(original) (raw)
%!PS-Adobe-2.0 %%Creator: dvips 5.516 Copyright 1986, 1993 Radical Eye Software %%Title: paper.dvi %%CreationDate: Fri Jun 7 12:51:57 1996 %%Pages: 9 %%PageOrder: Ascend %%BoundingBox: 0 0 612 792 %%EndComments %DVIPSCommandLine: dvips -o paper.ps paper %DVIPSSource: TeX output 1996.06.07:1251 %%BeginProcSet: tex.pro /TeXDict 250 dict def TeXDict begin /N{def}def /B{bind def}N /S{exch}N /X{S N}B /TR{translate}N /isls false N /vsize 11 72 mul N /hsize 8.5 72 mul N /landplus90{false}def /@rigin{isls{[0 landplus90{1 -1}{-1 1} ifelse 0 0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize mul 0}ifelse TR}if Resolution VResolution vsize -72 div 1 add mul TR matrix currentmatrix dup dup 4 get round 4 exch put dup dup 5 get round 5 exch put setmatrix}N /@landscape{/isls true N}B /@manualfeed{ statusdict /manualfeed true put}B /@copies{/#copies X}B /FMat[1 0 0 -1 0 0]N /FBB[0 0 0 0]N /nn 0 N /IE 0 N /ctr 0 N /df-tail{/nn 8 dict N nn begin /FontType 3 N /FontMatrix fntrx N /FontBBox FBB N string /base X array /BitMaps X /BuildChar{CharBuilder}N /Encoding IE N end dup{/foo setfont}2 array copy cvx N load 0 nn put /ctr 0 N[}B /df{/sf 1 N /fntrx FMat N df-tail}B /dfs{div /sf X /fntrx[sf 0 0 sf neg 0 0]N df-tail}B /E{ pop nn dup definefont setfont}B /ch-width{ch-data dup length 5 sub get} B /ch-height{ch-data dup length 4 sub get}B /ch-xoff{128 ch-data dup length 3 sub get sub}B /ch-yoff{ch-data dup length 2 sub get 127 sub}B /ch-dx{ch-data dup length 1 sub get}B /ch-image{ch-data dup type /stringtype ne{ctr get /ctr ctr 1 add N}if}B /id 0 N /rw 0 N /rc 0 N /gp 0 N /cp 0 N /G 0 N /sf 0 N /CharBuilder{save 3 1 roll S dup /base get 2 index get S /BitMaps get S get /ch-data X pop /ctr 0 N ch-dx 0 ch-xoff ch-yoff ch-height sub ch-xoff ch-width add ch-yoff setcachedevice ch-width ch-height true[1 0 0 -1 -.1 ch-xoff sub ch-yoff .1 add]{ ch-image}imagemask restore}B /D{/cc X dup type /stringtype ne{]}if nn /base get cc ctr put nn /BitMaps get S ctr S sf 1 ne{dup dup length 1 sub dup 2 index S get sf div put}if put /ctr ctr 1 add N}B /I{cc 1 add D }B /bop{userdict /bop-hook known{bop-hook}if /SI save N @rigin 0 0 moveto /V matrix currentmatrix dup 1 get dup mul exch 0 get dup mul add .99 lt{/QV}{/RV}ifelse load def pop pop}N /eop{SI restore showpage userdict /eop-hook known{eop-hook}if}N /@start{userdict /start-hook known{start-hook}if pop /VResolution X /Resolution X 1000 div /DVImag X /IE 256 array N 0 1 255{IE S 1 string dup 0 3 index put cvn put}for 65781.76 div /vsize X 65781.76 div /hsize X}N /p{show}N /RMat[1 0 0 -1 0 0]N /BDot 260 string N /rulex 0 N /ruley 0 N /v{/ruley X /rulex X V}B /V {}B /RV statusdict begin /product where{pop product dup length 7 ge{0 7 getinterval dup(Display)eq exch 0 4 getinterval(NeXT)eq or}{pop false} ifelse}{false}ifelse end{{gsave TR -.1 -.1 TR 1 1 scale rulex ruley false RMat{BDot}imagemask grestore}}{{gsave TR -.1 -.1 TR rulex ruley scale 1 1 false RMat{BDot}imagemask grestore}}ifelse B /QV{gsave transform round exch round exch itransform moveto rulex 0 rlineto 0 ruley neg rlineto rulex neg 0 rlineto fill grestore}B /a{moveto}B /delta 0 N /tail{dup /delta X 0 rmoveto}B /M{S p delta add tail}B /b{S p tail} B /c{-4 M}B /d{-3 M}B /e{-2 M}B /f{-1 M}B /g{0 M}B /h{1 M}B /i{2 M}B /j{ 3 M}B /k{4 M}B /w{0 rmoveto}B /l{p -4 w}B /m{p -3 w}B /n{p -2 w}B /o{p -1 w}B /q{p 1 w}B /r{p 2 w}B /s{p 3 w}B /t{p 4 w}B /x{0 S rmoveto}B /y{ 3 2 roll p a}B /bos{/SS save N}B /eos{SS restore}B end %%EndProcSet %%BeginProcSet: special.pro TeXDict begin /SDict 200 dict N SDict begin /@SpecialDefaults{/hs 612 N /vs 792 N /ho 0 N /vo 0 N /hsc 1 N /vsc 1 N /ang 0 N /CLIP 0 N /rwiSeen false N /rhiSeen false N /letter{}N /note{}N /a4{}N /legal{}N}B /@scaleunit 100 N /@hscale{@scaleunit div /hsc X}B /@vscale{@scaleunit div /vsc X}B /@hsize{/hs X /CLIP 1 N}B /@vsize{/vs X /CLIP 1 N}B /@clip{ /CLIP 2 N}B /@hoffset{/ho X}B /@voffset{/vo X}B /@angle{/ang X}B /@rwi{ 10 div /rwi X /rwiSeen true N}B /@rhi{10 div /rhi X /rhiSeen true N}B /@llx{/llx X}B /@lly{/lly X}B /@urx{/urx X}B /@ury{/ury X}B /magscale true def end /@MacSetUp{userdict /md known{userdict /md get type /dicttype eq{userdict begin md length 10 add md maxlength ge{/md md dup length 20 add dict copy def}if end md begin /letter{}N /note{}N /legal{} N /od{txpose 1 0 mtx defaultmatrix dtransform S atan/pa X newpath clippath mark{transform{itransform moveto}}{transform{itransform lineto} }{6 -2 roll transform 6 -2 roll transform 6 -2 roll transform{ itransform 6 2 roll itransform 6 2 roll itransform 6 2 roll curveto}}{{ closepath}}pathforall newpath counttomark array astore /gc xdf pop ct 39 0 put 10 fz 0 fs 2 F/|______Courier fnt invertflag{PaintBlack}if}N /txpose{pxs pys scale ppr aload pop por{noflips{pop S neg S TR pop 1 -1 scale}if xflip yflip and{pop S neg S TR 180 rotate 1 -1 scale ppr 3 get ppr 1 get neg sub neg ppr 2 get ppr 0 get neg sub neg TR}if xflip yflip not and{pop S neg S TR pop 180 rotate ppr 3 get ppr 1 get neg sub neg 0 TR}if yflip xflip not and{ppr 1 get neg ppr 0 get neg TR}if}{noflips{TR pop pop 270 rotate 1 -1 scale}if xflip yflip and{TR pop pop 90 rotate 1 -1 scale ppr 3 get ppr 1 get neg sub neg ppr 2 get ppr 0 get neg sub neg TR}if xflip yflip not and{TR pop pop 90 rotate ppr 3 get ppr 1 get neg sub neg 0 TR}if yflip xflip not and{TR pop pop 270 rotate ppr 2 get ppr 0 get neg sub neg 0 S TR}if}ifelse scaleby96{ppr aload pop 4 -1 roll add 2 div 3 1 roll add 2 div 2 copy TR .96 dup scale neg S neg S TR}if}N /cp {pop pop showpage pm restore}N end}if}if}N /normalscale{Resolution 72 div VResolution 72 div neg scale magscale{DVImag dup scale}if 0 setgray} N /psfts{S 65781.76 div N}N /startTexFig{/psf$SavedState save N userdict maxlength dict begin /magscale false def normalscale currentpoint TR /psf$ury psfts /psf$urx psfts /psf$lly psfts /psf$llx psfts /psf$y psfts /psf$x psfts currentpoint /psf$cy X /psf$cx X /psf$sx psf$x psf$urx psf$llx sub div N /psf$sy psf$y psf$ury psf$lly sub div N psf$sx psf$sy scale psf$cx psf$sx div psf$llx sub psf$cy psf$sy div psf$ury sub TR /showpage{}N /erasepage{}N /copypage{}N /p 3 def @MacSetUp}N /doclip{ psf$llx psf$lly psf$urx psf$ury currentpoint 6 2 roll newpath 4 copy 4 2 roll moveto 6 -1 roll S lineto S lineto S lineto closepath clip newpath moveto}N /endTexFig{end psf$SavedState restore}N /@beginspecial{SDict begin /SpecialSave save N gsave normalscale currentpoint TR @SpecialDefaults count /ocount X /dcount countdictstack N}N /@setspecial {CLIP 1 eq{newpath 0 0 moveto hs 0 rlineto 0 vs rlineto hs neg 0 rlineto closepath clip}if ho vo TR hsc vsc scale ang rotate rwiSeen{rwi urx llx sub div rhiSeen{rhi ury lly sub div}{dup}ifelse scale llx neg lly neg TR }{rhiSeen{rhi ury lly sub div dup scale llx neg lly neg TR}if}ifelse CLIP 2 eq{newpath llx lly moveto urx lly lineto urx ury lineto llx ury lineto closepath clip}if /showpage{}N /erasepage{}N /copypage{}N newpath }N /@endspecial{count ocount sub{pop}repeat countdictstack dcount sub{ end}repeat grestore SpecialSave restore end}N /@defspecial{SDict begin} N /@fedspecial{end}B /li{lineto}B /rl{rlineto}B /rc{rcurveto}B /np{ /SaveX currentpoint /SaveY X N 1 setlinecap newpath}N /st{stroke SaveX SaveY moveto}N /fil{fill SaveX SaveY moveto}N /ellipse{/endangle X /startangle X /yrad X /xrad X /savematrix matrix currentmatrix N TR xrad yrad scale 0 0 1 startangle endangle arc savematrix setmatrix}N end %%EndProcSet TeXDict begin 40258431 52099146 1000 300 300 (/tmp_mnt/home/u1/tommi/papers/uai96/paper.dvi) @start /Fa 4 107 df0 D<007001C0038007000700070007000700 070007000700070007000700070007000E001C00F0001C000E0007000700070007000700 07000700070007000700070007000700038001C000700C257D9B13>102 DI106 D E /Fb 6 121 df<0FF001800180030003 000300030006000600060006000C010C010C020C06180EFFFC10117E9015>76 D<007800180018003000300030073018E0306060606060C0C0C0C0C0C841C862D03C700D 117E9010>100 D<040C0000000000705898983030606464683006127E910B>105 D<0F001080218020003E001F0001808080C00083007C00090B7D8A0F>115 D<08181818FF30303030606062646438080F7E8E0C>I<0F381144218C21800180030003 0003084310C73079C00E0B7F8A11>120 D E /Fc 10 106 df<0F000003800001C00001 C00001E00000E00000E00000F000007000007000007800003800003800003800003C0000 7C0000DC00019E00030E00060E000E0F001C0700380700700780E00380C003C0121A7E99 16>21 D<004000400040007E01C2033E07000E001C001C001C001C001C000DF006080BF0 1000300060006000C000C000E000E00078007F003FC00FF001F800380030023001E00F21 7F9911>24 D<03FFE007FFE00FFFC01C3C00381C00701C00601C00E01C00E01C00E01C00 C03800C03800C0700060600061C0001F000013107E8F16>27 D<00040000040000080000 080000080000080000100000100000100000100000FC000727000C21801821803041C070 41C06041C0E041C0E081C0E08180E08380E08300610600610C003938000FC00002000002 000002000002000004000004000004000012217E9917>30 D<0004000C00180018001800 300030003000600060006000C000C000C00180018001800300030003000600060006000C 000C000C00180018001800300030003000600060006000C000C0000E257E9B13>61 D<01FFFC0000380F000038038000380380007003C0007003C0007003C0007003C000E007 8000E0078000E00F0000E01E0001C0380001FFE00001C0000001C0000003800000038000 000380000003800000070000000700000007000000070000000E000000FFE000001A1A7E 9919>80 D<000FE0000038380000E00E0001C00700078007000F0007800E0003801C0003 803C0003C0380003C0780003C0780003C0F0000780F0000780F0000780F0000700F0000F 00F0000E00F0001E00F0001C0070703800708070003904E0001D07C0000F0F000003FC04 000006040000060C00000618000007F8000007F0000007E0000003C0001A217E991E>I< 001F080060D800803801003803001006001006001006001006000007000007C00003FC00 01FF00007F800007C00001C00001C00000C02000C02000C0600180600180600300700600 CC0C0083F000151A7E9917>83 D<03E00E101810381070107020FFC0E000E000E000E000 E008E010602030C01F000D107E8F12>101 D<0300038003000000000000000000000000 0000003C004E004E008E008E009C001C001C0038003800390071007100720072003C0009 1A7E990D>105 D E /Fd 10 58 df<1F00318060C04040C060C060C060C060C060C060C0 60C060404060C031801F000B107F8F0F>48 D<0C003C00CC000C000C000C000C000C000C 000C000C000C000C000C000C00FF8009107E8F0F>I<1F00618040C08060C06000600060 00C00180030006000C00102020207FC0FFC00B107F8F0F>I<1F00218060C060C000C000 8001800F00008000400060C060C060804060801F000B107F8F0F>I<0300030007000F00 0B001300330023004300C300FFE003000300030003001FE00B107F8F0F>I<20803F002C 002000200020002F0030802040006000600060C06080C061801F000B107F8F0F>I<0780 184030C060C06000C000CF00F080E040C060C060C060406060C030801F000B107F8F0F> I<40007FE07FC08080808001000200040004000C0008000800180018001800180018000B 117E900F>I<1F00318060C060C060C071803F000F00338061C0C060C060C06040406080 1F000B107F8F0F>I<1F00318060C0C040C060C060C06040E021E01E600060004060C060 8043003E000B107F8F0F>I E /Fe 10 113 df0 D<040004000400C460E4E03F800E003F80E4E0C4600400040004000B0D7E8D11>3 D21 D<0F001E003BC061806060804040310040801A 0020800E0020800E0020800E0020800B0020401180404020C0C030C07B800F001E001B0D 7E8C21>49 D<03FC0FFC1C003000600060006000C000C000FFFCFFFCC000C00060006000 600030001C000FFC03FC0E147D9016>I<0003000300060006000C001800180030003000 6000C000C0018001800300030006000C000C0018001800300060006000C0004000101A7C 9300>54 D<00E00300060006000600060006000600060006000600060006001C00F0001C 0006000600060006000600060006000600060006000600030000E00B1D7E9511>102 DI106 D<00000040000000C000000180000001800000030000000300000006000000060000000C 000000180000001800000030000000300000006000000060003000C000D800C000180180 000C0180000C0300000603000006060000030C0000030C0000019800000198000000F000 0000F0000000600000006000001A1E7F811B>112 D E /Ff 6 113 df<18F818181818181818181818FF080D7D8C0E>49 D<3E00418080C0C0C000C000C001 8003000400084030407F80FF800A0D7E8C0E>I91 D93 D<3C00620003001F006300C300C320C3203FC00B097E880E>97 D112 D E /Fg 2 55 df<03F80FF81C00300060006000C000FFF8FFF8C0006000600030001C00 0FF803F80D107D8C14>50 D<0060006000C000C0018003000300060006000C000C001800 1800300060006000C00040000B127B8D00>54 D E /Fh 5 108 df<0FF83FF061806180 C180C180C30046003C000D097E8811>27 D<1FC00600060006000C000C000C000C001800 1804180C18083038FFF00E0E7E8D14>76 D<0808000000007098B0303060646870060F7D 8E0B>105 D<00C0008000000000000000000F0011801180030003000300030006000600 060006008C00F0000A137F8E0C>I<7800180018001800300030C03360344078007E0063 006320C340C1800B0E7E8D10>I E /Fi 26 113 df<0006000C001800300070006000C0 01C0018003800300070006000E000C001C001C0018003800380038003000700070007000 700070007000E000E000E000E000E000E000E000E000E000E000E000E000E000E000E000 E000E000E000700070007000700070007000300038003800380018001C001C000C000E00 0600070003000380018001C000C00060007000300018000C00060F4A788119>16 DI<0000300000600000C0000180000300000700000E00000C00 00180000380000300000700000E00000C00001C000018000038000038000030000070000 0600000E00000E00000C00001C00001C00001C0000180000380000380000380000380000 700000700000700000700000700000700000700000E00000E00000E00000E00000E00000 E00000E00000E00000E00000E00000E00000E00000E00000E00000E00000E00000E00000 E00000E00000E00000E00000700000700000700000700000700000700000700000380000 3800003800003800001800001C00001C00001C00000C00000E00000E0000060000070000 03000003800003800001800001C00000C00000E000007000003000003800001800000C00 000E000007000003000001800000C0000060000030146377811F>IIII<0000700001F00003C0000780000E 00001C0000380000700000700000F00000E00000E00000E00000E00000E00000E00000E0 0000E00000E00000E00000E00000E00000E00000E00000E00000E00000E00000E00000E0 0000E00000E00000E00000E00000E00000E00000E00000E00000E00000E00000E00001C0 0001C00001C0000380000700000600000E0000380000700000C000007000003800000E00 0006000007000003800001C00001C00001C00000E00000E00000E00000E00000E00000E0 0000E00000E00000E00000E00000E00000E00000E00000E00000E00000E00000E00000E0 0000E00000E00000E00000E00000E00000E00000E00000E00000E00000E00000E00000E0 0000F000007000007000003800001C00000E000007800003C00001F000007014637B811F >26 DI<00000C0000180000380000300000600000 E00000C00001C0000380000380000700000700000E00000E00001C00001C000038000038 0000780000700000F00000F00000E00001E00001E00003C00003C00003C00003C0000780 000780000780000F80000F00000F00000F00001F00001F00001E00001E00001E00003E00 003E00003E00003E00003C00003C00003C00007C00007C00007C00007C00007C00007C00 007C00007C0000780000780000F80000F80000F80000F80000F80000F80000F80000F800 00F80000F80000F80000F80000F80000F80000F80000F80000F80000164B748024>48 DIIII<001C001C001C001C001C001C001C001C001C001C001C 001C001C001C001C001C001C001C001C001C001C001C001C001C001C001C001C001C001C 001C001C001C001C001C001C001C001C001C001C001C001C001C001C001C001C001C001C 001C001C001C001C001C001C001C001C001C001C001C001C001C001C001C001C001C001C 001C001C001C001C001C001CFFFCFFFCFFFC0E4A80811C>I57 D<007C007C007C007C007C007C007C007C007C007C007C007C007C007C007C007C007C00 7C007C007C007C007C007C00F800F800F800F001F001E003C007C007800F001E007C00F0 00C0000E25798025>59 D61 D64 D<00007C00007C00007C00007C00007C00007C 00007C00007C00007C00007C00007C00007C00007C00007C00007C00007C00007C000078 0000780000F80000F80000F80000F80000F80000F80000F80000F80000F00000F00000F0 0001F00001F00001F00001F00001E00001E00001E00003E00003E00003C00003C00003C0 0007C0000780000780000780000F00000F00000F00000F00001E00001E00001C00003C00 003C0000380000780000700000700000E00000E00001C00001C000038000038000070000 0700000E00000C00001C0000180000300000700000600000C00000164B7F8224>I80 DI88 DI104 DI<00 000000020000000006000000000C000000000C0000000018000000001800000000300000 0000300000000060000000006000000000C000000000C000000001800000000180000000 03000000000300000000060000000006000000000C000000000C00000000180000000018 0000000030000000003000000000600008000060001C0000C0003C0000C000CE00018000 0E000180000E0003000007000300000700060000038006000003800C000001C00C000001 C018000001E018000000E030000000E0300000007060000000706000000038C000000038 C00000001D800000001D800000001F000000000F000000000E000000000600000027327C 812A>112 D E /Fj 27 121 df<0F80180020006000C000FE00C00080008000C000C000 61003E00090D7D8C0E>15 D<038004400C601860106030603060606060607FE0FFC0C0C0 C0C0C180C180C100C300C600440038000B147E9310>18 D<1C0006000300030003800180 018001C000C000C000E001E0037006300C30181830186018C00CC00E0F147E9314>21 D<0100010001F006F00C00180030003000300010001FC01FC0300060006000C000C000C0 00E00078003E000F8001C000C0088007000C1A7F930F>24 D<3FFE7FFEC440844004400C C008C008C018C018C030C030E020400F0D7E8C13>I<03FE0FFE18603030603060306030 C060C060C0C0408023001E000F0D7E8C13>27 D<001000100020002000200020004001F0 064C18463082208360836083C1064106610C611832700FC0020002000400040004000400 101A7E9314>30 D<40E06020202040408003097D820A>59 D<07FFFC00E01C01C00C01C0 0C01C00C01C00803820803820003820003FE000704000704000704000700000E00000E00 000E00000E00001C0000FFC00016147F9315>70 D<07FC7FC000E00E0001C01C0001C01C 0001C01C0001C01C0003803800038038000380380003FFF8000700700007007000070070 00070070000E00E0000E00E0000E00E0000E00E0001C01C000FF8FF8001A147F931B>72 D<07FE0000E00001C00001C00001C00001C0000380000380000380000380000700000700 000700000700200E00400E00400E00800E01801C0780FFFF0013147F9317>76 D<07E01FC000E0060001700400017004000138040001380400021C0800021C0800020E08 00020E0800040710000407100004039000040390000801E0000801E0000800E0000800E0 0018004000FE0040001A147F931A>78 D<07FFE000E07001C01801C01C01C01C01C01C03 80380380380380700381C007FF000700000700000700000E00000E00000E00000E00001C 0000FF800016147F9315>80 D<003F0001C1C00300E00600700C00301800383800387000 38700038700038E00070E00070E00070E000E0E000C06001C071C3803A26001C3C0007F0 400030400030C0003180003F80001F00000E00151A7E931A>I<00F88003058006030004 01000C01000C01000C00000E00000FE00007F80001FC00001C00000E00000E00400C0040 0C00400800601800D020008FC00011147E9314>83 D<007C000C00180018001800180030 07B00C7010703060606060606060C0C0C0C8C0C841C862D03C700E147E9311>100 D<07800C401020304060407F8060004000C0004020604021801E000B0D7E8C10>I<0038 006C007C004C00C000C000C007F800C00180018001800180018003000300030003000300 0300060006006600E400C80070000E1A7F9310>I<3E0006000C000C000C000C00180019 E01E30183038303030303030306060606460C460C4C0C8C0700E147E9313>104 D<06070600000000384C4C8C98181830326262643808147F930C>I<0060007000600000 000000000000038004C0046008C008C000C000C001800180018001800300030003000300 6600E600CC0078000C1A81930E>I<3E0006000C000C000C000C001800187018B8193832 30340038003E006300631063106310C320C1C00D147E9312>I<30F87C00590C86004E0D 06009C0E0600980C0600180C0600180C060030180C0030180C8030181880301818806030 190060300E00190D7F8C1D>109 D<30F8590C4E0C9C0C980C180C180C30183019303130 316032601C100D7F8C15>I<0700188019C0318038001E000F0003804180E180C1008200 7C000A0D7E8C10>115 D<02000600060006000C00FF800C000C00180018001800180030 0031003100320032001C0009127F910D>I<0E3C13CE238E430C43000300030006000608 C608E610CA2071C00F0D7F8C13>120 D E /Fk 23 118 df<01020408103020606040C0 C0C0C0C0C0C0C0C0C040606020301008040201081E7E950D>40 D<80402010080C040606 0203030303030303030303020606040C0810204080081E7E950D>I<0060000060000060 00006000006000006000006000006000006000006000FFFFF0FFFFF00060000060000060 0000600000600000600000600000600000600000600014167E9119>43 D<0F0030C0606060604020C030C030C030C030C030C030C030C030C03040206060606030 C00F000C137E9211>48 D<0C001C00EC000C000C000C000C000C000C000C000C000C000C 000C000C000C000C000C00FFC00A137D9211>I<1F0060C06060F070F030603000700070 006000C001C00180020004000810101020207FE0FFE00C137E9211>I<0FC03070703870 3870380038003000E00FC0007000380018001C601CF01CF018E03860701FC00E137F9211 >I<006000E000E00160026006600C600860106020606060C060FFFC0060006000600060 006003FC0E137F9211>I<60607FC07F8044004000400040004F0070C040E00060007000 70E070E070E06040E021C01F000C137E9211>I<07C00C201070207060006000C000CF00 D0C0E060C020C030C030C03040306020206010C00F000C137E9211>I<40007FFC7FF840 1080108020004000800100010003000200060006000E000E000E000E000E0004000E147E 9311>I<0FC0107020186018601870183C303F600F800FE031F06078C01CC00CC00CC00C 601830300FC00E137F9211>I<0F00308060404060C020C030C030C0304030607030B00F 30003000200060E040E08041003E000C137E9211>I<7FFFE0FFFFF00000000000000000 00000000000000000000FFFFF07FFFE0140A7E8B19>61 D66 D91 D93 D<7F00E1C0E0404060006007E03860 6060C060C064C06461E43E380E0D7E8C11>97 D<00780018001800180018001800180F98 187820386018C018C018C018C018C0186018203810580F9E0F147F9312>100 D110 D<0FC0186020106018C00CC00CC00CC00CC00C6018601838700FC00E0D7F8C11>II117 D E /Fl 32 121 df<01F807000C0018003800300070007FC0E000E000E000 E000E00060006000300018600F800D127E9111>15 D<007800CC0186030606060E060C06 1C07180738063806300E700E700E7FFEE01CE01CE01CE018E038C038C070C060C060C0C0 C180618062003C00101D7E9C13>18 D<07800001C00000E00000E00000F0000070000070 00007000003800003800003800003C00001C00001C00001E00000E00001E00003F000067 0000C7000187800303800703800E03801C03C03801C07001C0E001E06000E0131D7E9C18 >21 D<0180300380700380700380700700E00700E00700E00700E00E01C00E01C00E01C0 0E01C01C03881C03881C03881E07883E19903BE0E0380000380000700000700000700000 700000E00000E00000C00000151B7F9119>I<001000001000001000001F8000F08001CF 000380000700000E00000E00000E00000E00000E00000E000006FC0003840006FC000800 00180000300000200000600000600000E00000E00000E000007000007C00003F80001FE0 0007F80000FC00003E00000C00000C0001080000F0001125809C12>24 D<01FFF803FFF80FFFF01E1E00180E00380600700600700600E00E00E00E00E00E00E00C 00E01C00E01800E0300060600030C0001F000015127E9118>27 D<000100000200000200 000200000200000400000400000400000400000800000800007E0001C9800710E00C1060 181070381030702030702030E02070E02070E04070E040E0E040E06041C0608380308600 1C9C0007E00001000001000001000001000002000002000002000002000014257E9C19> 30 D<60F0F06004047C830C>58 D<60F0F0701010101020204080040C7C830C>I<000100 03000600060006000C000C000C0018001800180030003000300060006000C000C000C001 8001800180030003000300060006000C000C000C00180018001800300030003000600060 006000C000C00010297E9E15>61 DI<01FFFFF8003C0078003800180038001000380010003800100070 001000700010007010100070100000E0200000E0200000E0600000FFE00001C0400001C0 400001C0400001C040000380804003800040038000800380008007000100070001000700 0300070006000E003E00FFFFFC001D1C7E9B1F>69 D<01FFFFF0003C00F0003800300038 