(join)o(t)f (probabilit)o(y)g(of)g(a)h(set)h(of)e(v)n(ariables)g Fn(f)p Fm(S)r Fn(g)h Fs(as)g(a)g(pro)q(duct)225 1925 y(of)h(conditional)g(probabilities)g(giv)o(en)g(b)o(y)674 2046 y Fm(P)6 b Fs(\()p Fm(S)748 2052 y Fl(1)767 2046 y Fm(;)h(:)g(:)g(:)e(;)i(S)885 2052 y Fk(n)907 2046 y Fs(\))12 b(=)999 1994 y Fk(n)983 2007 y Fj(Y)979 2096 y Fk(k)q Fl(=1)1046 2046 y Fm(P)6 b Fs(\()p Fm(S)1120 2052 y Fk(k)1141 2046 y Fn(j)p Fm(pa)p Fs([)p Fm(k)q Fs(]\))p Fm(;)401 b Fs(\(1\))225 2176 y(where)17 b(the)g(notation)e Fm(pa)p Fs([)p Fm(k)q Fs(],)g(\\paren)o(ts)i(of)e Fm(S)950 2182 y Fk(k)971 2176 y Fs(",)h(refers)i(to)e(all)e(the)j(v)n(ariables)f (that)g(directly)225 2222 y(in\015uence)d(the)f(probabilit)o(y)f(of)g Fm(S)746 2228 y Fk(k)779 2222 y Fs(taking)g(on)g(a)h(particular)g(v)n (alue)f(\(for)h(equiv)n(alen)o(t)f(represen-)225 2267 y(tations,)f(see)i(Lauritzen)e(et)h(al.)16 b(1988\).)g(The)11 b(fact)f(that)g(the)h(join)o(t)e(probabilit)o(y)f(can)j(b)q(e)f (written)225 2313 y(in)h(the)i(ab)q(o)o(v)o(e)e(form)g(implies)f(that)h (there)j(are)e(no)g(\\cycles")g(in)f(the)i(net)o(w)o(ork;)f(i.e.)17 b(there)c(exists)225 2359 y(an)g(ordering)f(of)h(the)g(v)n(ariables)f (in)g(the)i(net)o(w)o(ork)f(suc)o(h)g(that)g(no)g(v)n(ariable)e (directly)j(in\015uences)225 2404 y(an)o(y)f(preceding)i(v)n(ariables.) 225 2475 y(In)f(this)g(pap)q(er)g(w)o(e)g(consider)h(sigmoid)c(b)q (elief)j(net)o(w)o(orks)g(where)h(the)g(v)n(ariables)e Fm(S)j Fs(are)e(binary)p eop %%Page: 3 3 3 2 bop 225 42 a Fs(\(0/1\),)13 b(the)h(conditional)f(probabilities)g (ha)o(v)o(e)g(the)i(form)638 121 y Fm(P)6 b Fs(\()p Fm(S)712 127 y Fk(i)726 121 y Fn(j)p Fs(pa[)p Fm(i)p Fs(]\))11 b(=)g Fm(g)q Fi(\()q Fs(\(2)p Fm(S)999 127 y Fk(i)1023 121 y Fn(\000)e Fs(1\))1108 81 y Fj(X)1130 170 y Fk(j)1175 121 y Fm(W)1214 127 y Fk(ij)1243 121 y Fm(S)1268 127 y Fk(j)1286 121 y Fi(\))361 b Fs(\(2\))225 224 y(and)15 b(the)g(w)o(eigh)o(ts)f Fm(W)566 230 y Fk(ij)611 224 y Fs(are)h(zero)g(unless)h Fm(S)918 230 y Fk(j)950 224 y Fs(is)f(a)f(paren)o(t)i(of)e Fm(S)1233 230 y Fk(i)1247 224 y Fs(,)g(th)o(us)h(preserving)h(the)g(feed-)225 269 y(forw)o(ard)d(directionalit)o(y)e(of)i(the)g(net)o(w)o(ork.)18 b(F)m(or)13 b(notational)e(con)o(v)o(enience)j(w)o(e)g(ha)o(v)o(e)e (assumed)225 315 y(the)20 b(existence)i(of)c(a)i(bias)f(v)n(ariable)f (whose)j(v)n(alue)e(is)g(clamp)q(ed)g(to)g(one.)35 b(The)20 b(activ)n(ation)225 361 y(function)11 b Fm(g)q Fs(\()p Fn(\001)p Fs(\))h(is)g(c)o(hosen)h(to)e(b)q(e)i(the)f(cum)o(ulativ)o(e) e(Gaussian)h(distribution)g(function)h(giv)o(en)f(b)o(y)513 445 y Fm(g)q Fs(\()p Fm(x)p Fs(\))h(=)681 417 y(1)p 651 436 81 2 v 651 444 a Fn(p)p 686 444 46 2 v 34 x Fs(2)p Fm(\031)744 389 y Fj(Z)785 399 y Fk(x)767 483 y Fh(\0001)835 445 y Fm(e)854 428 y Fh(\000)885 417 y Fg(1)p 885 422 15 2 v 885 438 a(2)904 428 y Fk(z)921 415 y Fg(2)939 445 y Fm(dz)i Fs(=)1072 417 y(1)p 1042 436 81 2 v 1042 444 a Fn(p)p 1077 444 46 2 v 34 x Fs(2)p Fm(\031)1135 389 y Fj(Z)1176 399 y Fh(1)1158 483 y Fl(0)1218 445 y Fm(e)1237 428 y Fh(\000)1269 417 y Fg(1)p 1269 422 15 2 v 1269 438 a(2)1288 428 y Fl(\()p Fk(z)q Fh(\000)p Fk(x)p Fl(\))1376 415 y Fg(2)1394 445 y Fm(dz)237 b Fs(\(3\))225 530 y(Although)19 b(v)o(ery)h(similar)c(to)k(the)g(standard)f(logistic) g(function,)h(this)f(activ)n(ation)f(function)225 576 y(deriv)o(es)e(a)f(n)o(um)o(b)q(er)g(of)f(adv)n(an)o(tages)h(from)f (its)h(in)o(tegral)g(represen)o(tation.)23 b(In)16 b(particular,)f(w)o (e)225 622 y(ma)o(y)c(rein)o(terpret)j(the)f(in)o(tegration)f(as)g(a)h (marginali)o(zation)c(and)k(thereb)o(y)g(obtain)f(alternativ)o(e)225 667 y(represen)o(tations)k(for)d(the)i(net)o(w)o(ork.)j(W)m(e)c (consider)g(t)o(w)o(o)g(suc)o(h)g(represen)o(tations.)225 738 y(W)m(e)i(deriv)o(e)g(an)g Fr(extende)n(d)h Fs(represen)o(tation)h (b)o(y)e(making)e(explicit)h(the)i(nonlinearities)f(in)f(the)225 784 y(activ)n(ation)e(function.)k(More)e(precisely)m(,)466 861 y Fm(P)6 b Fs(\()p Fm(S)540 867 y Fk(i)553 861 y Fn(j)p Fs(pa[)p Fm(i)p Fs(]\))51 b(=)h Fm(g)q Fi(\()q Fs(\(2)p Fm(S)907 867 y Fk(i)930 861 y Fn(\000)9 b Fs(1\))1015 821 y Fj(X)1038 910 y Fk(j)1082 861 y Fm(W)1121 867 y Fk(ij)1151 861 y Fm(S)1176 867 y Fk(j)1194 861 y Fi(\))714 995 y Fs(=)798 938 y Fj(Z)839 949 y Fh(1)821 1033 y Fl(0)916 967 y Fs(1)p 886 985 81 2 v 886 994 a Fn(p)p 921 994 46 2 v 34 x Fs(2)p Fm(\031)972 995 y(e)991 971 y Fh(\000)1022 960 y Fg(1)p 1022 965 15 2 v 1022 981 a(2)1041 971 y Fl([)p Fk(Z)1073 975 y Ff(i)1086 971 y Fh(\000)p Fl(\(2)p Fk(S)1162 975 y Ff(i)1175 971 y Fh(\000)p Fl(1\))1237 943 y Fj(P)1280 986 y Ff(j)1302 971 y Fk(W)1333 975 y Ff(ij)1359 971 y Fk(S)1379 975 y Ff(j)1395 971 y Fl(])1404 958 y Fg(2)1423 995 y Fm(d)n(Z)1471 1001 y Fk(i)704 1083 y(def)714 1109 y Fs(=)798 1052 y Fj(Z)839 1063 y Fh(1)821 1147 y Fl(0)881 1109 y Fm(P)d Fs(\()p Fm(S)955 1115 y Fk(i)969 1109 y Fm(;)h(Z)1016 1115 y Fk(i)1030 1109 y Fn(j)p Fs(pa)o([)p Fm(i)p Fs(]\))p Fm(d)n(Z)1187 1115 y Fk(i)1672 1109 y Fs(\(4\))225 1191 y(This)12 b(suggests)i(de\014ning) e(the)h(extended)g(net)o(w)o(ork)g(in)e(terms)h(of)g(the)h(new)f (conditional)f(proba-)225 1236 y(bilities)f Fm(P)c Fs(\()p Fm(S)430 1242 y Fk(i)444 1236 y Fm(;)h(Z)491 1242 y Fk(i)504 1236 y Fn(j)p Fs(pa[)p Fm(i)p Fs(]\).)16 b(By)c(construction)g(then)f (the)h(original)d(binary)h(net)o(w)o(ork)h(is)g(obtained)225 1282 y(b)o(y)j(marginalizing)d(o)o(v)o(er)k(the)g(extra)g(v)n(ariables) f Fm(Z)s Fs(.)20 b(In)14 b(this)h(sense)h(the)f(extended)h(net)o(w)o (ork)f(is)225 1328 y(\(marginally\))c(equiv)n(alen)o(t)i(to)h(the)g (binary)g(net)o(w)o(ork.)225 1398 y(W)m(e)h(distinguish)g(a)h Fr(c)n(omplementary)f Fs(represen)o(tation)i(from)d(the)i(extended)i (one)d(b)o(y)h(writing)225 1444 y(the)g(probabilities)f(en)o(tirely)h (in)f(terms)h(of)f(con)o(tin)o(uous)g(v)n(ariables)1275 1429 y Fl(1)1293 1444 y Fs(.)24 b(Suc)o(h)16 b(a)f(represen)o(tation) 225 1490 y(can)d(b)q(e)g(obtained)f(from)f(the)i(extended)h(net)o(w)o (ork)e(b)o(y)h(a)f(simple)f(transformation)f(of)i(v)n(ariables.)225 1540 y(The)19 b(new)g(con)o(tin)o(uous)f(v)n(ariables)f(are)i (de\014ned)h(b)o(y)1086 1530 y(~)1077 1540 y Fm(Z)1105 1546 y Fk(i)1138 1540 y Fs(=)f(\(2)p Fm(S)1251 1546 y Fk(i)1278 1540 y Fn(\000)12 b Fs(1\))p Fm(Z)1387 1546 y Fk(i)1401 1540 y Fs(,)19 b(or,)g(equiv)n(alen)o(tly)m(,)225 1593 y(b)o(y)h Fm(Z)317 1599 y Fk(i)353 1593 y Fs(=)i Fn(j)427 1582 y Fs(~)419 1593 y Fm(Z)447 1599 y Fk(i)461 1593 y Fn(j)d Fs(and)h Fm(S)604 1599 y Fk(i)640 1593 y Fs(=)i Fm(\022)q Fs(\()740 1582 y(~)730 1593 y Fm(Z)758 1599 y Fk(i)773 1593 y Fs(\))e(where)h Fm(\022)q Fs(\()p Fn(\001)p Fs(\))g(is)f(the)g(step)h(function.)36 b(P)o(erforming)19 b(this)225 1638 y(transformation)12 b(yields)616 1717 y Fm(P)6 b Fs(\()674 1706 y(~)665 1717 y Fm(Z)693 1723 y Fk(i)707 1717 y Fn(j)p Fs(pa[)p Fm(i)p Fs(]\))11 b(=)906 1689 y(1)p 876 1707 81 2 v 876 1715 a Fn(p)p 911 1715 46 2 v 35 x Fs(2)p Fm(\031)962 1717 y(e)981 1693 y Fh(\000)1012 1681 y Fg(1)p 1012 1686 15 2 v 1012 1703 a(2)1031 1693 y Fl([)1047 1686 y(~)1040 1693 y Fk(Z)1063 1697 y Ff(i)1076 1693 y Fh(\000)1102 1664 y Fj(P)1146 1708 y Ff(j)1167 1693 y Fk(W)1198 1697 y Ff(ij)1225 1693 y Fk(\022)q Fl(\()1262 1686 y(~)1255 1693 y Fk(Z)1278 1697 y Ff(j)1293 1693 y Fl(\)])1315 1680 y Fg(2)1672 1717 y Fs(\(5\))225 1799 y(whic)o(h)k(de\014nes)h(a)e(net)o(w)o(ork)h(of)g(conditionally)d (Gaussian)j(v)n(ariables.)20 b(The)15 b(original)e(net)o(w)o(ork)225 1850 y(in)g(this)h(case)h(can)f(b)q(e)g(reco)o(v)o(ered)h(b)o(y)f (conditional)e(marginalizatio)o(n)f(o)o(v)o(er)1422 1839 y(~)1413 1850 y Fm(Z)17 b Fs(where)e(the)f(con-)225 1900 y(ditioning)e(v)n(ariables)h(are)i Fm(\022)q Fs(\()687 1890 y(~)678 1900 y Fm(Z)t Fs(\).)225 1971 y(Figure)f(1)f(b)q(elo)o(w)g (summarizes)f(the)i(relationships)g(b)q(et)o(w)o(een)h(the)f (di\013eren)o(t)g(represen)o(tations.)225 2016 y(As)20 b(will)e(b)q(ecome)h(clear)h(later,)g(w)o(orking)e(with)h(the)h (alternativ)o(e)f(represen)o(tations)j(instead)225 2062 y(of)15 b(the)h(original)e(binary)h(represen)o(tation)j(can)e(lead)f (to)h(more)e(\015exible)i(and)g(e\016cien)o(t)g(\(least-)225 2108 y(squares\))f(parameter)f(estimation.)225 2223 y Fo(3)56 b(The)18 b(learning)g(problem)225 2318 y Fs(W)m(e)13 b(consider)h(the)g(problem)e(of)h(learning)g(the)h(parameters)f(of)g (the)h(net)o(w)o(ork)f(from)f(instan)o(tia-)225 2363 y(tions)f(of)g(v)n(ariables)f(con)o(tained)h(in)g(a)g(training)f(set.) 18 b(Suc)o(h)12 b(instan)o(tiations,)e(ho)o(w)o(ev)o(er,)i(need)g(not)p 225 2391 598 2 v 277 2418 a Fe(1)294 2433 y Fd(While)f(the)f(binary)h (v)n(ariables)g(are)f(the)f(outputs)i(of)e(eac)o(h)g(unit)i(the)e(con)o (tin)o(uous)j(v)n(ariables)f(p)q(ertain)225 2475 y(to)i(the)g(inputs)i ({)e(hence)g(the)g(name)h(complemen)o(tary)m(.)p eop %%Page: 4 4 4 3 bop 555 0 a 13261596 4736286 5119478 37448371 33903063 47713417 startTexFig 555 0 a %%BeginDocument: decomp.eps save userdict /IslandDrawDict 300 dict dup begin put /ncpoint errordict /nocurrentpoint get def errordict begin /nocurrentpoint { dup /pathbbox load eq { pop 0 0 1 1 } { ncpoint } ifelse } bind def end /image_raster { %% sw sh dw dh xs ys translate scale /sh exch def /sw exch def /imagebuf sw 7 add 8 idiv string def sw sh 1 [sw 0 0 sh 0 0] { currentfile imagebuf readhexstring pop } image } bind def /m {moveto} bind def /l {lineto} bind def /c {curveto} bind def /n {newpath} bind def /cl {closepath} bind def /ar { %% sa ea sx sy rot tx ty matrix currentmatrix 8 1 roll translate rotate scale n 0 0 1 5 3 roll arc setmatrix } bind def /arn { %% sa ea sx sy rot tx ty matrix currentmatrix 8 1 roll translate rotate scale n 0 0 1 5 3 roll arcn setmatrix } bind def /el { %% sx sy rot tx ty matrix currentmatrix 6 1 roll translate rotate scale n 0 0 1 0 360 arc setmatrix cl } bind def /bp {setlinejoin setlinewidth setrgbcolor} bind def /bpbw {setlinejoin setlinewidth setgray} bind def /lw {setlinewidth} bind def /lj {setlinejoin} bind def /gr {setgray} bind def /BPSIDE 32 def %% pixels per pattern side /PATFREQ 3.0 def %% pattern pixels per mm /dp_mat [PATFREQ 0 0 PATFREQ 0 0] def /dp_pw BPSIDE def %% pattern pixel width /dp_ph BPSIDE def %% pattern pixel height /dp_w dp_pw PATFREQ div def %% pattern mm width /dp_h dp_ph PATFREQ div def %% pattern mm height /dp_bs 1 def %% pattern bits per pixel /savemat matrix def /topmat matrix def /patmat matrix def /patpath { /inv exch def topmat setmatrix pathbbox %% get lo - hi indecies /hy exch dp_h div floor cvi def /hx exch dp_w div floor cvi def /ly exch dp_h div floor cvi def /lx exch