002000380020003800200070002000700020007010200070100000E0200000E0200000E0 600000FFE00001C0400001C0400001C0400001C040000380800003800000038000000380 0000070000000700000007000000070000000F000000FFF000001C1C7E9B1B>I<01FFC3 FF80003C0078000038007000003800700000380070000038007000007000E000007000E0 00007000E000007000E00000E001C00000E001C00000E001C00000FFFFC00001C0038000 01C003800001C003800001C0038000038007000003800700000380070000038007000007 000E000007000E000007000E000007000E00000F001E0000FFE1FFC000211C7E9B23>72 D<01FFE0003C0000380000380000380000380000700000700000700000700000E00000E0 0000E00000E00001C00001C00001C00001C0000380020380020380020380040700040700 0C0700180700380E00F0FFFFF0171C7E9B1C>76 D<01FC00FF80001C001C00002E001800 002E001000002E0010000027001000004700200000430020000043802000004380200000 81C040000081C040000081C040000080E040000100E08000010070800001007080000100 70800002003900000200390000020039000002001D000004001E000004000E000004000E 00000C000E00001C00040000FF80040000211C7E9B21>78 D<01FFFF00003C03C0003800 E0003800F00038007000380070007000F0007000F0007000F0007000E000E001E000E003 C000E0078000E01E0001FFF00001C0000001C0000001C000000380000003800000038000 0003800000070000000700000007000000070000000F000000FFE000001C1C7E9B1B>80 D<0003F800000E0E000038038000E001C001C001C0038000E0070000E00F0000F01E0000 F01C0000F03C0000F03C0000F0780000F0780000F0780000F0F00001E0F00001E0F00001 E0F00003C0F00003C0F0000380F0000780F0000F00703C0E0070421C0038823800388270 001C83C0000787810001FF0100000303000003020000038E000003FC000003F8000001F8 000001E0001C257E9C21>I<000FC100303300400F008006018006030006030006060004 06000407000007000007800003F00001FF0000FFC0003FE00003E00000F0000070000030 0000302000302000306000606000606000C0600080F00300CC060083F800181E7E9C19> 83 D<01FFC0FF80001E003C00001E003000000E002000000F0040000007008000000701 0000000782000000038400000003C800000001D000000001F000000000E000000000E000 000000F00000000170000000027000000004380000000838000000103C000000201C0000 00401E000000800E000001800E000003000F000006000700001E000F8000FF803FF00021 1C7F9B22>88 D<01E3000717000C0F00180F00380E00300E00700E00700E00E01C00E01C 00E01C00E01C00E03880E03880E038806078803199001E0E0011127E9116>97 D<3F00070007000E000E000E000E001C001C001C001C0039E03A303C1838187018701C70 1C701CE038E038E038E030E070E060E0C061C023001E000E1D7E9C12>I<01F0030C0E0C 1C1E383C301870007000E000E000E000E000E000E0046008601030601F800F127E9112> I<01F007080C0818043808300870307FC0E000E000E000E000E000E0046008601030600F 800E127E9113>101 D<007180018B800307800607800E07000C07001C07001C0700380E 00380E00380E00380E00381C00381C00381C00183C0008F8000738000038000038000070 00607000F06000F0E000E180007E0000111A7F9114>103 D<01C003C003C00180000000 0000000000000000001C00270047004700870087000E000E001C001C001C003800388038 807080710032001C000A1C7E9B0E>105 D<0007000F000F000600000000000000000000 00000070009C010C020C021C041C001C001C0038003800380038007000700070007000E0 00E000E000E001C061C0F180F300E6007C001024809B11>I<0FC00001C00001C0000380 000380000380000380000700000700000700000700000E07000E18800E21C00E23C01C47 801C83001D00001E00003F800039C00038E00038E00070E10070E10070E10070E200E062 00603C00121D7E9C16>I<381F81F04E20C6184640E81C4680F01C8F00F01C8E00E01C0E 00E01C0E00E01C1C01C0381C01C0381C01C0381C01C0703803807138038071380380E138 0380E2700700643003003820127E9124>109 D<381F004E61804681C04701C08F01C08E 01C00E01C00E01C01C03801C03801C03801C0700380710380710380E10380E2070064030 038014127E9119>I<01C206260C1E181E381C301C701C701CE038E038E038E038E070E0 70E07060F023E01CE000E000E001C001C001C001C003C01FF80F1A7E9113>113 D<07878008C84010F0C020F1E020E3C040E18000E00000E00001C00001C00001C00001C0 00638080F38080F38100E5810084C60078780013127E9118>120 D E /Fm 23 122 df<3078F06005047C830C>46 D<0000200000600000600000E00001E0 0001E0000270000270000470000870000870001070001070002070002070004070008070 00FFF00100380100380200380400380400380C00381C0038FF01FF181A7E991D>65 D<000F8200706200C01603801E07000C0E000C1C000C18000C3800083000087000007000 00E00000E00000E00000E00000E00020E00020E00020E000406000406000803001001006 000C180003E000171A7A991B>67 D<01FF80003800003800003800007000007000007000 00700000E00000E00000E00000E00001C00001C00001C00001C000038000038000038000 0380000700000700000700000700000E0000FFE000111A7E990F>73 D<03FFF800701C00700600700700E00700E00700E00700E00701C00E01C00E01C01C01C0 3803807003FF800380000380000700000700000700000700000E00000E00000E00000E00 001C0000FFC000181A7D991A>80 D<3FFFFC381C0C201C04401C04403804803804803804 80380400700000700000700000700000E00000E00000E00000E00001C00001C00001C000 01C000038000038000038000038000078000FFF800161A79991B>84 D<7FE0FF0E00380E00100E00101C00201C00201C00201C00203800403800403800403800 40700080700080700080700080E00100E00100E00100E00200E00200E004006008006010 003860000F8000181A78991D>I<03CC0E2E181C381C301C701CE038E038E038E038C072 C072C07260F261341E180F107C8F14>97 D<01F006080C181838301070006000E000E000 E000E000E008E010602030C01F000D107C8F12>99 D<001F800003800003800003800007 00000700000700000700000E00000E0003CE000E2E00181C00381C00301C00701C00E038 00E03800E03800E03800C07200C07200C0720060F2006134001E1800111A7C9914>I<01 E006181C08380870087010FFE0E000E000E000E000E0086010602030C01F000D107C8F12 >I<000700001980001B80003B0000300000300000700000700000700000700007FF0000 E00000E00000E00000E00000E00001C00001C00001C00001C00001C00003800003800003 8000038000038000070000070000070000660000E40000CC0000700000112181990C>I< 00F300038B800607000E07000C07001C0700380E00380E00380E00380E00301C00301C00 301C00183C0018780007B800003800003800007000607000E0E000C1C0007F000011177E 8F12>I<1F80000380000380000380000700000700000700000700000E00000E00000E7C 000F86001E07001E07001C07001C0700380E00380E00380E00381C00701C80701C807038 80703900E01900600E00111A7E9914>I<030706000000000000384C4E8E9C9C1C383870 7272E2E4643808197C980C>I<3F0707070E0E0E0E1C1C1C1C3838383870707070E4E4E4 E46830081A7D990A>108 D<307C005986009E07009E07009C07009C0700380E00380E00 380E00381C00701C80701C80703880703900E01900600E0011107C8F16>110 D<01F006180C0C180E300E700E600EE00EE00EE00CE01CE018E030606030C01F000F107C 8F14>I<30F059189E389C189C009C0038003800380038007000700070007000E0006000 0D107C8F10>114 D<03E004300830187018601C001F801FC00FE000E00060E060E06080 C041803E000C107D8F10>I<06000E000E000E000E001C001C00FFC01C00380038003800 38007000700070007000E100E100E100E200640038000A177C960D>I<380C304C0E384E 1C388E1C189C1C189C1C181C381038381038381038381070702070702070704030704018 B8800F0F0015107C8F19>119 D<38064C074E0E8E0E9C0E9C0E1C1C381C381C381C7038 70387038307838F00F700070006060E0E1C0C18047003C0010177C8F13>121 D E /Fn 51 123 df<00FC000182000703000607000E02000E00000E00000E00000E0000 0E0000FFFF000E07000E07000E07000E07000E07000E07000E07000E07000E07000E0700 0E07000E07000E07000E07007F0FE0131A809915>12 D<00800100020004000C00080018 003000300030006000600060006000E000E000E000E000E000E000E000E000E000E00060 00600060006000300030003000180008000C00040002000100008009267D9B0F>40 D<8000400020001000180008000C00060006000600030003000300030003800380038003 8003800380038003800380038003000300030003000600060006000C0008001800100020 004000800009267E9B0F>I<000C0000000C0000000C0000000C0000000C0000000C0000 000C0000000C0000000C0000000C0000000C0000000C0000FFFFFF80FFFFFF80000C0000 000C0000000C0000000C0000000C0000000C0000000C0000000C0000000C0000000C0000 000C0000000C0000191A7E951E>43 D<60F0F07010101020204080040B7D830B>II<60F0F06004047D830B>I<03000700FF000700070007000700070007 0007000700070007000700070007000700070007000700070007000700FFF00C187D9713 >49 D<0F80106020304038803CC01CE01C401C003C003800380070006000C00180010002 0004040804100430083FF87FF8FFF80E187E9713>I<01E006100C181838303830007000 6000E000E7C0E860F030F018E018E01CE01CE01C601C601C701830183030186007C00E18 7E9713>54 D<078018603030201860186018601870103C303E600F8007C019F030F86038 401CC00CC00CC00CC00C6008201018600FC00E187E9713>56 D<07801860303070306018 E018E018E01CE01CE01C601C603C303C185C0F9C001C0018001800387030706060402180 1F000E187E9713>I<60F0F060000000000000000060F0F0701010102020408004177D8F 0B>59 D61 D66 D68 D70 D<003F020001C0C60003002E000E001E001C000E001C0006003800060078000200700002 0070000200F0000000F0000000F0000000F0000000F0000000F001FFC070000E0070000E 0078000E0038000E001C000E001C000E000E000E000300160001C06600003F82001A1A7E 991E>I<1FFC00E000E000E000E000E000E000E000E000E000E000E000E000E000E000E0 00E000E000E000E040E0E0E0E0E041C061801E000E1A7D9914>74 D78 D<007F000001C1C000070070000E0038001C001C003C 001E0038000E0078000F0070000700F0000780F0000780F0000780F0000780F0000780F0 000780F0000780F000078078000F0078000F0038000E003C001E001C001C000E00380007 00700001C1C000007F0000191A7E991E>I<0FC21836200E6006C006C002C002C002E000 70007E003FE01FF807FC003E000E00070003800380038003C002C006E004D81887E0101A 7E9915>83 D<7FFFFF00701C0700401C0100401C0100C01C0180801C0080801C0080801C 0080001C0000001C0000001C0000001C0000001C0000001C0000001C0000001C0000001C 0000001C0000001C0000001C0000001C0000001C0000001C0000001C0000001C000003FF E000191A7F991C>I91 D93 D<3F8070C070E0207000 70007007F01C7030707070E070E071E071E0F171FB1E3C10107E8F13>97 DI<07F80C1C381C30087000E000E000E000E000E000E000 7000300438080C1807E00E107F8F11>I<007E00000E00000E00000E00000E00000E0000 0E00000E00000E00000E0003CE000C3E00380E00300E00700E00E00E00E00E00E00E00E0 0E00E00E00E00E00600E00700E00381E001C2E0007CFC0121A7F9915>I<07C01C303018 7018600CE00CFFFCE000E000E000E0006000300438080C1807E00E107F8F11>I<01F003 1807380E100E000E000E000E000E000E00FFC00E000E000E000E000E000E000E000E000E 000E000E000E000E000E007FE00D1A80990C>I<0FCE1873303070387038703870383030 18602FC02000600070003FF03FFC1FFE600FC003C003C003C0036006381C07E010187F8F 13>II<18003C003C001800000000000000000000000000 FC001C001C001C001C001C001C001C001C001C001C001C001C001C001C00FF80091A8099 0A>I<018003C003C001800000000000000000000000000FC001C001C001C001C001C001 C001C001C001C001C001C001C001C001C001C001C001C001C041C0E180E3007E000A2182 990C>IIIII<07E01C38300C700E6006E007E007 E007E007E007E0076006700E381C1C3807E010107F8F13>II<03C2000C260038 1E00300E00700E00E00E00E00E00E00E00E00E00E00E00E00E00700E00700E00381E001C 2E0007CE00000E00000E00000E00000E00000E00000E00007FC012177F8F14>II< 1F2060E04020C020C020F0007F003FC01FE000F080708030C030C020F0408F800C107F8F 0F>I<0400040004000C000C001C003C00FFC01C001C001C001C001C001C001C001C001C 201C201C201C201C200E4003800B177F960F>IIIIII<7FF86070407040E041C041C00380070007000E081C081C0838107010 7030FFF00D107F8F11>I E /Fo 2 51 df<0C000C008C40EDC07F800C007F80EDC08C40 0C000C000A0B7D8B10>3 D<03FE0FFE1C00300060006000C000C000FFFEFFFEC000C000 6000600030001C000FFE03FE0F127D8E15>50 D E /Fp 43 120 df45 D<00180000780001F800FFF800FFF80001F800 01F80001F80001F80001F80001F80001F80001F80001F80001F80001F80001F80001F800 01F80001F80001F80001F80001F80001F80001F80001F80001F80001F80001F80001F800 7FFFE07FFFE013207C9F1C>49 D<03FC000FFF003C1FC07007E07C07F0FE03F0FE03F8FE 03F8FE01F87C01F83803F80003F80003F00003F00007E00007C0000F80001F00003E0000 380000700000E01801C0180380180700180E00380FFFF01FFFF03FFFF07FFFF0FFFFF0FF FFF015207D9F1C>I<00FE0007FFC00F07E01E03F03F03F03F81F83F81F83F81F81F03F8 1F03F00003F00003E00007C0001F8001FE0001FF000007C00001F00001F80000FC0000FC 3C00FE7E00FEFF00FEFF00FEFF00FEFF00FC7E01FC7801F81E07F00FFFC001FE0017207E 9F1C>I<0000E00001E00003E00003E00007E0000FE0001FE0001FE00037E00077E000E7 E001C7E00187E00307E00707E00E07E00C07E01807E03807E07007E0E007E0FFFFFEFFFF FE0007E00007E00007E00007E00007E00007E00007E000FFFE00FFFE17207E9F1C>I<00 0070000000007000000000F800000000F800000000F800000001FC00000001FC00000003 FE00000003FE00000003FE00000006FF000000067F0000000E7F8000000C3F8000000C3F 800000183FC00000181FC00000381FE00000300FE00000300FE00000600FF000006007F0 0000E007F80000FFFFF80000FFFFF800018001FC00018001FC00038001FE00030000FE00 030000FE000600007F000600007F00FFE00FFFF8FFE00FFFF825227EA12A>65 DI<0003 FE0080001FFF818000FF01E38001F8003F8003E0001F8007C0000F800F800007801F8000 07803F000003803F000003807F000001807E000001807E00000180FE00000000FE000000 00FE00000000FE00000000FE00000000FE00000000FE00000000FE000000007E00000000 7E000001807F000001803F000001803F000003801F800003000F8000030007C000060003 F0000C0001F800380000FF00F000001FFFC0000003FE000021227DA128>IIII<0003FE0040001FFFC0C0 007F00F1C001F8003FC003F0000FC007C00007C00FC00003C01F800003C03F000001C03F 000001C07F000000C07E000000C07E000000C0FE00000000FE00000000FE00000000FE00 000000FE00000000FE00000000FE00000000FE000FFFFC7E000FFFFC7F00001FC07F0000 1FC03F00001FC03F00001FC01F80001FC00FC0001FC007E0001FC003F0001FC001FC003F C0007F80E7C0001FFFC3C00003FF00C026227DA12C>I73 D75 DIII<0007FC0000003FFF800000FC07E00003F001F80007E0 00FC000FC0007E001F80003F001F80003F003F00001F803F00001F807F00001FC07E0000 0FC07E00000FC0FE00000FE0FE00000FE0FE00000FE0FE00000FE0FE00000FE0FE00000F E0FE00000FE0FE00000FE0FE00000FE07E00000FC07F00001FC07F00001FC03F00001F80 3F80003F801F80003F000FC0007E0007E000FC0003F001F80000FC07E000003FFF800000 07FC000023227DA12A>II<0007FC0000003FFF800000FC07E00003F001F80007E000FC000F C0007E001F80003F001F80003F003F00001F803F00001F807F00001FC07E00000FC07E00 000FC0FE00000FE0FE00000FE0FE00000FE0FE00000FE0FE00000FE0FE00000FE0FE0000 0FE0FE00000FE0FE00000FE07E00000FC07F00001FC07F00001FC03F00001F803F81F03F 801F83F83F000FC70C7E0007E606FC0003F607F80000FF07E000003FFF80000007FF8020 0000038020000001C020000001E0E0000001FFE0000001FFC0000000FFC0000000FFC000 00007F800000007F000000001E00232C7DA12A>II<01FC0407FF8C1F03FC3C007C7C003C78001C 78001CF8000CF8000CFC000CFC0000FF0000FFE0007FFF007FFFC03FFFF01FFFF80FFFFC 03FFFE003FFE0003FF00007F00003F00003FC0001FC0001FC0001FE0001EE0001EF0003C FC003CFF00F8C7FFE080FF8018227DA11F>I<7FFFFFFF807FFFFFFF807E03F80F807803 F807807003F803806003F80180E003F801C0E003F801C0C003F800C0C003F800C0C003F8 00C0C003F800C00003F800000003F800000003F800000003F800000003F800000003F800 000003F800000003F800000003F800000003F800000003F800000003F800000003F80000 0003F800000003F800000003F800000003F800000003F800000003F800000003F8000003 FFFFF80003FFFFF80022227EA127>II87 D<7FFFC1FFF07FFFC1FFF003FC000C0001FE00180000FE00380000FF0070 00007F806000003F80C000003FC1C000001FE38000000FE30000000FF700000007FE0000 0003FC00000003FC00000001FE00000000FE00000000FF00000000FF80000001FFC00000 01BFC00000031FE00000070FF000000E0FF000000C07F800001803FC00003803FC000030 01FE00006000FF0000E000FF0001C0007F800180003FC0FFFC03FFFEFFFC03FFFE27227F A12A>II<07FC001FFF803F07C03F03E03F01E03F01F01E01F00001F00001F0003FF003FDF01FC1 F03F01F07E01F0FC01F0FC01F0FC01F0FC01F07E02F07E0CF81FF87F07E03F18167E951B >97 DI<00FF8007FFE00F83F01F03F03E03F07E03F07C01E07C0000FC0000FC0000 FC0000FC0000FC0000FC00007C00007E00007E00003E00301F00600FC0E007FF8000FE00 14167E9519>I<0001FE000001FE0000003E0000003E0000003E0000003E0000003E0000 003E0000003E0000003E0000003E0000003E0000003E0001FC3E0007FFBE000F81FE001F 007E003E003E007E003E007C003E00FC003E00FC003E00FC003E00FC003E00FC003E00FC 003E00FC003E00FC003E007C003E007C003E003E007E001E00FE000F83BE0007FF3FC001 FC3FC01A237EA21F>I<00FE0007FF800F87C01E01E03E01F07C00F07C00F8FC00F8FC00 F8FFFFF8FFFFF8FC0000FC0000FC00007C00007C00007E00003E00181F00300FC07003FF C000FF0015167E951A>I<003F8000FFC001E3E003C7E007C7E00F87E00F83C00F80000F 80000F80000F80000F80000F8000FFFC00FFFC000F80000F80000F80000F80000F80000F 80000F80000F80000F80000F80000F80000F80000F80000F80000F80000F80000F80000F 80007FF8007FF80013237FA211>I<03FC1E0FFF7F1F0F8F3E07CF3C03C07C03E07C03E0 7C03E07C03E07C03E03C03C03E07C01F0F801FFF0013FC003000003000003800003FFF80 1FFFF00FFFF81FFFFC3800FC70003EF0001EF0001EF0001EF0001E78003C7C007C3F01F8 0FFFE001FF0018217E951C>I107 DIII<00FE0007FFC00F83E01E00F03E00F87C007C7C007C7C007CFC007EFC007EFC 007EFC007EFC007EFC007EFC007E7C007C7C007C3E00F81F01F00F83E007FFC000FE0017 167E951C>I114 D<0FF3003FFF00781F00600700E00300E00300F00300FC00007FE000 7FF8003FFE000FFF0001FF00000F80C00780C00380E00380E00380F00700FC0E00EFFC00 C7F00011167E9516>I<0180000180000180000180000380000380000780000780000F80 003F8000FFFF00FFFF000F80000F80000F80000F80000F80000F80000F80000F80000F80 000F80000F80000F81800F81800F81800F81800F81800F830007C30003FE0000F8001120 7F9F16>I119 D E /Fq 45 123 df<0001FC000703000C03001C07 001C0300180000380000380000380000380000700007FFFC00701C00701C00701C00E038 00E03800E03800E03800E07001C07001C07001C07001C0E201C0E201C0E20380E4038064 038038038000030000070000060000C60000E40000CC00007000001825819C17>12 D<183878380808101020404080050C7D830D>44 DI<3078 F06005047C830D>I<001E000061000081800180800300C00300C0060180060180060180 07030007860003CC0003F00001F000037800063C00081E00180E00300E00600600600600 600600C00C00C00C00C0180060100060200030C0000F0000121D7C9B15>56 D<0007F00000180C00006002000080010001000080020000800407808008184040107020 4010E01C4020C01C4021C038404380384043803840438038408700708087007080870070 80830071008300E1008381E20081C6620040783C0040000000200000002000000018000E 000601F00001FF00001A1D7A9C20>64 D<00001800000018000000380000003800000078 00000078000000B8000001B800000138000002380000023C0000041C0000041C0000081C 0000181C0000101C0000201C0000201C00007FFC0000401C0000801C0001801C0001001C 0002001C0002001C0004000E000C000E001C001E00FF00FFC01A1D7E9C1F>I<01FFFE00 003C0780003803C0003801C0003801C0003801C0007001C0007003C0007003C000700780 00E0070000E00E0000E03C0000FFF80001C01C0001C00E0001C00F0001C00F0003800F00 03800F0003800F0003800F0007001E0007001C0007003C00070078000E01E000FFFF8000 1A1C7D9B1D>I<0003F020001E0C60003002E000E003C001C001C0038001C0070000C00E 0000801E0000801C0000803C0000803C000000780000007800000078000000F0000000F0 000000F0000000F0000000F0000400F0000400F0000400F0000800700008007000100038 002000180040000C0180000706000001F800001B1E7A9C1E>I<01FFFFC0003C01C00038 00C00038008000380080003800800070008000700080007020800070200000E0400000E0 400000E0C00000FFC00001C0800001C0800001C0800001C0800003810000038000000380 000003800000070000000700000007000000070000000F000000FFF000001A1C7D9B1B> 70 D<0003F020001E0C60003002E000E003C001C001C0038001C0070000C00E0000801E 0000801C0000803C0000803C000000780000007800000078000000F0000000F0000000F0 01FFC0F0001E00F0001C00F0001C00F0001C00F0001C0070003800700038003800380018 0078000C0090000707100001F800001B1E7A9C20>I<01FFC0003C000038000038000038 0000380000700000700000700000700000E00000E00000E00000E00001C00001C00001C0 0001C0000380000380000380000380000700000700000700000700000F0000FFE000121C 7E9B10>73 D<007FF0000780000700000700000700000700000E00000E00000E00000E00 001C00001C00001C00001C00003800003800003800003800007000007000007000007000 60E000E0E000C0C00081C0008380004700003C0000141D7B9B16>I<01FFC0FF003C003C 003800300038004000380080003801000070020000700400007010000070200000E04000 00E0C00000E1C00000E5C00001C8E00001D0E00001E0E00001C070000380700003807000 03803800038038000700380007001C0007001C0007001C000F001E00FFE0FF80201C7D9B 20>I<01FE0007F8003E000780002E000F00002E001700002E001700002E002700004E00 2E00004E004E00004E004E00004E008E00008E011C00008E011C00008E021C00008E021C 000107043800010704380001070838000107103800020710700002072070000207207000 0207407000040740E000040780E000040700E0000C0700E0001C0601E000FF861FFC0025 1C7D9B25>77 D<01FC03FE001C0070003C0060002E0040002E0040002E00400047008000 47008000470080004380800083810000838100008181000081C1000101C2000101C20001 00E2000100E2000200E4000200740002007400020074000400380004003800040038000C 0018001C001000FF8010001F1C7D9B1F>I<01FFFC00003C070000380380003801C00038 01C0003801C0007003C0007003C0007003C00070038000E0078000E0070000E00E0000E0 380001FFE00001C0000001C0000001C00000038000000380000003800000038000000700 00000700000007000000070000000F000000FFE000001A1C7D9B1C>80 D<0007F000001C1C0000700E0000E0070001C0078003800380070003800E0003C01E0003 C01C0003C03C0003C03C0003C0780003C0780003C0780003C0F0000780F0000780F00007 80F0000F00F0000F00F0000E00F0001E00F0001C0070783800708070007104E0003905C0 001D0780000F0E040003FC040000040C0000060800000E1800000FF0000007F0000007E0 00000380001A257A9C20>I<01FFF800003C0E0000380700003803800038038000380380 00700780007007800070078000700F0000E00E0000E01C0000E0700000FFC00001C0C000 01C0600001C0700001C07000038070000380700003807000038070000700F0000700F040 0700F0400700F0800F007880FFE0790000001E001A1D7D9B1E>I<000F8400304C00403C 00801801001803001803001806001006001006000007000007000003E00003FC0001FF00 007F800007C00001C00001C00000C00000C02000C02000C0600180600180600300600200 F00400CC180083E000161E7D9C17>I<1FFFFFC01C0701C0300E00C0200E0080600E0080 400E0080401C0080801C0080801C0080001C000000380000003800000038000000380000 0070000000700000007000000070000000E0000000E0000000E0000000E0000001C00000 01C0000001C0000001C0000003C000007FFE00001A1C799B1E>I<7FF0FF800F001C000E 0018000E0010000E0010000E0010001C0020001C0020001C0020001C0020003800400038 004000380040003800400070008000700080007000800070008000E0010000E0010000E0 010000E0020000E0020000E0040000E00400006008000030300000104000000F80000019 1D779B1F>I<03CC063C0C3C181C3838303870387038E070E070E070E070E0E2C0E2C0E2 61E462643C380F127B9115>97 D<3F00070007000E000E000E000E001C001C001C001C00 39C03E60383038307038703870387038E070E070E070E060E0E0C0C0C1C0618063003C00 0D1D7B9C13>I<01F007080C08181C3838300070007000E000E000E000E000E000E008E0 10602030C01F000E127B9113>I<001F8000038000038000070000070000070000070000 0E00000E00000E00000E0003DC00063C000C3C00181C00383800303800703800703800E0 7000E07000E07000E07000E0E200C0E200C0E20061E4006264003C3800111D7B9C15>I< 01E007100C1018083810701070607F80E000E000E000E000E000E0086010602030C01F00 0D127B9113>I<0003C0000670000C70001C60001C00001C000038000038000038000038 0000380003FF8000700000700000700000700000700000E00000E00000E00000E00000E0 0001C00001C00001C00001C00001C000038000038000038000030000030000070000C600 00E60000CC00007800001425819C0D>I<00F3018F030F06070E0E0C0E1C0E1C0E381C38 1C381C381C383830383038187818F00F700070007000E000E0C0C0E1C0C3007E00101A7D 9113>I<0FC00001C00001C0000380000380000380000380000700000700000700000700 000E78000E8C000F0E000E0E001C0E001C0E001C0E001C0E00381C00381C00381C003838 00703880703880707080707100E03200601C00111D7D9C15>I<01800380010000000000 000000000000000000001C002600470047008E008E000E001C001C001C00380038007100 71007100720072003C00091C7C9B0D>I<0006000E000600000000000000000000000000 0000F00118021802180438043800380038007000700070007000E000E000E000E001C001 C001C001C003800380C300E700CE0078000F24819B0D>I<1F8003800380070007000700 07000E000E000E000E001C001C001C001C0038003800380038007000700070007000E400 E400E400E40068003800091D7C9C0B>108 D<3C1E0780266318C04683A0E04703C0E08E 0380E08E0380E00E0380E00E0380E01C0701C01C0701C01C0701C01C070380380E038838 0E0388380E0708380E0710701C0320300C01C01D127C9122>I<3C3C0026460046870047 07008E07008E07000E07000E07001C0E001C0E001C0E001C1C00381C40381C4038384038 3880701900300E0012127C9117>I<01E007180C0C180C380C300E700E700EE01CE01CE0 1CE018E038E030E06060C031801E000F127B9115>I<07870004D98008E0C008E0C011C0 E011C0E001C0E001C0E00381C00381C00381C00381800703800703000707000706000E8C 000E70000E00000E00001C00001C00001C00001C00003C0000FF8000131A7F9115>I<3C 3C26C2468747078E068E000E000E001C001C001C001C0038003800380038007000300010 127C9112>114 D<01F006080C080C1C18181C001F001FC00FF007F0007800386030E030 C030806060C01F000E127D9111>I<00C001C001C001C00380038003800380FFE0070007 0007000E000E000E000E001C001C001C001C00384038403840388019000E000B1A7D990E >I<1E0300270700470700470700870E00870E000E0E000E0E001C1C001C1C001C1C001C 1C003838803838801838801839001C5900078E0011127C9116>I<1E06270E470E470687 0287020E020E021C041C041C041C0818083808181018200C4007800F127C9113>I<1E01 832703874703874703838707018707010E07010E07011C0E021C0E021C0E021C0E04180C 04181C04181C081C1C100C263007C3C018127C911C>I<1E03270747074707870E870E0E 0E0E0E1C1C1C1C1C1C1C1C38383838183818381C7007F00070007000E0E0C0E1C0818047 003C00101A7C9114>121 D<038207C20FEC083810080010002000400080010002000400 08081008383067F043E081C00F127D9111>I E /Fr 82 127 df<007E1F0001C1B18003 03E3C00703C3C00E03C1800E01C0000E01C0000E01C0000E01C0000E01C0000E01C000FF FFFC000E01C0000E01C0000E01C0000E01C0000E01C0000E01C0000E01C0000E01C0000E 01C0000E01C0000E01C0000E01C0000E01C0000E01C0000E01C0000E01C0007F87FC001A 1D809C18>11 D<007E0001C1800301800703C00E03C00E01800E00000E00000E00000E00 000E0000FFFFC00E01C00E01C00E01C00E01C00E01C00E01C00E01C00E01C00E01C00E01 C00E01C00E01C00E01C00E01C00E01C00E01C07F87F8151D809C17>I<007FC001C1C003 03C00703C00E01C00E01C00E01C00E01C00E01C00E01C00E01C0FFFFC00E01C00E01C00E 01C00E01C00E01C00E01C00E01C00E01C00E01C00E01C00E01C00E01C00E01C00E01C00E 01C00E01C07FCFF8151D809C17>I<003F07E00001C09C18000380F018000701F03C000E 01E03C000E00E018000E00E000000E00E000000E00E000000E00E000000E00E00000FFFF FFFC000E00E01C000E00E01C000E00E01C000E00E01C000E00E01C000E00E01C000E00E0 1C000E00E01C000E00E01C000E00E01C000E00E01C000E00E01C000E00E01C000E00E01C 000E00E01C000E00E01C007FC7FCFF80211D809C23>I<6060F0F0F8F868680808080808 08101010102020404080800D0C7F9C15>34 D<00E0000001900000030800000308000007 0800000708000007080000070800000710000007100000072000000740000003C03FE003 800F00038006000380040005C0040009C0080010E0100030E010006070200060702000E0 384000E03C4000E01C8000E00F0020E0070020700780403009C0401830E18007C03E001B 1F7E9D20>38 D<60F0F8680808081010204080050C7C9C0C>I<00400080010002000600 0C000C0018001800300030007000600060006000E000E000E000E000E000E000E000E000 E000E000E000E000600060006000700030003000180018000C000C000600020001000080 00400A2A7D9E10>I<800040002000100018000C000C0006000600030003000380018001 80018001C001C001C001C001C001C001C001C001C001C001C001C0018001800180038003 000300060006000C000C00180010002000400080000A2A7E9E10>I<0006000000060000 000600000006000000060000000600000006000000060000000600000006000000060000 0006000000060000FFFFFFE0FFFFFFE00006000000060000000600000006000000060000 00060000000600000006000000060000000600000006000000060000000600001B1C7E97 20>43 D<60F0F0701010101020204080040C7C830C>II<60F0F0 6004047C830C>I<00010003000600060006000C000C000C001800180018003000300030 0060006000C000C000C0018001800180030003000300060006000C000C000C0018001800 1800300030003000600060006000C000C00010297E9E15>I<03C00C301818300C300C70 0E60066006E007E007E007E007E007E007E007E007E007E007E007E007E0076006600670 0E300C300C18180C3007E0101D7E9B15>I<030007003F00C70007000700070007000700 070007000700070007000700070007000700070007000700070007000700070007000F80 FFF80D1C7C9B15>I<07C01830201C400C400EF00FF80FF807F8077007000F000E000E00 1C001C00380070006000C00180030006010C01180110023FFE7FFEFFFE101C7E9B15>I< 07E01830201C201C781E780E781E381E001C001C00180030006007E00030001C001C000E 000F000F700FF80FF80FF80FF00E401C201C183007E0101D7E9B15>I<000C00000C0000 1C00003C00003C00005C0000DC00009C00011C00031C00021C00041C000C1C00081C0010 1C00301C00201C00401C00C01C00FFFFC0001C00001C00001C00001C00001C00001C0000 1C0001FFC0121C7F9B15>I<300C3FF83FF03FC020002000200020002000200023E02430 2818301C200E000E000F000F000F600FF00FF00FF00F800E401E401C2038187007C0101D 7E9B15>I<00F0030C06040C0E181E301E300C700070006000E3E0E430E818F00CF00EE0 06E007E007E007E007E007600760077006300E300C18180C3003E0101D7E9B15>I<4000 007FFF807FFF007FFF004002008004008004008008000010000010000020000060000040 0000C00000C00001C0000180000180000380000380000380000380000780000780000780 00078000078000078000030000111D7E9B15>I<03E00C301008200C2006600660066006 7006780C3E083FB01FE007F007F818FC307E601E600FC007C003C003C003C00360026004 300C1C1007E0101D7E9B15>I<03C00C301818300C700C600EE006E006E007E007E007E0 07E0076007700F300F18170C2707C700060006000E300C780C78187010203030C00F8010 1D7E9B15>I<60F0F0600000000000000000000060F0F06004127C910C>I<60F0F0600000 000000000000000060F0F0701010101020204080041A7C910C>I<7FFFFFC0FFFFFFE000 00000000000000000000000000000000000000000000000000000000000000FFFFFFE07F FFFFC01B0C7E8F20>61 D<000600000006000000060000000F0000000F0000000F000000 17800000178000001780000023C0000023C0000023C0000041E0000041E0000041E00000 80F0000080F0000180F8000100780001FFF80003007C0002003C0002003C0006003E0004 001E0004001E000C001F001E001F00FF80FFF01C1D7F9C1F>65 DI<001F808000E0618001801980070007800E0003801C0003801C00 018038000180780000807800008070000080F0000000F0000000F0000000F0000000F000 0000F0000000F0000000F0000000700000807800008078000080380000801C0001001C00 01000E000200070004000180080000E03000001FC000191E7E9C1E>IIII<001F808000E0618001801980070007800E0003801C0003801C0001803800 0180780000807800008070000080F0000000F0000000F0000000F0000000F0000000F000 0000F000FFF0F0000F80700007807800078078000780380007801C0007801C0007800E00 078007000B800180118000E06080001F80001C1E7E9C21>II< FFF00F000F000F000F000F000F000F000F000F000F000F000F000F000F000F000F000F00 0F000F000F000F000F000F000F000F000F00FFF00C1C7F9B0F>I<1FFF00F80078007800 7800780078007800780078007800780078007800780078007800780078007800787078F8 78F878F878F0F040E021C01F00101D7F9B15>IIIII<003F800000E0E000 0380380007001C000E000E001C0007003C00078038000380780003C0780003C0700001C0 F00001E0F00001E0F00001E0F00001E0F00001E0F00001E0F00001E0F00001E0700001C0 780003C0780003C0380003803C0007801C0007000E000E0007001C000380380000E0E000 003F80001B1E7E9C20>II<003F800000E0 E0000380380007001C000E000E001C0007003C00078038000380780003C0780003C07000 01C0F00001E0F00001E0F00001E0F00001E0F00001E0F00001E0F00001E0F00001E07000 01C0780003C0780003C0380003803C0E07801C1107000E208E0007205C0003A0780000F0 E020003FE0200000602000003060000038E000003FC000003FC000001F8000000F001B25 7E9C20>II<07E0801C1980300580700380600180E0 0180E00080E00080E00080F00000F800007C00007FC0003FF8001FFE0007FF0000FF8000 0F800007C00003C00001C08001C08001C08001C0C00180C00180E00300D00200CC0C0083 F800121E7E9C17>I<7FFFFFC0700F01C0600F00C0400F0040400F0040C00F0020800F00 20800F0020800F0020000F0000000F0000000F0000000F0000000F0000000F0000000F00 00000F0000000F0000000F0000000F0000000F0000000F0000000F0000000F0000000F00 00000F0000001F800003FFFC001B1C7F9B1E>IIII<7FFFF07C01F07001E06003C06003 C0400780400F80400F00401E00001E00003C00007C0000780000F00000F00001E00003E0 0003C0100780100780100F00101F00301E00203C00203C00607800E0F803E0FFFFE0141C 7E9B19>90 DI<08081010202040404040808080808080B0B0 F8F8787830300D0C7A9C15>II<1FC000307000783800781C 00301C00001C00001C0001FC000F1C00381C00701C00601C00E01C40E01C40E01C40603C 40304E801F870012127E9115>97 DI<07E00C301878307870306000E000E000E000E000E000E00060007004300418080C3007 C00E127E9112>I<003F0000070000070000070000070000070000070000070000070000 070000070003E7000C1700180F00300700700700600700E00700E00700E00700E00700E0 0700E00700600700700700300700180F000C370007C7E0131D7E9C17>I<03E00C301818 300C700E6006E006FFFEE000E000E000E00060007002300218040C1803E00F127F9112> I<00F8018C071E061E0E0C0E000E000E000E000E000E00FFE00E000E000E000E000E000E 000E000E000E000E000E000E000E000E000E000E007FE00F1D809C0D>I<00038003C4C0 0C38C01C3880181800381C00381C00381C00381C001818001C38000C300013C000100000 3000001800001FF8001FFF001FFF803003806001C0C000C0C000C0C000C0600180300300 1C0E0007F800121C7F9215>II<18 003C003C0018000000000000000000000000000000FC001C001C001C001C001C001C001C 001C001C001C001C001C001C001C001C001C00FF80091D7F9C0C>I<00C001E001E000C0 00000000000000000000000000000FE000E000E000E000E000E000E000E000E000E000E0 00E000E000E000E000E000E000E000E000E000E060E0F0C0F1C061803E000B25839C0D> IIIII<03F0000E1C00 180600300300700380600180E001C0E001C0E001C0E001C0E001C0E001C0600180700380 3003001806000E1C0003F00012127F9115>II<03C1000C 3300180B00300F00700700700700E00700E00700E00700E00700E00700E0070060070070 0700300F00180F000C370007C70000070000070000070000070000070000070000070000 3FE0131A7E9116>II<1F9030704030C010C010E010F8007F803FE00FF0 00F880388018C018C018E010D0608FC00D127F9110>I<04000400040004000C000C001C 003C00FFE01C001C001C001C001C001C001C001C001C001C101C101C101C101C100C100E 2003C00C1A7F9910>IIII<7F8FF00F03 800F030007020003840001C80001D80000F00000700000780000F800009C00010E00020E 000607000403801E07C0FF0FF81512809116>II<7FFC70 386038407040F040E041C003C0038007000F040E041C043C0C380870087038FFF80E127F 9112>II<1C043F0843F080E00E047D9B15>126 D E /Fs 45 115 df45 D<78FCFCFCFC7806067D850D >I<03F8000F1E001C07003C07803803807803C07803C07803C0F803E0F803E0F803E0F8 03E0F803E0F803E0F803E0F803E0F803E0F803E0F803E0F803E07803C07803C03803803C 07801C07000F1E0003F800131B7E9A18>48 D<00600001E0000FE000FFE000F3E00003E0 0003E00003E00003E00003E00003E00003E00003E00003E00003E00003E00003E00003E0 0003E00003E00003E00003E00003E00003E00003E0007FFF807FFF80111B7D9A18>I<07 F8001FFE00383F80780FC0FC07C0FC07E0FC03E0FC03E07803E00007E00007C00007C000 0F80001F00001E0000380000700000E0000180600300600600600800E01FFFC03FFFC07F FFC0FFFFC0FFFFC0131B7E9A18>I<03F8001FFE003C1F003C0F807C07C07E07C07C07C0 3807C0000F80000F80001E00003C0003F800001E00000F800007C00007C00007E03007E0 7807E0FC07E0FC07E0FC07C0780F80781F001FFE0007F800131B7E9A18>I<0001800003 80000780000F80001F80003F80006F8000CF80008F80018F80030F80060F800C0F80180F 80300F80600F80C00F80FFFFF8FFFFF8000F80000F80000F80000F80000F80000F8001FF F801FFF8151B7F9A18>I<1801801FFF001FFE001FFC001FF8001FC00018000018000018 000018000019F8001E0E00180F801007800007C00007E00007E00007E07807E0F807E0F8 07E0F807C0F007C0600F80381F001FFE0007F000131B7E9A18>I<007E0003FF00078180 0F03C01E07C03C07C03C0380780000780000F80000F8F800FB0E00FA0780FC0380FC03C0 F803E0F803E0F803E0F803E07803E07803E07803C03C03C03C07801E0F0007FE0003F800 131B7E9A18>I<6000007FFFE07FFFE07FFFC07FFF807FFF80E00300C00600C00C00C018 0000300000300000600000E00000E00001E00001C00003C00003C00003C00003C00007C0 0007C00007C00007C00007C00007C000038000131C7D9B18>I<03F8000FFE001E0F8038 07803803C07803C07803C07E03C07F83807FC7003FFE001FFC000FFE0007FF801DFF8038 7FC0781FE0F007E0F003E0F001E0F001E0F001E07801C07803803E07801FFE0003F80013 1B7E9A18>I<00038000000380000007C0000007C0000007C000000FE000000FE000001F F000001BF000001BF0000031F8000031F8000061FC000060FC0000E0FE0000C07E0000C0 7E0001803F0001FFFF0003FFFF8003001F8003001F8006000FC006000FC00E000FE00C00 07E0FFC07FFEFFC07FFE1F1C7E9B24>65 DI<001FE02000FFF8 E003F80FE007C003E00F8001E01F0000E03E0000E03E0000607E0000607C000060FC0000 00FC000000FC000000FC000000FC000000FC000000FC000000FC0000007C0000607E0000 603E0000603E0000C01F0000C00F80018007C0030003F80E0000FFFC00001FE0001B1C7D 9B22>IIII<000FF008007FFE3801FC07F807E001F80F8000781F0000783F0000383E0000387E0000 187C000018FC000000FC000000FC000000FC000000FC000000FC000000FC007FFFFC007F FF7C0001F87E0001F83E0001F83F0001F81F0001F80F8001F807E001F801FC07F8007FFE 78000FF818201C7D9B26>I73 D<07FFF007FFF0001F80001F80001F80001F80001F80001F80001F80001F80001F 80001F80001F80001F80001F80001F80001F80001F80001F80001F80301F80781F80FC1F 80FC1F80FC1F00783E00387C000FF000141C7F9B19>IIIII<003FE00001 F07C0003C01E000F800F801F0007C01E0003C03E0003E07E0003F07C0001F07C0001F0FC 0001F8FC0001F8FC0001F8FC0001F8FC0001F8FC0001F8FC0001F8FC0001F87C0001F07E 0003F07E0003F03E0003E03F0007E01F0007C00F800F8003C01E0001F07C00003FE0001D 1C7D9B24>II82 D<07F8201FFEE03C07E07801E07000E0 F000E0F00060F00060F80000FE0000FFE0007FFE003FFF003FFF800FFFC007FFE0007FE0 0003F00001F00000F0C000F0C000F0C000E0E000E0F001C0FC03C0EFFF0083FC00141C7D 9B1B>I<7FFFFFE07FFFFFE0781F81E0701F80E0601F8060E01F8070C01F8030C01F8030 C01F8030C01F8030001F8000001F8000001F8000001F8000001F8000001F8000001F8000 001F8000001F8000001F8000001F8000001F8000001F8000001F8000001F8000001F8000 07FFFE0007FFFE001C1C7E9B21>II87 D<7FFE1FFE007FFE1FFE0007F00180 0003F803800001FC07000000FC06000000FE0C0000007F1C0000003F380000003FB00000 001FE00000000FE00000000FE000000007F000000003F800000007F80000000FFC000000 0CFE000000187E000000387F000000703F800000601F800000C01FC00001C00FE0000180 07F000030007F000FFF03FFF80FFF03FFF80211C7F9B24>II<0FF8001C1E003E0F 803E07803E07C01C07C00007C0007FC007E7C01F07C03C07C07C07C0F807C0F807C0F807 C0780BC03E13F80FE1F815127F9117>97 D<03FC000E0E001C1F003C1F00781F00780E00 F80000F80000F80000F80000F80000F800007800007801803C01801C03000E0E0003F800 11127E9115>99 D<000FF0000FF00001F00001F00001F00001F00001F00001F00001F000 01F00001F001F9F00F07F01C03F03C01F07801F07801F0F801F0F801F0F801F0F801F0F8 01F0F801F07801F07801F03C01F01C03F00F0FFE03F9FE171D7E9C1B>I<01FC000F0700 1C03803C01C07801C07801E0F801E0F801E0FFFFE0F80000F80000F800007800007C0060 3C00601E00C00F038001FC0013127F9116>I104 D<1E003F003F003F003F001E00000000000000000000000000FF00FF001F 001F001F001F001F001F001F001F001F001F001F001F001F001F00FFE0FFE00B1E7F9D0E >I107 DIII<01FC00 0F07801C01C03C01E07800F07800F0F800F8F800F8F800F8F800F8F800F8F800F87800F0 7800F03C01E01E03C00F078001FC0015127F9118>I114 D E /Ft 14 113 df0 D<60F0F06004047C8B0C>I<400020C000606000C03001801803000C0600060C00031800 01B00000E00000E00001B000031800060C000C06001803003001806000C0C00060400020 13147A9320>I<01800180018001804182F18F399C0FF003C003C00FF0399CF18F418201 8001800180018010127E9215>I<000001800000078000001E00000078000001E0000007 8000001E00000078000001E00000078000001E00000078000000E0000000780000001E00 00000780000001E0000000780000001E0000000780000001E0000000780000001E000000 078000000180000000000000000000000000000000000000000000000000000000007FFF FF00FFFFFF8019227D9920>20 DI<07C000201FE000203FF80020783C0060E01F00E0C00783 C08003FF808000FF0080007C001B097E8E20>24 D<07C000201FE000203FF80020783C00 60E01F00E0C00783C08003FF808000FF0080007C000000000007C000201FE000203FF800 20783C0060E01F00E0C00783C08003FF808000FF0080007C001B137E9320>I<00000004 0000000002000000000200000000010000000000800000000040FFFFFFFFF8FFFFFFFFF8 000000004000000000800000000100000000020000000002000000000400250E7E902A> 33 D<007FF801FFF80780000E0000180000300000300000600000600000C00000C00000 C00000FFFFF8FFFFF8C00000C00000C000006000006000003000003000001800000E0000 07800001FFF8007FF8151A7D961C>50 D<003C00E001C001800380038003800380038003 800380038003800380038003800380030007001C00F0001C000700030003800380038003 80038003800380038003800380038003800380018001C000E0003C0E297D9E15>102 DI106 D<000000004000000000C000000001800000000180000000030000000003000000000600 00000006000000000C000000000C00000000180000000018000000003000000000300000 000060000000006000000000C000000000C0000000018000000001800000000300000C00 0300003C000600004E000600008E000C000007000C000007001800000380180000038030 0000038030000001C060000001C060000000E0C0000000E0C00000007180000000718000 00003B000000003B000000001E000000001E000000000C000000000C000000222A7E8123 >112 D E /Fu 20 120 df<00003FF001800003FFFE0380000FFFFF8780003FF007DF80 00FF8001FF8001FE00007F8003FC00003F8007F000001F800FF000000F801FE000000780 1FE0000007803FC0000007803FC0000003807FC0000003807F80000003807F8000000000 FF8000000000FF8000000000FF8000000000FF8000000000FF8000000000FF8000000000 FF8000000000FF8000000000FF80000000007F80000000007F80000000007FC000000380 3FC0000003803FC0000003801FE0000003801FE0000007000FF00000070007F000000E00 03FC00001E0001FE00003C0000FF8000F800003FF007E000000FFFFFC0000003FFFF0000 00003FF8000029297CA832>67 D<01FF800007FFF0000F81F8001FC07E001FC07E001FC0 3F000F803F8007003F8000003F8000003F8000003F80000FFF8000FFFF8007FC3F800FE0 3F803F803F803F003F807F003F80FE003F80FE003F80FE003F80FE003F807E007F807F00 DF803F839FFC0FFF0FFC01FC03FC1E1B7E9A21>97 DI<001FF80000FFFE0003F01F0007 E03F800FC03F801F803F803F801F007F800E007F0000007F000000FF000000FF000000FF 000000FF000000FF000000FF000000FF0000007F0000007F0000007F8000003F8001C01F 8001C00FC0038007E0070003F01E0000FFFC00001FE0001A1B7E9A1F>I<00003FF80000 003FF80000003FF800000003F800000003F800000003F800000003F800000003F8000000 03F800000003F800000003F800000003F800000003F800000003F800000003F800001FE3 F80000FFFBF80003F03FF80007E00FF8000FC007F8001F8003F8003F8003F8007F0003F8 007F0003F8007F0003F800FF0003F800FF0003F800FF0003F800FF0003F800FF0003F800 FF0003F800FF0003F8007F0003F8007F0003F8007F0003F8003F8003F8001F8003F8000F 8007F80007C00FF80003F03BFF8000FFF3FF80003FC3FF80212A7EA926>I<003FE00001 FFF80003F07E0007C01F000F801F801F800F803F800FC07F000FC07F0007C07F0007E0FF 0007E0FF0007E0FFFFFFE0FFFFFFE0FF000000FF000000FF0000007F0000007F0000007F 0000003F8000E01F8000E00FC001C007E0038003F81F0000FFFE00001FF0001B1B7E9A20 >I<00FF81F003FFE7F80FC1FE7C1F80FC7C1F007C383F007E107F007F007F007F007F00 7F007F007F007F007F007F007F003F007E001F007C001F80FC000FC1F8001FFFE00018FF 800038000000380000003C0000003E0000003FFFF8001FFFFF001FFFFF800FFFFFC007FF FFE01FFFFFF03E0007F07C0001F8F80000F8F80000F8F80000F8F80000F87C0001F03C00 01E01F0007C00FC01F8003FFFE00007FF0001E287E9A22>103 DI<07000FC01FE03FE0 3FE03FE01FE00FC007000000000000000000000000000000FFE0FFE0FFE00FE00FE00FE0 0FE00FE00FE00FE00FE00FE00FE00FE00FE00FE00FE00FE00FE00FE00FE00FE00FE00FE0 FFFEFFFEFFFE0F2B7DAA14>I107 DIII<003FE00001FFFC0003F07E000FC01F801F800FC03F800FE03F0007E07F 0007F07F0007F07F0007F0FF0007F8FF0007F8FF0007F8FF0007F8FF0007F8FF0007F8FF 0007F8FF0007F87F0007F07F0007F03F800FE03F800FE01F800FC00FC01F8007F07F0001 FFFC00003FE0001D1B7E9A22>II< FFC1F0FFC7FCFFCE3E0FD87F0FD87F0FF07F0FF03E0FF01C0FE0000FE0000FE0000FE000 0FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE000 FFFF00FFFF00FFFF00181B7E9A1C>114 D<03FE300FFFF01E03F03800F0700070F00070 F00070F80070FC0000FFE0007FFE007FFF803FFFE01FFFF007FFF800FFF80003FC0000FC 60007CE0003CF0003CF00038F80038FC0070FF01E0F7FFC0C1FF00161B7E9A1B>I<0070 0000700000700000700000F00000F00000F00001F00003F00003F00007F0001FFFF0FFFF F0FFFFF007F00007F00007F00007F00007F00007F00007F00007F00007F00007F00007F0 0007F00007F00007F03807F03807F03807F03807F03807F03803F03803F87001F86000FF C0001F8015267FA51B>II119 D E end %%EndProlog %%BeginSetup %%Feature: *Resolution 300dpi TeXDict begin %%EndSetup %%Page: 1 1 1 0 bop 15 17 2025 17 v 225 133 a Fu(Computing)21 b(upp)r(er)j(and)f (lo)n(w)n(er)f(b)r(ounds)j(on)e(lik)n(eli)o(ho)r(o)r(ds)e(in)720 200 y(in)n(tractable)g(net)n(w)n(orks)1334 178 y Ft(\003)p 15 279 2025 5 v 589 436 a Fs(T)l(ommi)15 b(S.)g(Jaakk)o(ola)h(and)f (Mic)o(hael)f(I.)j(Jordan)623 482 y Fr(Departmen)o(t)c(of)h(Brain)g (and)f(Cognitiv)o(e)g(Sciences)681 527 y(Massac)o(h)o(usetts)j (Institute)f(of)e(T)m(ec)o(hnology)823 573 y(Cam)o(bridge,)e(MA)j (02139)737 619 y Ft(f)p Fq(tommi,jor)n(dan)p Ft(g)p Fq(@psyche.mit.e)n (du)395 754 y Fp(Abstract)98 857 y Fr(W)m(e)d(presen)o(t)j (deterministic)d(tec)o(hniques)i(for)e(com-)98 902 y(puting)k(upp)q(er) h(and)f(lo)o(w)o(er)g(b)q(ounds)h(on)f(marginal)98 948 y(probabilities)20 b(in)g(sigmoid)e(and)j(noisy-OR)e(net-)98 994 y(w)o(orks.)e(These)c(tec)o(hniques)g(b)q(ecome)e(useful)g(when)98 1039 y(the)18 b(size)h(of)e(the)h(net)o(w)o(ork)g(\(or)f(clique)h (size\))g(pre-)98 1085 y(cludes)c(exact)f(computations.)j(W)m(e)d (illustrate)f(the)98 1131 y(tigh)o(tness)i(of)f(the)i(b)q(ounds)f(b)o (y)f(n)o(umerical)f(exp)q(eri-)98 1176 y(men)o(ts.)15 1322 y Fp(1)56 b(INTR)n(ODUCTION)15 1421 y Fr(A)14 b(graphical)f(mo)q (del)g(pro)o(vides)h(an)g(explicit)f(represen)o(tation)15 1467 y(of)h(qualitativ)o(e)f(dep)q(endencies)18 b(among)12 b(the)k(v)n(ariables)e(asso-)15 1512 y(ciated)g(with)g(the)g(no)q(des)h (of)f(the)g(graph)g(\(P)o(earl,)g(1988\).)j(Nu-)15 1558 y(merical)10 b(sp)q(eci\014cation)j(of)e(these)i(dep)q(endencies)h(in)d (the)i(form)15 1604 y(of)e(p)q(oten)o(tials)h(or)g(probabilit)o(y)e (tables)i(enables)h(quan)o(titativ)o(e)15 1649 y(computation)8 b(of)h(b)q(eliefs)h(ab)q(out)g(the)g(v)n(alues)g(of)f(the)i(v)n (ariables)15 1695 y(on)k(the)i(basis)e(of)g(acquired)i(evidence.)24 b(The)16 b(computations)15 1741 y(in)o(v)o(olv)o(ed,)9 b(i.e.,)h(propagation)f(of)g(b)q(eliefs,)i(can)f(b)q(e)h(handled)f(b)o (y)15 1786 y(no)o(w)i(standard)h(exact)h(metho)q(ds)e(\(Lauritzen)h(&)g (Spiegelhal-)15 1832 y(ter,)i(1988,)d(Jensen)k(et)f(al.)j(1990\).)g (Junction)d(trees)g(serv)o(e)h(as)15 1878 y(represen)o(tational)11 b(platforms)d(for)i(these)i(exact)f(probabilistic)15 1923 y(calculations)g(and)h(are)g(constructed)i(from)c(directed)k (graphi-)15 1969 y(cal)d(represen)o(tations)i(via)e(moralization)d(and) j(triangulation.)15 2015 y(Although)g(p)q(o)o(w)o(erful)h(in)g (utilizing)e(the)j(structure)h(of)d(the)i(un-)15 2060 y(derlying)i(net)o(w)o(orks,)i(junction)e(trees)i(ma)o(y)m(,)d(in)h (some)g(cases,)15 2106 y(con)o(tain)j(cliques)h(that)f(are)h (prohibitiv)o(ely)e(large.)32 b(In)18 b(suc)o(h)15 2152 y(cases)g(it)e(is)h(desirable)g(to)g(dev)o(elop)g(appro)o(ximate)d (metho)q(ds)15 2197 y(that)19 b(b)q(ound)f(the)i(marginal)15 b(probabilities.)32 b(As)19 b(an)f(alter-)15 2243 y(nativ)o(e)h(to)g (Mon)o(te)h(Carlo)e(metho)q(ds,)i(whic)o(h)f(appro)o(ximate)15 2289 y(marginal)g(probabilities)h(in)h(a)g(sto)q(c)o(hastic)i(sense,)h (w)o(e)e(de-)15 2334 y(v)o(elop)10 b(deterministic)g(metho)q(ds)g(that) g(yield)g(strict)h(lo)o(w)o(er)f(and)15 2380 y(upp)q(er)21 