dp_w div floor cvi def lx 1 hx { dp_w mul ly 1 hy { dp_h mul exch dup 3 1 roll exch patmat currentmatrix pop translate dp_pw dp_ph inv dp_mat dp_proc imagemask patmat setmatrix } for pop } for } bind def /setpattern { /blue exch def /green exch def /red exch def /freq exch def /bwidth exch def /bpside exch def /bstring exch def /onbits 0 def /offbits 0 def freq 0 {/y exch def /x exch def /xindex x 1 add 2 div bpside mul cvi def /yindex y 1 add 2 div bpside mul cvi def bstring yindex bwidth mul xindex 8 idiv add get not 1 7 xindex 8 mod sub bitshift and 0 ne {/onbits onbits 1 add def 1} {/offbits offbits 1 add def 0} ifelse } setscreen {} settransfer systemdict /setcmykcolor known { /fact 1 onbits offbits onbits add div sub def 1 red sub fact mul 1 green sub fact mul 1 blue sub fact mul 0 setcmykcolor } { offbits offbits onbits add div setgray } ifelse } bind def /dmatrix matrix def /dpi 72 0 dmatrix defaultmatrix dtransform dup mul exch dup mul add sqrt def /B {gsave bp stroke grestore} bind def %% brush: gr lw lj /Bbw {gsave bpbw stroke grestore} bind def %% brush: gr lw lj /F {gsave setrgbcolor eofill grestore} bind def %% fill: gr /Fbw {gsave setgray eofill grestore} bind def %% fill: gr /PB {gsave setlinejoin setlinewidth setpattern stroke grestore} bind def /PF {gsave eoclip patpath grestore} bind def /BB { gsave setrgbcolor setlinejoin setlinewidth strokepath clip patpath grestore } bind def /BLACK { 0.0 } bind def /CP {closepath} bind def /FI {eofill} bind def /E {exch} bind def /FF {findfont} bind def /GR {grestore} bind def /GS {gsave} bind def /MF {makefont} bind def /NP {newpath} bind def /RO {rotate} bind def /ST {stroke} bind def /SC {scale} bind def /SF {setfont} bind def /SG {setgray} bind def /SLC {setlinecap} bind def /SLJ {setlinejoin} bind def /SLW {setlinewidth} bind def /TR {translate} bind def /WHITE { 1.0 } bind def /m {moveto} bind def /r {rmoveto} bind def /l {lineto} bind def /sp {x 0 rmoveto} bind def /rl {rlineto} bind def /s {show} bind def /box { NP m l l l CP } bind def /pageboundary { NP m l l l CP } bind def /BS { % black stroke GS SLJ SLW BLACK SG ST GR } bind def /WS { % white stroke GS SLJ SLW WHITE SG ST GR } bind def /reencode_small_dict 12 dict def /ReencodeSmall { reencode_small_dict begin /new_codes_and_names E def /new_font_name E def /base_font_name E def /base_font_dict base_font_name FF def /newfont base_font_dict maxlength dict def base_font_dict { E dup /FID ne { dup /Encoding eq { E dup length array copy newfont 3 1 roll put } { E newfont 3 1 roll put } ifelse } { pop pop } ifelse } forall newfont /FontName new_font_name put new_codes_and_names aload pop new_codes_and_names length 2 idiv { newfont /Encoding get 3 1 roll put } repeat new_font_name newfont definefont pop end %reencode_small_dict } def /extended_Zapf [ 8#223 /a89 8#224 /a90 8#225 /a93 8#226 /a94 8#227 /a91 8#230 /a92 8#231 /a205 8#232 /a85 8#233 /a206 8#234 /a86 8#235 /a87 8#236 /a88 8#237 /a95 8#240 /a96 ] def /extended_Standard [ 29 /thorn 30 /yacute 31 /divide 128 /Acircumflex 129 /Adieresis 130 /Agrave 131 /Aring 132 /Atilde 133 /Ccedilla 134 /Eacute 135 /Ecircumflex 136 /Edieresis 137 /Egrave 138 /Iacute 139 /Icircumflex 140 /Idieresis 141 /Igrave 142 /Ntilde 143 /Oacute 144 /Ocircumflex 145 /Odieresis 146 /Ograve 147 /Otilde 148 /Scaron 149 /Uacute 150 /Ucircumflex 151 /Udieresis 152 /Ugrave 153 /Ydieresis 154 /Zcaron 155 /aacute 156 /acircumflex 157 /adieresis 158 /agrave 159 /aring 160 /atilde 161 /exclamdown 162 /cent 163 /sterling 164 /fraction 165 /yen 166 /florin 167 /section 168 /currency 169 /quotesingle 170 /quotedblleft 171 /guillemotleft 172 /guilsinglleft 173 /guilsinglright 174 /fi 175 /fl 176 /plusminus 177 /endash 178 /dagger 179 /daggerdbl 180 /periodcentered 181 /twosuperior 182 /paragraph 183 /bullet 184 /quotesinglebase 185 /quotedblbase 186 /quotedblright 187 /guillemotright 188 /ellipsis 189 /perthousand 190 /threesuperior 191 /questiondown 192 /mu 193 /grave 194 /acute 195 /circumflex 196 /tilde 197 /macron 198 /breve 199 /dotaccent 200 /dieresis 201 /onesuperior 202 /ring 203 /cedilla 204 /onequarter 205 /hungarumlaut 206 /ogonek 207 /caron 208 /emdash 209 /ccedilla 210 /copyright 211 /eacute 212 /ecircumflex 213 /edieresis 214 /egrave 215 /iacute 216 /icircumflex 217 /idieresis 218 /igrave 219 /logicalnot 220 /minus 221 /ntilde 222 /oacute 223 /ocircumflex 224 /odieresis 225 /AE 226 /onehalf 227 /ordfeminine 228 /ograve 229 /otilde 230 /registered 231 /scaron 232 /Lslash 233 /Oslash 234 /OE 235 /ordmasculine 236 /trademark 237 /uacute 238 /ucircumflex 239 /udieresis 240 /ugrave 241 /ae 242 /ydieresis 243 /zcaron 244 /Aacute 245 /dotlessi 246 /threequarters 247 /Eth 248 /lslash 249 /oslash 250 /oe 251 /germandbls 252 /multiply 253 /Yacute 254 /Thorn 255 /eth ] def /extended_Symbol [ ] def /extend_font { % stack: fontname newfontname E dup (ZapfDingbats) eq { cvn E cvn extended_Zapf ReencodeSmall } { dup (Symbol) eq { cvn E cvn extended_Symbol ReencodeSmall } { cvn E cvn extended_Standard ReencodeSmall } ifelse } ifelse } bind def /getfont { /f E def f cvn where { begin f cvn load exec SF end } { f 0 f length 8 sub getinterval dup dup length 1 add string /localfont exch def localfont exch 0 exch putinterval localfont dup length 1 sub (X) putinterval localfont extend_font localfont FF /xsz f f length 4 sub 4 getinterval cvi def /ysz f f length 8 sub 4 getinterval cvi def [ xsz 0 0 ysz neg 0 0 ] MF dup f cvn E def SF } ifelse } bind def /ul { % space drop thickness GS currentpoint currentlinewidth currentpoint NP m 6 -3 roll SLW 0 E r 0 rl ST SLW m GR } bind def /ss { currentpoint pop E m } bind def /image_raster { % sw sh dw dh xs ys TR SC /sh E def /sw E def /imagebuf sw 7 add 8 idiv string def sw sh 1 [sw 0 0 sh 0 0] { currentfile imagebuf readhexstring pop } image } bind def /imagemask_raster { TR SC /sh E def /sw E def /imagebuf sw 7 add 8 idiv string def sw sh false [sw 0 0 sh 0 0] { currentfile imagebuf readhexstring pop } imagemask } bind def /image_color_raster { % sw sh sd dw dh xs ys systemdict /colorimage known not { /colorimage /colimg load def } if TR SC /sd E def /sh E def /sw E def /imagebuf sw 3 mul sd mul 7 add 8 idiv string def sw sh sd [sw 0 0 sh 0 0] { currentfile imagebuf readhexstring pop } false 3 colorimage } bind def /nx { /x E def } bind def 0. nx gsave 2.83465 -2.83465 scale 0 -279.4 translate topmat currentmatrix pop n 133.16 42.349 m 147.83 55.975 l 1 1 1 F n 133.16 42.349 m 136.07 43.671 l 134.7 45.149 l cl 0 0 0 F n 147.83 55.975 m 144.92 54.653 l 146.3 53.175 l cl 0 0 0 F n 135.38 44.41 m 145.61 53.914 l gsave 0 0 0 0.176 0 B grestore n 74.09 60.151 m 88.716 43.63 l 1 1 1 F n 88.716 43.63 m 87.465 46.566 l 85.953 45.228 l cl 0 0 0 F n 74.09 60.151 m 86.709 45.897 l gsave 0 0 0 0.176 0 B grestore n 82.846 40.125 m 68.22 56.647 l 1 1 1 F n 68.22 56.647 m 69.471 53.711 l 70.983 55.049 l cl 0 0 0 F n 82.846 40.125 m 70.227 54.38 l gsave 0 0 0 0.176 0 B grestore n savemat currentmatrix pop [1 0 0 1 55.004 41.677] concat 25.4 1440 div 1.000000 mul dup scale 0 0 m 0 0 m 0 ss (Times-Roman02800280) getfont () s 0.00 0.00 0.00 setrgbcolor (average ) s 0 0 m 321 ss (Times-Roman02800280) getfont (over Z) s savemat setmatrix n savemat currentmatrix pop [1 0 0 1 110.615 33.427] concat 25.4 1440 div 1.000000 mul dup scale 0 0 m -1094 0 m 0 ss (Times-Bold02800280) getfont () s 0.00 0.00 0.00 setrgbcolor (Extended network) s -647 0 m 333 ss (Times-Bold02800280) getfont (over {S, Z}) s savemat setmatrix n savemat currentmatrix pop [1 0 0 1 49.809 67.955] concat 25.4 1440 div 1.000000 mul dup scale 0 0 m -1032 0 m 0 ss (Times-Bold02800280) getfont () s 0.00 0.00 0.00 setrgbcolor (Original network) s -484 0 m 333 ss (Times-Bold02800280) getfont (over {S}) s savemat setmatrix n savemat currentmatrix pop [1 0 0 1 83.992 56.117] concat 25.4 1440 div 1.000000 mul dup scale 0 0 m 0 0 m 0 ss (Times-Roman02800280) getfont () s 0.00 0.00 0.00 setrgbcolor (augmentation) s savemat setmatrix n 132.06 38.103 m 132.07 39.705 131.41 41.296 130.27 42.424 c 129.14 43.562 127.55 44.221 125.95 44.214 c 94.184 44.214 l 92.582 44.221 90.991 43.562 89.863 42.424 c 88.725 41.296 88.066 39.705 88.073 38.103 c 88.073 29.631 l 88.066 28.029 88.725 26.438 89.863 25.31 c 90.991 24.172 92.582 23.513 94.184 23.52 c 125.95 23.52 l 127.55 23.513 129.14 24.172 130.27 25.31 c 131.41 26.438 132.07 28.029 132.06 29.631 c 132.06 38.103 l cl gsave 0 0 0 0 0 B grestore n 181.82 72.398 m 181.82 74 181.16 75.591 180.03 76.719 c 178.9 77.857 177.31 78.516 175.71 78.509 c 143.94 78.509 l 142.34 78.516 140.75 77.857 139.62 76.719 c 138.48 75.591 137.82 74 137.83 72.398 c 137.83 63.926 l 137.82 62.324 138.48 60.733 139.62 59.605 c 140.75 58.467 142.34 57.808 143.94 57.815 c 175.71 57.815 l 177.31 57.808 178.9 58.467 180.03 59.605 c 181.16 60.733 181.82 62.324 181.82 63.926 c 181.82 72.398 l cl gsave 0 0 0 0 0 B grestore n 71.443 72.459 m 71.45 74.061 70.791 75.652 69.653 76.78 c 68.525 77.918 66.934 78.577 65.332 78.57 c 33.566 78.57 l 31.964 78.577 30.373 77.918 29.245 76.78 c 28.107 75.652 27.448 74.061 27.455 72.459 c 27.455 63.987 l 27.448 62.385 28.107 60.794 29.245 59.666 c 30.373 58.528 31.964 57.869 33.566 57.876 c 65.332 57.876 l 66.934 57.869 68.525 58.528 69.653 59.666 c 70.791 60.794 71.45 62.385 71.443 63.987 c 71.443 72.459 l cl gsave 0 0 0 0 0 B grestore n savemat currentmatrix pop [1 0 0 1 140.861 44.306] concat 25.4 1440 div 1.000000 mul dup scale 0 0 m 0 0 m 0 ss (Times-Roman02800280) getfont () s 0.00 0.00 0.00 setrgbcolor (transformation of ) s 0 0 m 321 ss (Times-Roman02800280) getfont ( variables) s savemat setmatrix n savemat currentmatrix pop [1 0 0 1 160.111 66.917] concat 25.4 1440 div 1.000000 mul dup scale 0 0 m -966 0 m 0 ss (Times-Bold02800280) getfont () s 0.00 0.00 0.00 setrgbcolor (Complementary) s -1029 0 m 333 ss (Times-Bold02800280) getfont (network over {Z}) s savemat setmatrix n savemat currentmatrix pop [1 0 0 1 173.729 69.8616] concat 25.4 1440 div 1.000000 mul dup scale 0 0 m 0 0 m 0 ss (Helvetica02400240) getfont () s 0.00 0.00 0.00 setrgbcolor (~) s savemat setmatrix grestore end restore %%EndDocument endTexFig 366 387 a Fs(Figure)14 b(1:)k(The)c(relationship)f(b)q(et)o(w)o(een)j (the)e(alternativ)o(e)g(represen)o(tations.)225 510 y(b)q(e)g (complete;)e(there)i(ma)o(y)d(b)q(e)j(v)n(ariables)e(that)h(ha)o(v)o(e) g(no)f(v)n(alue)h(assignmen)o(ts)f(in)g(the)i(training)225 556 y(set)19 