b(b)q(ounds)g(for)e(the)i(marginals.)34 b(These)22 b(b)q(ounds)e(to-)15 2426 y(gether)c(yield)f(in)o(terv)n(al)f(b)q(ounds)h(on)g(the)g (desired)i(probabili-)15 2471 y(ties.)h(Although)11 b(the)h(problem)e (of)h(\014nding)h(suc)o(h)g(in)o(terv)n(als)f(to)15 2517 y(predescrib)q(ed)18 b(accuracy)e(is)f(NP-hard)g(\(Dagum)e(and)i(Lub)o (y)m(,)15 2563 y(1993\),)j(b)q(ounds)g(that)g(can)g(b)q(e)h(computed)e (e\016cien)o(tly)h(ma)o(y)15 2608 y(nev)o(ertheless)i(yield)d(in)o (terv)n(als)g(that)h(are)g(accurate)h(enough)15 2654 y(to)14 b(b)q(e)g(useful)g(in)g(practice.)p 15 2695 250 2 v 66 2718 a Fo(\003)84 2733 y Fn(T)m(o)d(app)q(ear)h(in)g Fm(Pr)n(o)n(c)n(e)n(e)n(dings)d(of)j(the)f(Twelfth)g(Confer)n(enc)n(e)f (on)15 2775 y(Unc)n(ertainty)g(in)j(AI.)1065 754 y Fr(Large)22 b(clique)g(sizes)g(\(arising)g(from)e(dense)j(connectivit)o(y\))1065 800 y(lead)14 b(not)f(only)h(to)f(long)g(execution)i(times)e(but)h (also)f(in)o(v)o(olv)o(e)1065 845 y(exp)q(onen)o(tially)f(man)o(y)g (parameters)h(that)g(m)o(ust)f(b)q(e)i(assessed)1065 891 y(or)g(learned.)19 b(The)c(latter)f(issue)h(is)f(generally)g (addressed)i(via)1065 937 y(parsimonious)f(represen)o(tations)j(suc)o (h)f(as)g(the)g(logistic)f(sig-)1065 982 y(moid)i(\(Neal,)j(1992\))e (or)h(the)g(noisy-OR)g(function)f(\(P)o(earl,)1065 1028 y(1988\).)30 b(W)m(e)18 b(consider)h(b)q(oth)f(of)g(these)h(represen)o (tations)h(in)1065 1074 y(the)d(curren)o(t)h(pap)q(er.)27 b(W)m(e)17 b(sta)o(y)f(within)g(a)g(directed)i(frame-)1065 1119 y(w)o(ork)12 b(and)g(thereb)o(y)h(retain)f(the)h(compactness)f(of) g(these)h(rep-)1065 1165 y(resen)o(tations)k(throughout)f(our)g (inference)h(and)f(estimation)1065 1211 y(algorithms.)1065 1281 y(Saul)21 b(et)h(al.)39 b(\(1996\))21 b(deriv)o(ed)h(a)f(rigorous) g Fq(lower)k Fr(b)q(ound)1065 1327 y(for)d(sigmoid)d(b)q(elief)j(net)o (w)o(orks.)43 b(W)m(e)21 b(complete)h(the)g(pic-)1065 1373 y(ture)15 b(here)h(b)o(y)e(dev)o(eloping)f(the)i(missing)e Fq(upp)n(er)19 b Fr(b)q(ounds)14 b(for)1065 1418 y(sigmoid)i(net)o(w)o (orks.)33 b(W)m(e)19 b(also)f(dev)o(elop)h(b)q(oth)f(upp)q(er)i(and) 1065 1464 y(lo)o(w)o(er)13 b(b)q(ounds)h(for)f(noisy-OR)f(net)o(w)o (orks.)19 b(While)12 b(the)i(lo)o(w)o(er)1065 1510 y(b)q(ounds)20 b(w)o(e)g(obtain)e(are)i(applicable)f(to)g(generic)i(net)o(w)o(ork)1065 1555 y(structures,)e(the)e(upp)q(er)h(b)q(ounds)f(are)g(curren)o(tly)g (restricted)1065 1601 y(to)e(t)o(w)o(o-lev)o(el)f(net)o(w)o(orks.)22 b(Although)15 b(a)g(serious)h(restriction,)1065 1646 y(there)h(are)f(nonetheless)i(man)o(y)13 b(p)q(oten)o(tial)j (applications)e(for)1065 1692 y(suc)o(h)k(upp)q(er)g(b)q(ounds,)f (including)f(the)i(probabilistic)e(refor-)1065 1738 y(m)o(ulation)h(of) i(the)i(QMR)f(kno)o(wledge)f(base)i(\(Sh)o(w)o(e)f(et)h(al.,)1065 1783 y(1991\).)36 b(W)m(e)20 b(emphasize)g(\014nally)g(that)g(our)g(fo) q(cus)h(in)f(this)1065 1829 y(pap)q(er)i(is)f(on)g(tec)o(hniques)i(of)e (b)q(ounding)g(rather)h(than)f(on)1065 1875 y(all{encompassing)e (inference)k(algorithms;)g(tailoring)c(the)1065 1920 y(b)q(ounds)i(for)g(sp)q(eci\014c)h(problems)e(or)g(merging)f(them)h (with)1065 1966 y(exact)15 b(metho)q(ds)e(ma)o(y)f(yield)h(a)h (considerable)g(adv)n(an)o(tage.)1065 2037 y(The)19 b(pap)q(er)g(is)g (structured)h(as)f(follo)o(ws.)30 b(Section)19 b(2)g(in)o(tro-)1065 2082 y(duces)13 b(sigmoid)c(b)q(elief)i(net)o(w)o(orks,)h(dev)o(elops)g (the)g(tec)o(hniques)1065 2128 y(for)f(upp)q(er)i(and)f(lo)o(w)o(er)f (b)q(ounds,)h(and)g(giv)o(es)g(preliminary)d(n)o(u-)1065 2174 y(merical)15 b(analysis)h(of)h(the)g(accuracy)h(of)e(the)i(b)q (ounds.)27 b(Sec-)1065 2219 y(tion)11 b(3)g(is)h(dev)o(oted)g(to)f(the) h(analogous)f(results)h(for)g(noisy-OR)1065 2265 y(net)o(w)o(orks.)25 b(In)15 b(section)i(4)f(w)o(e)g(summarize)e(the)i(results)h(and)1065 2311 y(describ)q(e)f(some)d(future)h(w)o(ork.)1065 2428 y Fp(2)56 b(SIGMOID)19 b(BELIEF)f(NETW)n(ORKS)1065 2524 y Fr(Sigmoid)i(b)q(elief)j(net)o(w)o(orks)h(are)f(\(directed\))i (probabilistic)1065 2570 y(net)o(w)o(orks)11 b(de\014ned)g(o)o(v)o(er)f (binary)g(v)n(ariables)f Fl(S)1780 2576 y Fk(1)1799 2570 y Fl(;)e(:)g(:)g(:)e(;)i(S)1917 2576 y Fj(n)1940 2570 y Fr(.)17 b(The)1065 2616 y(join)o(t)g(distribution)h(for)g(the)h(v)n (ariables)e(has)i(the)g(usual)f(de-)1065 2661 y(comp)q(ositional)11 b(structure:)1236 2738 y Fl(P)6 b Fr(\()p Fl(S)1310 2744 y Fk(1)1329 2738 y Fl(;)h(:)g(:)g(:)e(;)i(S)1447 2744 y Fj(n)1469 2738 y Ft(j)p Fl(\022)q Fr(\))12 b(=)1573 2699 y Fi(Y)1594 2787 y Fj(i)1633 2738 y Fl(P)6 b Fr(\()p Fl(S)1707 2744 y Fj(i)1721 2738 y Ft(j)p Fr(pa)o([)p Fl(i)p Fr(])p Fl(;)h(\022)q Fr(\))118 b(\(1\))p eop %%Page: 2 2 2 1 bop 219 0 a 8951568 4736286 12827443 27299430 26904739 34732769 startTexFig 219 0 a %%BeginDocument: figures/8by8.eps save /d_sv_obj exch def userdict /IslandDrawDict 300 dict dup begin put /bdef {bind def} bind def /E {exch} bdef /FF {findfont} bdef /MF {makefont} bdef /RO {rotate} bdef /SC {scale} bdef /SF {setfont} bdef /SG {setgray} bdef /TR {translate} bdef /bp {lj lw rgb} bdef /bpbw {lj lw setgray} bdef /c {curveto} bdef /cl {closepath} bdef /fi {eofill} bdef /g {setgray} bdef /gr {grestore} bdef /gs {gsave} bdef /l {lineto} bdef /lj {setlinejoin} bdef /lw {setlinewidth} bdef /m {moveto} bdef /n {newpath} bdef /nx {/x E def} bdef /r {rmoveto} bdef /rl {rlineto} bdef /rgb {setrgbcolor} bdef /s {show} bdef /sd {setdash} bdef /sp {x 0 rmoveto} bdef /ss {currentpoint pop E m} bdef /st {stroke} bdef /BPSIDE 32 def %% pixels per pattern side /PATFREQ 3.0 def %% pattern pixels per mm /dp_mat [PATFREQ 0 0 PATFREQ 0 0] def /dp_pw BPSIDE def %% pattern pixel width /dp_ph BPSIDE def %% pattern pixel height /dp_w dp_pw PATFREQ div def %% pattern mm width /dp_h dp_ph PATFREQ div def %% pattern mm height /savemat matrix def /topmat matrix def /patmat matrix def /ncpoint errordict /nocurrentpoint get def errordict begin /nocurrentpoint { dup /pathbbox load eq {pop 0 0 1 1} {ncpoint} ifelse } bdef end /ar { %% sa ea sx sy rot tx ty matrix currentmatrix 8 1 roll TR RO SC n 0 0 1 5 3 roll arc setmatrix } bdef /arn { %% sa ea sx sy rot tx ty TR RO SC matrix currentmatrix 8 1 roll n 0 0 1 5 3 roll arcn setmatrix } bdef /el { %% sx sy rot tx ty matrix currentmatrix 6 1 roll TR RO SC n 0 0 1 0 360 arc setmatrix cl } bdef /image_raster { %% sw sh sd dw dh xs ys TR SC /sd E def /sh E def /sw E def /imagebuf sw sd mul 7 add 8 idiv string def sw sh sd [sw 0 0 sh 0 0] { currentfile imagebuf readhexstring pop} image } bdef /imagemask_raster { TR SC /sh E def /sw E def /imagebuf sw 7 add 8 idiv string def sw sh false [sw 0 0 sh 0 0] {currentfile imagebuf readhexstring pop} imagemask } bdef /dither_color_raster { % bool sw sh sd dw dh xs ys TR SC /sd E def /sh E def /sw E def sd 8 eq and { /imagebuf 3 string def /grayval 1 string def sw sh sd [sw 0 0 sh 0 0] { currentfile imagebuf readhexstring pop pop imagebuf 0 get 0.299 mul imagebuf 1 get 0.587 mul add imagebuf 2 get 0.114 mul add cvi grayval exch 0 exch put grayval } image } { /imagebuf sw 3 mul sd mul 7 add 8 idiv string def sh { currentfile imagebuf readhexstring pop pop } repeat } ifelse } bdef /image_color_raster { % bool sw sh sd dw dh xs ys /colorimage where not { dither_color_raster } { pop TR SC /sd E def /sh E def /sw E def pop /imagebuf sw 3 mul sd mul 7 add 8 idiv string def sw sh sd [sw 0 0 sh 0 0] { currentfile imagebuf readhexstring pop} false 3 colorimage } ifelse } bdef /patpath { /inv E def topmat setmatrix pathbbox %% get lo - hi indecies /hy E dp_h div floor cvi def /hx E dp_w div floor cvi def /ly E dp_h div floor cvi def /lx E dp_w div floor cvi def lx 1 hx { dp_w mul ly 1 hy { dp_h mul E dup 3 1 roll E patmat currentmatrix pop TR dp_pw dp_ph inv dp_mat dp_proc imagemask patmat setmatrix } for pop } for } bdef /setpattern { /blue E def /green E def /red E def /freq E def /bwidth E def /bpside E def /bstring E def /onbits 0 def /offbits 0 def freq 0 {/y E def /x E def /xindex x 1 add 2 div bpside mul cvi def /yindex y 1 add 2 div bpside mul cvi def bstring yindex bwidth mul xindex 8 idiv add get not 1 7 xindex 8 mod sub bitshift and 0 ne {/onbits onbits 1 add def 1} {/offbits offbits 1 add def 0} ifelse } setscreen {} settransfer systemdict /setcmykcolor known { /fact 1 onbits offbits onbits add div sub def 1 red sub fact mul 1 green sub fact mul 1 blue sub fact mul 0 setcmykcolor } { offbits offbits onbits add div setgray} ifelse } bdef /dmatrix matrix def /dpi 72 0 dmatrix defaultmatrix dtransform dup mul E dup mul add sqrt def /B {gs bp st gr} bdef %% brush: gr lw lj /Bbw {gs bpbw st gr} bdef %% brush: gr lw lj /F {gs rgb eofill gr} bdef %% fill: gr /Fbw {gs setgray eofill gr} bdef %% fill: gr /PB {gs lj lw setpattern st gr} bdef /PF {gs eoclip patpath gr} bdef /BB {gs rgb lj lw strokepath clip patpath gr} bdef /xdef {exch def} bdef /clip_region { /ht xdef /wd xdef /bm xdef /lm xdef newpath lm bm moveto 0 ht rlineto wd 0 rlineto 0 ht neg rlineto closepath clip } bdef /reencode_small_dict 12 dict def /ReencodeSmall { reencode_small_dict begin /new_codes_and_names exch def /new_font_name exch def /base_font_name exch def /base_font_dict base_font_name findfont def /newfont base_font_dict maxlength dict def base_font_dict { exch dup /FID ne { dup /Encoding eq { exch dup length array copy newfont 3 1 roll put } { exch newfont 3 1 roll put } ifelse } { pop pop } ifelse } forall newfont /FontName new_font_name put new_codes_and_names aload pop new_codes_and_names length 2 idiv { newfont /Encoding get 3 1 roll put } repeat new_font_name newfont definefont pop end %reencode_small_dict } def /extended_Zapf [ 8#223 /a89 8#224 /a90 8#225 /a93 8#226 /a94 8#227 /a91 8#230 /a92 8#231 /a205 8#232 /a85 8#233 /a206 8#234 /a86 8#235 /a87 8#236 /a88 8#237 /a95 8#240 /a96 ] def /extended_Standard [ 29 /thorn 30 /yacute 31 /divide 128 /Acircumflex 129 /Adieresis 130 /Agrave 131 /Aring 132 /Atilde 133 /Ccedilla 134 /Eacute 135 /Ecircumflex 136 /Edieresis 137 /Egrave 138 /Iacute 139 /Icircumflex 140 /Idieresis 141 /Igrave 142 /Ntilde 143 /Oacute 144 /Ocircumflex 145 /Odieresis 146 /Ograve 147 /Otilde 148 /Scaron 149 /Uacute 150 /Ucircumflex 151 /Udieresis 152 /Ugrave 153 /Ydieresis 154 /Zcaron 155 /aacute 156 /acircumflex 157 /adieresis 158 /agrave 159 /aring 160 /atilde 161 /exclamdown 162 /cent 163 /sterling 164 /fraction 165 /yen 166 /florin 167 /section 168 /currency 169 /quotesingle 170 /quotedblleft 171 /guillemotleft 172 /guilsinglleft 173 /guilsinglright 174 /fi 175 /fl 176 /plusminus 177 /endash 178 /dagger 179 /daggerdbl 180 /periodcentered 181 /twosuperior 182 /paragraph 183 /bullet 184 /quotesinglbase 185 /quotedblbase 186 /quotedblright 187 /guillemotright 188 /ellipsis 189 /perthousand 190 /threesuperior 191 /questiondown 192 /mu 193 /grave 194 /acute 195 /circumflex 196 /tilde 197 /macron 198 /breve 199 /dotaccent 200 /dieresis 201 /onesuperior 202 /ring 203 /cedilla 204 /onequarter 205 /hungarumlaut 206 /ogonek 207 /caron 208 /emdash 209 /ccedilla 210 /copyright 211 /eacute 212 /ecircumflex 213 /edieresis 214 /egrave 215 /iacute 216 /icircumflex 217 /idieresis 218 /igrave 219 /logicalnot 220 /minus 221 /ntilde 222 /oacute 223 /ocircumflex 224 /odieresis 225 /AE 226 /onehalf 227 /ordfeminine 228 /ograve 229 /otilde 230 /registered 231 /scaron 232 /Lslash 233 /Oslash 234 /OE 235 /ordmasculine 236 /trademark 237 /uacute 238 /ucircumflex 239 /udieresis 240 /ugrave 241 /ae 242 /ydieresis 243 /zcaron 244 /Aacute 245 /dotlessi 246 /threequarters 247 /Eth 248 /lslash 249 /oslash 250 /oe 251 /germandbls 252 /multiply 253 /Yacute 254 /Thorn 255 /eth ] def /extended_Symbol [ ] def /extend_font { % stack: fontname newfontname exch dup (ZapfDingbats) eq { cvn exch cvn extended_Zapf ReencodeSmall } { dup (Symbol) eq { cvn exch cvn extended_Symbol ReencodeSmall } { cvn exch cvn extended_Standard ReencodeSmall } ifelse } ifelse } bind def /extend_font_name { % stack: font_name_string dup length 1 add string /extended_font_name exch def extended_font_name 0 (_) putinterval extended_font_name 1 3 -1 roll putinterval extended_font_name } bind def /gf { /f exch def f cvn where { f exch begin cvn load exec setfont end } { f 0 f length 8 sub getinterval dup /localfont exch extend_font_name def localfont extend_font localfont findfont /xsz f f length 4 sub 4 getinterval cvi def /ysz f f length 8 sub 4 getinterval cvi def [ xsz 0 0 ysz neg 0 0 ] makefont dup f cvn exch def setfont } ifelse } bind def /ul { % space drop thickness gs currentpoint currentlinewidth currentpoint n m 6 -3 roll lw 0 exch r 0 rl st lw m gr } bind def /nxtab { currentpoint pop 1000.0 mul cvi tab mod tab exch sub 1000.0 div 0 rmoveto } bind def /nx { /x exch def } bind def 0. nx gsave 2.83465 -2.83465 scale 0 -279.4 translate topmat currentmatrix pop 4.83 4.83 0 91.569 98.028 el gsave 0 0 0 0.352 0 B grestore 4.83 4.83 90 124.42 98.028 el gsave 0 0 0 0.352 0 B grestore n savemat currentmatrix pop [1 0 0 1 103.714 100.153] concat 25.4 1440 div 1.000000 mul dup scale 0 0 m /tab 283.00 1000.0 mul cvi def 0 0 m 0 ss (Helvetica-Bold03200320) gf 0.00 0.00 0.00 rgb (. . .) s savemat setmatrix 4.83 4.83 90 73.818 127.96 el gsave 0 0 0 0.352 0 B grestore 4.83 4.83 0 91.569 127.96 el gsave 0 0 0 0.352 0 B grestore 4.83 4.83 0 124.42 127.96 el gsave 0 0 0 0.352 0 B grestore n savemat currentmatrix pop [1 0 0 1 103.714 130.084] concat 25.4 1440 div 1.000000 mul dup scale 0 0 m /tab 283.00 1000.0 mul cvi def 0 0 m 0 ss (Helvetica-Bold03200320) gf 0.00 0.00 0.00 rgb (. . .) s savemat setmatrix n 76.401 124.01 m 77.281 120.37 l 79.291 121.63 l cl 0 0 0 F n 89.319 103.34 m 78.286 121 l gsave 0 0 0 0.352 0 B grestore n 78.247 125.86 m 80.704 123.03 l 81.911 125.07 l cl 0 0 0 F n 120.69 100.76 m 81.308 124.05 l gsave 0 0 0 0.352 0 B grestore n 91.903 122.91 m 90.718 119.35 l 93.088 119.35 l cl 0 0 0 F n 91.903 102.24 m 91.903 119.35 l gsave 0 0 0 0.352 0 B grestore n 121.06 122.91 m 117.55 121.6 l 119.04 119.75 l cl 0 0 0 F n 94.487 101.5 m 118.29 120.68 l gsave 0 0 0 0.352 0 B grestore n 124.38 123.28 m 123.2 119.72 l 125.57 119.72 l cl 0 0 0 F n 124.38 102.61 m 124.38 119.72 l gsave 0 0 0 0.352 0 B grestore n savemat currentmatrix pop [1 0 0 1 137.705 128.812] concat 25.4 1440 div 1.000000 mul dup scale 0 0 m /tab 283.00 1000.0 mul cvi def 0 0 m 0 ss (Helvetica-Bold02800280) gf 0.00 0.00 0.00 rgb (L) s savemat setmatrix n savemat currentmatrix pop [1 0 0 1 140.992 130.288] concat 25.4 1440 div 1.000000 mul dup scale 0 0 m /tab 283.00 1000.0 mul cvi def 0 0 m 0 ss (Helvetica02400240) gf 0.00 0.00 0.00 rgb (1) s savemat setmatrix n savemat currentmatrix pop [1 0 0 1 137.705 98.9503] concat 25.4 1440 div 1.000000 mul dup scale 0 0 m /tab 283.00 1000.0 mul cvi def 0 0 m 0 ss (Helvetica-Bold02800280) gf 0.00 0.00 0.00 rgb (L) s savemat setmatrix n savemat currentmatrix pop [1 0 0 1 141.361 100.392] concat 25.4 1440 div 1.000000 mul dup scale 0 0 m /tab 283.00 1000.0 mul cvi def 0 0 m 0 ss (Helvetica02400240) gf 0.00 0.00 0.00 rgb (2) s savemat setmatrix userdict /#copies 1 put grestore end d_sv_obj restore %%EndDocument endTexFig 138 387 a Fr(Figure)14 b(1:)k(Tw)o(o)13 b(lev)o(el)h(\(bipartite\))g (net)o(w)o(ork.)15 521 y(The)i(conditional)e(probabilities,)g(ho)o(w)o (ev)o(er,)i(tak)o(e)g(a)f(partic-)15 567 y(ular)e(form)g(giv)o(en)g(b)o (y)67 640 y Fl(P)6 b Fr(\()p Fl(S)141 646 y Fj(i)155 640 y Ft(j)p Fr(pa)o([)p Fl(i)p Fr(])p Fl(;)h(\022)q Fr(\))k(=)108 704 y(=)42 b Fl(g)q Fr(\()219 676 y Fi(P)263 720 y Fh(j)q Fg(2)p Ff(pa[)p Fh(i)p Ff(])362 704 y Fj(\022)378 708 y Fh(ij)404 704 y Fj(S)424 708 y Fh(j)440 704 y Fr(\))456 687 y Fj(S)476 691 y Fh(i)492 704 y Fr([1)8 b Ft(\000)i Fl(g)q Fr(\()612 676 y Fi(P)656 720 y Fh(j)q Fg(2)p Ff(pa[)p Fh(i)p Ff(])754 704 y Fj(\022)770 708 y Fh(ij)797 704 y Fj(S)817 708 y Fh(j)832 704 y Fr(\)])860 687 y Fk(1)p Fe(\000)p Fj(S)923 691 y Fh(i)937 704 y Fr(\(2\))108 773 y(=)42 b Fl(g)q Fr(\()p Fk(\(2)p Fj(S)269 777 y Fh(i)283 773 y Fe(\000)p Fk(1\))344 745 y Fi(P)388 788 y Fh(j)q Fg(2)p Ff(pa)o([)p Fh(i)p Ff(])486 773 y Fj(\022)502 777 y Fh(ij)528 773 y Fj(S)548 777 y Fh(j)564 773 y Fr(\))357 b(\(3\))15 856 y(where)16 b Fl(g)q Fr(\()p Fl(x)p Fr(\))d(=)h(1)p Fl(=)p Fr(\(1)9 b(+)h(exp\()p Ft(\000)p Fl(x)p Fr(\)\))15 b(is)g(the)g(logistic)f(function)15 902 y(\(also)c(called)f(a)h (\\sigmoid")d(function)j(based)h(on)f(its)g(graphical)15 948 y(shap)q(e;)k(see)g(Figure)g(6\).)j(The)d(parameters)f(sp)q (ecifying)h(these)15 993 y(conditional)e(probabilities)g(are)h(the)h (real)f(v)n(alued)g(\\w)o(eigh)o(ts")15 1039 y Fl(\022)34 1045 y Fj(ij)64 1039 y Fr(.)k(W)m(e)12 b(note)g(that)g(the)h(c)o(hoice) f(of)f(this)h(dep)q(endency)i(mo)q(del)15 1085 y(is)i(not)g(arbitrary)f (but)i(is)e(ro)q(oted)i(in)e(logistic)g(regression)i(in)15 1130 y(statistics)g(\(McCullagh)e(&)i(Nelder,)g(1983\).)24 b(F)m(urthermore,)15 1176 y(this)17 b(form)f(of)h(dep)q(endency)i (corresp)q(onds)h(to)d(the)h(assump-)15 1222 y(tion)11 b(that)h(the)g(o)q(dds)g(from)e(eac)o(h)i(paren)o(t)g(of)f(a)g(no)q(de) h(com)o(bine)15 1267 y(m)o(ultiplicativ)n(ely;)g(the)k(w)o(eigh)o(ts)f Fl(\022)564 1273 y Fj(ij)608 1267 y Fr(in)g(this)g(in)o(terpretation)15 1313 y(b)q(ear)g(a)e(relation)g(to)h(log-o)q(dds.)15 1384 y(In)f(the)h(remainder)e(of)h(this)g(section)h(w)o(e)f(presen)o(t) i(tec)o(hniques)15 1429 y(for)k(computing)e(upp)q(er)j(and)f(lo)o(w)o (er)g(b)q(ounds)h(on)f(marginal)15 1475 y(probabilities)d(in)g(sigmoid) f(net)o(w)o(orks.)28 b(W)m(e)16 b(note)h(that)g(an)o(y)15 1521 y(successful)h(instan)o(tiation)d(of)g(evidence)i(in)f(these)h (net)o(w)o(orks)15 1566 y(relies)g(on)f(the)g(abilit)o(y)f(to)h (estimate)f(suc)o(h)i(marginals.)23 b(The)15 1612 y(upp)q(er)12 b(b)q(ounds)f(that)g(w)o(e)f(deriv)o(e)i(are)f(restricted)h(to)f(t)o(w) o(o-lev)o(el)15 1657 y(\(bipartite\))k(net)o(w)o(orks)h(while)f(the)h (lo)o(w)o(er)e(b)q(ounds)i(are)g(v)n(alid)15 1703 y(for)e(arbitrary)f (net)o(w)o(ork)h(structures.)15 1806 y Fs(2.1)48 b(UPPER)15 b(BOUND)g(F)o(OR)h(SIGMOID)124 1851 y(NETW)o(ORK)15 1936 y Fr(W)m(e)h(restrict)h(our)f(atten)o(tion)g(to)g(t)o(w)o(o-lev)o(el)f (directed)i(arc)o(hi-)15 1982 y(tectures.)i(The)13 b(join)o(t)f (probabilit)o(y)f(for)i(this)g(class)g(of)f(mo)q(dels)15 2028 y(can)i(b)q(e)h(written)f(as)65 2101 y Fl(P)6 b Fr(\()p Fl(S)139 2107 y Fk(1)158 2101 y Fl(;)h(:)g(:)g(:)e(;)i(S)276 2107 y Fj(n)298 2101 y Ft(j)p Fl(\022)q Fr(\))42 b(=)472 2061 y Fi(Y)462 2151 y Fj(i)p Fe(2)p Fj(L)519 2155 y Ff(1)542 2101 y Fl(g)q Fr(\()p Fk(\(2)p Fj(S)629 2105 y Fh(i)642 2101 y Fe(\000)p Fk(1\))703 2073 y Fi(P)747 2116 y Fh(j)q Fg(2)p Ff(pa[)p Fh(i)p Ff(])845 2101 y Fj(\022)861 2105 y Fh(ij)888 2101 y Fj(S)908 2105 y Fh(j)924 2101 y Fr(\))462 2219 y Ft(\002)513 2180 y Fi(Y)501 2269 y Fj(j)r Fe(2)p Fj(L)562 2273 y Ff(2)585 2219 y Fl(P)6 b Fr(\()p Fl(S)659 2225 y Fj(j)676 2219 y Ft(j)p Fl(\022)707 2225 y Fj(j)725 2219 y Fr(\))196 b(\(4\))15 2339 y(where)17 b Fl(L)165 2345 y Fk(1)199 2339 y Fr(and)e Fl(L)309 2345 y Fk(2)343 2339 y Fr(signify)g(the)h(t)o(w)o(o)f(la)o(y)o(ers)g(of)g(a) g(bipartite)15 2385 y(graph)f(with)f(connections)i(from)d Fl(L)577 2391 y Fk(2)610 2385 y Fr(to)i Fl(L)689 2391 y Fk(1)721 2385 y Fr(\(see)i(Figure)e(1\).)15 2455 y(T)m(o)h(compute)f (the)i(marginal)d(probabilit)o(y)g(of)i(a)g(set)h(of)f(v)n(ari-)15 2501 y(ables)f(in)g(these)i(net)o(w)o(orks)f(w)o(e)g(note)f(that)h (\(i\))f(an)o(y)g(v)n(ariables)15 2547 y(in)i(la)o(y)o(er)g Fl(L)197 2553 y Fk(2)232 2547 y Fr(included)g(in)g(this)g(set)h(only)f (reduce)i(the)e(com-)15 2592 y(plexit)o(y)j(of)h(the)g(calculations,)h (and)f(\(ii\))f(the)i(form)d(of)h(the)15 2638 y(arc)o(hitecture)f(mak)o (es)d(those)i(v)n(ariables)e(in)g Fl(L)737 2644 y Fk(1)772 2638 y Fr(that)h(are)h(ex-)15 2684 y(cluded)f(from)d(the)i(desired)h (marginal)d(set)i(inconsequen)o(tial.)15 2729 y(W)m(e)c(will)f(th)o(us) i(adopt)f(a)g(simplifying)d(notation)j(in)g(whic)o(h)g(the)15 2775 y(marginal)j(set)k(consists)h(of)d(all)g(and)h(only)f(the)i(v)n (ariables)e(in)1065 42 y Fl(L)1093 48 y Fk(1)1112 42 y Fr(.)i(Th)o(us,)c(the)g(goal)f(is)g(to)h(compute)1184 133 y Fl(P)6 b Fr(\()p Ft(f)p Fl(S)1279 139 y Fj(i)1292 133 y Ft(g)1313 139 y Fj(i)p Fe(2)p Fj(L)1370 143 y Ff(1)1388 133 y Ft(j)p Fl(\022)q Fr(\))12 b(=)1533 93 y Fi(X)1492 184 y Fe(f)p Fj(S)1529 188 y Fh(j)1545 184 y Fe(g)1562 188 y Fh(j)q Fg(2)p Fh(L)1615 194 y Ff(2)1640 133 y Fl(P)6 b Fr(\()p Fl(S)1714 139 y Fk(1)1733 133 y Fl(;)h(:)g(:)g(:)t(;)g(S)1850 139 y Fj(n)1873 133 y Ft(j)p Fl(\022)q Fr(\))66 b(\(5\))1065 292 y(Giv)o(en)19 b(our)h(assumption)e(that)i(computing)e(the)j (marginal)1065 338 y(probabilit)o(y)g(is)h(in)o(tractable,)h(w)o(e)g (seek)g(an)f(upp)q(er)h(b)q(ound)1065 383 y(instead.)46 b(Let)24 b(us)g(brie\015y)f(outline)g(our)g(strategy)m(.)47 b(The)1065 429 y(goal)13 b(is)h(to)g(simplify)d(the)k(join)o(t)e (distribution)g(suc)o(h)i(that)f(the)1065 475 y(marginalizatio)o(n)k (across)k Fl(L)1525 481 y Fk(2)1565 475 y Fr(can)f(b)q(e)h (accomplished)e(e\016-)1065 520 y(cien)o(tly)m(,)10 b(while)h(main)o (taining)c(at)k(all)f(times)g(a)g(rigorous)h(upp)q(er)1065 566 y(b)q(ound)18 b(on)g(the)g(desired)h(marginal)c(probabilit)o(y)m(.) 28 b(Our)18 b(ap-)1065 612 y(proac)o(h)d(is)h(to)f(in)o(tro)q(duce)h (additional)d(parameters)j(in)o(to)e(the)1065 657 y(problem)c(\(kno)o (wn)h(as)g(\\v)n(ariational)d(parameters"\))k(that)f(can)1065 703 y(factorize)g(the)g(join)o(t)f(distribution)g(o)o(v)o(er)g(the)i(v) n(ariables)d(in)i Fl(L)2010 709 y Fk(2)2028 703 y Fr(.)1065 749 y(Th)o(us)f(w)o(e)h(\014rst)g(\014nd)f(a)g(\\v)n(ariational")d (form)i(for)g(the)i(join)o(t)e(dis-)1065 794 y(tribution.)17 b(As)12 b(w)o(e)g(will)f(see)i(b)q(elo)o(w)f(this)g(t)o(yp)q(e)g(of)f (v)n(ariational)1065 840 y(form)i(can)h(b)q(e)h(obtained)f(b)o(y)h(com) o(bining)d(v)n(ariational)g(repre-)1065 886 y(sen)o(tations)g(for)g (eac)o(h)h(sigmoid)c(function)j(in)g(our)g(probabilit)o(y)1065 931 y(mo)q(del.)17 b(Although)c(the)i(v)n(ariational)d(forms)g(are)j (exact)f(they)1065 977 y(can)h(b)q(e)g(turned)h(in)o(to)e(upp)q(er)h(b) q(ounds)g(b)o(y)g(not)f(carrying)h(out)1065 1023 y(the)d(minim)o (izatio)o(ns)d(in)o(v)o(olv)o(ed)h(and)h(instead)h(\014xing)e(the)i(v)n (ari-)1065 1068 y(ational)d(parameters.)17 b(It)10 b(is)g(precisely)i (this)e(\014xing)f(that)i(leads)1065 1114 y(to)k(the)h(factorization)f (of)g(the)h(join)o(t)f(distribution)g(and)g(con-)1065 1160 y(sequen)o(tly)f(allo)o(ws)e(the)i(marginali)o(zation)c(to)j(b)q (e)h(carried)g(out)1065 1205 y(e\016cien)o(tly)m(.)j(W)m(e)12 b(note)g(\014nally)f(that)h(the)h(v)n(ariational)d(param-)1065 1251 y(eters)21 b(that)f(are)g(k)o(ept)f(\014xed)h(during)f(the)i (marginali)o(zation)1065 1297 y(can)f(b)q(e)g(emplo)o(y)o(ed)e(afterw)o (ards)i(to)f(optimize)f(the)i(b)q(ound.)1065 1342 y(In)f(essence,)j (this)d(amoun)o(ts)e(to)i(exc)o(hanging)g(the)g(order)h(of)1065 1388 y(the)14 b(marginalization)d(and)j(the)g(v)n(ariational)e(minim)o (i)o(zation.)1065 1458 y(T)m(o)e(deriv)o(e)i(the)f(upp)q(er)h(b)q(ound) g(w)o(e)f(\014rst)h(mak)o(e)d(use)j(of)f(the)g(fol-)1065 1504 y(lo)o(wing)g(v)n(ariational)f(transformation)h(of)h(the)i (sigmoid)c(func-)1065 1550 y(tion)j(\(see)j(app)q(endix)d(A\):)1254 1654 y Fl(g)q Fr(\()p Fl(x)p Fr(\))f(=)1450 1626 y(1)p 1392 1645 138 2 v 1392 1683 a(1)d(+)g Fl(e)1482 1671 y Fe(\000)p Fj(x)1546 1654 y Fr(=)27 b(min)1590 1683 y Fj(\030)q Fe(2)p Fk([0)p Fj(;)p Fk(1])1697 1654 y Fl(e)1716 1637 y Fj(\030)q(x)p Fe(\000)p Fj(H)r Fk(\()p Fj(\030)q Fk(\))1987 1654 y Fr(\(6\))1065 1765 y(where)18 b Fl(H)s Fr(\()p Ft(\001)p Fr(\))e(is)h(the)g(binary)f(en)o(trop)o(y)h (function.)26 b(Inserting)1065 1811 y(this)12 b(transformation)f(in)o (to)h(the)h(probabilit)o(y)d(mo)q(del)h(w)o(e)i(\014nd)1065 1892 y Fl(P)6 b Fr(\()p Fl(S)1139 1898 y Fk(1)1158 1892 y Fl(;)h(:)g(:)g(:)t(;)g(S)1275 1898 y Fj(n)1298 1892 y Ft(j)p Fl(\022)q Fr(\))12 b(=)1117 1979 y(=)1211 1940 y Fi(Y)1200 2029 y Fj(i)p Fe(2)p Fj(L)1257 2033 y Ff(1)1281 1979 y Fr(min)1301 2006 y Fj(\030)1316 2010 y Fh(i)1357 1921 y Fi(\032)1388 1979 y Fl(e)1407 1955 y Fe(\000)p Fj(H)r Fk(\()p Fj(\030)1490 1959 y Fh(i)1504 1955 y Fk(\)+)p Fj(\030)1557 1959 y Fh(i)1570 1955 y Fk(\(2)p Fj(S)1620 1959 y Fh(i)1633 1955 y Fe(\000)p Fk(1\))1695 1927 y Fi(P)1738 1971 y Fh(j)1760 1955 y Fj(\022)1776 1959 y Fh(ij)1802 1955 y Fj(S)1822 1959 y Fh(j)1840 1921 y Fi(\033)1890 1940 y(Y)1878 2029 y Fj(j)r Fe(2)p Fj(L)1939 2033 y Ff(2)1962 1979 y Fl(P)6 b Fr(\()p Fl(S)2036 1985 y Fj(j)2053 1979 y Ft(j)p Fl(\022)2084 1985 y Fj(j)2102 1979 y Fr(\))1117 2115 y(=)51 b(min)1227 2142 y Fj(\030)1277 2057 y Fi(\032)1308 2115 y Fl(e)1327 2089 y Fe(\000)1359 2061 y Fi(P)1402 2105 y Fh(i)p Fg(2)p Fh(L)1453 2111 y Ff(1)1477 2089 y Fj(H)r Fk(\()p Fj(\030)1534 2093 y Fh(i)1548 2089 y Fk(\))1577 2115 y Ft(\002)1200 2256 y(\002)1257 2217 y Fi(Y)1245 2306 y Fj(j)r Fe(2)p Fj(L)p Fk(2)1329 2198 y Fi(\024)1351 2256 y Fl(e)1370 2202 y Fi(P)1414 2246 y Fh(i)p Fg(2)p Fh(L)1465 2252 y Ff(1)1488 2230 y Fj(\030)1503 2234 y Fh(i)1516 2230 y Fk(\(2)p Fj(S)1566 2234 y Fh(i)1580 2230 y Fe(\000)p Fk(1\))p Fj(\022)1652 2234 y Fh(ij)1679 2198 y Fi(\025)1701 2207 y Fj(S)1721 2211 y Fh(j)1746 2256 y Fl(P)6 b Fr(\()p Fl(S)1820 2262 y Fj(j)1838 2256 y Ft(j)p Fl(\022)1869 2262 y Fj(j)1886 2256 y Fr(\))1902 2171 y Fi(9)1902 2209 y(=)1902 2283 y(;)2065 2256 y Fr(\(7\))1107 2362 y Fj(def)1117 2387 y Fr(=)51 b(min)1227 2414 y Fj(\030)1270 2387 y Ft(f)1311 2377 y Fr(~)1302 2387 y Fl(P)5 b Fr(\()p Fl(S)1375 2393 y Fk(1)1395 2387 y Fl(;)i(:)g(:)g(:)t(;)g(S)1512 2393 y Fj(n)1535 2387 y Ft(j)p Fl(\022)q(;)g(\030)r Fr(\))k Ft(g)411 b Fr(\(8\))1065 2492 y(where)19 b(w)o(e)e(ha)o(v)o(e)g(pulled) g(the)h(minimi)o(zations)c(outside)k(and)1065 2538 y(com)o(bined)27 b(the)h(terms)g(that)g(dep)q(end)h(on)f(eac)o(h)g(of)f(the)1065 2584 y(v)n(ariables)20 b Fl(S)1269 2590 y Fj(j)1307 2584 y Fr(in)g Fl(L)1390 2590 y Fk(2)1409 2584 y Fr(.)37 b(This)20 b(reorganization)g(sho)o(ws)h(that)1074 2628 y(~)1065 2638 y Fl(P)5 b Fr(\()p Fl(S)1138 2644 y Fk(1)1158 2638 y Fl(;)i(:)g(:)g(:)t(;)g(S)1275 2644 y Fj(n)1298 2638 y Ft(j)p Fl(\022)q(;)g(\030)r Fr(\))k(\(de\014ned)h(implicitly)o(\))c (factorizes)k(across)1065 2684 y Ft(f)p Fl(S)1111 2690 y Fj(j)1129 2684 y Ft(g)1150 2690 y Fj(j)r Fe(2)p Fj(L)1211 2694 y Ff(2)1248 2684 y Fr(\(i.e.)35 b(across)21 b(the)f(v)n(ariables)f (that)h(w)o(e)g(need)h(to)1065 2729 y(marginalize)c(o)o(v)o(er\).)35 b(Th)o(us)20 b(for)f(an)o(y)g(\014xed)h(v)n(alues)f(of)g(the)1065 2775 y(v)n(ariational)j(parameters,)27 b(the)e(marginalization)c(can)k (b)q(e)p eop %%Page: 3 3 3 2 bop 15 42 a Fr(p)q(erformed)14 b(e\016cien)o(tly)m(.)k(W)m(e)13 b(ma)o(y)f(therefore)k(obtain)d(a)h(sim-)15 87 y(ple)i(closed)i(form)c (upp)q(er)k(b)q(ound)e(on)h(the)g(marginal)c(proba-)15 133 y(bilit)o(y)h(b)o(y)i(exc)o(hanging)f(the)h(order)g(of)f(the)i (summatio)o(n)c(and)15 178 y(the)h(v)n(ariational)e(minim)o(izatio)o (n:)16 250 y Fl(P)6 b Fr(\()p Ft(f)p Fl(S)111 256 y Fj(i)125 250 y Ft(g)146 256 y Fj(i)p Fe(2)p Fj(L)203 260 y Ff(1)221 250 y Ft(j)p Fl(\022)q Fr(\))12 b(=)365 211 y Fi(X)325 302 y Fe(f)p Fj(S)362 306 y Fh(j)377 302 y Fe(g)394 306 y Fh(j)q Fg(2)p Fh(L)447 312 y Ff(2)473 250 y Fl(P)6 b Fr(\()p Fl(S)547 256 y Fk(1)565 250 y Fl(;)h(:)g(:)g(:)e(;)i(S)683 256 y Fj(n)705 250 y Ft(j)p Fl(\022)q Fr(\))184 b(\(9\))99 376 y(=)184 337 y Fi(X)143 428 y Fe(f)p Fj(S)180 432 y Fh(j)196 428 y Fe(g)213 432 y Fh(j)q Fg(2)p Fh(L)266 438 y Ff(2)291 376 y Fr(min)318 403 y Fj(\030)360 376 y Ft(f)402 366 y Fr(~)393 376 y Fl(P)5 b Fr(\()p Fl(S)466 382 y Fk(1)485 376 y Fl(;)i(:)g(:)g(:)e(;)i(S)603 382 y Fj(n)626 376 y Ft(j)p Fl(\022)q(;)g(\030)r Fr(\))k Ft(g)171 b Fr(\(10\))99 503 y Ft(\024)12 b Fr(min)170 530 y Fj(\030)260 463 y Fi(X)219 554 y Fe(f)p Fj(S)256 558 y Fh(j)272 554 y Fe(g)289 558 y Fh(j)q Fg(2)p Fh(L)342 564 y Ff(2)377 492 y Fr(~)367 503 y Fl(P)6 b Fr(\()p Fl(S)441 509 y Fk(1)460 503 y Fl(;)h(:)g(:)g(:)e(;)i(S)578 509 y Fj(n)600 503 y Ft(j)p Fl(\022)q(;)g(\030)r Fr(\))229 b(\(11\))99 646 y(=)12 b(min)170 673 y Fj(\030)219 587 y Fi(\032)250 646 y Fl(e)269 619 y Fe(\000)301 591 y Fi(P)345 635 y Fh(i)p Fg(2)p Fh(L)396 641 y Ff(1)420 619 y Fj(H)r Fk(\()p Fj(\030)477 623 y Fh(i)490 619 y Fk(\))520 646 y Ft(\002)116 747 y Fi(Y)104 836 y Fj(j)r Fe(2)p Fj(L)165 840 y Ff(2)188 728 y Fi(\022)219 787 y Fj(P)t Fk(\()p Fj(S)277 791 y Fh(j)293 787 y Fk(=1)p Fe(j)p Fj(\022)361 791 y Fh(j)376 787 y Fk(\))p Fl(e)408 732 y Fi(P)452 776 y Fh(i)p Fg(2)p Fh(L)503 782 y Ff(1)527 760 y Fj(\030)542 764 y Fh(i)555 760 y Fk(\(2)p Fj(S)605 764 y Fh(i)618 760 y Fe(\000)p Fk(1\))p Fj(\022)690 764 y Fh(ij)718 787 y Fk(+)p Fj(P)t Fk(\()p Fj(S)801 791 y Fh(j)818 787 y Fk(=0)p Fe(j)p Fj(\022)886 791 y Fh(j)901 787 y Fk(\))914 728 y Fi(\023)945 702 y(9)945 739 y(=)945 814 y(;)916 899 y Fr(\(12\))15 970 y(W)m(e)19 b(state)h(here)g(a)f(few) h(facts)f(ab)q(out)g(the)h(b)q(ound)g(\(mostly)15 1016 y(without)d(pro)q(of)s(\):)26 b(\(i\))18 b(The)g(b)q(ound)g(can)g(nev)o (er)h(b)q(e)f(greater)15 1062 y(than)10 b(one)h(since)g(one)f(is)g(alw) o(a)o(ys)g(ac)o(hiev)o(ed)g(b)o(y)g(setting)h(all)e Fl(\030)j Fr(to)15 1107 y(zero,)g(\(ii\))e(the)i(b)q(ound)f(b)q(ecomes)g(exact)h (in)e(the)i(limit)c(of)i(small)15 1153 y(parameter)i(v)n(alues,)g(and)g (\(iii\))g(for)g(\014xed)h(prior)f(probabilities)15 1199 y Fl(P)6 b Fr(\()p Fl(S)89 1205 y Fj(j)107 1199 y Ft(j)p Fl(\022)138 1205 y Fj(j)155 1199 y Fr(\))20 b(the)g(b)q(ound)g(has)h(a) e(lo)o(w)o(er)h(limit)d(and)i(therefore)15 1244 y(cannot)13 b(follo)o(w)e(closely)h(the)i(true)f(marginal)d(probabilit)o(y)h(for)15 1290 y(v)o(ery)j(improbable)e(ev)o(en)o(ts.)15 1361 y(T)m(o)g(simplify) e(the)j(minim)o(ization)c(with)k(resp)q(ect)i(to)d Fl(\030)j Fr(w)o(e)e(can)15 1406 y(w)o(ork)f(on)g(a)g(log)f(scale)h(and)g(mak)o (e)f(use)i(of)f(the)g(follo)o(wing)e(Leg-)15 1452 y(endre)15 b(transformation:)253 1523 y(log)7 b Fl(x)k Fr(=)h(min)418 1551 y Fj(\025)462 1523 y Ft(f)p Fl(\025x)d Ft(\000)h Fr(log)c Fl(\025)k Ft(\000)f Fr(1)p Ft(g)157 b Fr(\(13\))15 1614 y(As)14 b(a)g(result)h(w)o(e)f(get)15 1695 y(log)7 b Fl(P)f Fr(\()p Ft(f)p Fl(S)171 1701 y Fj(i)184 1695 y Ft(g)205 1701 y Fj(i)p Fe(2)p Fj(L)262 1705 y Ff(1)280 1695 y Ft(j)p Fl(\022)q Fr(\))12 b Ft(\024)g(\000)429 1656 y Fi(X)423 1745 y Fj(i)p Fe(2)p Fj(L)480 1749 y Ff(1)503 1695 y Fl(H)s Fr(\()p Fl(\030)575 1701 y Fj(i)589 1695 y Fr(\))98 1830 y(+)146 1791 y Fi(X)137 1880 y Fj(j)r Fe(2)p Fj(L)198 1884 y Ff(2)221 1830 y Fl(\025)245 1836 y Fj(j)270 1772 y Fi(\022)300 1830 y Fj(P)t Fk(\()p Fj(S)358 1834 y Fh(j)375 1830 y Fk(=1)p Fe(j)p Fj(\022)443 1834 y Fh(j)458 1830 y Fk(\))p Fl(e)490 1776 y Fi(P)534 1819 y Fh(i)p Fg(2)p Fh(L)585 1825 y Ff(1)608 1804 y Fj(\030)623 1808 y Fh(i)637 1804 y Fk(\(2)p Fj(S)687 1808 y Fh(i)700 1804 y Fe(\000)p Fk(1\))p Fj(\022)772 1808 y Fh(ij)800 1830 y Fk(+)p Fj(P)t Fk(\()p Fj(S)883 1834 y Fh(j)900 1830 y Fk(=0)p Fe(j)p Fj(\022)968 1834 y Fh(j)983 1830 y Fk(\))996 1772 y Fi(\023)98 1950 y Fr(+)146 1910 y Fi(X)137 1999 y Fj(j)r Fe(2)p Fj(L)198 2003 y Ff(2)214 1950 y Fr([)p Ft(\000)7 b Fr(log)f Fl(\025)349 1956 y Fj(j)376 1950 y Ft(\000)k Fr(1])508 b(\(14\))15 2068 y(where)19 b(w)o(e)g(ha)o(v)o(e)f(ceased)h(to)f(indicate)g(explicitly)f (that)h(the)15 2114 y(b)q(ound)d(will)d(b)q(e)j(minimi)o(zed)e(o)o(v)o (er)h(the)h(adjustable)f(parame-)15 2159 y(ters.)26 b(This)16 b(new)h(form)d(of)i(the)g(b)q(ound)h(has)f(the)h(adv)n(an)o(tage)15 2205 y(that)c(the)h(minimi)o(zation)c(with)j(resp)q(ect)j(to)d(eac)o(h) h(parameter)15 2251 y(\()p Fl(\030)g Fr(or)d Fl(\025)p Fr(\))h(is)f(reduced)j(to)d(con)o(v)o(ex)h(optimization)768 2236 y Fk(1)795 2251 y Fr(and)g(can)f(b)q(e)15 2296 y(done)f(b)o(y)g (an)o(y)g(standard)g(metho)q(d)g(\(e.g.)16 b(Newton-Raphson\).)15 2342 y(The)h(con)o(v)o(exit)o(y)g(prop)q(ert)o(y)g(is)g(imp)q(ortan)o (t)e(in)h(guaran)o(teeing)15 2388 y(a)f(unique)g(and)f(accessible)j (minim)n(um)10 b(for)15 b(an)o(y)f(of)h(the)g(v)n(ari-)15 2433 y(ational)g(parameters)h(at)g(eac)o(h)h(step)g(of)f(the)h(sequen)o (tial)f(\(it-)15 2479 y(erativ)o(e\))h(optimization.)24 b(Note)17 b(that)g(the)g(accuracy)h(of)e(the)15 2525 y(b)q(ound)j(is)f(not)h(compromised)e(b)o(y)h(the)i(additional)d (Legen-)15 2570 y(dre)c(transformation.)j(Its)d(e\013ect)i(is)d(merely) g(to)g(simplify)e(the)15 2616 y(expressions)15 b(for)f(optimization.)p 15 2649 250 2 v 67 2676 a Fd(1)84 2692 y Fn(The)f(con)o(v)o(exit)o(y)i (with)f(resp)q(ect)g(to)f(eac)o(h)h Fc(\030)g Fn(follo)o(ws)h(from)e (the)15 2733 y(con)o(v)o(exit)o(y)i(of)f Fc(e)249 2718 y Fb(x)281 2733 y Fn(and)g(the)g(p)q(ositivit)o(y)j(of)c(the)h(m)o (ultiplying)j(co)q(ef-)15 2775 y(\014cien)o(ts)d Fc(\025)p Fn(.)1065 42 y Fs(2.2)48 b(GENERIC)17 b(LO)o(WER)e(BOUND)h(F)o(OR)1174 87 y(SIGMOID)f(NETW)o(ORK)1065 172 y Fr(Metho)q(ds)j(for)e(\014nding)g (lo)o(w)o(er)g(b)q(ounds)i(on)e(marginal)e(lik)o(eli-)1065 218 y(ho)q(o)q(ds)20 b(w)o(ere)h(\014rst)g(presen)o(ted)h(b)o(y)e(Da)o (y)o(an,)g(et)g(al.)36 b(\(1995\))1065 263 y(and)16 b(Hin)o(ton,)g(et)g (al.)24 b(\(1995\))15 b(in)h(the)h(con)o(text)g(of)e(a)h(la)o(y)o(ered) 1065 309 y(net)o(w)o(ork)f(kno)o(wn)f(as)g(the)h(\\Helmholtz)e(mac)o (hine".)18 b(Saul,)13 b(et)1065 355 y(al.)30 b(\(1996\))18 b(subsequen)o(tly)h(pro)o(vided)f(a)g(rigorous)g(calcula-)1065 400 y(tion)13 b(of)g(lo)o(w)o(er)h(b)q(ounds)g(\(b)o(y)g(app)q(eal)f (to)h(mean)e(\014eld)i(theory\))1065 446 y(in)k(the)i(case)f(of)f (generic)i(sigmoid)c(net)o(w)o(orks.)33 b(Unlik)o(e)18 b(the)1065 492 y(metho)q(d)e(for)g(obtaining)g(upp)q(er)i(b)q(ounds)f (presen)o(ted)i(in)d(the)1065 537 y(previous)g(section,)g(the)f(lo)o(w) o(er)g(b)q(ound)h(metho)q(dology)d(p)q(oses)1065 583 y(no)18 b(constrain)o(ts)h(on)f(the)h(net)o(w)o(ork)f(structure.)33 b(W)m(e)18 b(brie\015y)1065 629 y(in)o(tro)q(duce)f(the)g(idea)e(here)j (\(for)e(more)f(details)h(see)h(Saul,)e(et)1065 674 y(al.\).)1065 745 y(Let)d(us)f(denote)h(the)g(marginal)d(set)j(of)e(v)n(ariables)h(b) o(y)g Ft(f)p Fl(S)1935 751 y Fj(i)1949 745 y Ft(g)1970 751 y Fj(i)p Fe(2)p Fj(L)2028 745 y Fr(.)1065 791 y(A)16 b(lo)o(w)o(er)g(b)q(ound)g(on)g(the)h(\(log\))e(marginal)e(probabilit)o (y)i(can)1065 836 y(b)q(e)g(found)e(directly)h(via)f(Jensen's)j (inequalit)o(y:)1188 900 y(log)7 b Fl(P)f Fr(\()p Ft(f)p Fl(S)1344 906 y Fj(i)1357 900 y Ft(g)1378 906 y Fj(i)p Fe(2)p Fj(L)1437 900 y Ft(j)p Fl(\022)q Fr(\))12 b(=)1230 971 y(=)42 b(log)1388 931 y Fi(X)1364 1022 y Fe(f)p Fj(S)r Fe(g)1420 1026 y Fh(i)p Fg(62)p Fh(L)1480 971 y Fl(P)6 b Fr(\()p Fl(S)1554 977 y Fk(1)1572 971 y Fl(;)h(:)g(:)g(:)e(;)i(S)1690 977 y Fj(n)1712 971 y Ft(j)p Fl(\022)q Fr(\))1230 1111 y(=)42 b(log)1394 1071 y Fi(X)1364 1162 y Fe(f)p Fj(S)1401 1166 y Fh(i)1415 1162 y Fe(g)1432 1166 y Fh(i)p Fg(62)p Fh(L)1491 1111 y Fl(Q)p Fr(\()p Ft(f)p Fl(S)r Ft(g)p Fr(\))1630 1083 y Fl(P)6 b Fr(\()p Fl(S)1704 1089 y Fk(1)1723 1083 y Fl(;)h(:)g(:)g(:)e(;)i(S)1841 1089 y Fj(n)1863 1083 y Ft(j)p Fl(\022)q Fr(\))p 1630 1101 282 2 v 1704 1139 a Fl(Q)p Fr(\()p Ft(f)p Fl(S)r Ft(g)p Fr(\))1230 1251 y Ft(\025)1328 1211 y Fi(X)1304 1302 y Fe(f)p Fj(S)r Fe(g)1360 1306 y Fh(i)p Fg(62)p Fh(L)1419 1251 y Fl(Q)p Fr(\()p Ft(f)p Fl(S)r Ft(g)p Fr(\))g(log)1626 1223 y Fl(P)f Fr(\()p Fl(S)1700 1229 y Fk(1)1719 1223 y Fl(;)h(:)g(:)g(:)t(;)g (S)1836 1229 y Fj(n)1859 1223 y Ft(j)p Fl(\022)q Fr(\))p 1626 1241 V 1699 1279 a Fl(Q)p Fr(\()p Ft(f)p Fl(S)r Ft(g)p Fr(\))1966 1251 y(\(15\))1065 1369 y(whic)o(h)14 b(holds)g(for)g(an)o(y)f(distribution)h Fl(Q)g Fr(o)o(v)o(er)g Ft(f)p Fl(S)1844 1375 y Fj(i)1858 1369 y Ft(g)1879 1375 y Fj(i)p Fe(62)p Fj(L)1938 1369 y Fr(.)19 b(The)1065 1414 y(b)q(ound)12 b(b)q(ecomes)g(exact)h(if)e Fl(Q)p Fr(\()p Ft(f)p Fl(S)r Ft(g)p Fr(\))i(can)f(represen)o(t)i(the)f(true) 1065 1460 y(p)q(osterior)19 b(distribution)f Fl(P)6 b Fr(\()p Ft(f)p Fl(S)r Ft(g)12 b(j)f(f)p Fl(S)1674 1466 y Fj(i)1688 1460 y Ft(g)1709 1466 y Fj(i)p Fe(2)p Fj(L)1768 1460 y Fl(;)c(\022)q Fr(\).)31 b(F)m(or)18 b(other)1065 1506 y(c)o(hoices)g(of)e Fl(Q)h Fr(the)h(accuracy)g(of)e(the)i(b)q (ound)f(is)g(c)o(haracter-)1065 1551 y(ized)f(b)o(y)f(the)h(Kullbac)o (k-Leibler)f(distance)h(b)q(et)o(w)o(een)h Fl(Q)e Fr(and)1065 1597 y(the)e(p)q(osterior.)18 b(As)13 b(w)o(e)f(are)h(assuming)d(that)j (computing)d(the)1065 1643 y(lik)o(eliho)q(o)q(d)16 b(exactly)i(is)g (in)o(tractable)g(the)h(idea)e(is)h(to)g(\014nd)g(a)1065 1688 y(distribution)d Fl(Q)h Fr(that)g(can)g(b)q(e)g(computed)f (e\016cien)o(tly)m(.)24 b(The)1065 1734 y(simplest)11 b(of)h(suc)o(h)h(distributions)f(is)g(the)h(completely)e(factor-)1065 1780 y(ized)j(\(\\mean)f(\014eld"\))h(distribution:)1283 1856 y Fl(Q)p Fr(\()p Ft(f)p Fl(S)r Ft(g)p Fr(\))e(=)1473 1817 y Fi(Y)1491 1905 y Fj(j)1533 1856 y Fl(\026)1558 1834 y Fj(S)1578 1838 y Fh(j)1558 1868 y Fj(j)1596 1856 y Fr(\(1)d Ft(\000)g Fl(\026)1708 1862 y Fj(j)1726 1856 y Fr(\))1742 1839 y Fk(1)p Fe(\000)p Fj(S)1805 1843 y Fh(j)1966 1856 y Fr(\(16\))1065 1969 y(Inserting)18 b(this)f (distribution)g(in)o(to)f(the)i(lo)o(w)o(er)f(b)q(ound)g(\(Eq.)1065 2014 y(\(15\)\))f(w)o(e)g(can,)h(in)f(principle,)g(carry)h(out)f(the)h (summatio)o(n)2024 1999 y Fk(2)1065 2060 y Fr(and)i(get)h(an)g (expression)h(for)e(the)h(lo)o(w)o(er)f(b)q(ound.)36 b(Conse-)1065 2106 y(quen)o(tly)m(,)14 b(the)i(adjustable)f(v)n (ariational)d(parameters)j Fl(\026)1945 2112 y Fj(j)1978 2106 y Fr(can)1065 2151 y(b)q(e)g(mo)q(di\014ed)d(to)i(mak)o(e)e(the)j (b)q(ound)f(tigh)o(ter.)1065 2222 y(F)m(or)d(later)g(utilit)o(y)f(w)o (e)i(rewrite)g(the)g(lo)o(w)o(er)f(b)q(ound)h(in)f(eq.)17 b(\(15\))1065 2268 y(as)1102 2253 y Fk(3)1121 2268 y Fr(:)1195 2332 y(log)6 b Fl(P)g Fr(\()p Ft(f)p Fl(S)1350 2338 y Fj(i)1364 2332 y Ft(g)1385 2338 y Fj(i)p Fe(2)p Fj(L)1444 2332 y Ft(j)p Fl(\022)q Fr(\))1236 2390 y Ft(\025)42 b Fl(E)1341 2396 y Fj(Q)1369 2390 y Ft(f)11 b Fr(log)c Fl(P)f Fr(\()p Fl(S)1536 2396 y Fk(1)1554 2390 y Fl(;)h(:)g(:)g(:)e(;)i (S)1672 2396 y Fj(n)1695 2390 y Ft(j)p Fl(\022)q Fr(\))12 b Ft(g)d Fr(+)g Fl(H)1861 2396 y Fj(Q)1966 2390 y Fr(\(17\))1236 2462 y(=)1310 2423 y Fi(X)1334 2511 y Fj(i)1377 2462 y Fl(E)1408 2468 y Fj(Q)1436 2462 y Ft(f)i Fr(log)c Fl(P)f Fr(\()p Fl(S)1603 2468 y Fj(i)1617 2462 y Ft(j)p Fr(pa)o([)p Fl(i)p Fr(])p Fl(;)h(\022)q Fr(\))k Ft(g)e Fr(+)g Fl(H)1882 2468 y Fj(Q)1966 2462 y Fr(\(18\))1065 2567 y(where)21 b Fl(H)1226 2573 y Fj(Q)1274 2567 y Fr(is)f(the)g(en)o(trop)o(y)h(of)e (the)i Fl(Q)f Fr(distribution)f(and)1065 2612 y Fl(E)1096 2618 y Fj(Q)1124 2612 y Ft(f\001g)d Fr(is)h(the)h(exp)q(ectation)f (with)g(resp)q(ect)i(to)e Fl(Q)p Fr(.)28 b(A)o(t)17 b(this)p 1065 2646 250 2 v 1117 2673 a Fd(2)1134 2689 y Fn(The)e(summation)h(ev) o(en)g(in)g(case)f(of)f(simple)j(factorized)f(dis-)1065 2731 y(tributions)f(can)f(b)q(e)f(non-trivial)j(to)d(p)q(erform;)g(see) g(Saul,)h(et)f(al.)1117 2759 y Fd(3)1134 2745 y Fi(P)1184 2775 y Fc(Q)7 b Fn(log)h Fc(P)s(=Q)j Fn(=)1405 2745 y Fi(P)1456 2775 y Fc(Q)6 b Fn(log)i Fc(P)14 b Fn(+)8 b(\()p Fa(\000)1676 2745 y Fi(P)1726 2775 y Fc(Q)f Fn(log)h Fc(Q)p Fn(\))p eop %%Page: 4 4 4 3 bop 15 42 a Fr(p)q(oin)o(t)14 b(w)o(e)g(ha)o(v)o(e)g(pro)q(ceeded)i (as)f(far)f(as)g(p)q(ossible)g(for)g(generic)15 87 y(arc)o(hitectures;) h(further)f(dev)o(elopmen)o(t)d(of)i(the)g(b)q(ound)g(is)g(de-)15 133 y(p)q(enden)o(t)f(on)f(the)g(t)o(yp)q(e)g(of)g(the)g(net)o(w)o(ork) g({)g(whether)h(sigmoid,)15 178 y(noisy-OR,)h(or)h(other)356 163 y Fk(4)375 178 y Fr(.)15 280 y Fs(2.3)48 b(NUMERICAL)17 b(EXPERIMENTS)g(F)o(OR)124 326 y(SIGMOID)e(NETW)o(ORK)15 410 y Fr(In)k(testing)g(the)h(accuracy)g(of)e(the)i(dev)o(elop)q(ed)f (b)q(ounds)h(w)o(e)15 456 y(used)g(8)h Ft(!)f Fr(8)g(net)o(w)o(orks)g (\(complete)f(bipartite)g(graphs)h(as)15 502 y(in)12 b(Figure)h(1)g(with)f(8)h(no)q(des)g(in)g(eac)o(h)g(lev)o(el\),)f (where)i(the)g(net-)15 547 y(w)o(ork)d(size)g(w)o(as)g(c)o(hosen)h(to)e (b)q(e)i(small)c(enough)j(to)g(allo)o(w)e(exact)15 593 y(computation)g(of)h(the)h(marginal)d(probabilities)i(for)g(purp)q (oses)15 639 y(of)k(comparison.)19 b(The)c(metho)q(d)f(of)g(testing)h (w)o(as)f(as)h(follo)o(ws.)15 684 y(The)j(parameters)g(for)f(the)h(8)f Ft(!)g Fr(8)g(net)o(w)o(orks)i(w)o(ere)f(dra)o(wn)15 730 y(from)12 b(a)h(Gaussian)g(prior)h(distribution)f(and)g(a)g(sample) g(from)15 776 y(the)22 b(resulting)f(join)o(t)g(distribution)g(of)f (the)i(v)n(ariables)f(w)o(as)15 821 y(generated.)34 b(The)19 b(v)n(ariables)f(in)g(the)h(\\receiving")f(la)o(y)o(er)h(of)15 867 y(the)d(bipartite)f(graph)f(w)o(ere)i(set)g(according)f(to)g(the)h (sample.)15 913 y(The)11 b(true)h(marginal)c(probabilit)o(y)i(as)h(w)o (ell)f(as)h(the)g(upp)q(er)h(and)15 958 y(lo)o(w)o(er)i(b)q(ounds)h(w)o (ere)g(computed)f(for)g(this)g(setting.)20 b(The)14 b(re-)15 1004 y(sulting)c(b)q(ounds)h(w)o(ere)h(assessed)g(b)o(y)f(emplo)o(ying) d(the)j(relativ)o(e)15 1050 y(error)16 b(in)g(log-lik)o(eliho)q(o)q(d,) c(i.e.)23 b(\(log)6 b Fl(P)618 1056 y Fk(Bound)715 1050 y Fl(=)h Fr(log)f Fl(P)16 b Ft(\000)11 b Fr(1\),)k(as)15 1095 y(a)f(measure)f(of)h(accuracy)m(.)15 1166 y(More)g(precisely)m(,)g (the)h(prior)f(distribution)f(o)o(v)o(er)h(the)h(param-)15 1212 y(eters)h(w)o(as)d(tak)o(en)h(to)g(b)q(e)218 1292 y Fl(P)6 b Fr(\()p Fl(\022)q Fr(\))12 b(=)359 1253 y Fi(Y)379 1341 y Fj(i)444 1253 y Fi(Y)419 1344 y Fj(j)r Fe(2)p Fk(pa)o([)p Fj(i)p Fk(])574 1264 y Fr(1)p 534 1282 101 2 v 534 1295 a Fe(p)p 561 1295 74 2 v 26 x Fk(2)p Fj(\031)q(\033)618 1312 y Ff(2)639 1292 y Fl(e)658 1273 y Fe(\000)707 1262 y Ff(1)p 690 1267 48 2 v 690 1288 a(2)p Fh(\033)722 1282 y Ff(2)743 1273 y Fj(\022)760 1260 y Ff(2)759 1281 y Fh(ij)916 1292 y Fr(\(19\))15 1414 y(where)21 b(the)f(o)o(v)o(erall)f(v)n(ariance)g Fl(\033)550 1399 y Fk(2)589 1414 y Fr(allo)o(ws)f(us)j(to)e(v)n(ary)g (the)15 1460 y(degree)12 b(to)f(whic)o(h)f(the)h(resulting)g (parameters)g(mak)o(e)e(the)i(t)o(w)o(o)15 1506 y(la)o(y)o(ers)16 b(of)g(the)h(net)o(w)o(ork)f(dep)q(enden)o(t.)28 b(F)m(or)15 b(small)g(v)n(alues)h(of)15 1551 y Fl(\033)40 1536 y Fk(2)77 1551 y Fr(the)j(la)o(y)o(ers)f(are)g(almost)e(indep)q(enden)o (t)k(whereas)f(larger)15 1597 y(v)n(alues)d(mak)o(e)f(them)g(strongly)h (in)o(terdep)q(enden)o(t.)28 b(T)m(o)15 b(mak)o(e)15 1643 y(the)i(situation)e(w)o(orse)i(for)e(the)i(b)q(ounds)650 1628 y Fk(5)685 1643 y Fr(w)o(e)f(enhanced)h(the)15 1688 y(coupling)9 b(of)h(the)h(la)o(y)o(ers)f(b)o(y)g(setting)h Fl(P)6 b Fr(\()p Fl(S)663 1694 y Fj(j)680 1688 y Ft(j)p Fl(\022)711 1694 y Fj(j)729 1688 y Fr(\))11 b(=)h(1)p Fl(=)p Fr(2)d(for)h(the)15 1734 y(v)n(ariables)k(not)h(in)f(the)h (desired)h(marginal)c(set,)k(i.e.,)d(making)15 1780 y(them)g(maxim)o (all)o(y)e(v)n(ariable.)15 1850 y(In)h(order)h(to)f(mak)o(e)f(the)i (accuracy)g(of)f(the)h(b)q(ounds)f(commen-)15 1896 y(surate)j(with)e (those)i(for)e(the)i(noisy-OR)e(net)o(w)o(orks)h(rep)q(orted)15 1942 y(b)q(elo)o(w,)c(w)o(e)g(summarize)e(the)i(results)h(via)e(a)g (measure)h(of)f(in)o(ter-)15 1987 y(la)o(y)o(er)k(dep)q(endence.)21 b(This)14 b(dep)q(endence)i(w)o(as)e(estimated)g(b)o(y)225 2062 y Fl(\033)249 2068 y Fj(std)308 2062 y Fr(=)e(max)354 2088 y Fj(i)p Fe(2)p Fj(L)411 2092 y Ff(1)436 2024 y Fi(p)p 477 2024 303 2 v 477 2062 a Fr(V)m(ar)p Ft(f)p Fl(P)6 b Fr(\()p Fl(S)637 2068 y Fj(i)650 2062 y Ft(j)p Fr(pa[)p Fl(i)p Fr(]\))p Ft(g)135 b Fr(\(20\))15 2151 y(i.e.,)13 b(the)h(maxim)o(um)9 b(v)n(ariabilit)o(y)j(of)h(the)i (conditional)e(lik)o(eli-)15 2197 y(ho)q(o)q(ds.)18 b(Here)d Fl(S)274 2203 y Fj(i)301 2197 y Fr(w)o(as)e(\014xed)h(in)f(the)h Fl(P)6 b Fr(\()p Fl(S)673 2203 y Fj(i)687 2197 y Ft(j)p Fr(pa)o([)p Fl(i)p Fr(]\))13 b(functional)15 2243 y(according)k(to)g (the)h(initial)d(sample)h(and)h(the)h(v)n(ariance)f(w)o(as)15 2288 y(computed)c(with)h(resp)q(ect)i(to)e(the)g(join)o(t)f (distribution)875 2273 y Fk(6)893 2288 y Fr(.)15 2359 y(Figure)e(2)f(illustrates)h(the)h(accuracy)g(of)e(the)h(b)q(ounds)g (as)g(mea-)15 2404 y(sured)21 b(b)o(y)f(the)h(relativ)o(e)f(log-lik)o (eliho)q(o)q(d)d(as)j(a)g(function)g(of)p 15 2436 250 2 v 67 2463 a Fd(4)84 2479 y Fn(F)m(or)g(a)f(deriv)n(ation)j(of)d(lo)o (w)o(er)h(b)q(ounds)h(for)e(net)o(w)o(orks)h(with)15 2520 y(cum)o(ulativ)o(e)g(Gaussians)g(replacing)g(the)e(sigmoid)i (function)f(see)15 2562 y(Jaakk)o(ola)14 