b(as)f(w)o(ell)f(as)h(v)n(ariables)f(that)h(are)h(alw)o(a) o(ys)e(instan)o(tiated.)30 b(The)18 b(tacit)g(division)f(b)q(et)o(w)o (een)225 602 y(hidden)g(\(H\))g(and)f(visible)g(\(V\))h(v)n(ariables)f (therefore)i(dep)q(ends)g(on)e(the)i(particular)e(training)225 647 y(example)d(considered)i(and)f(is)f(not)h(an)g(in)o(trinsic)f(prop) q(ert)o(y)i(of)e(the)i(net)o(w)o(ork.)225 718 y(T)m(o)h(learn)h(from)e (these)k(instan)o(tiations)d(w)o(e)h(adopt)f(the)i(principle)f(of)f (maxim)n(um)d(lik)o(eliho)q(o)q(d)225 763 y(to)19 b(estimate)f(the)h(w) o(eigh)o(ts)f(in)h(the)g(net)o(w)o(ork.)32 b(In)19 b(essence,)j(this)d (is)f(a)h(densit)o(y)g(estimation)225 809 y(problem)e(where)i(the)g(w)o (eigh)o(ts)g(are)f(c)o(hosen)i(so)e(as)h(to)f(matc)o(h)f(the)i (probabilistic)e(b)q(eha)o(vior)225 855 y(of)i(the)h(net)o(w)o(ork)g (with)f(the)h(observ)o(ed)h(activities)e(in)g(the)h(training)f(set.)36 b(Cen)o(tral)19 b(to)h(this)225 900 y(estimation)10 b(is)i(the)h (abilit)o(y)d(to)i(compute)g(lik)o(eliho)q(o)q(ds)e(\(or)j(log-lik)o (eliho)q(o)q(ds\))c(for)j(an)o(y)g(\(partial\))225 946 y(con\014guration)k(of)g(v)n(ariables)g(app)q(earing)h(in)f(the)h (training)f(set.)27 b(In)17 b(other)g(w)o(ords,)g(if)f(w)o(e)h(let)225 992 y Fm(X)262 977 y Fk(V)309 992 y Fs(b)q(e)g(the)h(con\014guration)f (of)f(visible)g(or)h(instan)o(tiated)g(v)n(ariables)1325 977 y Fl(2)1360 992 y Fs(and)g Fm(X)1481 977 y Fk(H)1530 992 y Fs(denote)h(the)225 1037 y(hidden)f(or)g(uninstan)o(tiated)g(v)n (ariables,)g(w)o(e)g(need)h(to)f(compute)f(marginal)f(probabilities)h (of)225 1083 y(the)e(form)682 1129 y(log)6 b Fm(P)g Fs(\()p Fm(X)828 1112 y Fk(V)857 1129 y Fs(\))12 b(=)g(log)989 1089 y Fj(X)991 1181 y Fk(X)1020 1173 y Ff(H)1056 1129 y Fm(P)6 b Fs(\()p Fm(X)1142 1112 y Fk(V)1171 1129 y Fm(;)h(X)1227 1112 y Fk(H)1259 1129 y Fs(\))397 b(\(6\))225 1228 y(If)14 b(the)i(training)d(samples)h(are)h(indep)q(enden)o(t,)h (then)f(these)h(log)e(marginals)e(can)j(b)q(e)g(added)g(to)225 1273 y(giv)o(e)e(the)i(o)o(v)o(erall)e(log-lik)o(eliho)q(od)f(of)h(the) h(training)f(set)652 1346 y(log)6 b Fm(P)g Fs(\(training)13 b(set)q(\))e(=)1040 1307 y Fj(X)1064 1394 y Fk(t)1107 1346 y Fs(log)c Fm(P)f Fs(\()p Fm(X)1254 1329 y Fk(V)1274 1333 y Ff(t)1289 1346 y Fs(\))367 b(\(7\))225 1448 y(Unfortunately)m(,) 19 b(computing)e(eac)o(h)i(of)f(these)j(marginal)16 b(probabilities)h (in)o(v)o(olv)o(es)h(summing)225 1494 y(\(in)o(tegrating\))h(o)o(v)o (er)g(an)g(exp)q(onen)o(tial)f(n)o(um)o(b)q(er)h(of)f(di\013eren)o(t)i (con\014gurations)f(assumed)g(b)o(y)225 1540 y(the)13 b(hidden)g(v)n(ariables)f(in)g(the)i(net)o(w)o(ork.)k(This)12 b(renders)j(the)e(sum)f(\(in)o(tegration\))g(in)o(tractable)225 1585 y(in)f(all)e(but)j(few)f(sp)q(ecial)g(cases)i(\(e.g.)k(trees)12 b(and)f(c)o(hains\).)18 b(It)11 b(is)g(p)q(ossible,)g(ho)o(w)o(ev)o (er,)h(to)f(instead)225 1631 y(\014nd)17 b(a)f(manageable)f(lo)o(w)o (er)h(b)q(ound)g(on)h(the)g(log-lik)o(eliho)q(o)q(d)c(and)k(optimize)e (the)i(w)o(eigh)o(ts)f(in)225 1677 y(the)e(net)o(w)o(ork)h(so)f(as)g (to)f(maximi)o(ze)f(this)i(b)q(ound.)225 1747 y(T)m(o)f(obtain)g(suc)o (h)i(a)e(lo)o(w)o(er)h(b)q(ound)g(w)o(e)g(resort)h(to)f(Jensen's)h (inequalit)o(y:)376 1840 y(log)6 b Fm(P)g Fs(\()p Fm(X)522 1822 y Fk(V)551 1840 y Fs(\))42 b(=)g(log)743 1800 y Fj(X)745 1892 y Fk(X)774 1883 y Ff(H)810 1840 y Fm(P)6 b Fs(\()p Fm(X)896 1822 y Fk(H)928 1840 y Fm(;)h(X)984 1822 y Fk(V)1013 1840 y Fs(\))k(=)h(log)1145 1800 y Fj(X)1147 1892 y Fk(X)1176 1883 y Ff(H)1212 1840 y Fm(Q)p Fs(\()p Fm(X)1298 1822 y Fk(H)1330 1840 y Fs(\))1351 1811 y Fm(P)6 b Fs(\()p Fm(X)1437 1796 y Fk(H)1468 1811 y Fm(;)h(X)1524 1796 y Fk(V)1553 1811 y Fs(\))p 1351 1830 219 2 v 1393 1868 a Fm(Q)p Fs(\()p Fm(X)1479 1856 y Fk(H)1511 1868 y Fs(\))609 1976 y Fn(\025)683 1936 y Fj(X)684 2028 y Fk(X)713 2019 y Ff(H)749 1976 y Fm(Q)p Fs(\()p Fm(X)835 1958 y Fk(H)868 1976 y Fs(\))g(log)956 1947 y Fm(P)f Fs(\()p Fm(X)1042 1932 y Fk(H)1074 1947 y Fm(;)h(X)1130 1932 y Fk(V)1159 1947 y Fs(\))p 956 1966 V 998 2004 a Fm(Q)p Fs(\()p Fm(X)1084 1992 y Fk(H)1116 2004 y Fs(\))1672 1976 y(\(8\))225 2084 y(Although)12 b(this)g(b)q(ound)g(holds)g(for)g (all)f(distributions)h Fm(Q)p Fs(\()p Fm(X)s Fs(\))h(o)o(v)o(er)g(the)g (hidden)f(v)n(ariables,)f(the)225 2130 y(accuracy)16 b(of)e(the)h(b)q(ound)g(is)g(determined)g(b)o(y)f(ho)o(w)g(closely)h Fm(Q)g Fs(appro)o(ximates)e(the)i(p)q(osterior)225 2176 y(distribution)d Fm(P)6 b Fs(\()p Fm(X)536 2161 y Fk(H)568 2176 y Fn(j)p Fm(X)617 2161 y Fk(V)646 2176 y Fs(\))13 b(in)f(terms)g(of)g(the)i(Kullbac)o(k-Leibler)e(div)o(ergence;)h(if)f (the)i(appro)o(x-)225 2221 y(imation)9 b(is)i(p)q(erfect)j(the)e(div)o (ergence)h(is)e(zero)i(and)e(the)h(inequalit)o(y)f(is)g(satis\014ed)h (with)g(equalit)o(y)m(.)225 2267 y(Suitable)17 b(c)o(hoices)i(for)f Fm(Q)f Fs(can)h(mak)o(e)f(the)h(b)q(ound)g(b)q(oth)g(accurate)h(and)f (easy)g(to)g(compute.)225 2313 y(The)c(feasibilit)o(y)d(of)i(\014nding) g(suc)o(h)h Fm(Q)p Fs(,)f(ho)o(w)o(ev)o(er,)g(is)g(highly)g(dep)q (enden)o(t)i(on)e(the)h(c)o(hoice)g(of)e(the)225 2358 y(represen)o(tation)j(for)f(the)g(net)o(w)o(ork.)p 225 2388 598 2 v 277 2418 a Fe(2)294 2433 y Fd(T)m(o)d(p)q(ostp)q(one)i (the)e(issue)i(of)e(represen)o(tation)i(w)o(e)e(use)h Fc(X)h Fd(to)f(denote)g Fc(S)r Fd(,)f Fb(f)p Fc(S;)c(Z)s Fb(g)p Fd(,)k(or)1521 2424 y(~)1513 2433 y Fc(Z)j Fd(dep)q(ending)225 2475 y(on)f(the)g(particular)j(represen)o(tation)f(c)o(hosen.)p eop %%Page: 5 5 5 4 bop 225 42 a Fo(4)56 b(Lik)n(eliho)r(o)r(d)16 b(b)r(ounds)j(in)f (di\013eren)n(t)g(represen)n(tations)225 137 y Fs(T)m(o)13 b(complete)g(the)i(deriv)n(ation)e(of)g(the)i(lik)o(eliho)q(o)q(d)d(b)q (ound)i(\(equation)f(8\))h(w)o(e)g(need)h(to)f(\014x)f(the)225 183 y(represen)o(tation)h(for)d(the)i(net)o(w)o(ork.)18 b(Whic)o(h)12 b(represen)o(tation)h(to)f(select,)i(ho)o(w)o(ev)o(er,)e (a\013ects)h(the)225 228 y(qualit)o(y)j(and)g(accuracy)i(of)f(the)g(b)q (ound.)28 b(In)16 b(addition,)h(the)g(accompan)o(ying)e(b)q(ound)i(of)f (the)225 274 y(c)o(hosen)f(represen)o(tation)g(implies)d(b)q(ounds)i (in)f(the)i(other)f(t)o(w)o(o)f(represen)o(tational)i(domains)d(as)225 320 y(they)e(all)e(co)q(de)j(the)f(same)e(distributions)i(o)o(v)o(er)f (the)h(observ)n(ables.)17 b(In)10 b(this)f(section)i(w)o(e)e (illustrate)225 365 y(these)j(p)q(oin)o(ts)e(b)o(y)g(deriving)g(b)q (ounds)h(in)f(the)h(complemen)o(tary)d(and)i(extended)i(represen)o (tations)225 411 y(and)i(discuss)h(the)f(corresp)q(onding)h(b)q(ounds)f (in)g(the)g(original)e(binary)i(domain.)225 482 y(No)o(w,)g(to)g (obtain)g(a)g(lo)o(w)o(er)g(b)q(ound)h(w)o(e)g(need)g(to)f(sp)q(ecify)h (the)h(appro)o(ximate)c(p)q(osterior)j Fm(Q)p Fs(.)20 b(In)225 527 y(the)c(complemen)o(tary)d(represen)o(tation)k(the)f (conditional)e(probabilities)g(are)i(Gaussians)f(and)225 573 y(therefore)d(a)e(reasonable)h(appro)o(ximation)c(\(mean)i (\014eld\))i(is)f(found)g(b)o(y)g(c)o(ho)q(osing)g(the)h(p)q(osterior) 225 619 y(appro)o(ximation)g(from)h(the)i(family)d(of)j(factorized)g (Gaussians:)715 704 y Fm(Q)p Fs(\()773 693 y(~)764 704 y Fm(Z)t Fs(\))d(=)867 664 y Fj(Y)888 753 y Fk(i)962 676 y Fs(1)p 932 694 81 2 v 932 703 a Fn(p)p 967 703 46 2 v 34 x Fs(2)p Fm(\031)1017 704 y(e)1036 687 y Fh(\000)p Fl(\()1082 680 y(~)1075 687 y Fk(Z)1098 691 y Ff(i)1111 687 y Fh(\000)p Fk(h)1156 691 y Ff(i)1170 687 y Fl(\))1183 674 y Fg(2)1199 687 y Fk(=)p Fl(2)1672 704 y Fs(\(9\))225 808 y(Substituting)j(this)g(in)o(to)f(equation)g(8)h(w)o(e)g(obtain)f (the)i(b)q(ound)414 893 y(log)7 b Fm(P)f Fs(\()p Fm(S)551 876 y Fh(\003)570 893 y Fs(\))12 b Fn(\025)g(\000)679 865 y Fs(1)p 679 884 21 2 v 679 922 a(2)712 854 y Fj(X)736 942 y Fk(i)779 893 y Fs(\()p Fm(h)819 899 y Fk(i)842 893 y Fn(\000)d Fs(\006)913 899 y Fk(j)931 893 y Fm(J)954 899 y Fk(ij)983 893 y Fm(g)q Fs(\()p Fm(h)1044 899 y Fk(j)1062 893 y Fs(\)\))1094 872 y Fl(2)1122 893 y Fn(\000)1169 865 y Fs(1)p 1169 884 V 1169 922 a(2)1201 854 y Fj(X)1218 942 y Fk(ij)1268 893 y Fm(J)1295 876 y Fl(2)1291 904 y Fk(ij)1320 893 y Fm(g)q Fs(\()p Fm(h)1381 899 y Fk(j)1399 893 y Fs(\))p Fm(g)q Fs(\()p Fn(\000)p Fm(h)1508 899 y Fk(j)1526 893 y Fs(\))109 b(\(10\))225 1003 y(The)13 b(means)f Fm(h)459 1009 y Fk(i)485 1003 y Fs(for)g(the)h(hidden)g(v)n (ariables)f(are)h(adjustable)f(parameters)h(that)f(can)h(b)q(e)g(tuned) 225 1049 y(to)19 b(mak)o(e)e(the)j(b)q(ound)f(as)g(tigh)o(t)f(as)h(p)q (ossible.)33 b(F)m(or)19 b(the)g(instan)o(tiated)g(v)n(ariables)f(w)o (e)h(need)225 1095 y(to)e(enforce)h(the)g(constrain)o(ts)g Fm(g)q Fs(\()p Fm(h)775 1101 y Fk(i)789 1095 y Fs(\))f(=)h Fm(S)899 1080 y Fh(\003)897 1105 y Fk(i)936 1095 y Fs(to)f(resp)q(ect)i (the)f(instan)o(tiation.)26 b(These)19 b(can)e(b)q(e)225 1140 y(satis\014ed)g(v)o(ery)g(accurately)h(b)o(y)e(setting)h Fm(h)907 1146 y Fk(i)937 1140 y Fs(=)f(4\(2)p Fm(S)1070 1125 y Fh(\003)1068 1151 y Fk(i)1101 1140 y Fn(\000)11 b Fs(1\).)26 b(A)17 b(v)o(ery)g(con)o(v)o(enien)o(t)g(prop)q(ert)o(y) 225 1186 y(of)h(this)h(b)q(ound)g(and)f(the)h(complemen)o(tary)e (represen)o(tation)j(in)e(general)h(is)g(the)g(quadratic)225 1232 y(w)o(eigh)o(t)d(dep)q(endence)i({)e(a)g(prop)q(ert)o(y)g(v)o(ery) h(conduciv)o(e)f(to)g(fast)g(learning.)23 b(Finally)m(,)14 b(w)o(e)j(note)225 1277 y(that)f(the)h(complemen)o(tary)c(represen)o (tation)18 b(transforms)d(the)i(binary)e(estimation)f(problem)225 1323 y(in)o(to)f(a)h(con)o(tin)o(uous)g(densit)o(y)g(estimation)e (problem.)225 1393 y(W)m(e)i(no)o(w)h(turn)g(to)f(the)i(in)o (terpretation)f(of)f(the)h(ab)q(o)o(v)o(e)g(b)q(ound)f(in)h(the)g (binary)f(domain.)19 b(The)225 1439 y(same)e(b)q(ound)g(can)h(b)q(e)h (obtained)e(b)o(y)g(\014rst)i(\014xing)e(the)h(inputs)g(to)f(all)g(the) h(units)g(to)f(b)q(e)h(the)225 1485 y(means)d Fm(h)378 1491 y Fk(i)407 1485 y Fs(and)h(then)g(computing)e(the)j(negativ)o(e)e (total)g(mean)g(squared)i(error)f(b)q(et)o(w)o(een)h(the)225 1530 y(\014xed)10 b(inputs)g(and)f(the)i(corresp)q(onding)f (probabilistic)f(inputs)h(propagated)f(from)f(the)j(paren)o(ts.)225 1576 y(The)h(fact)g(that)g(this)h(pro)q(cedure)g(in)f(fact)g(giv)o(es)g (a)g(lo)o(w)o(er)f(b)q(ound)h(on)g(the)h(log-lik)o(eliho)q(o)q(d)c(w)o (ould)225 1622 y(b)q(e)15 b(more)d(di\016cult)i(to)f(justify)h(b)o(y)f (w)o(orking)g(with)h(the)g(binary)g(represen)o(tation)h(alone.)225 1692 y(In)j(the)h(extended)h(represen)o(tation)f(the)g(probabilit)o(y)e (distribution)h(for)f Fm(Z)1432 1698 y Fk(i)1465 1692 y Fs(is)h(a)g(truncated)225 1738 y(Gaussian)f(giv)o(en)f Fm(S)543 1744 y Fk(i)575 1738 y Fs(and)h(its)g(paren)o(ts.)29 b(W)m(e)17 b(therefore)i(prop)q(ose)f(the)g(partially)d(factorized)225 