b(et)f(al.)18 b(\(1996\).)67 2590 y Fd(5)84 2606 y Fn(Both)11 b(the)f(upp)q(er)h(and) g(lo)o(w)o(er)f(b)q(ounds)i(are)e(exact)g(in)h(the)f(limit)15 2648 y(of)j(ligh)o(tly)i(coupled)g(la)o(y)o(ers.)67 2676 y Fd(6)84 2692 y Fn(Note)f(that)g Fc(P)5 b Fn(\()p Fc(S)330 2696 y Fb(i)344 2692 y Fa(j)p Fn(pa[)p Fc(i)p Fn(]\))13 b(with)i Fc(S)570 2696 y Fb(i)598 2692 y Fn(\014xed)g(is)f(just)g(some) h(func-)15 2733 y(tion)f(of)e(the)h(v)n(ariables)h(in)g(the)f(net)o(w)o (ork)g(whose)f(v)n(ariance)j(can)e(b)q(e)15 2775 y(computed.)1065 42 y Fl(\033)1089 48 y Fj(std)1136 26 y Fk(7)1155 42 y Fr(.)29 b(In)18 b(terms)f(of)g(probabilities,)h(a)f(relativ)o(e)g (error)i(of)e Fl(\017)1065 87 y Fr(translates)12 b(in)o(to)f(a)g Fl(P)1399 72 y Fk(1+)p Fj(\017)1468 87 y Fr(appro)o(ximation)d(of)j (the)h(true)g(lik)o(eli-)1065 133 y(ho)q(o)q(d)g Fl(P)6 b Fr(.)16 b(Note)d(that)f(the)g(relativ)o(e)g(error)h(is)e(alw)o(a)o (ys)g(p)q(ositiv)o(e)1065 178 y(for)g(the)h(upp)q(er)h(b)q(ound)f(and)f (negativ)o(e)h(for)f(the)h(lo)o(w)o(er)f(b)q(ound,)1065 224 y(as)h(guaran)o(teed)h(b)o(y)f(the)h(theory)m(.)18 b(The)12 b(\014gure)h(indicates)g(that)1065 270 y(the)k(b)q(ounds)g (are)g(accurate)h(enough)e(to)h(b)q(e)g(useful.)26 b(In)16 b(ad-)1065 315 y(dition,)g(w)o(e)h(see)h(that)e(the)i(the)f(upp)q(er)h (b)q(ound)e(deteriorates)1065 361 y(faster)f(with)e(increasingly)h (coupled)g(la)o(y)o(ers.)1065 432 y(Let)19 b(us)f(no)o(w)g(brie\015y)g (consider)i(the)e(scaling)g(prop)q(erties)i(of)1065 477 y(the)h(b)q(ounds)f(as)g(the)g(net)o(w)o(ork)h(size)f(increases.)38 b(W)m(e)20 b(note)1065 523 y(\014rst)14 b(that)f(the)h(ev)n(aluation)e (time)g(for)h(the)h(b)q(ounds)f(increases)1065 569 y(appro)o(ximately)c (linearly)i(with)g(the)i(n)o(um)o(b)q(er)e(of)g(parameters)1065 614 y Fl(\022)20 b Fr(in)d(these)j(t)o(w)o(o-lev)o(el)d(net)o(w)o(orks) 1604 599 y Fk(8)1623 614 y Fr(.)30 b(The)19 b(accuracy)g(of)e(the)1065 660 y(b)q(ounds,)g(on)f(the)g(other)h(hand,)f(needs)i(exp)q(erimen)o (tal)d(illus-)1065 706 y(tration.)1065 776 y(In)d(large)f(net)o(w)o (orks)i(it)e(is)h(not)f(feasible)h(to)g(compute)f Fl(\033)1921 782 y Fj(std)1980 776 y Fr(nor)1065 822 y(the)18 b(true)g(marginal)d (lik)o(eliho)q(o)q(d.)26 b(W)m(e)17 b(ma)o(y)m(,)e(ho)o(w)o(ev)o(er,)j (cal-)1065 868 y(culate)d(the)g(relativ)o(e)g(error)g(b)q(et)o(w)o(een) h(the)f(upp)q(er)h(and)e(lo)o(w)o(er)1065 913 y(b)q(ounds.)k(T)m(o)11 b(main)o(tain)f(appro)o(ximately)f(same)i(lev)o(el)h(of)g Fl(\033)1993 919 y Fj(std)1065 959 y Fr(across)23 b(di\013eren)o(t)f (net)o(w)o(ork)g(sizes)h(w)o(e)f(plotted)g(the)h(errors)1065 1005 y(against)12 b Fl(\033)1232 975 y Ft(p)p 1266 975 25 2 v 1266 1005 a Fl(n)h Fr(\(for)f(fully)f(connected)j Fl(n)e Fr(b)o(y)g Fl(n)g Fr(t)o(w)o(o-lev)o(el)g(net-)1065 1050 y(w)o(orks\),)19 b(where)g Fl(\033)h Fr(is)e(the)g(o)o(v)o(erall)f (standard)i(deviation)e(in)1065 1096 y(the)j(prior)f(distribution.)33 b(Figure)19 b(3)g(sho)o(ws)h(that)f(the)h(rel-)1065 1142 y(ativ)o(e)e(errors)h(are)f(in)o(v)n(arian)o(t)f(to)h(the)g(net)o(w)o (ork)h(size)f(in)g(this)1065 1187 y(scaling.)1117 1257 y 13754155 10419816 1184071 11774935 39337492 40521564 startTexFig 1117 1257 a %%BeginDocument: ../uai96/figures/sig-res.eps /MathWorks 150 dict begin /bdef {bind def} bind def /ldef {load def} bind def /xdef {exch def} bdef /xstore {exch store} bdef /c /clip ldef /cc /concat ldef /cp /closepath ldef /gr /grestore ldef /gs /gsave ldef /mt /moveto ldef /np /newpath ldef /cm /currentmatrix ldef /sm /setmatrix ldef /rc {rectclip} bdef /rf {rectfill} bdef /rm /rmoveto ldef /rl /rlineto ldef /s /show ldef /sc {setcmykcolor} bdef /sr /setrgbcolor ldef /w /setlinewidth ldef /j /setlinejoin ldef /cap /setlinecap ldef /pgsv () def /bpage {/pgsv save def} bdef /epage {pgsv restore} bdef /bplot /gsave ldef /eplot {stroke grestore} bdef /portraitMode 0 def /landscapeMode 1 def /dpi2point 0 def /FontSize 0 def /FMS { /FontSize xstore %save size off stack findfont [FontSize 0 0 FontSize neg 0 0] makefont setfont }bdef /reencode { exch dup where {pop load} {pop StandardEncoding} ifelse exch dup 3 1 roll findfont dup length dict begin { 1 index /FID ne {def}{pop pop} ifelse } forall /Encoding exch def currentdict end definefont pop } bdef /isroman { findfont /CharStrings get /Agrave known } bdef /FMSR { 3 1 roll 1 index dup isroman {reencode} {pop pop} ifelse exch FMS } bdef /csm { 1 dpi2point div -1 dpi2point div scale neg translate landscapeMode eq {90 rotate} if } bdef /SO { [] 0 setdash } bdef /DO { [.5 dpi2point mul 4 dpi2point mul] 0 setdash } bdef /DA { [6 dpi2point mul] 0 setdash } bdef /DD { [.5 dpi2point mul 4 dpi2point mul 6 dpi2point mul 4 dpi2point mul] 0 setdash } bdef /L { lineto stroke } bdef /MP { 3 1 roll moveto 1 sub {rlineto} repeat } bdef /AP { {rlineto} repeat } bdef /PP { closepath fill } bdef /DP { closepath stroke } bdef /MR { 4 -2 roll moveto dup 0 exch rlineto exch 0 rlineto neg 0 exch rlineto closepath } bdef /FR { MR stroke } bdef /PR { MR fill } bdef /L1i { { currentfile picstr readhexstring pop } image } bdef /tMatrix matrix def /MakeOval { newpath tMatrix currentmatrix pop translate scale 0 0 1 0 360 arc tMatrix setmatrix } bdef /FO { MakeOval stroke } bdef /PO { MakeOval fill } bdef /PD { 2 copy moveto lineto stroke } bdef currentdict end def MathWorks begin 0 cap end MathWorks begin bpage bplot /dpi2point 12 def portraitMode 0216 7344 csm 0 -48 6965 5235 MR c np 76 dict begin %Colortable dictionary /c0 { 0 0 0 sr} bdef /c1 { 1 1 1 sr} bdef /c2 { 1 0 0 sr} bdef /c3 { 0 1 0 sr} bdef /c4 { 0 0 1 sr} bdef /c5 { 1 1 0 sr} bdef /c6 { 1 0 1 sr} bdef /c7 { 0 1 1 sr} bdef /Helvetica /ISOLatin1Encoding 144 FMSR 1 j c1 0 0 6917 5187 PR 6 w DO 4 w SO 6 w c0 899 4615 mt 6258 4615 L 899 389 mt 6258 389 L 899 4615 mt 899 389 L 6258 4615 mt 6258 389 L 899 4615 mt 899 4615 L 6258 4615 mt 6258 4615 L 899 4615 mt 6258 4615 L 899 4615 mt 899 389 L 899 4615 mt 899 4615 L 1598 4615 mt 1598 4561 L 1598 389 mt 1598 443 L 1458 4784 mt (0.05) s 2763 4615 mt 2763 4561 L 2763 389 mt 2763 443 L 2663 4784 mt (0.1) s 3928 4615 mt 3928 4561 L 3928 389 mt 3928 443 L 3788 4784 mt (0.15) s 5093 4615 mt 5093 4561 L 5093 389 mt 5093 443 L 4993 4784 mt (0.2) s 6258 4615 mt 6258 4561 L 6258 389 mt 6258 443 L 6118 4784 mt (0.25) s 899 4615 mt 953 4615 L 6258 4615 mt 6204 4615 L 580 4668 mt (-0.1) s 899 4231 mt 953 4231 L 6258 4231 mt 6204 4231 L 500 4284 mt (-0.08) s 899 3847 mt 953 3847 L 6258 3847 mt 6204 3847 L 500 3900 mt (-0.06) s 899 3462 mt 953 3462 L 6258 3462 mt 6204 3462 L 500 3515 mt (-0.04) s 899 3078 mt 953 3078 L 6258 3078 mt 6204 3078 L 500 3131 mt (-0.02) s 899 2694 mt 953 2694 L 6258 2694 mt 6204 2694 L 784 2747 mt (0) s 899 2310 mt 953 2310 L 6258 2310 mt 6204 2310 L 584 2363 mt (0.02) s 899 1926 mt 953 1926 L 6258 1926 mt 6204 1926 L 584 1979 mt (0.04) s 899 1542 mt 953 1542 L 6258 1542 mt 6204 1542 L 584 1595 mt (0.06) s 899 1157 mt 953 1157 L 6258 1157 mt 6204 1157 L 584 1210 mt (0.08) s 899 773 mt 953 773 L 6258 773 mt 6204 773 L 664 826 mt (0.1) s 899 4615 mt 6258 4615 L 899 389 mt 6258 389 L 899 4615 mt 899 389 L 6258 4615 mt 6258 389 L 899 389 mt 899 389 L 6258 389 mt 6258 389 L gs 899 389 5360 4227 MR c np gr 8 w 1 cap 1053 2663 PD 1326 2658 PD 1274 2653 PD 1054 2666 PD 1285 2655 PD 1188 2662 PD 1130 2665 PD 1173 2660 PD 1276 2652 PD 1174 2656 PD 1229 2661 PD 1208 2659 PD 1116 2664 PD 1030 2671 PD 1260 2656 PD 1300 2652 PD 1161 2656 PD 1160 2668 PD 1140 2655 PD 1284 2656 PD 1115 2659 PD 1262 2654 PD 1281 2658 PD 1353 2648 PD 1192 2660 PD 1165 2661 PD 1422 2648 PD 1321 2644 PD 1242 2651 PD 1165 2653 PD 1614 2636 PD 1343 2648 PD 1411 2643 PD 1444 2642 PD 1338 2656 PD 1222 2655 PD 1243 2649 PD 1227 2659 PD 1178 2660 PD 1233 2659 PD 1363 2633 PD 1442 2649 PD 1346 2643 PD 1303 2643 PD 1621 2637 PD 1442 2630 PD 1306 2642 PD 1512 2646 PD 1297 2645 PD 1229 2649 PD 1307 2643 PD 1271 2645 PD 1314 2654 PD 1410 2635 PD 1251 2655 PD 1233 2659 PD 1462 2641 PD 1370 2647 PD 1456 2637 PD 1292 2647 PD 1379 2642 PD 1422 2635 PD 1257 2651 PD 1308 2644 PD 1348 2638 PD 1541 2618 PD 1415 2639 PD 1469 2622 PD 1479 2639 PD 1192 2651 PD 1574 2626 PD 1298 2643 PD 1485 2626 PD 1601 2620 PD 1495 2625 PD 1724 2625 PD 1454 2639 PD 1415 2637 PD 1492 2633 PD 1497 2637 PD 1675 2621 PD 1717 2618 PD 1353 2638 PD 1464 2628 PD 1710 2633 PD 1479 2636 PD 1484 2628 PD 1356 2641 PD 1541 2635 PD 1337 2642 PD 1391 2629 PD 1491 2622 PD 1430 2639 PD 1593 2618 PD 1534 2627 PD 1271 2649 PD 1654 2630 PD 1436 2645 PD 1327 2638 PD 1453 2639 PD 1411 2631 PD 1778 2603 PD 1566 2621 PD 1578 2599 PD 1449 2621 PD 1653 2612 PD 1657 2595 PD 1659 2603 PD 1641 2600 PD 1531 2609 PD 1523 2626 PD 1580 2627 PD 1582 2606 PD 1487 2605 PD 1670 2610 PD 1614 2615 PD 1497 2608 PD 1408 2637 PD 1474 2635 PD 1750 2622 PD 1764 2630 PD 1704 2596 PD 1724 2602 PD 1589 2622 PD 1529 2594 PD 1410 2635 PD 1797 2592 PD 1903 2591 PD 1481 2635 PD 1783 2579 PD 1567 2624 PD 1599 2613 PD 1745 2598 PD 1681 2605 PD 1545 2618 PD 1509 2611 PD 1577 2590 PD 1632 2625 PD 1476 2618 PD 1608 2614 PD 1903 2589 PD 2226 2560 PD 1677 2586 PD 1646 2611 PD 1667 2597 PD 1918 2596 PD 1837 2598 PD 1588 2605 PD 1602 2598 PD 1665 2613 PD 1833 2566 PD 1938 2594 PD 1765 2577 PD 1730 2591 PD 1665 2585 PD 1497 2615 PD 1581 2602 PD 1679 2588 PD 1738 2580 PD 2111 2578 PD 1756 2588 PD 1406 2633 PD 1727 2589 PD 1629 2592 PD 1728 2573 PD 1713 2582 PD 1929 2581 PD 1826 2576 PD 1903 2587 PD 1685 2599 PD 1567 2611 PD 1741 2591 PD 1740 2592 PD 2034 2531 PD 1984 2562 PD 2111 2545 PD 1948 2550 PD 1896 2581 PD 1804 2587 PD 1828 2588 PD 2182 2546 PD 1890 2602 PD 1964 2566 PD 1918 2569 PD 1999 2546 PD 1671 2602 PD 2047 2605 PD 1845 2547 PD 2090 2570 PD 1656 2577 PD 1647 2617 PD 2393 2503 PD 1635 2591 PD 1573 2611 PD 1724 2624 PD 1972 2548 PD 1826 2546 PD 1622 2598 PD 1644 2596 PD 1771 2578 PD 1856 2550 PD 1852 2566 PD 1947 2576 PD 1764 2584 PD 1883 2552 PD 2180 2515 PD 1692 2564 PD 1913 2560 PD 1858 2550 PD 2274 2504 PD 1948 2548 PD 1871 2544 PD 2078 2569 PD 2044 2527 PD 2126 2547 PD 1727 2573 PD 1829 2554 PD 1702 2568 PD 1891 2571 PD 1787 2579 PD 1971 2552 PD 2114 2501 PD 2106 2526 PD 2289 2480 PD 2394 2552 PD 2376 2511 PD 2146 2551 PD 2041 2531 PD 2045 2473 PD 2151 2562 PD 1905 2572 PD 1814 2555 PD 1735 2559 PD 2034 2512 PD 1774 2556 PD 2038 2523 PD 1833 2555 PD 1708 2573 PD 2145 2537 PD 1908 2573 PD 1961 2550 PD 1995 2552 PD 2065 2524 PD 2018 2552 PD 2125 2478 PD 2310 2497 PD 2029 2516 PD 2116 2551 PD 1851 2572 PD 2217 2494 PD 2274 2506 PD 2047 2550 PD 1891 2572 PD 2425 2527 PD 1698 2538 PD 2061 2552 PD 1726 2575 PD 2068 2552 PD 2001 2544 PD 2165 2509 PD 2095 2530 PD 2174 2533 PD 2372 2488 PD 2270 2526 PD 2413 2446 PD 2103 2522 PD 2334 2529 PD 2377 2508 PD 2420 2527 PD 1914 2572 PD 2058 2565 PD 2317 2532 PD 2671 2516 PD 2089 2527 PD 2192 2493 PD 2183 2500 PD 1956 2549 PD 2521 2486 PD 2124 2528 PD 1995 2541 PD 2049 2495 PD 2013 2548 PD 2227 2536 PD 2181 2527 PD 2331 2495 PD 2228 2559 PD 2292 2444 PD 2270 2503 PD 2307 2468 PD 2277 2465 PD 2186 2490 PD 2211 2504 PD 1941 2541 PD 2091 2532 PD 2167 2438 PD 2124 2495 PD 2013 2524 PD 2534 2433 PD 2103 2497 PD 2018 2502 PD 2312 2473 PD 2220 2453 PD 2179 2452 PD 2089 2504 PD 2228 2506 PD 2198 2467 PD 2332 2493 PD 2245 2454 PD 2408 2435 PD 2625 2461 PD 2319 2406 PD 2562 2487 PD 2613 2393 PD 2045 2501 PD 2549 2486 PD 2176 2474 PD 1768 2553 PD 2388 2439 PD 2176 2505 PD 2370 2525 PD 2081 2511 PD 2633 2425 PD 2033 2501 PD 2269 2454 PD 2459 2504 PD 2204 2489 PD 2726 2427 PD 2481 2476 PD 2539 2433 PD 2225 2497 PD 2370 2463 PD 2273 2480 PD 2457 2433 PD 3222 2471 PD 2382 2372 PD 2012 2477 PD 1926 2504 PD 2297 2454 PD 2645 2417 PD 2684 2426 PD 2506 2370 PD 2348 2471 PD 2882 2454 PD 2142 2500 PD 2564 2471 PD 2166 2509 PD 2580 2391 PD 2137 2486 PD 2439 2474 PD 2318 2438 PD 2114 2535 PD 2276 2477 PD 2200 2504 PD 2587 2457 PD 2343 2480 PD 2795 2462 PD 2433 2401 PD 2700 2410 PD 2010 2534 PD 2636 2377 PD 2284 2498 PD 2233 2543 PD 2804 2443 PD 2543 2445 PD 2322 2506 PD 2255 2492 PD 2008 2535 PD 2395 2430 PD 2792 2355 PD 2699 2453 PD 2321 2466 PD 2581 2450 PD 2609 2391 PD 2915 2377 PD 2199 2482 PD 2851 2394 PD 2591 2395 PD 2359 2419 PD 3166 2383 PD 2678 2432 PD 2865 2376 PD 2444 2434 PD 2466 2420 PD 2682 2359 PD 2337 2473 PD 2223 2462 PD 2333 2422 PD 2328 2456 PD 2675 2351 PD 2705 2408 PD 2293 2459 PD 2153 2508 PD 2704 2305 PD 2868 2424 PD 2435 2421 PD 2191 2453 PD 2390 2436 PD 2754 2405 PD 2927 2417 PD 2416 2389 PD 2375 2451 PD 2623 2418 PD 2236 2528 PD 2696 2342 PD 3142 2276 PD 2817 2379 PD 2611 2388 PD 2627 2380 PD 2969 2359 PD 2746 2368 PD 2615 2371 PD 2367 2446 PD 2495 2413 PD 2849 2386 PD 2603 2349 PD 2752 2323 PD 2441 2437 PD 3225 2275 PD 2792 2446 PD 2245 2465 PD 2568 2388 PD 2910 2245 PD 2498 2464 PD 2394 2385 PD 2632 2305 PD 2718 2408 PD 2919 2414 PD 2815 2400 PD 2493 2397 PD 2710 2436 PD 2736 2427 PD 3324 2339 PD 2721 2382 PD 2293 2414 PD 3123 2338 PD 2793 2434 PD 2762 2385 PD 2507 2442 PD 3024 2310 PD 2621 2381 PD 2530 2355 PD 2599 2348 PD 2722 2389 PD 2893 2412 PD 2557 2378 PD 2446 2427 PD 2813 2410 PD 3240 2230 PD 2388 2379 PD 3175 2172 PD 2673 2279 PD 2516 2416 PD 3067 2310 PD 2612 2400 PD 2810 2356 PD 2809 2383 PD 2579 2389 PD 2853 2328 PD 3077 2331 PD 2657 2355 PD 2769 2280 PD 2488 2376 PD 2599 2399 PD 3004 2293 PD 2833 2207 PD 3039 2264 PD 2853 2361 PD 3271 2186 PD 2570 2326 PD 2987 2218 PD 3241 2359 PD 2475 2421 PD 3053 2191 PD 2983 2327 PD 2323 2423 PD 2897 2276 PD 3208 2214 PD 2395 2401 PD 2638 2384 PD 3380 2242 PD 2644 2413 PD 2818 2285 PD 2967 2389 PD 2385 2447 PD 2554 2341 PD 3153 2326 PD 2755 2335 PD 2984 2325 PD 3701 2179 PD 2797 2345 PD 2690 2406 PD 3083 2251 PD 2474 2420 PD 3223 2220 PD 2915 2377 PD 2742 2401 PD 3204 2372 PD 2813 2312 PD 3117 2250 PD 3270 2228 PD 3017 2190 PD 3221 2263 PD 3028 2235 PD 2716 2385 PD 3369 2308 PD 3088 2346 PD 3593 2141 PD 2655 2359 PD 3529 2298 PD 3450 2241 PD 2630 2424 PD 3073 2324 PD 3085 2216 PD 2440 2315 PD 3036 2305 PD 2992 2199 PD 3289 2309 PD 2867 2232 PD 2190 2458 PD 2736 2299 PD 2938 2357 PD 3134 2269 PD 2985 2306 PD 2774 2275 PD 2896 2325 PD 3110 2184 PD 3554 2313 PD 2578 2393 PD 2841 2190 PD 3331 2107 PD 3101 2126 PD 2648 2288 PD 2901 2331 PD 2530 2319 PD 2647 2312 PD 3344 2267 PD 2806 2205 PD 3074 2208 PD 2805 2268 PD 2637 2314 PD 2783 2303 PD 3088 2210 PD 2864 2260 PD 2972 2247 PD 3007 2323 PD 3805 2061 PD 3247 2206 PD 2958 2273 PD 2925 2265 PD 2989 2279 PD 3423 2225 PD 3320 2296 PD 2933 2247 PD 2898 2194 PD 3535 2181 PD 3386 2252 PD 3023 2359 PD 3437 2167 PD 3588 2240 PD 2757 2319 PD 3143 2241 PD 3376 2141 PD 3352 2159 PD 3116 2104 PD 3298 2195 PD 3116 2204 PD 3197 2304 PD 2994 2215 PD 2648 2384 PD 3157 2285 PD 3220 2147 PD 3338 1948 PD 3516 2157 PD 2863 2250 PD 3535 2135 PD 3196 2230 PD 4141 2147 PD 3116 2239 PD 2910 2380 PD 3373 2227 PD 3426 2117 PD 3398 2201 PD 3357 2275 PD 2964 2279 PD 2710 2365 PD 3112 2137 PD 3524 2277 PD 2855 2252 PD 3091 2318 PD 3249 2177 PD 2869 2246 PD 3102 2222 PD 3488 2040 PD 3589 2182 PD 3180 2254 PD 3211 2177 PD 3365 2113 PD 2990 2259 PD 3133 2146 PD 3316 2149 PD 2905 2249 PD 2885 2261 PD 2914 2230 PD 2989 2271 PD 2804 2232 PD 3314 2113 PD 2562 2336 PD 2890 2122 PD 3119 2259 PD 3367 2105 PD 2929 2045 PD 3471 2349 PD 2662 2338 PD 2958 2335 PD 4324 2039 PD 3603 2251 PD 3681 2156 PD 3088 2145 PD 2715 2308 PD 3044 2315 PD 3445 2101 PD 3289 2014 PD 2801 2273 PD 3181 2157 PD 3430 2003 PD 3242 2289 PD 3622 2131 PD 2952 2151 PD 2740 2233 PD 3305 2155 PD 2791 2292 PD 3052 2141 PD 3554 1934 PD 3511 2125 PD 3360 2154 PD 3504 2077 PD 3444 2082 PD 3262 2215 PD 3147 2118 PD 3791 2060 PD 3451 1959 PD 3030 2114 PD 3278 2227 PD 4382 2014 PD 3169 2032 PD 3535 2211 PD 2973 2338 PD 3376 2075 PD 3398 2092 PD 3394 2164 PD 3279 2149 PD 3163 2192 PD 3570 2030 PD 3422 2271 PD 3411 2137 PD 3462 2020 PD 3212 2304 PD 3745 2044 PD 2956 2157 PD 2696 2287 PD 2933 2251 PD 2850 2274 PD 2662 2230 PD 2850 2307 PD 3572 2151 PD 3209 2119 PD 3220 2141 PD 3409 2167 PD 3074 2147 PD 3401 1979 PD 3074 2059 PD 3601 2132 PD 3188 2072 PD 2993 2177 PD 3478 2013 PD 3756 2235 PD 3576 2094 PD 3115 2297 PD 2932 2301 PD 3864 2116 PD 3232 2074 PD 3710 2103 PD 4067 1910 PD 3734 2198 PD 3419 2048 PD 3283 2193 PD 3404 2127 PD 3313 2180 PD 3502 2055 PD 3862 1914 PD 3656 1973 PD 3851 2086 PD 3322 2186 PD 3598 2177 PD 4025 1994 PD 4035 1976 PD 2965 2233 PD 3606 2018 PD 3119 2151 PD 3278 2274 PD 4056 2097 PD 3445 2165 PD 3218 1987 PD 4123 1958 PD 3257 2075 PD 3504 2079 PD 3062 2246 PD 3445 2235 PD 3894 2129 PD 3904 1828 PD 3295 2075 PD 3819 1887 PD 3901 1993 PD 3404 1844 PD 3468 1749 PD 3391 1781 PD 3243 2260 PD 3817 2022 PD 3269 2155 PD 3668 2016 PD 3710 1870 PD 3651 1961 PD 3455 1970 PD 3504 1845 PD 3769 1978 PD 3880 2211 PD 4026 1922 PD 3450 2032 PD 3959 2096 PD 3683 1910 PD 3859 1980 PD 3589 2041 PD 3377 2034 PD 3590 1978 PD 3401 2066 PD 3731 1965 PD 3726 1861 PD 3303 2147 PD 3929 2073 PD 4055 2005 PD 3635 2048 PD 3319 2115 PD 3596 2118 PD 3139 2239 PD 2990 2256 PD 3922 1919 PD 3755 2007 PD 3622 1939 PD 3948 2060 PD 4017 1859 PD 3658 2165 PD 3374 2056 PD 3458 2120 PD 3811 1883 PD 4252 1784 PD 4063 1598 PD 3383 2013 PD 3266 2116 PD 4285 1992 PD 3170 2181 PD 4036 1931 PD 3500 2075 PD 3998 1884 PD 3531 2053 PD 4109 1947 PD 3891 1812 PD 3822 1984 PD 3740 1980 PD 4707 1938 PD 3777 1985 PD 3939 1923 PD 3540 2096 PD 3219 2075 PD 3727 1958 PD 3469 2058 PD 3559 2122 PD 3404 2013 PD 3219 2062 PD 3772 1794 PD 4103 1864 PD 3339 1979 PD 2947 2222 PD 3528 2057 PD 3428 2012 PD 3491 2195 PD 3336 2236 PD 4388 1999 PD 3799 2101 PD 3614 2027 PD 3637 1996 PD 3739 1895 PD 3361 2033 PD 3277 2097 PD 3826 1819 PD 3451 1858 PD 3851 1813 PD 3789 2040 PD 3567 2005 PD 3620 1785 PD 3913 1818 PD 3597 2139 PD 4073 1589 PD 3882 1579 PD 4207 1741 PD 3605 2162 PD 3399 1944 PD 3503 2137 PD 4253 2004 PD 4586 1534 PD 4662 1798 PD 4029 1969 PD 3374 2145 PD 4664 2032 PD 3342 2134 PD 3930 2030 PD 3720 1986 PD 3980 1872 PD 4456 1770 PD 3560 2117 PD 3863 1987 PD 3759 1820 PD 3570 1877 PD 3679 1983 PD 3804 2033 PD 3692 2068 PD 4397 1715 PD 4048 1883 PD 3898 1662 PD 3658 1789 PD 3925 1895 PD 3104 2110 PD 3831 1909 PD 3354 1960 PD 4051 1805 PD 4338 1733 PD 3356 2048 PD 3331 2054 PD 4181 1833 PD 4670 1436 PD 4272 1890 PD 4190 1816 PD 4044 1890 PD 4095 1673 PD 4617 1834 PD 4633 1722 PD 3967 1921 PD 5089 1402 PD 3759 1762 PD 3558 1705 PD 3611 1903 PD 4093 1830 PD 3755 1964 PD 4134 2076 PD 3605 1978 PD 4355 1974 PD 3372 2103 PD 3470 2093 PD 4210 1683 PD 3751 2136 PD 3590 1765 PD 3340 2025 PD 4538 1608 PD 3982 1794 PD 3894 2063 PD 3913 1700 PD 3400 2010 PD 3611 1691 PD 3808 1969 PD 4100 1626 PD 4425 1814 PD 3780 1882 PD 4029 1826 PD 3632 2129 PD 4141 1823 PD 5144 1649 PD 4785 1640 PD 4031 1633 PD 3313 1913 PD 3911 1893 PD 4562 1563 PD 4246 1908 PD 3288 1957 PD 3657 1809 PD 4004 1738 PD 4869 1469 PD 3585 2023 PD 3850 1923 PD 3773 1795 PD 3717 2009 PD 4676 1730 PD 4508 1941 PD 3436 2091 PD 3857 1755 PD 3741 1752 PD 3886 1857 PD 3753 1693 PD 4167 1762 PD 3897 1578 PD 3578 1774 PD 3708 1958 PD 5046 1546 PD 4382 1450 PD 3968 1694 PD 4157 1672 PD 3820 2094 PD 4437 1728 PD 3445 1971 PD 3714 2105 PD 4640 1648 PD 4714 1701 PD 4327 1794 PD 3678 1927 PD 3449 2058 PD 3911 1718 PD 3893 1922 PD 3916 1555 PD 3991 1377 PD 4937 1756 PD 3697 1904 PD 3647 1795 PD 4098 1251 PD 3707 2032 PD 4478 1517 PD 4476 1701 PD 4550 1849 PD 3188 2027 PD 4796 1851 PD 3725 2000 PD 4599 1660 PD 4238 1990 PD 3615 1992 PD 4045 2095 PD 4166 1644 PD 3390 1880 PD 4123 1440 PD 4836 1293 PD 3651 1975 PD 3572 2168 PD 4171 1925 PD 4707 1807 PD 3569 1804 PD 3813 1648 PD 3713 1963 PD 5343 1790 PD 5104 1850 PD 4187 1851 PD 3539 1849 PD 3819 2048 PD 4044 1889 PD 4018 1837 PD 4104 1575 PD 3864 1794 PD 3966 1718 PD 4374 1295 PD 4785 1170 PD 5606 1565 PD 4034 2018 PD 5116 1808 PD 4171 1854 PD 3888 1399 PD 4508 1548 PD 4320 1659 PD 4286 1424 PD 3968 1849 PD 3747 1915 PD 4446 1657 PD 3527 2056 PD 4155 2016 PD 4329 1884 PD 4705 1832 PD 5037 1629 PD 4025 1693 PD 4157 1754 PD 4514 1416 PD 3506 1933 PD 5129 1229 PD 4058 1750 PD 4580 1660 PD 4980 1899 PD 4473 1693 PD 4739 1568 PD 4208 1902 PD 3893 1866 PD 4307 1332 PD 3930 1751 PD 4672 1492 PD 4682 1359 PD 4855 1009 PD 4435 1489 PD 4397 1915 PD 4143 1809 PD 4274 1753 PD 4241 1941 PD 4214 1600 PD 4869 1807 PD 4997 1398 PD 4794 1654 PD 4323 1744 PD 4364 1622 PD 4239 1554 PD 4232 1628 PD 4298 1614 PD 4785 1653 PD 4378 1871 PD 5072 1471 PD 4804 1009 PD 4557 1835 PD 3920 1704 PD 4422 1522 PD 3760 1617 PD 4601 1433 PD 4552 1140 PD 4280 1486 PD 5430 1455 PD 4667 1925 PD 3927 2094 PD 3995 1942 PD 4394 1474 PD 4155 1628 PD 3843 1980 PD 4696 1629 PD 4239 1446 PD 4375 1707 PD 4690 1700 PD 3837 1986 PD 4801 1834 PD 4256 1622 PD 4877 1542 PD 3807 1855 PD 5567 1218 PD 5019 1332 PD 3932 1848 PD 4589 1737 PD 3987 1730 PD 4102 1388 PD 5160 1367 PD 4489 1252 PD 3772 1649 PD 3867 1776 PD 4500 1653 PD 4142 1491 PD 4931 1719 PD 4533 1696 PD 3983 1799 PD 4960 1458 PD 3473 1883 PD 4437 1408 PD 4099 1714 PD 3631 1972 PD 4462 1393 PD 4567 1819 PD 4226 858 PD 3917 1841 PD 5126 1504 PD 4282 1403 PD 4947 1393 PD 5139 1589 PD 4468 1212 PD 4978 1255 PD 5425 1388 PD 3773 1859 PD 4836 1690 PD 5450 1506 PD 4277 1761 PD 5224 871 PD 5334 1615 PD 4766 1725 PD 4846 1466 PD 4234 1610 PD 3694 2073 PD 4237 1424 PD 4334 1617 PD 4420 1447 PD 4136 1654 PD 4022 1472 PD 4592 1391 PD 4454 1612 PD 3974 1487 PD 4267 983 PD 4219 1594 PD 4720 1614 PD 4129 1789 PD 4118 1630 PD 3863 1733 PD 5030 1609 PD 3746 1676 PD 3833 1567 PD 4813 1330 PD 4734 1327 PD 4379 1553 PD 4290 1146 PD 4341 1346 PD 4634 1695 PD 4583 1317 PD 5090 1258 PD 4859 1517 PD 4328 1688 PD 3684 1631 PD 4860 1694 PD 4377 1529 PD 4220 1842 PD 4057 1561 PD 4203 1500 PD 4326 2006 PD 4983 1445 PD 4486 1590 PD 4757 1587 PD 5247 1691 PD 4719 1471 PD 4902 1564 PD 5080 746 PD 4622 1488 PD 3757 1651 PD 4099 1380 PD 4259 1633 PD 3786 1698 PD 4654 834 PD 4401 1681 PD 4678 1080 PD 4593 1173 PD 4314 1733 PD 4789 1706 PD 4305 1730 PD 4948 1687 PD 4467 1681 PD 4535 1503 PD 4389 1144 PD 5298 1101 PD 5405 1300 PD 5003 1537 PD 4556 1642 PD 4778 1671 PD 4881 921 PD 5010 1522 PD 4155 1647 PD 4261 1553 PD 5173 1355 PD 4933 759 PD 4973 1132 PD 4997 1566 PD 4792 1629 PD 4431 1638 PD 4384 1268 PD 4686 1295 PD 4317 1352 PD 4884 1470 PD 4228 1469 PD 3927 1776 PD 4331 1274 PD 4201 1332 PD 4373 1055 PD 4272 1473 PD 4201 1650 PD 4981 1402 PD 5025 985 PD 4782 1102 PD 4702 1252 PD 4501 1447 PD 4476 1563 PD 4446 1722 PD 5009 1181 PD 5523 922 PD 4450 1204 PD 4452 1442 PD 5080 1549 PD 3464 1810 PD 5724 1461 PD 4368 1811 PD 4199 1169 PD 4714 1773 PD 4263 1572 PD 4019 1684 PD 5534 1703 PD 4596 1347 PD 4771 1629 PD 5113 958 PD 4823 1725 PD 4924 1624 PD 4408 1488 PD 4415 1425 PD 5258 1408 PD 4608 1493 PD 4445 1586 PD 4759 1839 PD 4808 871 PD 5267 1144 PD 5492 1505 PD 4742 1360 PD 4735 1375 PD 5055 1584 PD 5957 1524 PD 4356 1357 PD 4585 2004 PD 4985 1224 PD 4629 728 PD 4607 1973 PD 4696 1713 PD 4436 1026 PD 4000 1344 PD 4473 1234 PD 4900 1263 PD 4774 1367 PD 4313 1380 PD 4754 1548 PD 4861 1282 PD 3921 1688 PD 4588 1654 PD 4928 1306 PD 4511 1650 PD 4565 1240 PD 4024 1547 PD 5414 1304 PD 4312 1315 PD 4922 1351 PD 4427 1576 PD 4636 1387 PD 4920 1207 PD 4433 1256 PD 4851 1069 PD 5824 825 PD 4246 1448 PD 4822 1190 PD 4503 1577 PD 5046 1640 PD 3894 1492 PD 4768 1198 PD 5075 1646 PD 4222 1704 PD 5026 1454 PD 4917 1028 PD 5102 1557 PD 3988 1640 PD 4703 1182 PD 4517 1488 PD 4743 1127 PD 4700 1441 PD 4981 1320 PD 5485 1214 PD 4891 1278 PD 4873 1045 PD 4590 1629 PD 5269 1144 PD 4949 1110 PD 5465 992 PD 4632 1556 PD 5332 1112 PD 5353 1448 PD 5154 962 PD 5084 1076 PD 4310 1039 PD 4568 1678 PD 4305 1444 PD 4646 683 PD 4705 1550 PD 5361 1039 PD 4652 1206 PD 5034 1019 PD 4774 1136 PD 4615 1395 PD 5172 1364 PD 5113 1281 PD gs 899 389 5360 4227 MR c np gr 4697 1445 PD 5110 915 PD 5005 1466 PD 5159 1317 PD 5328 1340 PD 4991 796 PD 5671 1330 PD 5007 1494 PD 4567 1154 PD 5726 1506 PD 5573 1686 PD 4431 1565 PD 5446 986 PD 4629 1369 PD 5637 917 PD 4847 1353 PD 5508 1410 PD 5318 1133 PD 4910 1415 PD 4973 1085 PD 5403 637 PD 5698 900 PD 6119 1206 PD 4958 1246 PD 4763 1347 PD 5160 913 PD 5406 1155 PD 4409 1552 PD 6033 1242 PD 4889 1219 PD 3813 1566 PD 4912 1388 PD 4701 1078 PD 4690 1399 PD 5164 1444 PD 5074 1668 PD 4985 1261 PD 4747 1461 PD 4836 1427 PD 4909 1124 PD 4956 1465 PD 4868 1588 PD 5345 1169 PD 5289 750 PD 4605 1529 PD 4510 1409 PD 5364 758 PD 4765 1224 PD 4570 1181 PD 4777 1483 PD 5547 1273 PD 5170 980 PD 5456 813 PD 5599 677 PD 5295 856 PD 5621 847 PD 5405 1013 PD 5161 1130 PD 5118 526 PD 5386 1459 PD 5536 697 PD 5696 1065 PD 4461 1500 PD 4519 1158 PD 5226 922 PD 5306 1229 PD 4762 984 PD 6088 859 PD 4874 1181 PD 5309 1358 PD 5053 1141 PD 4645 1296 PD 5941 920 PD 5405 807 PD 5550 1045 PD 5099 1708 PD 5933 1229 PD 3900 1700 PD 5241 986 PD 5202 1196 PD 5099 1248 PD 4703 1527 PD 5388 1308 PD 6086 1338 PD 5611 1548 PD 5465 1013 PD 5261 1377 PD 4347 1024 PD 4726 1247 PD 5458 1308 PD 4729 1316 PD 4755 909 PD 5417 1130 PD 4143 1556 PD 4828 1979 PD 5940 440 PD 5752 751 PD 5322 1363 PD 5114 736 PD 4617 1515 PD 5406 1219 PD 5136 1392 PD 4444 1054 PD 4918 1254 PD 4434 946 PD 4538 1198 PD 5333 1001 PD 5415 1119 PD 4782 1599 PD 4385 1912 PD 5133 651 PD 4876 1253 PD 5406 847 PD 4971 766 PD 5109 1116 PD 5384 440 PD 5321 568 PD 5155 1064 PD 4763 851 PD 5134 1506 PD 5080 1265 PD 5649 1312 PD 5461 1116 PD 5201 1361 PD 6205 1127 PD 4629 1432 PD 4568 1610 PD 4662 1440 PD 5218 788 PD 4892 1100 PD 4899 661 PD 5375 627 PD 4996 1228 PD 4523 1462 PD 5308 1536 PD gs 899 389 5360 4227 MR c np gr 5735 953 PD gs 899 389 5360 4227 MR c np gr 4389 809 PD 5226 620 PD 4928 882 PD 5171 1312 PD 5716 1143 PD 5852 679 PD 5381 782 PD 4524 1829 PD 5684 1182 PD 5252 1326 PD 5922 1144 PD 6119 601 PD 5288 1030 PD 4950 879 PD 4545 1398 PD 4776 465 PD 5046 970 PD 5064 1193 PD 4914 1433 PD 4627 1034 PD 5266 1253 PD 5905 1235 PD 5790 852 PD 5460 1195 PD 4708 803 PD 5431 493 PD 5211 779 PD 5172 1058 PD 5945 698 PD 4721 782 PD 5826 837 PD 5684 742 PD 5678 1478 PD 5298 785 PD 6086 1062 PD 5895 1050 PD 5430 752 PD 5028 1124 PD 5168 1368 PD 5015 896 PD 5552 654 PD 4954 837 PD 5446 1077 PD 4809 750 PD 5031 1391 PD 4592 1317 PD 4846 1447 PD 5828 772 PD 5515 892 PD 5783 1087 PD 4600 1399 PD 4911 1257 PD 5380 1132 PD 5221 985 PD 4493 1444 PD 4781 888 PD 4770 1526 PD 5224 884 PD 5618 1118 PD 4946 1211 PD 4623 1188 PD 6129 550 PD 4588 1268 PD 5238 1159 PD 5259 1146 PD 4248 916 PD 6214 928 PD 5348 1327 PD gs 899 389 5360 4227 MR c np gr 5452 937 PD 6008 513 PD 4685 1849 PD 4745 1009 PD 4729 1388 PD 5487 1064 PD 5122 759 PD 5017 1175 PD 5222 1536 PD 5182 896 PD 5291 995 PD 5356 1536 PD 4755 989 PD 5940 902 PD 5341 595 PD 5730 1179 PD 5458 879 PD 5891 1204 PD 5152 1751 PD 5496 1105 PD 5623 419 PD 5510 718 PD 5778 1031 PD 4909 1552 PD gs 899 389 5360 4227 MR c np gr 5114 696 PD 5816 467 PD 4769 652 PD 5504 890 PD 5756 854 PD 5510 1113 PD 4765 1242 PD 6142 609 PD 6192 655 PD 5307 1122 PD 6095 507 PD 5355 747 PD 5329 1397 PD 5893 942 PD 4626 1070 PD 5619 1444 PD 6043 1005 PD 5539 1245 PD 5840 713 PD 6044 1420 PD 5166 1183 PD 5786 664 PD 5667 822 PD 5573 452 PD 6106 991 PD 5848 1518 PD 5389 888 PD 5356 810 PD 5772 1194 PD 4822 1462 PD 5099 1237 PD 5427 470 PD gs 899 389 5360 4227 MR c np gr 5585 1298 PD 5697 1091 PD 5009 1269 PD 5785 1131 PD 5028 498 PD 4740 1367 PD 5065 703 PD 5431 436 PD 6125 1434 PD 5239 1258 PD 5927 670 PD 5257 1064 PD 5562 1342 PD 4967 1376 PD 5371 447 PD 5280 616 PD 4975 817 PD 5906 499 PD 5396 1376 PD 5701 941 PD 5894 631 PD 5592 529 PD 5734 670 PD gs 899 389 5360 4227 MR c np gr 5791 722 PD 4982 887 PD 4948 974 PD 6183 1036 PD 5753 1085 PD 5893 778 PD 5646 602 PD 4953 1223 PD 5672 805 PD 4974 968 PD 5952 974 PD 5441 766 PD 5630 826 PD 5876 436 PD 5585 1026 PD 5485 1313 PD 5626 987 PD 5058 930 PD 5422 1302 PD 5995 421 PD 5512 1480 PD 5862 944 PD 5225 1173 PD 4606 1291 PD 5520 1021 PD 5333 834 PD 5391 949 PD 4891 872 PD 5361 1069 PD 5207 1023 PD 5804 443 PD 5592 1100 PD 5403 652 PD 5734 566 PD 5163 1586 PD 4629 1279 PD 5180 739 PD 5382 934 PD 6169 974 PD 5603 830 PD 5733 460 PD gs 899 389 5360 4227 MR c np gr 5388 533 PD 6065 879 PD 5888 840 PD 5453 748 PD gs 899 389 5360 4227 MR c np gr 5697 658 PD gs 899 389 5360 4227 MR c np gr 5258 521 PD 5778 582 PD 4836 482 PD 5275 579 PD 5472 854 PD 5485 463 PD 5738 1044 PD 5956 608 PD 5446 1245 PD 4862 857 PD gs 899 389 5360 4227 MR c np gr 5986 399 PD 5500 559 PD gs 899 389 5360 4227 MR c np gr 5823 652 PD 5925 640 PD gs 899 389 5360 4227 MR c np gr 5599 481 PD gs 899 389 5360 4227 MR c np gr 6157 563 PD 4926 601 PD 6024 753 PD 4746 1394 PD 5532 1093 PD 5785 711 PD 6110 674 PD 6086 859 PD 5587 696 PD 5888 741 PD 6106 910 PD 5937 876 PD 5857 504 PD 4988 575 PD 5915 684 PD 5462 1010 PD 5308 969 PD 5821 612 PD 5802 1218 PD 5547 1048 PD 6199 1006 PD 5581 770 PD 5717 969 PD 5334 820 PD 6036 620 PD 6172 1129 PD 5694 599 PD 6042 630 PD 5551 392 PD gs 899 389 5360 4227 MR c np gr 5133 1375 PD 5450 964 PD 5894 1102 PD gs 899 389 5360 4227 MR c np gr 5307 614 PD 4737 660 PD gs 899 389 5360 4227 MR c np gr 5143 589 PD 4738 1323 PD gs 899 389 5360 4227 MR c np gr 5864 548 PD gs 899 389 5360 4227 MR c np gr 6119 787 PD 5792 845 PD gs 899 389 5360 4227 MR c np gr 5837 525 PD gs 899 389 5360 4227 MR c np gr 5803 1215 PD 5755 830 PD 5831 523 PD 5653 461 PD 4968 586 PD 5264 764 PD gs 899 389 5360 4227 MR c np gr 5553 1027 PD 5953 998 PD 5114 908 PD 5925 663 PD 5992 610 PD gs 899 389 5360 4227 MR c np gr 5651 549 PD 5618 1172 PD gs 899 389 5360 4227 MR c np gr 5846 792 PD 5422 641 PD 6088 505 PD 5731 1132 PD 5137 416 PD 5337 712 PD 5407 1059 PD gs 899 389 5360 4227 MR c np gr 6161 1037 PD 5069 465 PD gs 899 389 5360 4227 MR c np gr 5510 755 PD 5433 537 PD 6052 439 PD gs 899 389 5360 4227 MR c np gr 5635 757 PD gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr 5435 1463 PD 5649 552 PD gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr 5481 554 PD 5314 445 PD gs 899 389 5360 4227 MR c np gr 5563 440 PD gs 899 389 5360 4227 MR c np gr 5489 661 PD gs 899 389 5360 4227 MR c np gr 4881 837 PD 5745 635 PD gs 899 389 5360 4227 MR c np gr 5920 722 PD gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr 5761 1028 PD 5964 785 PD 6064 391 PD gs 899 389 5360 4227 MR c np gr 6207 672 PD 6155 573 PD gs 899 389 5360 4227 MR c np gr 5632 1207 PD 5498 1320 PD 5899 883 PD gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr 4986 1207 PD gs 899 389 5360 4227 MR c np gr 5970 732 PD gs 899 389 5360 4227 MR c np gr 5851 749 PD 5241 1326 PD 6232 1005 PD 5650 418 PD 5596 936 PD 6073 682 PD gs 899 389 5360 4227 MR c np gr 5412 1191 PD gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr 5706 911 PD 5561 1000 PD gs 899 389 5360 4227 MR c np gr 5128 1025 PD gs 899 389 5360 4227 MR c np gr 5892 1199 PD gs 899 389 5360 4227 MR c np gr 6123 898 PD gs 899 389 5360 4227 MR c np gr 5690 416 PD gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr 6172 456 PD 6097 557 PD gs 899 389 5360 4227 MR c np gr 5379 691 PD gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr 5271 556 PD gs 899 389 5360 4227 MR c np gr 5444 1050 PD 5653 497 PD gs 899 389 5360 4227 MR c np gr 5803 735 PD gs 899 389 5360 4227 MR c np gr 5724 1168 PD gs 899 389 5360 4227 MR c np gr 6221 394 PD gs 899 389 5360 4227 MR c np gr 6196 586 PD gs 899 389 5360 4227 MR c np gr 5698 446 PD gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr 6051 968 PD gs 899 389 5360 4227 MR c np gr 5890 504 PD 6054 451 PD 5986 800 PD gs 899 389 5360 4227 MR c np gr 5713 829 PD gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr 6009 611 PD gs 899 389 5360 4227 MR c np gr 5706 769 PD gs 899 389 5360 4227 MR c np gr 5856 681 PD gs 899 389 5360 4227 MR c np gr 6077 1369 PD gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr 5446 1156 PD gs 899 389 5360 4227 MR c np gr 5775 682 PD gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr 5489 618 PD gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr 5458 471 PD gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr 5803 689 PD gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr 6223 760 PD gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr 5700 551 PD gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr 6185 800 PD gs 899 389 5360 4227 MR c np gr 5504 741 PD gs 899 389 5360 4227 MR c np gr 5053 816 PD gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr 6074 756 PD gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr 5532 438 PD gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr 5373 1055 PD gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr 5545 717 PD gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr 5174 949 PD gs 899 389 5360 4227 MR c np gr 5789 725 PD gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np 6 w gr 6 w 8 w 1053 2694 PD 1326 2694 PD 1274 2694 PD 1054 2694 PD 1285 2694 PD 1188 2694 PD 1130 2694 PD 1173 2694 PD 1276 2694 PD 1174 2694 PD 1229 2694 PD 1208 2694 PD 1116 2694 PD 1030 2694 PD 1260 2694 PD 1300 2694 PD 1161 2694 PD 1160 2694 PD 1140 2694 PD 1284 2694 PD 1115 2694 PD 1262 2694 PD 1281 2694 PD 1353 2694 PD 1192 2694 PD 1165 2694 PD 1422 2694 PD 1321 2694 PD 1242 2694 PD 1165 2694 PD 1614 2695 PD 1343 2694 PD 1411 2694 PD 1444 2694 PD 1338 2694 PD 1222 2694 PD 1243 2694 PD 1227 2694 PD 1178 2694 PD 1233 2694 PD 1363 2694 PD 1442 2694 PD 1346 2694 PD 1303 2695 PD 1621 2694 PD 1442 2695 PD 1306 2694 PD 1512 2694 PD 1297 2694 PD 1229 2694 PD 1307 2694 PD 1271 2694 PD 1314 2694 PD 1410 2695 PD 1251 2694 PD 1233 2694 PD 1462 2694 PD 1370 2694 PD 1456 2695 PD 1292 2694 PD 1379 2694 PD 1422 2694 PD 1257 2694 PD 1308 2694 PD 1348 2694 PD 1541 2695 PD 1415 2694 PD 1469 2695 PD 1479 2694 PD 1192 2694 PD 1574 2695 PD 1298 2694 PD 1485 2695 PD 1601 2695 PD 1495 2695 PD 1724 2695 PD 1454 2695 PD 1415 2694 PD 1492 2695 PD 1497 2694 PD 1675 2695 PD 1717 2695 PD 1353 2694 PD 1464 2695 PD 1710 2695 PD 1479 2694 PD 1484 2694 PD 1356 2694 PD 1541 2694 PD 1337 2694 PD 1391 2694 PD 1491 2695 PD 1430 2694 PD 1593 2694 PD 1534 2695 PD 1271 2694 PD 1654 2694 PD 1436 2694 PD 1327 2694 PD 1453 2694 PD 1411 2694 PD 1778 2695 PD 1566 2695 PD 1578 2695 PD 1449 2695 PD 1653 2695 PD 1657 2696 PD 1659 2695 PD 1641 2695 PD 1531 2695 PD 1523 2695 PD 1580 2695 PD 1582 2695 PD 1487 2695 PD 1670 2695 PD 1614 2695 PD 1497 2695 PD 1408 2694 PD 1474 2695 PD 1750 2695 PD 1764 2695 PD 1704 2695 PD 1724 2695 PD 1589 2695 PD 1529 2695 PD 1410 2694 PD 1797 2695 PD 1903 2696 PD 1481 2694 PD 1783 2695 PD 1567 2695 PD 1599 2695 PD 1745 2695 PD 1681 2695 PD 1545 2695 PD 1509 2695 PD 1577 2695 PD 1632 2695 PD 1476 2695 PD 1608 2695 PD 1903 2696 PD 2226 2695 PD 1677 2696 PD 1646 2695 PD 1667 2695 PD 1918 2696 PD 1837 2695 PD 1588 2695 PD 1602 2695 PD 1665 2695 PD 1833 2695 PD 1938 2695 PD 1765 2696 PD 1730 2695 PD 1665 2695 PD 1497 2695 PD 1581 2695 PD 1679 2695 PD 1738 2695 PD 2111 2695 PD 1756 2696 PD 1406 2694 PD 1727 2695 PD 1629 2695 PD 1728 2696 PD 1713 2695 PD 1929 2695 PD 1826 2695 PD 1903 2696 PD 1685 2695 PD 1567 2695 PD 1741 2695 PD 1740 2695 PD 2034 2696 PD 1984 2696 PD 2111 2697 PD 1948 2696 PD 1896 2695 PD 1804 2695 PD 1828 2695 PD 2182 2696 PD 1890 2695 PD 1964 2695 PD 1918 2695 PD 1999 2697 PD 1671 2695 PD 2047 2695 PD 1845 2696 PD 2090 2696 PD 1656 2696 PD 1647 2695 PD 2393 2698 PD 1635 2695 PD 1573 2695 PD 1724 2695 PD 1972 2696 PD 1826 2696 PD 1622 2695 PD 1644 2695 PD 1771 2695 PD 1856 2696 PD 1852 2696 PD 1947 2695 PD 1764 2695 PD 1883 2696 PD 2180 2696 PD 1692 2697 PD 1913 2695 PD 1858 2696 PD 2274 2700 PD 1948 2699 PD 1871 2696 PD 2078 2696 PD 2044 2700 PD 2126 2697 PD 1727 2696 PD 1829 2695 PD 1702 2696 PD 1891 2696 PD 1787 2696 PD 1971 2696 PD 2114 2698 PD 2106 2699 PD 2289 2698 PD 2394 2696 PD 2376 2698 PD 2146 2697 PD 2041 2698 PD 2045 2699 PD 2151 2696 PD 1905 2696 PD 1814 2696 PD 1735 2696 PD 2034 2701 PD 1774 2696 PD 2038 2697 PD 1833 2696 PD 1708 2696 PD 2145 2697 PD 1908 2695 PD 1961 2696 PD 1995 2696 PD 2065 2698 PD 2018 2697 PD 2125 2699 PD 2310 2698 PD 2029 2700 PD 2116 2696 PD 1851 2696 PD 2217 2697 PD 2274 2697 PD 2047 2696 PD 1891 2695 PD 2425 2699 PD 1698 2697 PD 2061 2696 PD 1726 2696 PD 2068 2696 PD 2001 2697 PD 2165 2697 PD 2095 2697 PD 2174 2698 PD 2372 2699 PD 2270 2702 PD 2413 2698 PD 2103 2696 PD 2334 2697 PD 2377 2698 PD 2420 2697 PD 1914 2695 PD 2058 2696 PD 2317 2697 PD 2671 2698 PD 2089 2697 PD 2192 2698 PD 2183 2698 PD 1956 2697 PD 2521 2699 PD 2124 2696 PD 1995 2697 PD 2049 2700 PD 2013 2696 PD 2227 2699 PD 2181 2697 PD 2331 2698 PD 2228 2696 PD 2292 2705 PD 2270 2699 PD 2307 2703 PD 2277 2699 PD 2186 2700 PD 2211 2700 PD 1941 2696 PD 2091 2697 PD 2167 2702 PD 2124 2702 PD 2013 2697 PD 2534 2701 PD 2103 2698 PD 2018 2697 PD 2312 2700 PD 2220 2699 PD 2179 2701 PD 2089 2696 PD 2228 2697 PD 2198 2698 PD 2332 2698 PD 2245 2701 PD 2408 2700 PD 2625 2703 PD 2319 2699 PD 2562 2697 PD 2613 2701 PD 2045 2698 PD 2549 2699 PD 2176 2697 PD 1768 2696 PD 2388 2699 PD 2176 2697 PD 2370 2696 PD 2081 2699 PD 2633 2700 PD 2033 2699 PD 2269 2699 PD 2459 2698 PD 2204 2701 PD 2726 2699 PD 2481 2698 PD 2539 2700 PD 2225 2697 PD 2370 2699 PD 2273 2699 PD 2457 2704 PD 3222 2699 PD 2382 2710 PD 2012 2701 PD 1926 2697 PD 2297 2705 PD 2645 2702 PD 2684 2700 PD 2506 2703 PD 2348 2699 PD 2882 2700 PD 2142 2698 PD 2564 2699 PD 2166 2697 PD 2580 2705 PD 2137 2698 PD 2439 2698 PD 2318 2701 PD 2114 2697 PD 2276 2701 PD 2200 2697 PD 2587 2700 PD 2343 2698 PD 2795 2698 PD 2433 2700 PD 2700 2701 PD 2010 2696 PD 2636 2701 PD 2284 2699 PD 2233 2698 PD 2804 2701 PD 2543 2701 PD 2322 2698 PD 2255 2699 PD 2008 2697 PD 2395 2700 PD 2792 2709 PD 2699 2700 PD 2321 2699 PD 2581 2699 PD 2609 2706 PD 2915 2702 PD 2199 2698 PD 2851 2701 PD 2591 2702 PD 2359 2700 PD 3166 2703 PD 2678 2702 PD 2865 2702 PD 2444 2702 PD 2466 2700 PD 2682 2706 PD 2337 2699 PD 2223 2700 PD 2333 2701 PD 2328 2703 PD 2675 2711 PD 2705 2701 PD 2293 2698 PD 2153 2698 PD 2704 2714 PD 2868 2703 PD 2435 2702 PD 2191 2700 PD 2390 2701 PD 2754 2704 PD 2927 2699 PD 2416 2700 PD 2375 2699 PD 2623 2702 PD 2236 2696 PD 2696 2702 PD 3142 2708 PD 2817 2704 PD 2611 2703 PD 2627 2707 PD 2969 2702 PD 2746 2706 PD 2615 2711 PD 2367 2701 PD 2495 2700 PD 2849 2703 PD 2603 2707 PD 2752 2704 PD 2441 2698 PD 3225 2717 PD 2792 2703 PD 2245 2698 PD 2568 2709 PD 2910 2712 PD 2498 2699 PD 2394 2701 PD 2632 2709 PD 2718 2704 PD 2919 2706 PD 2815 2702 PD 2493 2703 PD 2710 2700 PD 2736 2701 PD 3324 2704 PD 2721 2705 PD 2293 2704 PD 3123 2718 PD 2793 2700 PD 2762 2702 PD 2507 2702 PD 3024 2707 PD 2621 2705 PD 2530 2710 PD 2599 2703 PD 2722 2703 PD 2893 2702 PD 2557 2704 PD 2446 2703 PD 2813 2702 PD 3240 2728 PD 2388 2703 PD 3175 2717 PD 2673 2713 PD 2516 2705 PD 3067 2709 PD 2612 2703 PD 2810 2708 PD 2809 2710 PD 2579 2701 PD 2853 2707 PD 3077 2710 PD 2657 2703 PD 2769 2715 PD 2488 2705 PD 2599 2705 PD 3004 2711 PD 2833 2725 PD 3039 2711 PD 2853 2706 PD 3271 2726 PD 2570 2716 PD 2987 2709 PD 3241 2702 PD 2475 2703 PD 3053 2712 PD 2983 2709 PD 2323 2704 PD 2897 2716 PD 3208 2714 PD 2395 2702 PD 2638 2704 PD 3380 2716 PD 2644 2704 PD 2818 2710 PD 2967 2704 PD 2385 2701 PD 2554 2714 PD 3153 2705 PD 2755 2715 PD 2984 2713 PD 3701 2721 PD 2797 2703 PD 2690 2705 PD 3083 2710 PD 2474 2704 PD 3223 2715 PD 2915 2706 PD 2742 2701 PD 3204 2705 PD 2813 2703 PD 3117 2713 PD 3270 2716 PD 3017 2720 PD 3221 2717 PD 3028 2711 PD 2716 2707 PD 3369 2722 PD 3088 2704 PD 3593 2721 PD 2655 2705 PD 3529 2711 PD 3450 2712 PD 2630 2699 PD 3073 2712 PD 3085 2707 PD 2440 2709 PD 3036 2708 PD 2992 2713 PD 3289 2718 PD 2867 2721 PD 2190 2701 PD 2736 2715 PD 2938 2703 PD 3134 2716 PD 2985 2708 PD 2774 2723 PD 2896 2709 PD 3110 2713 PD 3554 2712 PD 2578 2702 PD 2841 2744 PD 3331 2720 PD 3101 2736 PD 2648 2710 PD 2901 2714 PD 2530 2707 PD 2647 2710 PD 3344 2725 PD 2806 2733 PD 3074 2719 PD 2805 2718 PD 2637 2712 PD 2783 2707 PD 3088 2755 PD 2864 2711 PD 2972 2716 PD 3007 2710 PD 3805 2746 PD 3247 2710 PD 2958 2729 PD 2925 2732 PD 2989 2707 PD 3423 2711 PD 3320 2702 PD 2933 2710 PD 2898 2725 PD 3535 2732 PD 3386 2723 PD 3023 2713 PD 3437 2720 PD 3588 2720 PD 2757 2709 PD 3143 2728 PD 3376 2713 PD 3352 2727 PD 3116 2719 PD 3298 2713 PD 3116 2722 PD 3197 2710 PD 2994 2719 PD 2648 2704 PD 3157 2711 PD 3220 2710 PD 3338 2772 PD 3516 2721 PD 2863 2712 PD 3535 2735 PD 3196 2718 PD 4141 2716 PD 3116 2717 PD 2910 2711 PD 3373 2723 PD 3426 2740 PD 3398 2724 PD 3357 2714 PD 2964 2719 PD 2710 2703 PD 3112 2730 PD 3524 2714 PD 2855 2716 PD 3091 2704 PD 3249 2714 PD 2869 2713 PD 3102 2735 PD 3488 2750 PD 3589 2717 PD 3180 2726 PD 3211 2726 PD 3365 2732 PD 2990 2726 PD 3133 2723 PD 3316 2735 PD 2905 2707 PD 2885 2707 PD 2914 2714 PD 2989 2710 PD 2804 2716 PD 3314 2726 PD 2562 2705 PD 2890 2737 PD 3119 2712 PD 3367 2721 PD 2929 2750 PD 3471 2707 PD 2662 2705 PD 2958 2717 PD 4324 2747 PD 3603 2714 PD 3681 2717 PD 3088 2733 PD 2715 2715 PD 3044 2711 PD 3445 2744 PD 3289 2746 PD 2801 2707 PD 3181 2716 PD 3430 2746 PD 3242 2715 PD 3622 2721 PD 2952 2726 PD 2740 2743 PD 3305 2732 PD 2791 2705 PD 3052 2722 PD 3554 2746 PD 3511 2735 PD 3360 2732 PD 3504 2722 PD 3444 2723 PD 3262 2716 PD 3147 2732 PD 3791 2751 PD 3451 2752 PD 3030 2744 PD 3278 2710 PD 4382 2750 PD 3169 2755 PD 3535 2712 PD 2973 2708 PD 3376 2742 PD 3398 2762 PD 3394 2724 PD 3279 2717 PD 3163 2722 PD 3570 2736 PD 3422 2709 PD 3411 2728 PD 3462 2745 PD 3212 2713 PD 3745 2729 PD 2956 2736 PD 2696 2708 PD 2933 2713 PD 2850 2711 PD 2662 2738 PD 2850 2710 PD 3572 2718 PD 3209 2733 PD 3220 2715 PD 3409 2738 PD 3074 2726 PD 3401 2744 PD 3074 2727 PD 3601 2718 PD 3188 2719 PD 2993 2725 PD 3478 2729 PD 3756 2712 PD 3576 2748 PD 3115 2709 PD 2932 2712 PD 3864 2728 PD 3232 2728 PD 3710 2719 PD 4067 2754 PD 3734 2714 PD 3419 2736 PD 3283 2729 PD 3404 2743 PD 3313 2722 PD 3502 2724 PD 3862 2746 PD 3656 2744 PD 3851 2722 PD 3322 2713 PD 3598 2732 PD 4025 2738 PD 4035 2733 PD 2965 2713 PD 3606 2720 PD 3119 2738 PD 3278 2720 PD 4056 2735 PD 3445 2724 PD 3218 2748 PD 4123 2752 PD 3257 2731 PD 3504 2725 PD 3062 2713 PD 3445 2709 PD 3894 2732 PD 3904 2753 PD 3295 2753 PD 3819 2760 PD 3901 2733 PD 3404 2770 PD 3468 2805 PD 3391 2775 PD 3243 2722 PD 3817 2721 PD 3269 2717 PD 3668 2736 PD 3710 2755 PD 3651 2745 PD 3455 2753 PD 3504 2803 PD 3769 2739 PD 3880 2713 PD 4026 2738 PD 3450 2725 PD 3959 2722 PD 3683 2745 PD 3859 2739 PD 3589 2741 PD 3377 2736 PD 3590 2732 PD 3401 2726 PD 3731 2726 PD 3726 2758 PD 3303 2730 PD 3929 2722 PD 4055 2738 PD 3635 2729 PD 3319 2728 PD 3596 2723 PD 3139 2722 PD 2990 2725 PD 3922 2764 PD 3755 2732 PD 3622 2749 PD 3948 2740 PD 4017 2775 PD 3658 2725 PD 3374 2722 PD 3458 2726 PD 3811 2751 PD 4252 2777 PD 4063 2818 PD 3383 2734 PD 3266 2732 PD 4285 2733 PD 3170 2717 PD 4036 2740 PD 3500 2740 PD 3998 2751 PD 3531 2752 PD 4109 2773 PD 3891 2750 PD 3822 2733 PD 3740 2744 PD 4707 2747 PD 3777 2766 PD 3939 2762 PD 3540 2739 PD 3219 2729 PD 3727 2758 PD 3469 2747 PD 3559 2736 PD 3404 2762 PD 3219 2728 PD 3772 2789 PD 4103 2778 PD 3339 2762 PD 2947 2733 PD 3528 2734 PD 3428 2775 PD 3491 2716 PD 3336 2720 PD 4388 2742 PD 3799 2729 PD 3614 2739 PD 3637 2726 PD 3739 2751 PD 3361 2733 PD 3277 2744 PD 3826 2782 PD 3451 2764 PD 3851 2751 PD 3789 2736 PD 3567 2754 PD 3620 2802 PD 3913 2835 PD 3597 2720 PD 4073 2834 PD 3882 2868 PD 4207 2768 PD 3605 2728 PD 3399 2745 PD 3503 2722 PD 4253 2744 PD 4586 2814 PD 4662 2775 PD 4029 2734 PD 3374 2734 PD 4664 2739 PD 3342 2754 PD 3930 2741 PD 3720 2760 PD 3980 2783 PD 4456 2761 PD 3560 2719 PD 3863 2781 PD 3759 2777 PD 3570 2744 PD 3679 2752 PD 3804 2726 PD 3692 2727 PD 4397 2788 PD 4048 2775 PD 3898 2773 PD 3658 2785 PD 3925 2739 PD 3104 2751 PD 3831 2758 PD 3354 2761 PD 4051 2753 PD 4338 2792 PD 3356 2738 PD 3331 2737 PD 4181 2760 PD 4670 2817 PD 4272 2741 PD 4190 2780 PD 4044 2755 PD 4095 2778 PD 4617 2755 PD 4633 2783 PD 3967 2747 PD 5089 2821 PD 3759 2837 PD 3558 2865 PD 3611 2770 PD 4093 2740 PD 3755 2758 PD 4134 2749 PD 3605 2740 PD 4355 2752 PD 3372 2717 PD 3470 2762 PD 4210 2823 PD 3751 2714 PD 3590 2773 PD 3340 2769 PD 4538 2792 