1784 y(p)q(osterior)g(appro)o(ximation:)716 1858 y Fm(Q)p Fs(\()p Fm(S;)7 b(Z)s Fs(\))12 b(=)912 1818 y Fj(Y)932 1907 y Fk(i)972 1858 y Fm(Q)p Fs(\()p Fm(Z)1049 1864 y Fk(i)1063 1858 y Fn(j)p Fm(S)1100 1864 y Fk(i)1114 1858 y Fs(\))p Fm(Q)p Fs(\()p Fm(S)1204 1864 y Fk(i)1218 1858 y Fs(\))417 b(\(11\))225 1964 y(where)15 b Fm(Q)p Fs(\()p Fm(Z)422 1970 y Fk(i)436 1964 y Fn(j)p Fm(S)473 1970 y Fk(i)487 1964 y Fs(\))f(is)g(a)f(truncated)i(Gaussian:)553 2052 y Fm(Q)p Fs(\()p Fm(Z)630 2058 y Fk(i)644 2052 y Fn(j)p Fm(S)681 2058 y Fk(i)694 2052 y Fs(\))d(=)863 2024 y(1)p 771 2042 205 2 v 771 2080 a Fm(g)q Fs(\()p Fl(\(2)p Fk(S)858 2084 y Ff(i)871 2080 y Fh(\000)p Fl(1\))p Fk(h)946 2084 y Ff(i)959 2080 y Fs(\))1015 2024 y(1)p 986 2042 81 2 v 986 2051 a Fn(p)p 1020 2051 46 2 v 1020 2085 a Fs(2)p Fm(\031)1071 2052 y(e)1090 2035 y Fh(\000)1121 2024 y Fg(1)p 1121 2029 15 2 v 1121 2045 a(2)1140 2035 y Fl(\()p Fk(Z)1176 2039 y Ff(i)1189 2035 y Fh(\000)p Fl(\(2)p Fk(S)1265 2039 y Ff(i)1278 2035 y Fh(\000)p Fl(1\))p Fk(h)1353 2039 y Ff(i)1366 2035 y Fl(\))1379 2022 y Fg(2)1651 2052 y Fs(\(12\))225 2142 y(As)h(in)f(the)h(complemen) o(tary)d(domain)g(the)j(resulting)f(b)q(ound)g(dep)q(ends)i (quadratically)d(on)h(the)225 2188 y(w)o(eigh)o(ts.)20 b(Instead)15 b(of)f(writing)f(out)i(the)g(b)q(ound)f(here,)i(ho)o(w)o (ev)o(er,)e(it)g(is)h(more)e(informativ)o(e)f(to)225 2233 y(see)j(its)f(deriv)n(ation)f(in)g(the)i(binary)e(domain.)225 2309 y(A)k(factorized)h(p)q(osterior)g(appro)o(ximation)c(\(mean)i (\014eld\))i Fm(Q)p Fs(\()p Fm(S)r Fs(\))g(=)1324 2277 y Fj(Q)1363 2321 y Fk(i)1384 2309 y Fm(q)1404 2290 y Fk(S)1424 2294 y Ff(i)1403 2320 y Fk(i)1440 2309 y Fs(\(1)11 b Fn(\000)h Fm(q)1551 2315 y Fk(i)1564 2309 y Fs(\))1580 2294 y Fl(1)p Fh(\000)p Fk(S)1643 2298 y Ff(i)1675 2309 y Fs(for)225 2354 y(the)i(binary)g(net)o(w)o(ork)g(yields)g(a)f(b)q (ound)298 2438 y(log)6 b Fm(P)g Fs(\()p Fm(S)434 2421 y Fh(\003)454 2438 y Fs(\))42 b Fn(\025)585 2399 y Fj(X)609 2487 y Fk(i)652 2438 y Fa(f)p Fn(h)p Fm(S)729 2444 y Fk(i)750 2438 y Fs(log)7 b Fm(g)q Fs(\()848 2410 y Fj(P)892 2454 y Ff(j)913 2438 y Fk(J)931 2442 y Ff(ij)958 2438 y Fk(S)978 2442 y Ff(j)994 2438 y Fs(\))p Fn(i)j Fs(+)f Fn(h)p Fs(\(1)g Fn(\000)h Fm(S)1206 2444 y Fk(i)1220 2438 y Fs(\))d(log\(1)i Fn(\000)h Fm(g)q Fs(\()1422 2410 y Fj(P)1466 2454 y Ff(j)1487 2438 y Fk(J)1505 2442 y Ff(ij)1532 2438 y Fk(S)1552 2442 y Ff(j)1568 2438 y Fs(\)\))p Fn(i)p Fa(g)p eop %%Page: 6 6 6 5 bop 585 44 a Fn(\000)624 4 y Fj(X)649 93 y Fk(i)684 44 y Fs([)p Fm(q)715 50 y Fk(i)735 44 y Fs(log)7 b Fm(q)815 50 y Fk(i)837 44 y Fs(+)j(\(1)f Fn(\000)h Fm(q)986 50 y Fk(i)999 44 y Fs(\))d(log\(1)i Fn(\000)g Fm(q)1182 50 y Fk(i)1196 44 y Fs(\)])427 b(\(13\))225 148 y(where)21 b(the)g(a)o(v)o(erages)f Fn(h\001i)g Fs(are)g(with)g(resp)q(ect)i(to)e (the)g Fm(Q)g Fs(distribution.)36 b(These)21 b(a)o(v)o(erages,)225 194 y(ho)o(w)o(ev)o(er,)g(do)e(not)h(conform)e(to)i(analytical)e (expressions.)37 b(The)20 b(tractable)g(p)q(osterior)g(ap-)225 240 y(pro)o(ximation)13 b(in)h(the)j(extended)f(domain)e(a)o(v)o(oids)g (the)i(problem)e(b)o(y)h(implicitly)d(making)h(the)225 285 y(follo)o(wing)e(Legendre)16 b(transformation:)494 369 y(log)7 b Fm(g)q Fs(\()p Fm(x)p Fs(\))12 b(=)f([)704 340 y(1)p 704 359 21 2 v 704 397 a(2)730 369 y Fm(x)754 351 y Fl(2)781 369 y Fs(+)f(log)c Fm(g)q Fs(\()p Fm(x)p Fs(\)])j Fn(\000)1028 340 y Fs(1)p 1028 359 V 1028 397 a(2)1053 369 y Fm(x)1077 351 y Fl(2)1107 369 y Fn(\025)j Fm(\025x)d Fn(\000)h Fm(G)p Fs(\()p Fm(\025)p Fs(\))f Fn(\000)1395 340 y Fs(1)p 1395 359 V 1395 397 a(2)1420 369 y Fm(x)1444 351 y Fl(2)1651 369 y Fs(\(14\))225 451 y(whic)o(h)14 b(holds)f(since)i Fm(x)578 436 y Fl(2)596 451 y Fm(=)p Fs(2)9 b(+)g(log)e Fm(g)q Fs(\()p Fm(x)p Fs(\))14 b(is)g(a)f(con)o(v)o(ex)h(function.)k(Inserting)c(this)g(bac)o (k)g(in)o(to)f(the)225 497 y(relev)n(an)o(t)h(parts)g(of)g(equation)f (13)g(and)h(p)q(erforming)f(the)h(a)o(v)o(erages)g(giv)o(es)284 579 y(log)6 b Fm(P)g Fs(\()p Fm(S)420 562 y Fh(\003)440 579 y Fs(\))41 b Fn(\025)571 540 y Fj(X)595 628 y Fk(i)638 579 y Fa(f)p Fs([)p Fm(q)705 585 y Fk(i)718 579 y Fm(\025)742 585 y Fk(i)765 579 y Fn(\000)10 b Fs(\(1)f Fn(\000)g Fm(q)913 585 y Fk(i)927 579 y Fs(\))945 568 y(\026)943 579 y Fm(\025)967 585 y Fk(i)981 579 y Fs(])1000 540 y Fj(X)1022 628 y Fk(j)1066 579 y Fm(J)1089 585 y Fk(ij)1118 579 y Fm(q)1137 585 y Fk(j)1164 579 y Fn(\000)g Fm(q)1224 585 y Fk(i)1238 579 y Fm(G)p Fs(\()p Fm(\025)1311 585 y Fk(i)1324 579 y Fs(\))h Fn(\000)f Fs(\(1)g Fn(\000)h Fm(q)1498 585 y Fk(i)1511 579 y Fs(\))p Fm(G)p Fs(\()1578 568 y(\026)1576 579 y Fm(\025)1600 585 y Fk(i)1614 579 y Fs(\))p Fa(g)571 709 y Fn(\000)608 681 y Fs(1)p 608 700 V 608 738 a(2)634 709 y(\()650 670 y Fj(X)673 758 y Fk(j)717 709 y Fm(J)740 715 y Fk(ij)770 709 y Fm(q)789 715 y Fk(j)806 709 y Fs(\))822 692 y Fl(2)850 709 y Fn(\000)896 681 y Fs(1)p 896 700 V 896 738 a(2)929 670 y Fj(X)945 758 y Fk(ij)996 709 y Fm(J)1023 692 y Fl(2)1019 720 y Fk(ij)1048 709 y Fm(q)1067 715 y Fk(j)1084 709 y Fs(\(1)f Fn(\000)h Fm(g)1192 715 y Fk(j)1209 709 y Fs(\))571 828 y Fn(\000)610 789 y Fj(X)635 877 y Fk(i)670 828 y Fs([)p Fm(q)701 834 y Fk(i)721 828 y Fs(log)d Fm(q)801 834 y Fk(i)823 828 y Fs(+)j(\(1)f Fn(\000)h Fm(q)972 834 y Fk(i)985 828 y Fs(\))d(log\(1)i Fn(\000)g Fm(q)1168 834 y Fk(i)1182 828 y Fs(\)])441 b(\(15\))225 931 y(whic)o(h)12 b(is)h(quadratic)f(in)g(the)h(w)o(eigh)o(ts)g(as)g(exp)q(ected.)19 b(The)13 b(mean)f(activities)g Fm(q)h Fs(for)g(the)g(hidden)225 976 y(v)n(ariables)g(and)g(the)g(parameters)h Fm(\025)f Fs(can)h(b)q(e)f(optimized)f(to)h(mak)o(e)f(the)i(b)q(ound)f(tigh)o(t.) k(F)m(or)c(the)225 1022 y(instan)o(tiated)h(v)n(ariables)f(w)o(e)h(set) h Fm(q)772 1028 y Fk(i)797 1022 y Fs(=)c Fm(S)867 1007 y Fh(\003)865 1033 y Fk(i)887 1022 y Fs(.)225 1139 y Fo(5)56 b(Numerical)16 b(exp)r(erime)o(n)n(ts)225 1234 y Fs(T)m(o)e(test)h(these)h(tec)o(hniques)g(in)e(practice)i(w)o(e)f (applied)f(the)h(complemen)o(tary)d(net)o(w)o(ork)j(to)f(the)225 1279 y(problem)f(of)h(detecting)h(motor)e(failures)h(from)f(sp)q(ectra) j(obtained)e(during)g(motor)f(op)q(eration)225 1325 y(\(see)j(P)o(etsc) o(he)g(et)f(al.)k(1995\).)g(W)m(e)14 b(cast)h(the)h(problem)d(as)h(a)g (con)o(tin)o(uous)h(densit)o(y)g(estimation)225 1371 y(problem.)i(The)e(training)e(set)i(consisted)g(of)f(800)f(out)h(of)f (1283)g(FFT)i(sp)q(ectra)g(eac)o(h)g(with)f(319)225 1416 y(comp)q(onen)o(ts)k(measured)h(from)d(an)j(electric)g(motor)e(in)h(a)g (go)q(o)q(d)h(op)q(erating)f(condition)g(but)225 1462 y(under)d(v)n(arying)d(loads.)18 b(The)c(test)h(set)g(included)f(the)g (remaining)e(483)h(FFTs)h(from)e(the)j(same)225 1508 y(motor)g(in)h(a)g(go)q(o)q(d)h(condition)f(in)g(addition)f(to)i(three) g(sets)h(of)e(1340)g(FFTs)h(eac)o(h)g(measured)225 1553 y(when)g(a)f(particular)g(fault)g(w)o(as)g(presen)o(t.)27 b(The)17 b(goal)e(w)o(as)h(to)g(use)i(the)e(lik)o(eliho)q(o)q(d)f(of)h (a)g(test)225 1599 y(FFT)e(with)g(resp)q(ect)i(to)e(the)h(estimated)e (densit)o(y)i(to)e(determine)h(whether)i(there)f(w)o(as)f(a)g(fault)225 1645 y(presen)o(t)h(in)f(the)g(motor.)225 1715 y(W)m(e)k(used)g(a)g(la) o(y)o(ered)g(6)g Fn(!)g Fs(20)g Fn(!)f Fs(319)h(generativ)o(e)g(mo)q (del)e(to)i(estimate)g(the)g(training)f(set)225 1761 y(densit)o(y)m(.)h(The)13 b(resulting)g(classi\014cation)g(error)g (rates)h(on)f(the)g(test)h(set)g(are)f(sho)o(wn)g(in)g(\014gure)g(2)225 1807 y(as)i(a)f(function)h(of)f(the)h(threshold)h(lik)o(eliho)q(o)q(d.) j(The)c(ac)o(hiev)o(ed)g(error)g(rates)h(are)f(comparable)225 1852 y(to)f(those)g(of)g(P)o(etsc)o(he)h(et)g(al.)i(\(1995\).)225 1969 y Fo(6)56 b(Conclusions)225 2064 y Fs(Net)o(w)o(ork)17 b(mo)q(dels)f(that)h(admit)e(probabilistic)h(form)o(ulatio)o(ns)f (deriv)o(e)i(a)g(n)o(um)o(b)q(er)f(of)g(adv)n(an-)225 2110 y(tages)j(from)d(probabilit)o(y)h(theory)m(.)31 b(Mo)o(ving)17 b(a)o(w)o(a)o(y)g(from)g(explicit)h(represen)o(tations)i (of)e(de-)225 2155 y(p)q(endencies,)g(ho)o(w)o(ev)o(er,)e(can)g(mak)o (e)e(these)j(prop)q(erties)g(harder)f(to)g(exploit)f(in)g(practice.)24 b(W)m(e)225 2201 y(sho)o(w)o(ed)c(that)h(an)f(e\016cien)o(t)g (estimation)f(pro)q(cedure)j(can)e(b)q(e)h(deriv)o(ed)g(for)e(sigmoid)f (b)q(elief)225 2247 y(net)o(w)o(orks,)i(where)g(standard)f(metho)q(ds)f (are)h(in)o(tractable)f(in)h(all)e(but)i(a)f(few)h(sp)q(ecial)g(cases) 225 2292 y(\(e.g.)j(trees)17 b(and)e(c)o(hains\).)22 b(The)15 b(e\016ciency)h(of)f(our)g(approac)o(h)g(deriv)o(ed)h(from)d (the)j(com)o(bina-)225 2338 y(tion)j(of)g(t)o(w)o(o)h(ideas.)35 b(First,)22 b(w)o(e)e(a)o(v)o(oided)e(the)j(in)o(tractabilit)o(y)d(of)h (computing)f(lik)o(eliho)q(o)q(ds)225 2384 y(in)j(these)h(net)o(w)o (orks)g(b)o(y)f(computing)e(lo)o(w)o(er)i(b)q(ounds)h(instead.)40 b(Second,)23 b(w)o(e)e(in)o(tro)q(duced)225 2429 y(new)d(represen)o (tations)h(for)e(these)i(net)o(w)o(orks)f(and)f(sho)o(w)o(ed)h(ho)o(w)f (the)h(lo)o(w)o(er)f(b)q(ounds)g(in)g(the)225 2475 y(new)k(represen)o (tational)g(domains)d(transform)h(the)i(parameter)f(estimation)f (problem)g(in)o(to)p eop %%Page: 7 7 7 6 bop 603 0 a 11747475 9323399 3749560 12959006 36574658 38811238 startTexFig 603 0 a %%BeginDocument: results.eps /MathWorks 150 dict begin /bdef {bind def} bind def /ldef {load def} bind def /xdef {exch def} bdef /xstore {exch store} bdef /c /clip ldef /cc /concat ldef /cp /closepath ldef /gr /grestore ldef /gs /gsave ldef /mt /moveto ldef /np /newpath ldef /cm /currentmatrix ldef /sm /setmatrix ldef /rc {rectclip} bdef /rf {rectfill} bdef /rm /rmoveto ldef /rl /rlineto ldef /s /show ldef /sc {setcmykcolor} bdef /sr /setrgbcolor ldef /w /setlinewidth ldef /j /setlinejoin ldef /cap /setlinecap ldef /pgsv () def /bpage {/pgsv save def} bdef /epage {pgsv restore} bdef /bplot /gsave ldef /eplot {stroke grestore} bdef /portraitMode 0 def /landscapeMode 1 def /dpi2point 0 def /FontSize 0 def /FMS { /FontSize xstore %save size off stack findfont [FontSize 0 0 FontSize neg 0 0] makefont setfont }bdef /reencode { exch dup where {pop load} {pop StandardEncoding} ifelse exch dup 3 1 roll findfont dup length dict begin { 1 index /FID ne {def}{pop pop} ifelse } forall /Encoding exch def currentdict end definefont pop } bdef /isroman { findfont /CharStrings get /Agrave known } bdef /FMSR { 3 1 roll 1 index dup isroman {reencode} {pop pop} ifelse exch FMS } bdef /csm { 1 dpi2point div -1 dpi2point div scale neg translate landscapeMode eq {90 rotate} if } bdef /SO { [] 0 setdash } bdef /DO { [.5 dpi2point mul 4 dpi2point mul] 0 setdash } bdef /DA { [6 dpi2point mul] 0 setdash } bdef /DD { [.5 dpi2point mul 4 dpi2point mul 6 dpi2point mul 4 dpi2point mul] 0 setdash } bdef /L { lineto stroke } bdef /MP { 3 1 roll moveto 1 sub {rlineto} repeat } bdef /AP { {rlineto} repeat } bdef /PP { closepath fill } bdef /DP { closepath stroke } bdef /MR { 4 -2 roll moveto dup 0 exch rlineto exch 0 rlineto neg 0 exch rlineto closepath } bdef /FR { MR stroke } bdef /PR { MR fill } bdef /L1i { { currentfile picstr readhexstring pop } image } bdef /tMatrix matrix def /MakeOval { newpath tMatrix currentmatrix pop translate scale 0 0 1 0 360 arc tMatrix setmatrix } bdef /FO { MakeOval stroke } bdef /PO { MakeOval fill } bdef /PD { 2 copy moveto lineto stroke } bdef currentdict end def MathWorks begin 0 cap end MathWorks begin bpage bplot /dpi2point 12 def portraitMode 0216 7344 csm 476 260 5991 4716 MR c np 76 dict begin %Colortable dictionary /c0 { 0 0 0 sr} bdef /c1 { 1 1 1 sr} bdef /c2 { 1 0 0 sr} bdef /c3 { 0 1 0 sr} bdef /c4 { 0 0 1 sr} bdef /c5 { 1 1 0 sr} bdef /c6 { 1 0 1 sr} bdef /c7 { 0 1 1 sr} bdef /Helvetica /ISOLatin1Encoding 144 FMSR 1 j c1 0 0 6917 5187 PR 6 w DO 4 w c0 899 4615 mt 899 389 L 899 389 mt 899 389 L 1665 4615 mt 1665 389 L 1665 389 mt 1665 389 L 2430 4615 mt 2430 389 L 2430 389 mt 2430 389 L 3196 4615 mt 3196 389 L 3196 389 mt 3196 389 L 3961 4615 mt 3961 389 L 3961 389 mt 3961 389 L 4727 4615 mt 4727 389 L 4727 389 mt 4727 389 L 5492 4615 mt 5492 389 L 5492 389 mt 5492 389 L 6258 4615 mt 6258 389 L 6258 389 mt 6258 389 L 899 4615 mt 6258 4615 L 6258 4615 mt 6258 4615 L 899 4192 mt 6258 4192 L 6258 4192 mt 6258 4192 L 899 3770 mt 6258 3770 L 6258 3770 mt 6258 3770 L 899 3347 mt 6258 3347 L 6258 3347 mt 6258 3347 L 899 2925 mt 6258 2925 L 6258 2925 mt 6258 2925 L 899 2502 mt 6258 2502 L 6258 2502 mt 6258 2502 L 899 2079 mt 6258 2079 L 6258 2079 mt 6258 2079 L 899 1657 mt 6258 1657 L 6258 1657 mt 6258 1657 L 899 1234 mt 6258 1234 L 6258 1234 mt 6258 1234 L 899 812 mt 6258 812 L 6258 812 mt 6258 812 L 899 389 mt 6258 389 L 6258 389 mt 6258 389 L 899 4615 mt 899 389 L 899 389 mt 6258 389 L 899 4615 mt 899 389 L 899 389 mt 6258 389 L 899 4615 mt 899 389 L 899 389 mt 6258 389 L SO 6 w 899 4615 mt 6258 4615 L 899 389 mt 6258 389 L 899 4615 mt 899 389 L 6258 4615 mt 6258 389 L 899 4615 mt 899 4615 L 6258 4615 mt 6258 4615 L 899 4615 mt 6258 4615 L 899 4615 mt 899 389 L 899 4615 mt 899 4615 L 899 4615 mt 899 4561 L 899 389 mt 899 443 L 779 4784 mt (500) s 1665 4615 mt 1665 4561 L 1665 389 mt 1665 443 L 1545 4784 mt (600) s 2430 4615 mt 2430 4561 L 2430 389 mt 2430 443 L 2310 4784 mt (700) s 3196 4615 mt 3196 4561 L 3196 389 mt 3196 443 L 3076 4784 mt (800) s 3961 4615 mt 3961 4561 L 3961 389 mt 3961 443 L 3841 4784 mt (900) s 4727 4615 mt 4727 4561 L 4727 389 mt 4727 443 L 4567 4784 mt (1000) s 5492 4615 mt 5492 4561 L 5492 389 mt 5492 443 L 5332 4784 mt (1100) s 6258 4615 mt 6258 4561 L 6258 389 mt 6258 443 L 6098 4784 mt (1200) s 899 4615 mt 953 4615 L 6258 4615 mt 6204 4615 L 784 4668 mt (0) s 899 4192 mt 953 4192 L 6258 4192 mt 6204 4192 L 664 4245 mt (0.1) s 899 3770 mt 953 3770 L 6258 3770 mt 6204 3770 L 664 3823 mt (0.2) s 899 3347 mt 953 3347 L 6258 3347 mt 6204 3347 L 664 3400 mt (0.3) s 899 2925 mt 953 2925 L 6258 2925 mt 6204 2925 L 664 2978 mt (0.4) s 899 2502 mt 953 2502 L 6258 2502 mt 6204 2502 L 664 2555 mt (0.5) s 899 2079 mt 953 2079 L 6258 2079 mt 6204 2079 L 664 2132 mt (0.6) s 899 1657 mt 953 1657 L 6258 1657 mt 6204 1657 L 664 1710 mt (0.7) s 899 1234 mt 953 1234 L 6258 1234 mt 6204 1234 L 664 1287 mt (0.8) s 899 812 mt 953 812 L 6258 812 mt 6204 812 L 664 865 mt (0.9) s 899 389 mt 953 389 L 6258 389 mt 6204 389 L 784 442 mt (1) s 899 4615 mt 6258 4615 L 899 389 mt 6258 389 L 899 4615 mt 899 389 L 6258 4615 mt 6258 389 L 899 389 mt 899 389 L 6258 389 mt 6258 389 L gs 899 389 5360 4227 MR c np DA 36 0 9 0 4 0 28 0 15 0 23 0 4 0 1 0 4 0 1 0 4 0 14 0 2 0 2 0 1 0 4 0 7 0 14 0 1 0 8 0 3 0 3 0 2 0 7 0 1 0 4 0 4 0 1 0 4 0 2 0 2 0 4 0 3 0 3 0 1 0 1 0 13 0 1 0 1 0 8 0 1 0 5 0 3 0 6 0 6 0 6 0 2 0 3 0 1 0 1 0 2 0 2 0 3 0 1 0 1 0 2 0 1 0 1 0 1 0 1 0 2 0 1 0 1 0 6 0 3 0 1 0 1 0 6 0 1 0 1 0 1 0 1 0 3 0 2 0 1 0 1 0 1 0 3 0 4 0 1 0 6 0 1 0 4 0 7 0 2 0 1 0 1 0 1 0 4 0 1 0 2 0 4 0 1 0 2 0 1 0 1 0 1 0 3 0 2 0 4814 4615 100 MP stroke 2 0 2 0 7 0 1 0 1 0 1 0 1 0 8 0 4 0 6 0 1 0 1 0 1 0 1 0 5 0 4 0 1 0 1 0 1 0 1 0 1 0 1 0 2 0 4 0 2 0 6 0 3 0 1 0 4 0 1 0 1 0 5 0 2 0 1 0 2 0 2 0 1 0 8 0 2 0 3 0 4 0 3 0 3 0 1 0 4 0 7 0 1 0 1 0 1 0 1 0 3 0 1 0 7 0 1 0 1 0 2 0 2 0 4 0 2 0 2 0 1 0 2 0 3 0 1 0 4 0 4 0 2 0 1 0 2 0 1 0 3 0 1 0 1 0 4 0 4 0 3 0 3 0 5 0 2 0 3 0 3 0 3 0 1 0 2 0 1 0 2 0 1 0 1 3 2 0 6 0 2 0 2 0 3 0 3 0 3 0 1 0 2 0 1 0 3 0 4569 4612 100 MP stroke 3 0 1 0 1 0 1 0 3 0 1 0 5 0 2 0 1 0 6 0 1 0 1 0 1 0 2 0 1 0 3 0 5 0 4 0 1 0 3 0 1 0 4 0 16 0 1 0 2 0 1 0 1 0 2 0 1 0 0 3 1 0 3 0 5 0 2 0 2 0 1 0 1 0 12 3 1 0 5 0 3 0 1 0 7 0 1 4 1 0 10 3 1 0 0 3 3 0 1 0 1 0 2 0 2 0 1 0 1 0 3 0 0 3 1 0 1 0 2 0 2 0 1 0 5 0 5 0 3 0 11 0 4 0 7 0 5 0 5 0 2 0 5 0 1 0 1 0 5 0 1 0 2 0 4 0 1 0 6 0 1 0 3 0 1 0 4 0 2 0 2 0 1 0 1 0 3 0 2 0 4 0 2 0 3 0 6 0 7 0 1 0 1 0 1 0 6 0 4292 4593 100 MP stroke 3 0 1 0 7 0 2 0 1 0 2 0 2 3 3 0 2 0 4 0 4 3 5 0 2 0 5 0 4 0 14 0 1 0 5 0 4 0 1 4 6 0 0 3 2 0 4 0 3 3 5 0 2 3 5 0 2 3 8 0 4 3 2 3 6 0 3 4 0 3 2 3 4 3 1 0 0 3 1 0 1 3 4 4 0 3 1 0 3 0 2 3 0 3 1 0 2 0 0 3 2 3 7 3 1 4 3 3 5 3 0 3 6 3 2 0 3 3 2 4 3 3 1 3 4 3 1 0 4 3 4 3 1 0 2 3 0 4 2 0 4 3 2 3 2 3 2 3 3 3 0 4 2 0 6 3 2 3 2 3 0 3 3 3 3 0 1 3 2 4 1 3 3 3 2 3 1 3 1 3 1 4 2 3 8 3 3 0 1 3 1 3 4 3 4 3 0 4 4027 4397 100 MP stroke 0 3 5 3 15 3 0 3 1 3 0 4 2 3 4 3 1 3 2 3 3 3 1 3 1 4 0 3 1 0 1 3 2 3 0 3 2 3 1 4 1 3 3 0 4 3 0 3 4 3 0 3 7 3 0 4 1 3 3 3 3 0 1 3 3 3 1 3 2 4 0 3 2 3 2 3 1 3 1 3 3 3 1 4 1 3 2 0 1 3 6 3 0 3 4 3 3 4 1 0 1 3 1 3 0 3 1 3 8 3 8 3 3 4 0 3 1 3 1 3 0 3 1 3 2 4 3 3 3 3 5 3 1 3 0 3 4 3 2 4 0 3 1 3 1 0 0 3 1 3 0 3 3 0 2 4 2 3 4 3 1 3 1 3 2 3 1 3 2 4 0 3 0 3 1 3 5 3 0 3 3 4 0 3 1 3 1 3 1 3 0 3 1 3 2 4 0 3 3843 4107 100 MP stroke 1 3 3 3 1 3 0 3 6 0 1 4 2 0 2 3 3 3 0 3 1 3 1 3 1 3 0 4 2 3 0 3 1 0 0 3 1 3 0 3 0 4 1 3 5 3 1 3 2 3 1 3 0 3 1 4 1 3 1 3 2 3 3 3 0 3 2 4 0 3 0 3 4 3 1 0 1 3 0 3 1 3 3 4 1 3 3 3 0 3 4 3 1 3 2 4 1 3 2 3 1 3 1 3 0 3 1 3 4 4 0 3 2 3 0 3 2 3 0 3 2 4 0 3 1 3 0 3 3 3 0 3 1 3 1 4 1 3 0 3 2 3 8 3 0 3 1 4 2 3 0 3 3 3 1 0 2 3 0 3 0 3 2 4 0 3 2 3 1 0 1 3 1 3 0 3 1 4 2 3 1 3 1 3 2 3 6 3 1 3 0 4 0 3 1 3 0 3 3712 3814 100 MP stroke 0 3 2 3 6 4 4 3 3 3 1 3 1 3 0 3 0 3 4 4 0 3 1 3 2 3 5 0 1 3 1 3 1 4 4 3 2 3 13 3 4 3 0 3 0 3 7 4 6 3 2 3 2 3 0 3 1 3 4 4 3 3 2 3 7 3 1 3 5 0 4 3 1 3 2 4 1 3 0 3 5 3 1 3 1 3 3 4 2 3 2 0 5 3 1 3 3 3 3 3 3 3 2 4 2 3 5 3 4 3 3 3 2 3 6 4 2 3 0 3 3 3 2 3 0 3 3 3 2 4 1 3 1 3 6 3 1 3 2 0 2 3 0 4 0 3 5 3 0 3 3 3 0 3 1 3 1 0 3 4 4 3 1 3 5 3 0 3 0 3 1 3 1 4 1 3 3 3 0 3 2 3 7 3 5 4 1 0 3 0 6 0 3 3 2 3 7 3 3466 3527 100 MP stroke 0 3 4 3 0 3 0 4 3 3 3 3 5 0 0 3 3 3 1 3 1 0 2 4 0 3 1 3 1 3 1 3 2 3 2 3 2 4 3 3 2 3 6 3 2 0 1 3 0 3 1 0 0 4 5 3 2 3 2 3 3 3 7 3 3 3 2 4 3 3 0 3 2 3 3 3 5 3 1 4 0 3 3 3 3 3 2 3 2 3 5 3 3 4 1 3 0 3 1 3 2 3 3 3 0 4 1 3 1 3 1 3 3 3 0 3 0 3 1 4 2 3 0 3 3 3 1 3 5 3 1 4 0 3 1 3 0 3 1 0 2 3 1 3 0 3 1 4 0 3 0 3 4 3 1 3 2 3 0 4 1 3 4 3 4 0 2 3 0 3 0 3 0 3 3 4 0 3 1 3 4 3 0 3 2 3 5 4 2 3 0 3 4 3 0 3 3 3 3290 3234 100 MP stroke 1 3 1 4 2 3 3 3 1 3 2 3 1 3 1 4 3 3 5 0 1 3 1 3 4 3 2 3 1 3 9 4 1 3 1 3 2 3 2 3 0 3 1 4 0 3 0 3 2 3 1 0 0 3 1 3 1 3 9 0 9 4 4 3 3 3 0 3 0 3 2 0 1 3 0 4 1 3 9 3 2 3 2 3 0 3 5 3 2 0 2 4 1 3 5 3 0 3 2 0 2 3 4 3 0 4 0 3 1 3 0 3 1 0 6 3 1 3 7 3 1 4 5 3 1 3 1 3 2 3 0 3 1 4 3 3 10 3 1 3 3 3 1 3 2 3 1 4 1 3 1 3 2 3 0 3 0 3 2 4 1 3 0 3 1 0 1 3 4 3 1 3 1 3 0 4 5 3 0 3 5 3 1 3 5 3 1 4 3 3 1 3 0 3 1 3 2 3 3088 2947 100 MP stroke 2 3 1 4 1 0 0 3 8 3 1 3 0 3 1 3 4 4 0 3 3 3 2 0 4 3 1 3 0 3 9 3 1 4 1 3 0 3 1 3 1 3 4 3 1 4 3 3 2 3 1 3 1 3 1 3 4 3 8 4 1 3 1 3 3 3 0 3 5 3 4 4 3 3 0 3 3 3 3 3 1 3 3 3 3 4 0 3 1 3 1 3 0 3 5 3 3 4 2 3 1 3 0 3 1 3 0 3 1 3 1 4 4 3 1 3 1 3 3 3 1 3 0 4 1 3 1 3 1 3 2 3 1 3 2 3 1 4 0 3 1 3 1 3 2 3 8 3 3 4 0 3 1 3 0 3 4 3 1 3 1 3 1 0 1 0 1 4 9 3 2 3 4 3 2 3 4 3 6 4 1 3 2 3 8 3 2 3 1 3 0 3 3 4 1 3 4 3 2883 2647 100 MP stroke 2 3 0 3 5 3 3 4 0 3 2 3 3 3 2 3 1 0 0 3 3 3 4 4 3 3 7 3 4 3 5 3 4 3 0 4 2 3 3 3 0 3 1 3 2 3 3 3 0 4 1 3 5 3 2 3 1 3 2 3 8 4 0 3 7 3 5 3 0 3 4 3 4 3 1 4 0 3 1 3 1 3 5 3 0 3 1 4 2 3 0 3 2 3 6 3 2 3 1 3 0 4 2 3 1 3 1 3 1 3 0 3 2 4 3 3 2 3 3 3 7 3 0 3 3 3 2 4 1 3 4 3 1 3 0 3 0 3 1 4 1 3 1 3 2 3 0 3 1 3 2 3 2 4 0 3 1 3 1 3 2 3 0 3 2 4 2 3 3 3 1 3 1 3 0 3 3 3 1 0 2 4 0 3 0 3 7 3 1 3 0 3 1 4 1 3 1 3 2690 2341 100 MP stroke 0 3 3 3 0 3 1 3 2 4 1 3 1 3 6 3 4 3 0 3 1 4 0 3 0 3 0 3 1 3 0 3 1 3 1 4 2 3 1 3 0 3 2 3 0 3 2 4 4 3 0 3 3 3 1 3 1 3 1 3 1 4 1 3 0 3 1 3 2 3 0 3 3 4 0 3 2 3 1 3 1 3 2 0 0 3 1 3 0 4 2 3 2 0 1 3 2 3 0 3 2 3 1 4 6 3 2 3 2 3 0 3 0 3 1 3 0 4 1 3 1 3 3 3 0 3 0 3 1 4 1 3 1 3 1 3 6 3 2 3 1 3 1 4 0 3 1 3 0 3 4 3 1 3 3 4 0 3 0 3 2 3 2 3 0 3 1 3 0 4 1 3 0 3 0 3 1 3 0 3 1 4 2 3 10 3 4 3 3 3 0 3 2 3 0 4 1 3 2557 2035 100 MP stroke 0 3 3 3 1 3 4 3 0 4 5 3 2 3 0 3 1 3 1 3 1 3 5 4 0 3 8 0 3 3 1 3 1 3 0 3 2 4 0 3 2 3 0 3 1 3 1 3 6 3 5 4 2 3 6 3 1 3 0 3 2 3 1 4 3 3 1 3 2 3 1 3 1 3 3 3 1 4 3 3 0 3 0 3 4 3 0 3 6 4 6 3 0 3 2 3 1 3 1 3 8 3 0 4 7 3 2 3 5 3 3 3 1 3 0 4 3 3 4 3 1 3 0 3 0 3 1 3 0 4 4 3 3 3 1 3 3 3 0 3 0 4 4 3 0 3 1 3 2 3 1 3 2 3 0 4 1 3 1 3 0 3 5 3 0 3 2 4 0 3 2 3 2 3 2 3 1 3 1 3 0 4 1 3 1 3 3 3 1 3 0 3 0 4 2 3 0 3 2376 1726 100 MP stroke 2 3 2 3 1 0 1 3 1 3 0 4 10 3 0 3 2 3 2 3 2 0 0 3 4 0 1 0 1 4 2 3 0 3 2 3 0 3 1 3 1 3 2 4 2 3 6 3 1 3 4 3 1 3 1 4 1 3 1 3 0 3 1 3 1 3 0 3 1 4 2 3 2 3 3 3 2 3 0 3 1 4 1 3 3 3 1 3 2 3 2 3 8 3 5 0 0 4 2 3 1 0 1 3 0 3 4 3 0 3 4 4 2 3 1 3 0 3 2 3 5 3 4 3 6 4 0 3 0 3 1 3 3 3 2 3 1 4 2 3 1 3 2 3 1 3 0 3 3 3 4 4 0 3 5 3 4 3 0 3 0 3 1 4 2 3 2 3 2 3 2 3 2 3 1 3 3 4 2 3 7 3 2 3 0 3 1 3 2 3 1 4 2 3 0 3 1 3 2193 1433 100 MP stroke 3 3 7 3 1 4 5 3 15 3 1 3 0 3 1 3 0 3 5 4 0 3 4 3 4 3 1 3 0 3 2 4 1 3 0 3 6 3 2 3 1 3 2 3 7 4 1 3 1 3 1 3 7 3 5 3 0 4 8 3 3 3 1 3 5 3 8 3 2 3 2 4 3 3 1 3 1 3 8 3 2 3 4 4 2 3 0 3 3 3 3 3 4 0 15 3 0 3 11 4 20 3 8 3 7 3 8 3 5 3 12 4 1 3 2 3 5 3 4 3 3 3 0 3 8 4 6 3 3 3 2 3 8 3 13 3 3 4 3 3 0 3 4 3 1 3 20 3 2 3 1 4 0 3 1 3 8 3 12 3 1 3 13 4 6 3 8 3 4 3 2 3 4 3 8 3 3 4 6 3 1 3 6 3 7 3 1 3 0 4 0 3 13 3 2 3 4 0 1765 1127 100 MP stroke 6 3 3 3 0 3 2 4 12 3 4 3 2 3 7 3 2 3 16 4 10 3 9 3 21 3 8 3 4 3 11 3 0 4 5 3 1 3 10 3 1 3 3 3 2 4 5 3 2 3 0 3 8 3 3 3 1 3 7 4 0 3 2 3 0 3 4 3 1 3 0 4 8 3 3 3 2 3 1 3 7 3 6 3 7 4 13 0 1 3 12 3 6 3 12 3 1 3 5 4 0 3 7 3 8 3 4 3 4 3 6 3 5 4 5 3 24 3 4 3 0 3 7 3 1 4 7 3 14 3 5 3 1 3 10 3 2 3 1 4 4 3 13 3 3 3 0 3 8 3 7 4 4 3 1 3 0 3 7 3 3 3 3 3 4 4 0 3 1 3 0 3 5 3 8 3 8 4 4 3 9 3 5 3 3 3 12 3 4 3 2 4 3 3 3 0 2 3 1268 821 100 MP stroke 1 3 4 3 5 3 4 4 4 3 1 3 4 3 11 3 3 3 8 3 1 4 7 3 9 3 5 3 4 3 6 3 8 4 0 3 4 3 14 3 0 3 0 3 1 3 23 4 3 3 16 3 4 3 5 3 0 3 13 4 2 3 4 3 2 3 14 3 5 3 1 3 7 4 2 3 2 3 9 3 13 3 0 3 15 4 22 3 6 3 5 3 17 3 13 3 0 3 2 4 0 3 11 3 17 3 2 3 8 3 15 4 12 3 1 3 21 3 11 3 10 3 11 3 13 4 11 3 42 3 4 3 3 3 3 3 4 4 2 3 27 3 22 3 34 3 22 3 10 3 11 4 14 3 19 3 7 3 3 3 13 3 31 4 25 3 3 3 3 3 1 3 7 3 8 3 2 4 3 3 0 3 24 3 13 3 8 3 10 4 2 3 7 3 15 3 2 3 412 509 100 MP stroke 4 3 26 0 22 3 18 4 7 3 46 3 22 3 3 3 4 3 14 4 2 3 1 3 26 3 34 3 11 3 42 0 13 3 117 4 0 458 19 MP stroke SO 36 -9 9 -8 4 -9 28 -9 15 -9 23 -8 4 -9 1 -9 4 -9 1 -8 4 -9 14 -9 0 -9 2 -8 2 -9 1 -9 4 -9 7 -8 0 -9 14 -9 1 -9 0 -8 8 -9 0 -9 0 -9 3 -8 3 -9 2 -9 7 -9 1 -8 4 -9 4 -9 1 -9 4 -8 2 -9 2 -9 0 -9 4 -8 3 -9 3 -9 1 -9 1 -8 13 -9 1 -9 1 -9 8 -8 1 -9 5 -9 3 -9 6 -8 6 -9 6 -9 2 -9 3 -8 0 -9 1 -9 1 -9 0 -8 0 -9 2 -9 0 -9 2 -8 3 -9 1 -9 1 -9 2 -8 1 -9 1 -9 0 -9 1 -8 1 -9 2 -9 1 -9 1 -8 6 -9 3 -9 0 -9 1 -8 1 -9 6 -9 0 -9 1 -8 1 -9 1 -9 1 -9 3 -8 2 -9 1 -9 1 -9 1 -8 3 -9 4 -9 1 -9 6 -8 1 -9 4 -9 0 -9 0 -8 7 -9 4841 1255 100 MP stroke 2 -9 1 -9 1 -8 1 -9 4 -9 1 -9 2 -8 4 -9 1 -9 2 -9 1 -8 1 -9 1 -9 3 -9 2 -8 0 -9 2 -9 2 -9 7 -8 0 -9 1 -9 0 -9 1 -8 1 -9 1 -9 8 -9 0 -8 4 -9 6 -9 1 -9 1 -8 1 -9 1 -9 5 -9 0 -8 4 -9 1 -9 1 -9 0 -8 1 -9 1 -9 1 -9 0 -8 1 -9 2 -9 4 -9 2 -8 0 -9 6 -9 3 -9 1 -8 4 -9 1 -9 1 -9 5 -8 2 -9 1 -9 2 -9 2 -8 1 -9 8 -9 2 -9 3 -8 4 -9 3 -9 3 -9 0 -8 1 -9 4 -9 7 -9 1 -8 1 -9 1 -9 1 -9 0 -8 3 -9 0 -9 1 -9 7 -8 0 -9 1 -9 0 -9 1 -8 2 -9 2 -9 4 -9 2 -8 2 -9 0 -9 0 -9 1 -8 2 -9 0 -9 3 -9 1 -8 4 -9 0 -9 4 -9 0 -8 4646 2121 100 MP stroke 0 -9 2 -9 1 -9 0 -8 2 -9 1 -9 3 -9 1 -8 1 -9 4 -9 0 -9 4 -8 3 -9 3 -9 0 -9 5 -8 2 -9 3 -9 3 -9 3 -8 1 -9 0 -9 2 -9 0 -8 1 -9 2 -9 0 -9 1 -8 1 0 0 -9 2 -9 6 -9 2 -8 2 -9 3 -9 3 -9 0 -8 3 -9 1 -9 2 -9 0 -8 1 -9 3 -9 3 -9 1 -8 1 -9 1 -9 3 -9 1 -8 5 -9 0 -9 2 -9 1 -8 0 -9 0 -9 0 -9 6 -8 1 -9 1 -9 1 -9 2 -8 1 -9 3 -9 5 -9 4 -8 0 -9 1 -9 0 -9 3 -8 1 -9 0 -9 4 -9 16 -8 1 -9 2 -9 1 -9 1 -8 2 -9 0 -9 1 -9 1 -8 3 -9 5 -9 2 -9 2 -8 1 -9 0 -9 1 -9 12 0 1 -8 5 -9 3 -9 0 -9 0 -8 1 -9 7 -9 0 -9 1 0 1 -8 4448 2961 100 MP stroke 10 0 1 -9 3 -9 1 -9 1 -8 2 -9 2 -9 0 -9 1 -8 0 -9 1 -9 3 -9 1 -8 1 -9 0 -9 0 -9 2 -8 2 -9 0 -9 1 -9 0 -8 5 -9 5 -9 3 -9 11 -8 0 -9 4 -9 0 -9 7 -8 5 -9 5 -9 0 -9 2 -8 0 -9 5 -9 1 -9 1 -8 5 -9 1 -9 0 -9 2 -8 4 -9 1 -9 6 -9 1 -8 3 -9 1 -9 4 -9 0 -8 2 -9 0 -9 2 -9 1 -8 1 -9 3 -9 0 -9 2 -8 4 -9 2 -9 3 -9 6 -8 7 -9 1 -9 1 -9 0 -8 1 -9 6 -9 3 -9 1 -8 0 -9 7 -9 0 -9 2 -8 1 -9 0 -9 2 -9 2 0 3 -8 2 -9 4 -9 4 0 5 -9 2 -8 5 -9 4 -9 14 -9 1 -8 0 -9 5 -9 4 -9 0 -8 1 0 6 -9 2 -9 4 -9 3 0 0 -8 5 -9 2 0 4198 3775 100 MP stroke 5 -9 2 0 8 -9 4 0 2 0 6 -8 3 0 2 0 4 0 1 -9 1 -9 1 0 4 0 1 -9 3 -8 2 0 0 -9 1 -9 2 -9 2 0 7 0 1 0 3 0 5 0 6 0 0 -8 2 -9 3 0 2 0 3 0 1 0 4 0 1 -9 4 0 0 -9 4 0 1 -8 2 0 0 -9 2 -9 4 0 2 0 2 0 2 0 3 0 2 -9 6 0 2 0 2 0 3 0 3 -8 1 0 2 0 1 0 3 0 2 0 0 -9 1 0 1 0 0 -9 0 -9 1 0 2 0 8 0 3 -8 1 0 1 0 4 0 4 0 5 0 15 0 1 0 2 0 4 0 1 0 2 0 3 0 1 0 1 0 1 -9 1 0 2 0 2 0 1 0 1 0 3 -9 4 0 4 0 0 -9 7 0 1 0 3 0 3 -8 1 0 3 0 1 0 2 0 2 0 2 0 3948 4011 100 MP stroke 1 0 1 0 3 0 1 0 1 0 2 -9 0 -9 1 0 6 0 4 0 3 0 1 -9 1 0 1 0 1 0 8 0 8 0 3 0 1 0 1 0 1 0 0 -8 2 0 3 0 3 0 5 0 1 0 4 0 2 0 1 0 1 -9 1 0 3 -9 2 0 2 0 4 0 1 0 1 0 2 0 1 0 2 0 1 0 0 -9 5 0 3 0 0 -8 1 0 1 0 1 0 1 0 2 0 1 0 3 0 1 0 6 -9 1 0 2 -9 2 0 3 0 1 0 0 -9 1 0 1 0 2 0 1 -8 1 0 1 0 5 0 1 0 2 0 1 0 1 0 1 0 1 0 2 0 3 0 2 0 4 0 1 -9 1 0 1 0 3 0 1 0 3 0 4 0 1 0 2 0 1 0 2 0 1 0 1 0 1 0 4 0 2 0 2 0 0 -9 2 0 1 0 3 0 3756 4134 100 MP stroke 1 0 1 0 1 0 2 0 8 0 1 0 2 0 3 0 1 -9 2 0 2 0 2 0 1 -8 1 0 1 0 1 0 2 0 1 0 1 0 2 0 6 0 1 0 1 0 2 0 6 0 4 0 3 0 1 0 1 0 4 0 1 0 2 0 5 -9 1 0 1 0 1 0 4 0 2 0 13 0 4 0 7 0 6 0 2 0 2 0 1 0 4 0 3 0 2 0 7 0 1 0 5 -9 4 0 1 0 2 0 1 0 5 0 1 0 1 0 3 0 2 0 2 -9 5 0 1 0 3 0 3 0 3 0 2 0 2 0 5 0 4 0 3 0 2 0 6 0 2 0 3 0 2 0 3 0 2 0 1 0 1 0 6 0 1 0 2 -8 2 0 5 0 3 0 0 -9 1 0 1 -9 3 0 4 0 1 0 5 0 1 0 1 0 1 0 3 0 2 0 7 0 3493 4204 100 MP stroke 5 0 1 -9 3 -8 6 -9 3 0 2 0 7 0 4 0 3 0 3 0 5 -9 3 0 1 0 1 -9 2 0 1 0 1 0 1 0 2 0 2 0 2 0 3 0 0 -8 2 0 6 0 2 -9 1 0 1 -9 5 0 2 0 2 0 3 0 7 0 3 0 2 0 3 0 2 0 3 0 5 0 1 0 3 0 3 0 2 0 2 0 5 0 3 0 1 0 1 0 2 0 3 0 1 0 1 0 1 0 3 0 1 0 2 0 3 0 1 0 5 0 1 0 1 0 1 -9 2 0 1 0 1 0 4 0 1 0 2 0 1 0 4 0 4 -8 2 0 3 0 0 -9 1 0 4 0 2 0 5 0 2 0 4 0 3 0 1 0 1 0 2 0 3 0 1 0 2 0 1 0 1 0 3 0 5 -9 1 0 1 0 4 0 2 0 1 0 9 0 1 0 1 0 3250 4309 100 MP stroke 0 -9 2 0 2 0 1 0 2 0 1 -8 1 0 1 0 9 -9 9 0 4 0 3 0 2 -9 1 0 1 0 9 0 2 0 2 0 5 0 2 -9 2 0 1 0 5 0 2 -8 2 0 4 0 1 0 1 -9 6 0 1 0 7 0 1 0 5 0 1 0 1 0 2 0 0 -9 1 0 3 0 10 0 1 0 3 0 1 0 2 0 1 0 1 0 1 0 2 0 2 0 1 0 1 -9 1 0 4 0 1 0 1 0 5 0 5 0 1 0 5 0 1 0 3 0 1 0 1 0 2 0 2 0 1 0 1 -8 8 0 1 0 1 0 4 0 3 0 2 -9 4 0 1 0 9 0 1 0 1 0 1 0 1 0 4 0 1 0 3 0 2 0 1 0 1 0 1 0 4 0 8 0 1 0 1 0 3 0 5 0 4 0 3 0 3 0 3 0 1 0 3 0 2995 4405 100 MP stroke 3 0 1 0 1 0 5 0 3 0 2 0 1 0 1 0 1 0 1 0 4 0 1 0 1 0 3 0 1 0 1 0 1 0 1 0 2 0 1 0 2 0 1 0 1 0 1 0 2 0 8 0 3 0 1 0 4 0 1 0 1 0 1 -9 1 -9 1 0 9 0 2 0 4 0 2 0 4 0 6 0 1 0 2 0 8 0 2 0 1 0 3 0 1 0 4 0 2 0 5 0 3 0 2 0 3 0 2 0 1 -8 3 0 4 0 3 0 7 0 0 -9 4 0 5 0 4 0 2 0 3 0 1 0 2 0 3 0 1 0 5 0 2 0 1 0 2 0 8 0 7 0 5 0 4 0 4 0 1 0 1 0 1 0 5 0 1 0 2 0 2 0 6 0 2 0 1 0 2 0 1 0 1 0 1 0 2 0 3 0 2 0 3 0 7 0 3 0 2 0 2736 4440 100 MP stroke 1 0 4 0 1 0 1 0 1 0 1 0 2 0 1 0 2 0 2 0 1 0 1 0 2 0 2 0 2 0 3 0 1 0 1 0 3 0 1 -9 2 0 7 0 1 0 1 0 1 0 1 0 3 0 1 0 2 0 1 0 1 0 6 0 4 0 1 0 1 0 1 0 1 0 2 0 1 0 2 0 2 0 4 0 3 0 1 0 1 0 1 0 1 0 1 0 1 0 2 0 3 0 2 0 1 0 1 0 2 -9 1 0 2 0 2 -8 1 0 2 0 2 0 1 0 6 0 2 0 2 0 0 -9 1 0 1 0 1 0 3 0 1 0 1 0 1 0 1 0 6 0 2 0 1 0 1 0 1 0 4 0 1 0 3 0 2 0 2 0 1 0 1 0 1 0 1 0 2 0 10 0 4 0 3 0 0 -9 2 0 1 0 3 0 1 0 4 0 5 0 2544 4484 100 MP stroke 2 0 0 -9 1 0 1 0 1 0 5 0 8 -8 3 0 1 0 1 0 2 0 2 0 1 0 1 0 6 0 5 0 2 0 6 0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 1 0 3 0 1 0 3 0 4 0 6 0 6 0 2 0 1 0 1 0 8 0 7 0 2 0 5 0 3 0 1 0 3 0 4 0 1 0 1 0 4 0 3 0 1 0 3 0 4 0 1 0 2 0 1 0 2 0 1 0 1 0 5 0 2 0 2 0 2 0 2 0 1 0 1 0 1 0 1 0 3 0 1 0 2 0 2 0 2 0 1 -9 1 0 1 0 10 0 2 0 2 0 2 -9 4 -9 1 -8 1 0 2 0 2 0 1 0 1 0 2 0 2 0 6 0 1 0 4 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 2 0 2 0 3 0 2312 4536 100 MP stroke 2 0 1 0 1 0 3 0 1 0 2 0 2 0 8 0 5 -9 2 0 1 -9 1 0 4 0 4 0 2 0 1 0 2 0 5 0 4 0 6 0 1 0 3 0 2 0 1 0 2 0 1 0 2 0 1 0 3 0 4 0 5 0 4 0 1 0 2 0 2 0 2 0 2 0 2 0 1 0 3 0 2 0 7 0 2 0 1 0 2 0 1 0 2 0 1 0 3 0 7 0 1 0 5 0 15 0 1 0 1 0 5 0 4 0 4 0 1 0 2 0 1 0 6 0 2 0 1 0 2 0 7 0 1 0 1 0 1 0 7 0 5 0 8 0 3 0 1 0 5 0 8 0 2 0 2 0 3 0 1 0 1 0 8 0 2 0 4 0 2 0 3 0 3 0 4 -9 15 0 11 0 20 0 8 0 7 0 8 0 5 0 12 0 1 0 2 0 5 0 1956 4563 100 MP stroke 4 0 3 0 8 0 6 0 3 0 2 0 8 0 13 0 3 0 3 0 4 0 1 0 20 0 2 0 1 0 1 0 8 0 12 0 1 0 13 0 6 0 8 0 4 0 2 0 4 0 8 0 3 0 6 0 1 0 6 0 7 0 1 0 13 0 2 0 4 -8 6 0 3 0 2 0 12 0 4 0 2 0 7 0 2 0 16 0 10 0 9 0 21 0 8 0 4 0 11 0 5 0 1 0 10 0 1 0 3 0 2 0 5 0 2 0 8 0 3 0 1 0 7 0 2 0 4 0 1 0 8 0 3 0 2 0 1 0 7 0 6 0 7 0 13 -9 1 0 12 0 6 0 12 0 1 0 5 0 7 0 8 0 4 0 4 0 6 0 5 0 5 0 24 0 4 0 7 0 1 0 7 0 14 0 5 0 1 0 10 0 2 0 1 0 4 0 13 0 1377 4580 100 MP stroke 3 0 8 0 7 0 4 0 1 0 7 0 3 0 3 0 4 0 1 0 5 0 8 0 8 0 4 0 9 0 5 0 3 0 12 0 4 0 2 0 3 0 3 -9 2 0 1 0 4 0 5 0 4 0 4 0 1 0 4 0 11 0 3 0 8 0 1 0 7 0 9 0 5 0 4 0 6 0 8 0 4 0 14 0 1 0 23 0 3 0 16 0 4 0 5 0 13 0 2 0 4 0 2 0 14 0 5 0 1 0 7 0 2 0 2 0 9 0 13 0 15 0 22 0 6 0 5 0 17 0 13 0 2 0 11 0 17 0 2 0 8 0 15 0 12 0 1 0 21 0 11 0 10 0 11 0 13 0 11 0 42 0 4 0 3 0 3 0 4 0 2 0 27 0 22 0 34 0 22 0 10 0 11 0 14 0 19 0 7 0 3 0 13 0 31 0 25 0 520 4589 100 MP stroke 3 0 3 0 1 0 7 0 8 0 2 0 3 0 24 0 13 0 8 0 10 0 2 0 7 0 15 0 2 0 4 0 26 -9 22 0 18 0 7 0 46 0 22 0 3 0 4 0 14 0 2 0 1 0 26 0 34 0 11 0 42 -8 13 0 117 0 0 4606 34 MP stroke gr 2947 4944 mt (log-likelihood score) s 610 2749 mt -90 rotate (P\(error\)) s 90 rotate gs 899 389 5360 4227 MR c np DA 36 0 9 0 4 0 28 0 15 0 23 0 4 0 1 0 4 0 1 0 4 0 14 0 2 0 2 0 1 0 4 0 7 0 14 0 1 0 8 0 3 0 3 0 2 0 7 0 1 0 4 0 4 0 1 0 4 0 2 0 2 0 4 0 3 0 3 0 1 0 1 0 13 0 1 0 1 0 8 0 1 0 5 0 3 0 6 0 6 0 6 0 2 0 3 0 1 0 1 0 2 0 2 0 3 0 1 0 1 0 2 0 1 0 1 0 1 0 1 0 2 0 1 0 1 0 6 0 3 0 1 0 1 0 6 0 1 0 1 0 1 0 1 0 3 0 2 0 1 0 1 0 1 0 3 0 4 0 1 0 6 0 1 0 4 0 7 0 2 0 1 0 1 0 1 0 4 0 1 0 2 0 4 0 1 0 2 0 1 0 1 0 1 0 3 0 2 0 4814 4615 100 MP stroke 2 0 2 0 7 0 1 0 1 0 1 0 1 0 8 0 4 0 6 0 1 0 1 0 1 0 1 0 5 0 4 0 1 0 1 0 1 0 1 0 1 0 1 0 2 0 4 0 2 0 6 0 3 0 1 0 4 0 1 0 1 0 5 0 2 0 1 0 2 0 2 0 1 0 8 0 2 0 3 0 4 0 3 0 3 0 1 0 4 0 7 0 1 0 1 0 1 0 1 0 3 0 1 0 7 0 1 0 1 0 2 0 2 0 4 0 2 0 2 0 1 0 2 0 3 0 1 0 4 0 4 0 2 0 1 0 2 0 1 0 3 0 1 0 1 0 4 0 4 0 3 0 3 0 5 0 2 0 3 0 3 0 3 0 1 0 2 0 1 0 2 0 2 0 2 0 6 0 2 0 2 0 3 0 3 0 3 0 1 0 2 0 1 0 3 0 3 0 4566 4615 100 MP stroke 1 0 1 0 1 0 3 0 1 0 5 0 2 0 1 0 6 0 1 0 1 0 1 0 2 0 1 0 3 0 5 0 4 0 1 0 3 0 1 0 4 0 16 0 1 0 2 0 1 0 1 0 2 0 1 0 1 0 3 0 5 0 2 0 2 0 1 0 13 0 1 0 5 0 3 0 1 0 7 0 1 0 11 0 1 0 3 0 1 0 1 0 2 0 2 0 1 0 1 0 3 0 1 0 1 0 2 0 2 0 1 0 5 0 5 0 3 0 11 0 4 0 7 0 5 0 5 0 2 0 5 0 1 0 1 0 5 0 1 0 2 0 4 0 1 0 6 0 1 0 3 0 1 0 4 0 2 0 2 0 1 0 1 0 3 0 2 0 4 0 2 0 3 0 6 0 7 0 1 0 1 0 1 0 6 0 3 0 1 0 7 0 2 0 1 0 4 0 4274 4615 100 MP stroke 3 0 2 0 8 0 5 0 2 0 5 0 4 0 14 0 1 0 5 0 4 0 1 0 6 0 2 0 7 0 7 0 7 0 14 0 15 0 1 0 6 0 1 0 5 0 1 0 26 0 15 0 5 0 4 0 3 0 15 0 15 0 12 0 2 0 11 0 48 0 8 0 11 0 11 0 2 0 3 3 16 3 2 0 14 0 26 0 21 0 2 0 19 0 8 0 11 0 7 0 8 0 4 0 26 0 31 0 25 0 7 0 13 0 16 3 13 4 48 0 2 3 16 3 22 0 3 3 27 0 0 3 3 3 6 4 15 3 11 3 4 0 8 3 1 0 3 0 7 3 4 3 10 3 0 4 2 3 1 3 7 3 1 0 3 0 4 0 1 3 2 3 1 4 20 3 2 0 1 3 5 3 1 3 2 0 1 3 12 3 8 0 3 4 12 0 2 3 3407 4517 100 MP stroke 3 3 1 3 8 3 11 3 7 4 2 3 11 3 0 3 1 3 6 3 10 3 1 4 5 3 4 3 2 0 10 3 5 3 1 0 8 3 1 0 0 4 9 3 2 3 3 3 3 3 6 3 2 3 10 4 2 0 0 3 5 3 7 3 4 3 1 3 1 4 1 3 3 3 1 3 0 3 5 0 2 3 2 0 0 3 1 4 6 0 19 3 5 0 5 3 0 3 4 3 5 3 2 4 1 3 7 0 2 3 1 3 3 0 3 3 1 3 1 3 1 4 7 0 4 3 0 3 1 3 3 3 3 3 0 4 0 3 3 3 4 3 4 3 2 3 0 3 1 4 0 3 2 3 5 3 0 3 1 3 2 4 4 3 2 3 4 3 1 3 1 3 1 3 1 4 2 3 6 3 1 3 3 3 7 3 0 4 2 3 1 3 1 3 0 3 1 3 3094 4240 100 MP stroke 1 3 5 4 2 3 1 3 1 0 6 3 10 3 1 3 2 0 5 4 5 3 0 3 2 3 2 3 3 3 3 3 3 4 5 3 2 3 2 3 1 3 3 3 0 4 0 3 2 3 4 3 1 3 3 3 1 3 1 4 3 3 1 3 3 3 1 3 0 3 0 4 0 3 2 3 0 3 5 3 3 3 2 3 2 4 1 3 0 3 6 3 3 3 1 3 2 4 2 3 1 3 0 3 4 3 0 3 5 3 1 4 2 3 4 3 0 3 2 3 1 3 12 4 0 3 0 3 0 3 1 3 9 3 3 3 1 0 11 0 5 4 4 3 5 3 3 3 12 3 3 3 2 4 1 3 1 3 1 3 4 3 3 3 4 3 6 4 0 3 1 3 0 3 1 3 1 3 1 0 0 4 4 3 1 3 0 3 1 3 1 3 2 3 1 4 2 3 2853 3943 100 MP stroke 0 3 4 3 1 3 0 3 2 0 2 4 5 3 4 3 1 3 2 3 2 3 1 3 2 4 1 3 4 3 2 3 0 3 1 3 1 4 1 3 0 3 1 3 2 3 0 3 2 3 0 4 10 3 0 3 0 3 3 3 3 3 0 4 1 3 1 3 3 3 1 3 1 3 0 3 1 4 0 3 4 3 1 3 1 3 0 3 1 4 2 3 0 3 8 3 1 3 6 3 0 3 3 4 1 3 1 3 0 3 1 3 2 3 3 4 0 3 1 3 4 3 2 3 0 3 0 3 3 4 0 3 2 3 0 3 2 3 2 3 0 4 2 3 3 3 1 3 1 3 2 3 8 3 1 4 1 3 1 3 1 3 2 3 2 3 0 4 2 3 0 3 1 3 2 3 2 3 1 3 0 4 1 3 1 3 2 3 2 3 8 3 2 4 1 3 0 3 2687 3634 100 MP stroke 1 3 3 3 1 3 3 3 5 4 3 3 1 3 2 3 0 3 6 3 2 4 2 3 1 3 0 3 1 3 1 3 2 3 0 4 1 3 9 3 4 3 0 3 2 3 2 3 1 4 2 0 5 3 1 3 0 3 6 3 4 3 2 0 4 4 2 3 0 3 2 3 1 3 6 3 3 3 0 4 5 3 7 3 13 3 2 3 3 3 1 4 5 3 1 0 6 3 4 3 1 3 0 3 1 3 5 4 3 0 2 3 1 3 1 3 1 3 1 0 6 3 6 4 5 3 3 3 1 3 6 3 3 3 2 3 7 4 3 3 1 3 1 3 0 3 2 3 1 4 1 3 1 3 2 3 4 3 0 3 0 3 2 4 1 3 0 3 1 3 3 3 10 3 3 4 2 3 0 3 11 3 7 3 3 3 6 3 2 4 3 3 1 3 8 3 0 3 2415 3338 100 MP stroke 2 3 12 4 2 3 1 3 0 3 1 3 1 3 7 3 3 4 1 3 0 3 9 3 4 3 1 0 2 3 1 4 2 3 1 3 3 3 7 3 1 0 1 3 3 0 1 3 0 4 10 0 3 3 0 3 2 3 0 3 7 3 1 4 3 3 1 3 2 3 2 3 5 3 3 3 11 4 7 3 3 0 0 3 4 3 0 3 0 3 2 0 3 4 1 3 4 3 1 3 2 3 1 3 0 3 2 4 1 3 0 3 3 3 1 3 2 3 1 4 0 3 8 3 7 3 3 3 1 3 4 3 0 4 4 3 0 3 1 3 1 3 5 3 1 4 2 3 5 3 2 3 5 3 8 3 3 3 7 4 1 3 3 3 5 3 3 3 2 3 0 4 0 3 15 3 2 3 1 3 7 3 10 3 4 4 7 3 11 3 15 3 2 3 0 3 8 4 2098 3044 100 MP stroke 7 3 4 3 3 3 1 3 1 3 1 3 0 4 3 3 0 3 1 3 4 3 3 3 4 4 8 3 4 3 10 0 2 3 2 3 4 3 3 3 8 4 0 3 7 3 4 3 0 3 13 3 11 4 6 3 0 3 6 3 2 3 2 3 7 3 3 4 6 3 1 3 2 3 9 3 1 3 2 4 5 3 4 3 1 3 1 3 2 3 6 3 1 4 2 3 1 3 2 3 4 3 13 3 3 4 2 3 0 3 9 3 0 3 3 3 1 3 9 4 3 3 0 3 8 3 4 3 2 3 19 4 8 3 1 3 1 3 6 3 2 3 2 3 3 4 2 3 4 3 11 3 2 3 2 3 1 4 2 3 3 3 3 3 11 3 5 3 3 0 3 3 0 4 1 3 7 3 1 3 2 3 0 3 4 4 2 3 7 3 1 3 1 3 0 3 14 3 1723 2739 100 MP stroke 9 4 0 3 2 3 2 3 8 3 2 3 5 4 4 3 0 3 4 3 2 3 9 3 0 3 1 4 2 3 4 3 1 3 1 3 2 3 0 4 1 3 1 3 1 3 5 3 7 3 4 3 3 4 1 3 8 3 2 3 1 3 3 3 2 4 2 3 3 3 7 3 2 3 0 3 5 3 18 4 1 3 1 3 3 3 7 3 2 3 4 4 4 3 7 3 1 3 1 0 5 3 1 3 2 3 1 4 7 3 0 3 1 3 2 3 2 3 1 4 6 3 1 3 2 3 0 3 3 3 2 3 0 4 1 3 1 3 2 3 7 3 2 3 2 4 1 3 3 3 1 3 8 3 1 3 1 3 2 4 0 3 1 3 2 3 1 3 1 3 4 4 6 3 2 3 5 3 1 3 8 3 24 3 1 4 0 3 1 3 3 3 3 3 12 3 0 4 1415 2429 100 MP stroke 1 3 1 3 2 3 1 3 2 3 6 3 3 4 2 3 7 3 0 3 7 3 2 3 6 4 4 3 1 3 3 3 8 3 1 3 0 3 4 4 6 3 1 3 1 3 8 3 2 3 4 4 1 3 0 3 3 3 1 3 10 3 7 3 4 4 0 3 5 3 4 3 2 3 10 3 2 4 1 3 0 3 9 3 18 0 5 3 3 3 2 3 4 4 2 3 3 3 3 3 0 3 9 3 2 4 0 3 2 3 1 3 16 3 6 3 1 3 8 4 3 3 15 3 4 3 1 3 2 3 3 4 6 3 4 3 3 3 1 3 5 3 3 3 3 4 1 3 1 3 3 3 2 3 6 3 1 4 0 3 2 3 3 3 0 3 2 3 4 3 1 4 4 3 11 3 14 3 7 3 1 3 11 4 3 3 3 3 3 3 2 3 4 3 11 3 2 4 1033 2120 100 MP stroke 1 3 1 3 1 3 2 3 3 3 4 4 1 3 1 3 0 3 7 3 3 3 1 3 3 4 10 3 0 3 2 3 14 3 3 3 10 4 7 3 5 3 2 3 1 3 2 3 1 3 11 4 1 3 7 3 17 3 4 3 5 3 9 4 8 3 3 3 3 3 6 3 4 3 7 3 4 4 0 3 3 3 8 3 9 3 0 3 0 4 3 3 2 3 5 3 1 3 2 3 10 3 14 4 0 3 4 3 6 3 1 3 4 3 1 4 2 3 6 3 5 3 8 3 4 3 2 3 3 4 8 3 6 3 1 3 34 3 2 3 15 4 2 3 7 3 4 3 1 3 6 3 13 3 6 4 14 3 3 3 3 3 3 3 24 3 9 4 3 3 1 3 20 3 4 3 3 3 4 3 1 4 1 3 6 3 9 3 16 3 6 3 2 4 8 3 6 3 505 1808 100 MP stroke 7 3 12 3 13 3 1 3 4 4 4 3 4 3 1 3 0 3 20 3 0 4 7 3 11 3 12 3 1 3 3 3 3 3 0 4 1 3 2 3 3 3 11 3 8 3 3 4 6 3 3 3 1 3 3 3 0 3 2 3 5 4 22 3 7 3 0 3 4 3 0 3 1 4 3 3 4 3 2 3 1 3 1 3 0 3 5 4 2 3 2 3 8 3 4 3 14 3 12 4 1 3 1 3 10 3 1 3 11 3 1 3 11 4 1 3 3 3 1 3 1 3 0 3 1 4 1 3 1 3 2 3 0 3 0 3 5 3 8 4 4 3 5 3 3 3 0 3 8 3 7 4 3 3 5 0 4 3 0 3 1 3 3 3 0 3 3 4 0 3 4 3 3 3 8 3 2 3 2 4 4 3 16 3 4 3 7 3 2 3 3 3 7 4 1 3 1 3 92 1499 100 MP stroke 5 3 10 3 0 3 3 4 7 3 0 3 2 3 0 3 6 3 6 3 1 4 12 3 1 3 2 3 3 3 1 3 2 3 9 4 1 3 3 3 2 3 5 3 11 3 0 1427 24 MP stroke SO 36 -9 9 -8 4 -9 28 -9 15 -9 23 -8 4 -9 1 -9 4 -9 1 -8 4 -9 14 -9 0 -9 2 -8 2 -9 1 -9 4 -9 7 -8 0 -9 14 -9 1 -9 0 -8 8 -9 0 -9 0 -9 3 -8 3 -9 2 -9 7 -9 1 -8 4 -9 4 -9 1 -9 4 -8 2 -9 2 -9 0 -9 4 -8 3 -9 3 -9 1 -9 1 -8 13 -9 1 -9 1 -9 8 -8 1 -9 5 -9 3 -9 6 -8 6 -9 6 -9 2 -9 3 -8 0 -9 1 -9 1 -9 0 -8 0 -9 2 -9 0 -9 2 -8 3 -9 1 -9 1 -9 2 -8 1 -9 1 -9 0 -9 1 -8 1 -9 2 -9 1 -9 1 -8 6 -9 3 -9 0 -9 1 -8 1 -9 6 -9 0 -9 1 -8 1 -9 1 -9 1 -9 3 -8 2 -9 1 -9 1 -9 1 -8 3 -9 4 -9 1 -9 6 -8 1 -9 4 -9 0 -9 0 -8 7 -9 4841 1255 100 MP stroke 2 -9 1 -9 1 -8 1 -9 4 -9 1 -9 2 -8 4 -9 1 -9 2 -9 1 -8 1 -9 1 -9 3 -9 2 -8 0 -9 2 -9 2 -9 7 -8 0 -9 1 -9 0 -9 1 -8 1 -9 1 -9 8 -9 0 -8 4 -9 6 -9 1 -9 1 -8 1 -9 1 -9 5 -9 0 -8 4 -9 1 -9 1 -9 0 -8 1 -9 1 -9 1 -9 0 -8 1 -9 2 -9 4 -9 2 -8 0 -9 6 -9 3 -9 1 -8 4 -9 1 -9 1 -9 5 -8 2 -9 1 -9 2 -9 2 -8 1 -9 8 -9 2 -9 3 -8 4 -9 3 -9 3 -9 0 -8 1 -9 4 -9 7 -9 1 -8 1 -9 1 -9 1 -9 0 -8 3 -9 0 -9 1 -9 7 -8 0 -9 1 -9 0 -9 1 -8 2 -9 2 -9 4 -9 2 -8 2 -9 0 -9 0 -9 1 -8 2 -9 0 -9 3 -9 1 -8 4 -9 0 -9 4 -9 0 -8 4646 2121 100 MP stroke 0 -9 2 -9 1 -9 0 -8 2 -9 1 -9 3 -9 1 -8 1 -9 4 -9 0 -9 4 -8 3 -9 3 -9 0 -9 5 -8 2 -9 3 -9 3 -9 3 -8 1 -9 0 -9 2 -9 0 -8 1 -9 2 -9 0 -9 2 -8 0 -9 2 -9 6 -9 2 -8 2 -9 3 -9 3 -9 0 -8 3 -9 1 -9 2 -9 0 -8 1 -9 3 -9 3 -9 1 -8 1 -9 1 -9 3 -9 1 -8 5 -9 0 -9 2 -9 1 -8 0 -9 0 -9 0 -9 6 -8 1 -9 1 -9 1 -9 2 -8 1 -9 3 -9 5 -9 4 -8 0 -9 1 -9 0 -9 3 -8 1 -9 0 -9 4 -9 16 -8 1 -9 2 -9 1 -9 1 -8 2 -9 0 -9 1 -9 1 -8 3 -9 5 -9 2 -9 2 -8 1 -9 0 -9 13 -9 1 -8 5 -9 3 -9 0 -9 0 -8 1 -9 7 -9 1 -9 11 -8 1 -9 3 -9 1 -9 4433 2988 100 MP stroke 1 -8 2 -9 2 -9 0 -9 1 -8 0 -9 1 -9 3 -9 1 -8 1 -9 0 -9 0 -9 2 -8 2 -9 0 -9 1 -9 0 -8 5 -9 5 -9 3 -9 11 -8 0 -9 4 -9 0 -9 7 -8 5 -9 5 -9 0 -9 2 -8 0 -9 5 -9 1 -9 1 -8 5 -9 1 -9 0 -9 2 -8 4 -9 1 -9 6 -9 1 -8 3 -9 1 -9 4 -9 0 -8 2 -9 0 -9 2 -9 1 -8 1 -9 3 -9 0 -9 2 -8 4 -9 2 -9 3 -9 6 -8 7 -9 1 -9 1 -9 0 -8 1 -9 6 -9 3 -9 1 -8 0 -9 7 -9 0 -9 2 -8 1 -9 0 -9 4 -9 3 -8 2 -9 8 -9 5 -9 2 -8 5 -9 4 -9 14 -9 1 -8 0 -9 5 -9 4 -9 1 -8 6 -9 2 -9 7 -9 0 -8 7 -9 7 -9 14 -9 15 -8 1 -9 6 -9 1 -9 5 -8 0 -9 1 -9 4148 3854 100 MP stroke 26 -9 0 -8 15 -9 5 -9 4 -9 3 -8 0 -9 15 -9 15 -9 12 -8 2 -9 0 -9 11 -9 48 -8 8 -9 11 -9 11 -9 2 -8 3 0 16 0 2 -9 14 -9 26 -9 21 -8 2 -9 19 -9 8 -9 11 -8 7 -9 8 -9 4 -9 26 -8 31 -9 25 -9 7 -9 13 -8 16 0 13 0 48 -9 2 0 16 0 22 -9 3 0 27 -9 3 0 6 0 15 0 11 0 4 -8 8 0 1 -9 3 -9 7 0 4 0 10 0 2 0 1 0 7 0 1 -9 3 -8 4 -9 1 0 2 0 1 0 20 0 2 -9 1 0 5 0 1 0 2 -9 1 0 12 0 8 -8 0 -9 3 0 12 -9 2 0 3 0 1 0 8 0 11 0 7 0 2 0 11 0 1 0 6 0 10 0 1 0 5 0 4 0 2 -9 10 0 5 0 1 -8 8 0 1 -9 9 0 2 0 3 0 3296 4300 100 MP stroke 3 0 6 0 2 0 10 0 2 -9 5 0 7 0 4 0 1 0 1 0 1 0 3 0 1 0 5 -9 2 0 2 -8 1 0 6 -9 19 0 5 -9 5 0 4 0 5 0 2 0 1 0 7 -9 2 0 1 0 3 -8 3 0 1 0 1 0 1 0 7 -9 4 0 1 0 3 0 3 0 3 0 4 0 0 -9 4 0 2 0 1 0 2 0 5 0 1 0 2 0 4 0 2 0 4 0 1 0 1 0 0 -9 1 0 1 0 2 0 6 0 1 0 3 0 7 0 2 0 1 0 1 0 1 0 1 0 5 0 2 0 1 0 1 -8 6 0 10 0 1 0 2 -9 5 0 5 0 2 0 2 0 3 0 3 0 3 0 5 0 2 0 2 0 1 0 3 0 2 0 4 0 1 0 3 0 1 0 1 0 3 0 1 0 3 0 1 0 2 0 5 0 3 0 2999 4405 100 MP stroke 2 0 2 0 1 0 6 0 3 0 1 0 2 0 2 0 1 0 4 0 5 0 1 0 2 0 4 0 2 0 1 0 12 0 1 0 9 0 3 0 1 -9 11 -9 5 0 4 0 5 0 3 0 12 0 3 0 2 0 1 0 1 0 1 0 4 0 3 0 4 0 6 0 1 0 1 0 1 0 1 -8 4 0 1 0 1 0 1 0 2 0 1 0 2 0 4 0 1 0 2 -9 2 0 5 0 4 0 1 0 2 0 2 0 1 0 2 0 1 0 4 0 2 0 1 0 1 0 1 0 1 0 2 0 2 0 10 0 3 0 3 0 1 0 1 0 3 0 1 0 1 0 1 0 4 0 1 0 1 0 1 0 2 0 8 0 1 0 6 0 3 0 1 0 1 0 1 0 2 0 3 0 1 0 4 0 2 0 3 0 2 0 2 0 2 0 2 0 3 0 2732 4440 100 MP stroke 1 0 1 0 2 0 8 0 1 0 1 0 1 0 1 0 2 0 2 0 2 0 1 0 2 0 2 0 1 0 0 -9 1 0 1 0 2 0 2 0 8 0 2 0 1 0 1 0 3 0 1 0 3 0 5 0 3 0 1 0 2 0 6 0 2 0 2 0 1 0 1 0 1 0 2 0 1 0 9 0 4 0 0 -9 2 0 2 0 1 0 2 -8 5 0 1 0 6 0 4 0 2 -9 4 0 2 0 2 0 1 0 6 0 3 0 5 0 7 0 13 0 2 0 3 0 1 0 5 0 1 -9 6 0 4 0 1 0 1 0 5 0 3 -9 2 0 1 0 1 0 1 0 1 -8 6 0 6 0 5 0 3 0 1 0 6 0 3 0 2 0 7 0 3 0 1 0 1 0 2 0 1 0 1 0 1 0 2 0 4 0 2 0 1 0 1 0 3 0 10 0 2461 4501 100 MP stroke 3 0 2 0 11 0 7 0 3 0 6 0 2 0 3 0 1 0 8 0 2 0 12 0 2 0 1 0 1 0 1 0 7 0 3 0 1 0 9 0 4 0 1 -9 2 0 1 0 2 0 1 0 3 0 7 0 1 -9 1 0 3 -9 1 0 10 -8 3 0 2 0 7 0 1 0 3 0 1 0 2 0 2 0 5 0 3 0 11 0 7 0 3 -9 4 0 2 -9 3 0 1 0 4 0 1 0 2 0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 8 0 7 0 3 0 1 0 4 0 4 0 1 0 1 0 5 0 1 0 2 0 5 0 2 0 5 0 8 0 3 0 7 0 1 0 3 0 5 0 3 0 2 0 15 0 2 0 1 0 7 0 10 0 4 0 7 0 11 0 15 0 2 0 8 0 7 0 4 0 3 0 1 0 1 0 1 0 2081 4554 100 MP stroke 3 0 1 0 4 0 3 0 4 0 8 0 4 0 10 -9 2 0 2 0 4 0 3 0 8 0 7 0 4 0 13 0 11 0 6 0 6 0 2 0 2 0 7 0 3 0 6 0 1 0 2 0 9 0 1 0 2 0 5 0 4 0 1 0 1 0 2 0 6 0 1 0 2 0 1 0 2 0 4 0 13 0 3 0 2 0 9 0 3 0 1 0 9 0 3 0 8 0 4 0 2 0 19 0 8 0 1 0 1 0 6 0 2 0 2 0 3 0 2 0 4 0 11 0 2 0 2 0 1 0 2 0 3 0 3 0 11 0 5 0 3 -8 3 0 1 0 7 0 1 0 2 0 4 0 2 0 7 0 1 0 1 0 14 0 9 0 2 0 2 0 8 0 2 0 5 0 4 0 4 0 2 0 9 0 1 0 2 0 4 0 1 0 1 0 2 0 1 0 1664 4571 100 MP stroke 1 0 1 0 5 0 7 0 4 0 3 0 1 0 8 0 2 0 1 0 3 0 2 0 2 0 3 0 7 0 2 0 5 0 18 0 1 0 1 0 3 0 7 0 2 0 4 0 4 0 7 0 1 0 1 -9 5 0 1 0 2 0 1 0 7 0 1 0 2 0 2 0 1 0 6 0 1 0 2 0 3 0 2 0 1 0 1 0 2 0 7 0 2 0 2 0 1 0 3 0 1 0 8 0 1 0 1 0 2 0 1 0 2 0 1 0 1 0 4 0 6 0 2 0 5 0 1 0 8 0 24 0 1 0 1 0 3 0 3 0 12 0 1 0 1 0 2 0 1 0 2 0 6 0 3 0 2 0 7 0 7 0 2 0 6 0 4 0 1 0 3 0 8 0 1 0 4 0 6 0 1 0 1 0 8 0 2 0 4 0 1 0 3 0 1 0 10 0 1317 4580 100 MP stroke 7 0 4 0 5 0 4 0 2 0 10 0 2 0 1 0 9 0 18 -9 5 0 3 0 2 0 4 0 2 0 3 0 3 0 9 0 2 0 2 0 1 0 16 0 6 0 1 0 8 0 3 0 15 0 4 0 1 0 2 0 3 0 6 0 4 0 3 0 1 0 5 0 3 0 3 0 1 0 1 0 3 0 2 0 6 0 1 0 2 0 3 0 2 0 4 0 1 0 4 0 11 0 14 0 7 0 1 0 11 0 3 0 3 0 3 0 2 0 4 0 11 0 2 0 1 0 1 0 1 0 2 0 3 0 4 0 1 0 1 0 7 0 3 0 1 0 3 0 10 0 2 0 14 0 3 0 10 0 7 0 5 0 2 0 1 0 2 0 1 0 11 0 1 0 7 0 17 0 4 0 5 0 9 0 8 0 3 0 3 0 6 0 4 0 7 0 4 0 859 4589 100 MP stroke 3 0 8 0 9 0 3 0 2 0 5 0 1 0 2 0 10 0 14 0 4 0 6 0 1 0 4 0 1 0 2 0 6 0 5 0 8 0 4 0 2 0 3 0 8 0 6 0 1 0 34 0 2 0 15 0 2 0 7 0 4 0 1 0 6 0 13 0 6 0 14 0 3 0 3 0 3 0 24 0 9 0 3 0 1 0 20 0 4 0 3 0 4 0 1 0 1 0 6 0 9 0 16 0 6 0 2 0 8 0 6 0 7 0 12 0 13 0 1 0 4 0 4 0 4 0 1 0 20 0 7 0 11 0 12 0 1 0 0 -9 3 0 3 0 1 0 2 0 3 0 11 0 8 0 3 0 6 0 3 0 1 0 3 0 2 0 5 0 22 0 7 0 4 0 1 0 3 0 4 0 2 0 1 0 1 0 5 0 2 0 2 0 8 0 4 0 14 0 274 4598 100 MP stroke 12 0 1 0 1 0 10 0 1 0 11 0 1 0 11 0 1 0 3 0 1 0 1 0 1 0 1 0 1 0 2 0 5 0 8 0 4 0 5 0 3 0 8 0 7 0 3 0 5 -8 4 0 1 0 3 0 3 0 4 0 3 0 8 0 2 0 2 0 4 0 16 0 4 0 7 0 2 0 3 0 7 0 1 0 1 0 5 0 10 0 3 0 7 0 2 0 6 0 6 0 1 0 12 0 1 0 2 0 3 0 1 0 2 0 9 0 1 0 3 0 2 0 5 0 11 0 0 4606 64 MP stroke DA 36 0 9 0 4 0 28 0 15 0 23 0 4 0 1 0 4 0 1 0 4 0 14 0 2 0 2 0 1 0 4 0 7 0 14 0 1 0 8 0 3 0 3 0 2 0 7 0 1 0 4 0 4 0 1 0 4 0 2 0 2 0 4 0 3 0 3 0 1 0 1 0 13 0 1 0 1 0 8 0 1 0 5 0 3 0 6 0 6 0 6 0 2 0 3 0 1 0 1 0 2 0 2 0 3 0 1 0 1 0 2 0 1 0 1 0 1 0 1 0 2 0 1 0 1 0 6 0 3 0 1 0 1 0 6 0 1 0 1 0 1 0 1 0 3 0 2 0 1 0 1 0 1 0 3 0 4 0 1 0 6 0 1 0 4 0 7 0 2 0 1 0 1 0 1 0 4 0 1 0 2 0 4 0 1 0 2 0 1 0 1 0 1 0 3 0 2 0 4814 4615 100 MP stroke 2 0 2 0 7 0 1 0 1 0 1 0 1 0 8 0 4 0 6 0 1 0 1 0 1 0 1 0 5 0 4 0 1 0 1 0 1 0 1 0 1 0 1 0 2 0 4 0 2 0 6 0 3 0 1 0 4 0 1 0 1 0 5 0 2 0 1 0 2 0 2 0 1 0 8 0 2 0 3 0 4 0 3 0 3 0 1 0 4 0 7 0 1 0 1 0 1 0 1 0 3 0 1 0 7 0 1 0 1 0 2 0 2 0 4 0 2 0 2 0 1 0 2 0 3 0 1 0 4 0 4 0 2 0 1 0 2 0 1 0 3 0 1 0 1 0 4 0 4 0 3 0 3 0 5 0 2 0 3 0 3 0 3 0 1 0 2 0 1 0 2 0 2 0 2 0 6 0 2 0 2 0 3 0 3 0 3 0 1 0 2 0 1 0 3 0 3 0 4566 4615 100 MP stroke 1 0 1 0 1 0 3 0 1 0 5 0 2 0 1 0 6 0 1 0 1 0 1 0 2 0 1 0 3 0 5 0 4 0 1 0 3 0 1 0 4 0 16 0 1 0 2 0 1 0 1 0 2 0 1 0 1 0 3 0 5 0 2 0 2 0 1 0 13 0 1 0 5 0 3 0 1 0 7 0 1 0 11 0 1 0 3 0 1 0 1 0 2 0 2 0 1 0 1 0 3 0 1 0 1 0 2 0 2 0 1 0 5 0 5 0 3 0 11 0 4 0 7 0 5 0 5 0 2 0 5 0 1 0 1 0 5 0 1 0 2 0 4 0 1 0 6 0 1 0 3 0 1 0 4 0 2 0 2 0 1 0 1 0 3 0 2 0 4 0 2 0 3 0 6 0 7 0 1 0 1 0 1 0 6 0 3 0 1 0 7 0 2 0 1 0 4 0 4274 4615 100 MP stroke 3 0 2 0 8 0 5 0 2 0 5 0 4 0 14 0 1 0 5 0 4 0 1 0 6 0 2 0 7 0 7 0 7 0 14 0 15 0 1 0 6 0 1 0 5 0 1 0 26 0 15 0 5 0 4 0 3 0 15 0 15 0 12 0 2 0 11 0 48 0 8 0 11 0 11 0 21 0 2 0 14 0 26 0 21 0 2 0 19 0 8 0 11 0 7 0 8 0 4 0 26 0 31 0 25 0 7 0 42 0 66 0 25 0 62 0 12 0 1 0 34 0 1 0 3 0 23 0 5 3 9 0 15 0 8 0 3 0 56 0 28 3 17 0 2 0 7 3 36 0 2 0 1 4 22 3 7 0 3 0 1 0 24 3 4 0 3 3 15 3 10 0 9 0 3 0 10 3 8 4 4 3 6 0 4 3 19 3 29 0 5 3 1 3 8 0 7 3 3070 4565 100 MP stroke 3 4 11 0 0 3 28 3 5 3 4 3 1 3 13 4 3 3 41 3 6 3 14 3 6 3 1 0 10 0 11 3 8 4 1 3 20 3 14 3 4 3 4 0 14 3 25 0 1 4 1 3 0 3 4 3 1 3 15 3 13 3 24 4 8 3 4 3 3 3 12 3 12 3 7 4 8 3 5 3 1 3 2 0 17 3 1 3 11 3 6 4 11 3 9 3 1 3 4 3 3 3 5 0 7 0 1 4 6 3 4 3 3 0 14 3 10 3 5 3 4 3 5 4 11 3 4 3 11 0 4 3 1 3 2 3 4 0 1 4 3 3 1 3 6 3 1 3 2 3 9 3 0 4 11 3 1 3 5 3 10 3 7 3 7 4 2 3 2 3 1 3 1 3 4 3 2 3 3 4 11 3 1 3 0 3 3 3 5 3 0 4 3 3 5 3 2 3 2429 4287 100 MP stroke 6 3 3 3 14 3 2 4 0 3 5 3 3 3 5 3 3 3 6 4 4 3 6 3 10 0 2 3 2 3 3 3 0 3 1 0 1 4 4 0 7 0 4 3 0 3 3 3 1 3 3 3 0 4 7 3 2 3 2 3 14 3 4 3 8 3 1 4 1 3 1 0 3 3 2 3 1 3 8 0 2 3 1 4 3 3 1 3 6 3 7 3 13 3 6 3 6 4 1 3 0 3 1 3 3 3 3 3 3 4 6 3 1 3 3 3 4 3 1 3 3 3 1 4 1 3 6 3 9 3 3 3 4 3 3 4 1 3 3 3 0 3 8 3 2 3 9 3 1 4 1 3 1 3 3 3 1 3 4 3 5 4 31 3 3 3 2 3 4 3 2 3 1 3 6 4 4 3 2 3 1 3 6 3 1 3 13 4 4 3 1 3 2 3 8 0 10 3 2036 3997 100 MP stroke 6 3 2 3 2 4 4 3 5 3 0 3 2 3 7 3 3 4 0 3 8 3 5 3 2 3 3 3 8 3 10 4 8 3 0 3 0 3 7 3 0 3 1 4 1 3 4 3 14 3 3 3 9 3 1 3 2 4 4 3 2 3 1 3 7 3 6 3 3 4 3 3 0 3 4 3 5 3 0 3 0 3 2 4 2 3 3 3 6 3 7 3 5 3 4 4 5 3 8 3 3 3 0 3 8 3 12 3 4 4 1 3 1 3 0 3 0 3 9 3 0 4 3 3 6 3 0 3 0 3 3 3 2 3 3 4 9 3 9 3 2 0 1 3 6 3 1 3 1 4 1 3 5 3 2 3 2 3 3 3 2 3 6 4 1 3 1 3 9 3 7 3 4 3 7 4 8 3 4 3 5 3 5 3 1 3 8 3 5 4 2 3 4 3 1 3 2 3 1663 3688 100 MP stroke 0 3 1 4 0 3 20 3 3 3 1 3 2 3 6 3 5 4 4 3 1 3 3 3 2 3 2 3 1 4 3 3 6 3 1 3 7 3 1 3 8 3 4 4 11 3 10 3 2 3 16 0 0 3 3 3 6 4 12 3 9 3 1 3 9 3 8 3 10 3 5 4 2 3 2 3 7 3 13 3 4 3 12 3 6 4 3 3 15 3 19 3 1 3 4 3 20 4 8 3 0 3 6 3 6 3 34 3 12 3 3 4 1 3 20 3 9 3 13 0 32 3 13 3 7 4 9 3 41 3 1 3 49 3 9 3 2 3 2 4 2 3 7 3 25 3 4 3 7 3 23 4 26 3 8 3 6 3 9 3 28 3 13 3 3 4 90 3 48 3 84 3 27 3 27 3 15 4 8 3 26 3 40 3 11 3 115 3 35 3 103 0 40 4 61 3 32 3 172 3385 100 MP stroke 11 0 140 3 9 3 12 1 0 3378 5 MP stroke SO 36 -9 9 -8 4 -9 28 -9 15 -9 23 -8 4 -9 1 -9 4 -9 1 -8 4 -9 14 -9 0 -9 2 -8 2 -9 1 -9 4 -9 7 -8 0 -9 14 -9 1 -9 0 -8 8 -9 0 -9 0 -9 3 -8 3 -9 2 -9 7 -9 1 -8 4 -9 4 -9 1 -9 4 -8 2 -9 2 -9 0 -9 4 -8 3 -9 3 -9 1 -9 1 -8 13 -9 1 -9 1 -9 8 -8 1 -9 5 -9 3 -9 6 -8 6 -9 6 -9 2 -9 3 -8 0 -9 1 -9 1 -9 0 -8 0 -9 2 -9 0 -9 2 -8 3 -9 1 -9 1 -9 2 -8 1 -9 1 -9 0 -9 1 -8 1 -9 2 -9 1 -9 1 -8 6 -9 3 -9 0 -9 1 -8 1 -9 6 -9 0 -9 1 -8 1 -9 1 -9 1 -9 3 -8 2 -9 1 -9 1 -9 1 -8 3 -9 4 -9 1 -9 6 -8 1 -9 4 -9 0 -9 0 -8 7 -9 4841 1255 100 MP stroke 2 -9 1 -9 1 -8 1 -9 4 -9 1 -9 2 -8 4 -9 1 -9 2 -9 1 -8 1 -9 1 -9 3 -9 2 -8 0 -9 2 -9 2 -9 7 -8 0 -9 1 -9 0 -9 1 -8 1 -9 1 -9 8 -9 0 -8 4 -9 6 -9 1 -9 1 -8 1 -9 1 -9 5 -9 0 -8 4 -9 1 -9 1 -9 0 -8 1 -9 1 -9 1 -9 0 -8 1 -9 2 -9 4 -9 2 -8 0 -9 6 -9 3 -9 1 -8 4 -9 1 -9 1 -9 5 -8 2 -9 1 -9 2 -9 2 -8 1 -9 8 -9 2 -9 3 -8 4 -9 3 -9 3 -9 0 -8 1 -9 4 -9 7 -9 1 -8 1 -9 1 -9 1 -9 0 -8 3 -9 0 -9 1 -9 7 -8 0 -9 1 -9 0 -9 1 -8 2 -9 2 -9 4 -9 2 -8 2 -9 0 -9 0 -9 1 -8 2 -9 0 -9 3 -9 1 -8 4 -9 0 -9 4 -9 0 -8 4646 2121 100 MP stroke 0 -9 2 -9 1 -9 0 -8 2 -9 1 -9 3 -9 1 -8 1 -9 4 -9 0 -9 4 -8 3 -9 3 -9 0 -9 5 -8 2 -9 3 -9 3 -9 3 -8 1 -9 0 -9 2 -9 0 -8 1 -9 2 -9 0 -9 2 -8 0 -9 2 -9 6 -9 2 -8 2 -9 3 -9 3 -9 0 -8 3 -9 1 -9 2 -9 0 -8 1 -9 3 -9 3 -9 1 -8 1 -9 1 -9 3 -9 1 -8 5 -9 0 -9 2 -9 1 -8 0 -9 0 -9 0 -9 6 -8 1 -9 1 -9 1 -9 2 -8 1 -9 3 -9 5 -9 4 -8 0 -9 1 -9 0 -9 3 -8 1 -9 0 -9 4 -9 16 -8 1 -9 2 -9 1 -9 1 -8 2 -9 0 -9 1 -9 1 -8 3 -9 5 -9 2 -9 2 -8 1 -9 0 -9 13 -9 1 -8 5 -9 3 -9 0 -9 0 -8 1 -9 7 -9 1 -9 11 -8 1 -9 3 -9 1 -9 4433 2988 100 MP stroke 1 -8 2 -9 2 -9 0 -9 1 -8 0 -9 1 -9 3 -9 1 -8 1 -9 0 -9 0 -9 2 -8 2 -9 0 -9 1 -9 0 -8 5 -9 5 -9 3 -9 11 -8 0 -9 4 -9 0 -9 7 -8 5 -9 5 -9 0 -9 2 -8 0 -9 5 -9 1 -9 1 -8 5 -9 1 -9 0 -9 2 -8 4 -9 1 -9 6 -9 1 -8 3 -9 1 -9 4 -9 0 -8 2 -9 0 -9 2 -9 1 -8 1 -9 3 -9 0 -9 2 -8 4 -9 2 -9 3 -9 6 -8 7 -9 1 -9 1 -9 0 -8 1 -9 6 -9 3 -9 1 -8 0 -9 7 -9 0 -9 2 -8 1 -9 0 -9 4 -9 3 -8 2 -9 8 -9 5 -9 2 -8 5 -9 4 -9 14 -9 1 -8 0 -9 5 -9 4 -9 1 -8 6 -9 2 -9 7 -9 0 -8 7 -9 7 -9 14 -9 15 -8 1 -9 6 -9 1 -9 5 -8 0 -9 1 -9 4148 3854 100 MP stroke 26 -9 0 -8 15 -9 5 -9 4 -9 3 -8 0 -9 15 -9 15 -9 12 -8 2 -9 0 -9 11 -9 48 -8 8 -9 11 -9 11 -9 21 -8 2 -9 14 -9 26 -9 21 -8 2 -9 19 -9 8 -9 11 -8 7 -9 8 -9 4 -9 26 -8 31 -9 25 -9 7 -9 42 -8 66 -9 25 -9 62 -9 12 -8 1 -9 34 -9 1 -9 3 -8 23 -9 5 0 9 -9 15 -9 8 -8 3 -9 56 -9 28 0 17 -9 2 -8 7 0 36 -9 2 -9 1 0 22 0 7 -9 3 -8 1 -9 24 0 4 -9 3 0 15 0 10 -9 9 -8 3 -9 10 0 8 0 4 0 6 -9 4 0 19 0 29 -9 5 0 1 0 8 -8 7 0 3 0 11 -9 28 0 5 0 4 0 1 0 13 0 3 0 41 0 6 0 14 0 6 0 1 -9 10 -9 11 0 8 0 1 0 20 0 14 0 4 0 4 -8 2862 4431 100 MP stroke 14 0 25 -9 1 0 1 0 4 0 1 0 15 0 13 0 24 0 8 0 4 0 3 0 12 0 12 0 7 0 8 0 5 0 1 0 2 -9 17 0 1 0 11 0 6 0 11 0 9 0 1 0 4 0 3 0 5 -9 7 -8 1 0 6 0 4 0 3 -9 14 0 10 0 5 0 4 0 5 0 11 0 4 0 11 -9 4 0 1 0 2 0 4 -9 1 0 3 0 0 -8 1 0 6 0 1 0 2 0 9 0 11 0 1 0 5 0 10 0 7 0 7 0 2 0 2 0 1 0 1 0 4 0 2 0 3 0 11 0 1 0 3 0 5 0 3 0 5 0 2 0 6 0 3 0 14 0 2 0 5 0 3 0 5 0 3 0 6 0 4 0 6 0 10 -9 2 0 2 0 3 0 1 -9 1 0 4 -9 7 -8 4 0 3 0 1 0 3 0 7 0 2 0 2322 4536 100 MP stroke 2 0 14 0 4 0 8 0 1 0 1 0 1 -9 3 0 2 0 1 0 8 -9 2 0 1 0 3 0 1 0 6 0 7 0 13 0 6 0 6 0 1 0 1 0 3 0 3 0 3 0 6 0 1 0 3 0 4 0 1 0 3 0 1 0 1 0 6 0 9 0 3 0 4 0 3 0 1 0 3 0 8 0 2 0 9 0 1 0 1 0 1 0 3 0 1 0 4 0 5 0 31 0 3 0 2 0 4 0 2 0 1 0 6 0 4 0 2 0 1 0 6 0 1 0 13 0 4 0 1 0 2 0 8 -9 10 0 6 0 2 0 2 0 4 0 5 0 2 0 7 0 3 0 8 0 5 0 2 0 3 0 8 0 10 0 8 0 7 0 1 0 1 0 4 0 14 0 3 0 9 0 1 0 2 0 4 0 2 0 1 0 7 0 6 0 3 0 3 0 1893 4563 100 MP stroke 4 0 5 0 2 0 2 0 3 0 6 0 7 0 5 0 4 0 5 0 8 0 3 0 8 0 12 0 4 0 1 0 1 0 9 0 3 0 6 0 3 0 2 0 3 0 9 0 9 0 2 -8 1 0 6 0 1 0 1 0 1 0 5 0 2 0 2 0 3 0 2 0 6 0 1 0 1 0 9 0 7 0 4 0 7 0 8 0 4 0 5 0 5 0 1 0 8 0 5 0 2 0 4 0 1 0 2 0 1 0 20 0 3 0 1 0 2 0 6 0 5 0 4 0 1 0 3 0 2 0 2 0 1 0 3 0 6 0 1 0 7 0 1 0 8 0 4 0 11 0 10 0 2 0 16 -9 3 0 6 0 12 0 9 0 1 0 9 0 8 0 10 0 5 0 2 0 2 0 7 0 13 0 4 0 12 0 6 0 3 0 15 0 19 0 1 0 4 0 1392 4580 100 MP stroke 20 0 8 0 6 0 6 0 34 0 12 0 3 0 1 0 20 0 9 0 13 -9 32 0 13 0 7 0 9 0 41 0 1 0 49 0 9 0 2 0 2 0 2 0 7 0 25 0 4 0 7 0 23 0 26 0 8 0 6 0 9 0 28 0 13 0 3 0 90 0 48 0 84 0 27 0 27 0 15 0 8 0 26 0 40 0 11 0 115 0 35 0 103 -9 40 0 61 0 32 0 11 -8 140 0 9 0 12 0 0 4606 55 MP stroke gr end eplot epage end showpage %%EndDocument endTexFig 225 678 a Fs(Figure)19 b(2:)27 b(The)19 b(probabilit)o(y)e(of)i(error) g(curv)o(es)h(for)f(missing)e(a)h(fault)g(\(dashed)h(lines\))g(and)225 723 y(misclassifying)11 b(a)j(go)q(o)q(d)f(motor)g(\(solid)g(line\))g (as)h(a)g(function)g(of)f(the)h(lik)o(eliho)q(o)q(d)e(threshold.)225 857 y(quadratic)i(optimization.)225 975 y Fo(Ac)n(kno)n(wledgmen)n(ts) 225 1072 y Fs(The)k(authors)f(wish)g(to)g(thank)g(P)o(eter)i(Da)o(y)o (an)d(for)g(helpful)h(commen)o(ts.)26 b(This)17 b(pro)r(ject)h(w)o(as) 225 1118 y(supp)q(orted)h(in)e(part)h(b)o(y)f(NSF)h(gran)o(t)g(CD)o (A-9404932,)d(b)o(y)j(a)f(gran)o(t)g(from)f(the)j(McDonnell-)225 1164 y(P)o(ew)f(F)m(oundation,)e(b)o(y)i(a)f(gran)o(t)g(from)f(A)m(TR)g (Human)g(Information)f(Pro)q(cessing)k(Researc)o(h)225 1209 y(Lab)q(oratories,)h(b)o(y)f(a)g(gran)o(t)g(from)e(Siemens)h(Corp) q(oration,)i(and)f(b)o(y)f(gran)o(t)h(N00014-94-1-)225 1255 y(0777)d(from)f(the)i(O\016ce)g(of)f(Na)o(v)n(al)f(Researc)o(h.)28 b(Mic)o(hael)16 b(I.)g(Jordan)h(is)g(a)f(NSF)h(Presiden)o(tial)225 1301 y(Y)m(oung)c(In)o(v)o(estigator.)225 1419 y Fo(References)225 1516 y Fs(P)m(.)c(Da)o(y)o(an,)h(G.)f(Hin)o(ton,)h(R.)f(Neal,)h(and)g (R.)f(Zemel)h(\(1995\).)16 b(The)10 b(helmholtz)f(mac)o(hine.)16 b Fr(Neur)n(al)225 1562 y(Computation)e Fp(7)p Fs(:)k(889-904.)225 1633 y(A.)c(Dempster,)h(N.)f(Laird,)g(and)g(D.)g(Rubin.)19 b(Maxim)o(um)11 b(lik)o(eliho)q(o)q(d)i(from)g(incomplete)g(data)225 1678 y(via)g(the)i(EM)f(algorithm)d(\(1977\).)17 b Fr(J.)e(R)n(oy.)k (Statist.)f(So)n(c.)i(B)14 b Fp(39)p Fs(:1{38.)225 1749 y(G.)h(Hin)o(ton,)h(P)m(.)g(Da)o(y)o(an,)f(B.)h(F)m(rey)m(,)g(and)g(R.) g(Neal)g(\(1995\).)24 b(The)17 b(w)o(ak)o(e-sleep)g(algorithm)c(for)225 1794 y(unsup)q(ervised)j(neural)e(net)o(w)o(orks.)k Fr(Scienc)n(e)d Fp(268)p Fs(:)i(1158-1161.)225 1865 y(S.)c(L.)g(Lauritzen)h(and)f(D.)g (J.)g(Spiegelhalter)g(\(1988\).)18 b(Lo)q(cal)12 b(computations)h(with) g(probabili-)225 1911 y(ties)e(on)g(graphical)f(structures)j(and)e (their)g(application)f(to)g(exp)q(ert)i(systems.)18 b Fr(J.)11 b(R)n(oy.)19 b(Statist.)225 1956 y(So)n(c.)g(B)14 b Fp(50)p Fs(:154-227.)225 2027 y(R.)c(Neal.)17 b(Connectionist)12 b(learning)e(of)h(b)q(elief)g(net)o(w)o(orks)h(\(1992\).)k Fr(A)o(rti\014cial)c(Intel)r(ligenc)n(e)f Fp(56)p Fs(:)225 2073 y(71-113.)225 2143 y(J.)h(P)o(earl)g(\(1988\).)17 b Fr(Pr)n(ob)n(abilistic)12 b(R)n(e)n(asoning)i(in)g(Intel)r(ligent)f (Systems)p Fs(.)k(Morgan)12 b(Kaufmann:)225 2189 y(San)i(Mateo.)225 2259 y(T.)19 b(P)o(etsc)o(he,)j(A.)d(Marcan)o(tonio,)g(C.)g(Dark)o(en,) h(S.)f(J.)g(Hanson,)h(G.)e(M.)h(Kuhn,)i(I.)d(San)o(toso)225 2305 y(\(1995\).)g(A)c(neural)g(net)o(w)o(ork)g(autoasso)q(ciator)g (for)g(induction)f(motor)g(failure)g(prediction.)19 b(In)225 2351 y Fr(A)n(dvanc)n(es)c(in)g(Neur)n(al)g(Information)g(Pr)n(o)n(c)n (essing)f(Systems)h(8)p Fs(.)k(MIT)13 b(Press.)225 2421 y(L.)j(K.)g(Saul,)g(T.)g(Jaakk)o(ola,)f(and)h(M.)g(I.)g(Jordan)h (\(1995\).)25 b(Mean)17 b(\014eld)f(theory)h(for)f(sigmoid)225 2467 y(b)q(elief)e(net)o(w)o(orks.)k Fr(M.I.T.)c(Computational)h(Co)n (gnitive)g(Scienc)n(e)g(T)m(e)n(chnic)n(al)g(R)n(ep)n(ort)f Fp(9501)p Fs(.)p eop %%Trailer end userdict /end-hook known{end-hook}if %%EOF