PD 3982 2797 PD 3894 2735 PD 3913 2852 PD 3400 2762 PD 3611 2821 PD 3808 2725 PD 4100 2852 PD 4425 2743 PD 3780 2737 PD 4029 2779 PD 3632 2738 PD 4141 2749 PD 5144 2797 PD 4785 2780 PD 4031 2844 PD 3313 2747 PD 3911 2746 PD 4562 2828 PD 4246 2771 PD 3288 2753 PD 3657 2781 PD 4004 2754 PD 4869 2876 PD 3585 2734 PD 3850 2794 PD 3773 2883 PD 3717 2754 PD 4676 2772 PD 4508 2768 PD 3436 2737 PD 3857 2807 PD 3741 2842 PD 3886 2801 PD 3753 2768 PD 4167 2767 PD 3897 2867 PD 3578 2848 PD 3708 2750 PD 5046 2823 PD 4382 2843 PD 3968 2803 PD 4157 2809 PD 3820 2764 PD 4437 2796 PD 3445 2771 PD 3714 2722 PD 4640 2808 PD 4714 2810 PD 4327 2761 PD 3678 2745 PD 3449 2742 PD 3911 2762 PD 3893 2752 PD 3916 2811 PD 3991 2850 PD 4937 2817 PD 3697 2768 PD 3647 2766 PD 4098 2954 PD 3707 2744 PD 4478 2804 PD 4476 2777 PD 4550 2770 PD 3188 2740 PD 4796 2755 PD 3725 2730 PD 4599 2813 PD 4238 2753 PD 3615 2748 PD 4045 2736 PD 4166 2826 PD 3390 2800 PD 4123 2916 PD 4836 2854 PD 3651 2744 PD 3572 2723 PD 4171 2753 PD 4707 2784 PD 3569 2832 PD 3813 2856 PD 3713 2756 PD 5343 2777 PD 5104 2773 PD 4187 2749 PD 3539 2836 PD 3819 2752 PD 4044 2769 PD 4018 2774 PD 4104 2851 PD 3864 2791 PD 3966 2801 PD 4374 2859 PD 4785 2897 PD 5606 2804 PD 4034 2735 PD 5116 2802 PD 4171 2779 PD 3888 2921 PD 4508 2889 PD 4320 2845 PD 4286 2919 PD 3968 2766 PD 3747 2760 PD 4446 2770 PD 3527 2734 PD 4155 2753 PD 4329 2750 PD 4705 2752 PD 5037 2845 PD 4025 2803 PD 4157 2789 PD 4514 2851 PD 3506 2769 PD 5129 2933 PD 4058 2757 PD 4580 2807 PD 4980 2759 PD 4473 2803 PD 4739 2796 PD 4208 2747 PD 3893 2790 PD 4307 2833 PD 3930 2790 PD 4672 2829 PD 4682 2890 PD 4855 2981 PD 4435 2813 PD 4397 2771 PD 4143 2783 PD 4274 2761 PD 4241 2745 PD 4214 2953 PD 4869 2756 PD 4997 2887 PD 4794 2842 PD 4323 2783 PD 4364 2828 PD 4239 2805 PD 4232 2769 PD 4298 2773 PD 4785 2811 PD 4378 2772 PD 5072 2829 PD 4804 2975 PD 4557 2762 PD 3920 2805 PD 4422 2809 PD 3760 2838 PD 4601 2823 PD 4552 3014 PD 4280 2854 PD 5430 2851 PD 4667 2753 PD 3927 2728 PD 3995 2762 PD 4394 2980 PD 4155 2817 PD 3843 2767 PD 4696 2864 PD 4239 2917 PD 4375 2780 PD 4690 2759 PD 3837 2748 PD 4801 2765 PD 4256 2763 PD 4877 2816 PD 3807 2772 PD 5567 2847 PD 5019 2836 PD 3932 2796 PD 4589 2792 PD 3987 2758 PD 4102 2890 PD 5160 2864 PD 4489 2929 PD 3772 2834 PD 3867 2798 PD 4500 2836 PD 4142 2820 PD 4931 2759 PD 4533 2819 PD 3983 2824 PD 4960 2860 PD 3473 2759 PD 4437 2854 PD 4099 2804 PD 3631 2769 PD 4462 2802 PD 4567 2791 PD 4226 3355 PD 3917 2794 PD 5126 2809 PD 4282 2846 PD 4947 2870 PD 5139 2859 PD 4468 3004 PD 4978 2885 PD 5425 2871 PD 3773 2755 PD 4836 2786 PD 5450 2834 PD 4277 2820 PD 5224 2998 PD 5334 2830 PD 4766 2778 PD 4846 2847 PD 4234 2896 PD 3694 2730 PD 4237 2948 PD 4334 2809 PD 4420 2910 PD 4136 2841 PD 4022 2998 PD 4592 2834 PD 4454 2783 PD 3974 2914 PD 4267 3058 PD 4219 2832 PD 4720 2847 PD 4129 2773 PD 4118 2795 PD 3863 2824 PD 5030 2796 PD 3746 2891 PD 3833 2863 PD 4813 2834 PD 4734 2816 PD 4379 2842 PD 4290 3146 PD 4341 2833 PD 4634 2863 PD 4583 2899 PD 5090 2930 PD 4859 2893 PD 4328 2817 PD 3684 2863 PD 4860 2782 PD 4377 2782 PD 4220 2872 PD 4057 2829 PD 4203 2801 PD 4326 2743 PD 4983 2841 PD 4486 2841 PD 4757 2774 PD 5247 2767 PD 4719 2800 PD 4902 2776 PD 5080 3048 PD 4622 2842 PD 3757 2841 PD 4099 2853 PD 4259 2785 PD 3786 2818 PD 4654 3252 PD 4401 2779 PD 4678 3170 PD 4593 2951 PD 4314 2815 PD 4789 2784 PD 4305 2775 PD 4948 2828 PD 4467 2794 PD 4535 2789 PD 4389 2937 PD 5298 2978 PD 5405 2869 PD 5003 2761 PD 4556 2859 PD 4778 2813 PD 4881 2920 PD 5010 2790 PD 4155 2791 PD 4261 2830 PD 5173 2901 PD 4933 3139 PD 4973 2917 PD 4997 2811 PD 4792 2819 PD 4431 2794 PD 5215 3234 PD 4384 3090 PD 4686 2837 PD 4317 2911 PD 4884 2806 PD 4228 2861 PD 3927 2818 PD 4331 2875 PD 4201 2909 PD 4373 3021 PD 4272 2822 PD 4201 2783 PD 4981 2904 PD 5025 3117 PD 4782 2988 PD 4702 2859 PD 4501 2894 PD 4476 2821 PD 4446 2804 PD 5009 2880 PD 5523 3023 PD 4450 2934 PD 4452 2796 PD 5080 2833 PD 3464 2815 PD 5724 2846 PD 4368 2799 PD 4199 2948 PD 4714 2785 PD 4263 2877 PD 4019 2783 PD 5534 2791 PD 4596 2852 PD 4771 2802 PD 5113 3067 PD 4823 2782 PD 4924 2819 PD 4408 2871 PD 4415 2814 PD 5258 2897 PD 4608 2904 PD 4445 2883 PD 4759 2777 PD 4808 3166 PD 5267 2998 PD 5492 2799 PD 4742 2858 PD 4735 2887 PD 5055 2793 PD 5957 2859 PD 4356 2881 PD 4585 2757 PD 4985 2954 PD 4629 3202 PD 4607 2769 PD 4696 2831 PD 4436 2959 PD 4000 2846 PD 4473 2987 PD 4900 2911 PD 4774 2838 PD 4313 2843 PD 4754 2819 PD 4861 2858 PD 3921 2810 PD 4588 2767 PD 4928 2867 PD 4511 2813 PD 4565 2913 PD 4024 2800 PD 5414 2835 PD 4312 2920 PD 4922 2841 PD 4427 2861 PD 4636 2900 PD 4920 2929 PD 4433 3021 PD 4851 3039 PD 5824 2967 PD 4246 2947 PD 4822 2979 PD 4503 2809 PD 5046 2788 PD 3894 2972 PD 4768 2940 PD 5075 2819 PD 4222 2798 PD 5026 2858 PD 4917 2938 PD 5102 2828 PD 3988 2807 PD 4703 2937 PD 4517 2848 PD 4743 2931 PD 4700 2822 PD 4981 2912 PD 5485 2927 PD 4891 2939 PD 4873 2927 PD 4590 2834 PD 5269 3019 PD 4949 2997 PD 5465 2879 PD 4632 2805 PD 5332 2876 PD 5353 2865 PD 5154 2950 PD 5084 2911 PD 4310 3166 PD 4568 2848 PD 4305 2969 PD 4646 3341 PD 4705 2840 PD 5361 2884 PD 4652 2903 PD 5034 2954 PD 4774 2936 PD 4615 2819 PD 5172 2837 PD 5113 2956 PD 5357 3498 PD 4697 2847 PD 5110 2963 PD 5005 2854 PD 5159 2866 PD 5328 2852 PD 4991 3052 PD 5671 2821 PD 5007 2831 PD 4567 2933 PD 5726 2856 PD 5573 2796 PD 4431 2935 PD 5446 2973 PD 4629 2827 PD 5637 2983 PD 4847 2808 PD 5508 2874 PD 5318 3025 PD 4910 2855 PD 4973 2956 PD 5403 3004 PD 5698 2888 PD 6119 2857 PD 4958 2902 PD 4763 3010 PD 5160 2959 PD 5406 2926 PD 4409 2793 PD 6033 2856 PD 4889 2904 PD 3813 2885 PD 4912 2941 PD 4701 3013 PD 4690 2830 PD 5164 2820 PD 5074 2831 PD 4985 2866 PD 4747 2825 PD 4836 2910 PD 4909 2849 PD 4956 2853 PD 4868 2815 PD 5345 2888 PD 5289 3039 PD 4605 2920 PD 4510 2909 PD 5364 3128 PD 4765 2929 PD 4570 2967 PD 4777 2819 PD 5547 2895 PD 5170 2989 PD 5456 3027 PD 5599 3018 PD 5295 3028 PD 5621 2936 PD 5405 3100 PD 5161 3066 PD 5118 3408 PD 5386 2841 PD 5536 3057 PD 5696 2968 PD 4461 2952 PD 4519 3012 PD 5226 3070 PD 5306 3144 PD 4762 2917 PD 6088 3011 PD 4874 2911 PD 5309 2859 PD 5053 2981 PD 4645 2862 PD 5941 3066 PD 5405 3272 PD 5550 3264 PD 5099 2804 PD 5933 2938 PD 3900 2849 PD 5241 2945 PD 5202 2896 PD 5099 2976 PD 4703 2889 PD 5388 2848 PD 6086 2888 PD 5611 2818 PD 5465 2958 PD 5261 2960 PD 4347 3199 PD 4726 3061 PD 5458 2921 PD 4729 3042 PD 4755 3036 PD 5417 3046 PD 4143 2820 PD 4828 2760 PD 5940 3269 PD 5752 3006 PD 5322 2919 PD 5114 3063 PD 4617 2806 PD 5406 2936 PD 5136 2891 PD 4444 3013 PD 4918 2872 PD 4434 3056 PD 4538 2994 PD 5333 2956 PD 5415 2953 PD 4782 2899 PD 4385 2772 PD 5133 3077 PD 4876 2898 PD 5406 3089 PD 4971 3007 PD 5109 2962 PD 5384 3236 PD 5321 3127 PD 5155 2920 PD 4763 2959 PD 5134 2890 PD 5080 2910 PD 5649 2904 PD 5461 3015 PD 5201 2819 PD 6205 3011 PD 4629 2953 PD 4568 2836 PD 4662 2919 PD 5218 3048 PD 4892 3061 PD 4899 3104 PD 5375 3081 PD 4996 2911 PD 4523 2903 PD 5308 2807 PD 6193 3599 PD 5735 3128 PD 4707 3699 PD 4389 3224 PD 5226 2955 PD 5883 3215 PD 4928 3017 PD 5171 2849 PD 5281 3333 PD 5716 3015 PD 5852 3339 PD 5381 3035 PD 4524 2758 PD 5684 2876 PD 5252 2848 PD 5922 3013 PD 6119 3077 PD 5288 2928 PD 6081 3279 PD 4950 3242 PD 4545 2880 PD 4776 3307 PD 5046 2982 PD 5064 2907 PD 4914 2827 PD 4627 3078 PD 5266 2861 PD 5905 2862 PD 5790 2912 PD 5460 2831 PD 4708 3027 PD 5431 3092 PD 5211 3094 PD 5172 3162 PD 5945 2944 PD 4721 3214 PD 5826 2928 PD 5684 2991 PD 5678 2858 PD 5298 2947 PD 6086 2915 PD 5895 2904 PD 5430 3109 PD 5028 2866 PD 5168 2884 PD 5015 2977 PD 5552 2973 PD 4954 3237 PD 5446 2870 PD 4809 2957 PD 5031 2829 PD 4592 2905 PD 4846 2883 PD 5828 3049 PD 5515 3088 PD 5783 3029 PD 4600 3016 PD 4911 2882 PD 5380 3040 PD 5221 2980 PD 4493 2990 PD 4781 3080 PD 4770 2936 PD 5224 2991 PD 5618 2971 PD 4946 3129 PD 6166 3579 PD 4623 3132 PD 6129 3191 PD 4588 2833 PD 5238 2872 PD 5259 2981 PD 4248 3273 PD 6214 3014 PD 6085 3190 PD 5348 2876 PD 6067 3319 PD 5452 3029 PD 6008 3086 PD 5338 3166 PD 4685 2797 PD 4745 3019 PD 4729 3049 PD 5487 3001 PD 5122 3216 PD 5957 3155 PD 5017 2884 PD 5222 2813 PD 5182 2936 PD 5943 3231 PD 5100 3107 PD 5291 2925 PD 5356 2829 PD 4755 3091 PD 5940 2937 PD 5341 3046 PD 5730 2944 PD 5395 3157 PD 5458 3044 PD 5891 2917 PD 4973 3317 PD 5360 3289 PD 5152 2856 PD 5496 2878 PD 5623 3115 PD 5510 3134 PD 5778 3182 PD 4909 2837 PD 5958 3598 PD 5114 3085 PD 5816 3559 PD 4769 3284 PD 5504 3006 PD 5756 2995 PD 5510 2889 PD 4765 2818 PD 6142 3204 PD 6192 3153 PD 5307 2973 PD 6095 3127 PD 5355 3032 PD 5329 2839 PD 5893 2915 PD 4626 3065 PD 5619 2834 PD 5995 3242 PD 6043 2930 PD 5539 2864 PD 5840 3062 PD 6044 2933 PD 5166 2998 PD 5786 3078 PD 5667 3126 PD 5224 3859 PD 5573 3204 PD 6106 3033 PD 5848 2868 PD 5389 2958 PD 5356 3051 PD 5692 3475 PD 5772 2918 PD 4822 2850 PD 5099 2893 PD 5427 3321 PD 5506 3890 PD 5585 2867 PD 5697 2877 PD 5043 3541 PD 5009 2989 PD 5785 2934 PD 5028 3113 PD 4740 2925 PD 5065 3137 PD 5431 3084 PD 6125 2834 PD 5239 2911 PD 5927 3177 PD 5700 3169 PD 5257 3022 PD 5562 2881 PD 4967 2934 PD 5371 3102 PD 5280 3168 PD 4975 3118 PD 5906 3409 PD 5396 2942 PD 5701 3036 PD 5894 3138 PD 6045 3216 PD 6097 3111 PD 5592 3654 PD 5964 3329 PD 5734 3054 PD 5791 3291 PD 4982 3178 PD 4948 2993 PD 6183 2979 PD 5753 3022 PD 5893 3116 PD 5646 3176 PD 4953 3057 PD 5262 3252 PD 5672 2961 PD 4974 3266 PD 5952 2977 PD 5441 2979 PD 5896 3283 PD 5630 3080 PD 5876 3458 PD 5585 2986 PD 5485 2893 PD 5626 3069 PD 5058 3092 PD 5422 2860 PD 5995 3194 PD 5512 2860 PD 5862 3181 PD 5225 2964 PD 4606 3066 PD 5520 3061 PD 6033 3822 PD 5333 3105 PD 5391 2998 PD 4891 3073 PD 5966 3131 PD 5972 3435 PD 5361 2970 PD 5207 2881 PD 5804 3103 PD 5592 3052 PD 5403 3182 PD 6230 3354 PD 5734 3124 PD 5163 2794 PD 5658 3509 PD 4629 3122 PD 5180 3235 PD 5382 3050 PD 6022 3463 PD 6169 3049 PD 5603 3114 PD 5733 3063 PD 5836 3203 PD 5351 3774 PD 5388 3164 PD 6065 3176 PD 5888 3062 PD 5453 3137 PD 5420 3588 PD 5697 3159 PD 5742 3671 PD 5258 3047 PD 5778 3107 PD 4836 3426 PD 5275 3138 PD 5472 3058 PD 5485 3365 PD 5924 3492 PD 5738 2958 PD 5956 3135 PD 5446 2895 PD 6017 3281 PD 4862 3064 PD 5334 3901 PD 5678 3496 PD 5986 3384 PD 5500 3484 PD 5485 3479 PD 5257 3290 PD 5823 3069 PD 5925 3009 PD 6057 3115 PD 5599 3212 PD 5921 3411 PD 6157 3087 PD 4926 3178 PD 5098 3304 PD 6024 3064 PD 4746 2916 PD 5517 3169 PD 5717 3515 PD 5532 3020 PD 5746 3307 PD 5785 3049 PD 6110 3053 PD 6086 3286 PD 5587 3180 PD 5888 2988 PD 5779 3314 PD 6106 3002 PD 5937 3028 PD 5857 3375 PD 4988 3186 PD 5915 3143 PD 5462 2886 PD 5308 2918 PD 5821 3667 PD 5584 3271 PD 5783 3206 PD 5802 2910 PD 5547 2976 PD 5445 3378 PD 6199 3068 PD 5581 3005 PD 5717 3089 PD 5334 3205 PD 6036 3028 PD 6172 2975 PD 5694 3149 PD 6042 3002 PD 5551 3310 PD 6198 3652 PD 5133 2859 PD 6252 3133 PD 5450 3041 PD 5894 3058 PD 5207 3970 PD 5433 3427 PD 5307 3255 PD 4737 3255 PD 6088 3431 PD 5143 3044 PD 4738 2883 PD 5947 3511 PD 5404 3459 PD 5864 3202 PD 5767 3236 PD 6119 3072 PD 5792 3235 PD 6225 3510 PD 5837 3297 PD 5708 3476 PD 6208 3283 PD 5803 2931 PD 5755 3094 PD 5831 3273 PD 5653 3308 PD 4968 3080 PD 5264 3079 PD 6193 3653 PD 5553 2894 PD 5953 2983 PD 5114 3195 PD 5925 3215 PD 5992 3187 PD 5780 3384 PD 5651 3197 PD 5618 2959 PD 5202 3489 PD 5846 3086 PD 5422 3022 PD 6088 3532 PD 5731 3065 PD 5137 3097 PD 5337 3017 PD 6214 3134 PD 5407 2995 PD 6161 2956 PD 5069 3555 PD gs 899 389 5360 4227 MR c np gr 5510 3122 PD 5747 3402 PD 5433 3117 PD 6052 3114 PD 5832 3178 PD 5470 3857 PD 6258 3432 PD 5635 3188 PD 5989 3371 PD 5893 3542 PD 6257 4203 PD 6222 3425 PD 6230 3432 PD 5435 2922 PD 5571 3275 PD 5649 3348 PD 5693 3644 PD gs 899 389 5360 4227 MR c np gr 5198 3895 PD 5598 4000 PD 5481 3111 PD 5314 3325 PD 5410 3098 PD 5563 3400 PD 5712 3567 PD gs 899 389 5360 4227 MR c np gr 5489 3014 PD 5883 3514 PD 6216 3520 PD 6178 3313 PD 4881 3056 PD 5745 3106 PD 5342 3285 PD 5876 3370 PD 5920 3070 PD 5766 3676 PD 5288 3711 PD 5852 3909 PD 5761 3045 PD 5712 3150 PD 5964 2990 PD 5961 3956 PD 6064 3278 PD 6207 3131 PD 6155 3091 PD 5681 3815 PD 5682 3708 PD 5587 3492 PD 5851 3846 PD 5521 3221 PD 5632 2926 PD 5498 2884 PD 5899 3008 PD 4986 3011 PD 6224 3404 PD 5907 3762 PD 6139 3852 PD 5970 3128 PD 5286 4117 PD 5851 3013 PD 5241 3102 PD 6154 3376 PD 6232 3051 PD 5979 3196 PD 5831 3318 PD 5650 3324 PD 5596 2934 PD 6073 2981 PD gs 899 389 5360 4227 MR c np gr 5412 3086 PD 5933 3394 PD 5407 3227 PD 5618 3860 PD 6165 3291 PD 5657 3830 PD 4897 3546 PD 5959 3560 PD 6238 3676 PD 5881 3304 PD 5706 3119 PD 5561 3036 PD 5865 3526 PD 5128 2975 PD 6042 3486 PD 5892 2901 PD 5757 3382 PD 5634 4213 PD 6177 3641 PD 6123 2951 PD 5752 3845 PD 6208 3822 PD 5690 3596 PD 6048 3692 PD 5896 4042 PD 5216 3369 PD 6172 3319 PD 5262 3614 PD 6097 3092 PD 5379 3352 PD 6135 3769 PD 6192 3536 PD gs 899 389 5360 4227 MR c np gr 5271 3163 PD 5966 3730 PD 6006 3465 PD 5444 3133 PD 5653 3039 PD 5956 3169 PD 5956 3433 PD 5803 3123 PD 5724 3033 PD 6188 4020 PD gs 899 389 5360 4227 MR c np gr 6221 3233 PD 5737 3554 PD 6201 3461 PD 6196 3126 PD gs 899 389 5360 4227 MR c np gr 5608 3292 PD 5698 3462 PD gs 899 389 5360 4227 MR c np gr 4819 3694 PD 6226 3644 PD gs 899 389 5360 4227 MR c np gr 5838 3462 PD 6000 3290 PD 6051 3192 PD 5890 3165 PD 6054 3273 PD 5986 3107 PD 5750 4412 PD 5713 2936 PD 5778 3863 PD gs 899 389 5360 4227 MR c np gr 5358 4504 PD 5514 3675 PD gs 899 389 5360 4227 MR c np gr 5593 4514 PD 5950 3281 PD 6240 4365 PD gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr 6009 3000 PD gs 899 389 5360 4227 MR c np gr 6124 3287 PD 5706 3231 PD gs 899 389 5360 4227 MR c np gr 5097 4034 PD 6042 3697 PD 6169 3862 PD 6172 4192 PD 5856 3177 PD gs 899 389 5360 4227 MR c np gr 6077 2918 PD gs 899 389 5360 4227 MR c np gr 6146 3483 PD 5769 3268 PD gs 899 389 5360 4227 MR c np gr 6050 3508 PD 5307 3752 PD 5900 3039 PD gs 899 389 5360 4227 MR c np gr 5789 3503 PD 5696 3361 PD 5526 3893 PD 5446 2917 PD 5558 3484 PD 5775 3110 PD 5897 3528 PD 5699 3764 PD 5625 3418 PD gs 899 389 5360 4227 MR c np gr 5489 3118 PD 5954 3526 PD gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr 6176 3422 PD 6008 3175 PD 5693 3959 PD 6098 3636 PD 6095 3183 PD gs 899 389 5360 4227 MR c np gr 6257 3239 PD 5556 3913 PD 5561 3019 PD 5986 3963 PD gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr 6246 3503 PD gs 899 389 5360 4227 MR c np gr 5640 4103 PD 6087 3330 PD gs 899 389 5360 4227 MR c np gr 5458 3086 PD gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr 5737 3824 PD 6213 3618 PD 6222 3923 PD 6030 3697 PD gs 899 389 5360 4227 MR c np gr 5803 3146 PD 5980 3400 PD 6199 3475 PD gs 899 389 5360 4227 MR c np gr 5955 3416 PD 6223 3096 PD 5456 3933 PD 6015 3527 PD 5428 3600 PD gs 899 389 5360 4227 MR c np gr 6035 3425 PD 5844 4022 PD 6002 3288 PD gs 899 389 5360 4227 MR c np gr 5700 3086 PD 6006 3692 PD 5740 3596 PD gs 899 389 5360 4227 MR c np gr 6246 3589 PD gs 899 389 5360 4227 MR c np gr 6060 4432 PD gs 899 389 5360 4227 MR c np gr 6094 3700 PD 5920 3144 PD 5671 3406 PD gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr 5802 3285 PD 5662 3811 PD 6185 3079 PD 5504 3416 PD 5053 3116 PD 6081 3150 PD 6175 3530 PD 6211 3249 PD gs 899 389 5360 4227 MR c np gr 6099 3989 PD gs 899 389 5360 4227 MR c np gr 6182 3355 PD gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr 6074 3312 PD gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr 5532 3131 PD gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr 5939 3500 PD 5578 3429 PD gs 899 389 5360 4227 MR c np gr 6026 3685 PD 5373 3247 PD 6008 3329 PD gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr 5644 3707 PD gs 899 389 5360 4227 MR c np gr 5545 3222 PD gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr 6171 3456 PD gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr 6056 4234 PD 5928 3400 PD gs 899 389 5360 4227 MR c np gr 5165 4171 PD gs 899 389 5360 4227 MR c np gr 6223 4062 PD 6223 3220 PD 5174 3049 PD gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr 5789 3082 PD gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr 6093 3858 PD gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np 6 w 307 -218 466 -445 466 -353 466 -351 466 -244 466 -303 466 -207 466 -182 466 -141 466 -106 466 -76 466 -33 1030 2659 13 MP stroke 295 181 466 130 466 185 466 142 466 102 466 67 466 61 466 27 466 18 466 10 466 4 466 1 466 1 1030 2694 14 MP stroke gr 6 w 3435 4944 mt (Stdv) s 446 3501 mt -90 rotate (Relative errors in log-likelihood) s 90 rotate end eplot epage end showpage %%EndDocument endTexFig 1065 2004 a Fr(Figure)d(2:)20 b(Sigmoid)13 b(net)o(w)o(orks.)22 b(Accuracy)16 b(of)f(the)g(b)q(ounds)1065 2050 y(for)g(8)g(b)o(y)g(8)g (t)o(w)o(o-lev)o(el)f(net)o(w)o(orks.)23 b(The)16 b(solid)e(lines)i (are)f(the)1065 2095 y(median)h(relativ)o(e)h(errors)i(in)e(log-lik)o (eliho)q(o)q(d)e(as)i(a)g(function)1065 2141 y(of)12 b Fl(\033)1135 2147 y Fj(std)1182 2141 y Fr(.)17 b(The)c(upp)q(er)g (and)f(lo)o(w)o(er)g(curv)o(es)i(corresp)q(ond)f(to)f(the)1065 2187 y(upp)q(er)j(and)f(lo)o(w)o(er)f(b)q(ounds)h(resp)q(ectiv)o(ely)m (.)1065 2355 y Fp(3)56 b(NOISY-OR)19 b(NETW)n(ORK)1065 2460 y Fr(Noisy-OR)c(net)o(w)o(orks)i({)f(lik)o(e)f(sigmoid)f(net)o(w)o (orks)i({)g(can)g(b)q(e)1065 2505 y(represen)o(ted)23 b(b)o(y)d(D)o(A)o(Gs)g(and)g(are)g(written)h(as)f(a)g(pro)q(duct)p 1065 2563 250 2 v 1117 2590 a Fd(7)1134 2606 y Fn(Note)13 b(that)g(the)g(maxim)o(um)h(v)n(alue)h(for)d Fc(\033)1735 2610 y Fb(std)1793 2606 y Fn(is)h(1)p Fc(=)p Fn(2.)1117 2635 y Fd(8)1134 2650 y Fn(The)19 b(amoun)o(t)h(of)e(computation)j (needed)f(for)e(sequen)o(tiall)q(y)1065 2692 y(optimizing)f(eac)o(h)d (v)n(ariational)j(parameter)d(once)g(scales)h(linearly)1065 2733 y(with)f(the)g(n)o(um)o(b)q(er)h(of)e(net)o(w)o(ork)h(parameters.) 20 b(Only)14 b(a)g(few)f(suc)o(h)1065 2775 y(iterations)i(are)e (needed.)p eop %%Page: 5 5 5 4 bop 124 0 a 11935477 9946231 3354869 12959006 35916840 39929528 startTexFig 124 0 a %%BeginDocument: ../uai96/figures/sig-scale.eps /MathWorks 150 dict begin /bdef {bind def} bind def /ldef {load def} bind def /xdef {exch def} bdef /xstore {exch store} bdef /c /clip ldef /cc /concat ldef /cp /closepath ldef /gr /grestore ldef /gs /gsave ldef /mt /moveto ldef /np /newpath ldef /cm /currentmatrix ldef /sm /setmatrix ldef /rc {rectclip} bdef /rf {rectfill} bdef /rm /rmoveto ldef /rl /rlineto ldef /s /show ldef /sc {setcmykcolor} bdef /sr /setrgbcolor ldef /w /setlinewidth ldef /j /setlinejoin ldef /cap /setlinecap ldef /pgsv () def /bpage {/pgsv save def} bdef /epage {pgsv restore} bdef /bplot /gsave ldef /eplot {stroke grestore} bdef /portraitMode 0 def /landscapeMode 1 def /dpi2point 0 def /FontSize 0 def /FMS { /FontSize xstore %save size off stack findfont [FontSize 0 0 FontSize neg 0 0] makefont setfont }bdef /reencode { exch dup where {pop load} {pop StandardEncoding} ifelse exch dup 3 1 roll findfont dup length dict begin { 1 index /FID ne {def}{pop pop} ifelse } forall /Encoding exch def currentdict end definefont pop } bdef /isroman { findfont /CharStrings get /Agrave known } bdef /FMSR { 3 1 roll 1 index dup isroman {reencode} {pop pop} ifelse exch FMS } bdef /csm { 1 dpi2point div -1 dpi2point div scale neg translate landscapeMode eq {90 rotate} if } bdef /SO { [] 0 setdash } bdef /DO { [.5 dpi2point mul 4 dpi2point mul] 0 setdash } bdef /DA { [6 dpi2point mul] 0 setdash } bdef /DD { [.5 dpi2point mul 4 dpi2point mul 6 dpi2point mul 4 dpi2point mul] 0 setdash } bdef /L { lineto stroke } bdef /MP { 3 1 roll moveto 1 sub {rlineto} repeat } bdef /AP { {rlineto} repeat } bdef /PP { closepath fill } bdef /DP { closepath stroke } bdef /MR { 4 -2 roll moveto dup 0 exch rlineto exch 0 rlineto neg 0 exch rlineto closepath } bdef /FR { MR stroke } bdef /PR { MR fill } bdef /L1i { { currentfile picstr readhexstring pop } image } bdef /tMatrix matrix def /MakeOval { newpath tMatrix currentmatrix pop translate scale 0 0 1 0 360 arc tMatrix setmatrix } bdef /FO { MakeOval stroke } bdef /PO { MakeOval fill } bdef /PD { 2 copy moveto lineto stroke } bdef currentdict end def MathWorks begin 0 cap end MathWorks begin bpage bplot /dpi2point 12 def portraitMode 0216 7344 csm 396 59 5951 4917 MR c np 76 dict begin %Colortable dictionary /c0 { 0 0 0 sr} bdef /c1 { 1 1 1 sr} bdef /c2 { 1 0 0 sr} bdef /c3 { 0 1 0 sr} bdef /c4 { 0 0 1 sr} bdef /c5 { 1 1 0 sr} bdef /c6 { 1 0 1 sr} bdef /c7 { 0 1 1 sr} bdef /Helvetica /ISOLatin1Encoding 144 FMSR 1 j c1 0 0 6917 5187 PR 6 w DO 4 w SO 6 w c0 899 4615 mt 6258 4615 L 899 389 mt 6258 389 L 899 4615 mt 899 389 L 6258 4615 mt 6258 389 L 899 4615 mt 899 4615 L 6258 4615 mt 6258 4615 L 899 4615 mt 6258 4615 L 899 4615 mt 899 389 L 899 4615 mt 899 4615 L 899 4615 mt 899 4561 L 899 389 mt 899 443 L 799 4784 mt (0.2) s 1494 4615 mt 1494 4561 L 1494 389 mt 1494 443 L 1394 4784 mt (0.4) s 2090 4615 mt 2090 4561 L 2090 389 mt 2090 443 L 1990 4784 mt (0.6) s 2685 4615 mt 2685 4561 L 2685 389 mt 2685 443 L 2585 4784 mt (0.8) s 3281 4615 mt 3281 4561 L 3281 389 mt 3281 443 L 3241 4784 mt (1) s 3876 4615 mt 3876 4561 L 3876 389 mt 3876 443 L 3776 4784 mt (1.2) s 4472 4615 mt 4472 4561 L 4472 389 mt 4472 443 L 4372 4784 mt (1.4) s 5067 4615 mt 5067 4561 L 5067 389 mt 5067 443 L 4967 4784 mt (1.6) s 5663 4615 mt 5663 4561 L 5663 389 mt 5663 443 L 5563 4784 mt (1.8) s 6258 4615 mt 6258 4561 L 6258 389 mt 6258 443 L 6218 4784 mt (2) s 899 4615 mt 953 4615 L 6258 4615 mt 6204 4615 L 784 4668 mt (0) s 899 4052 mt 953 4052 L 6258 4052 mt 6204 4052 L 584 4105 mt (0.02) s 899 3488 mt 953 3488 L 6258 3488 mt 6204 3488 L 584 3541 mt (0.04) s 899 2925 mt 953 2925 L 6258 2925 mt 6204 2925 L 584 2978 mt (0.06) s 899 2361 mt 953 2361 L 6258 2361 mt 6204 2361 L 584 2414 mt (0.08) s 899 1798 mt 953 1798 L 6258 1798 mt 6204 1798 L 664 1851 mt (0.1) s 899 1234 mt 953 1234 L 6258 1234 mt 6204 1234 L 584 1287 mt (0.12) s 899 671 mt 953 671 L 6258 671 mt 6204 671 L 584 724 mt (0.14) s 899 4615 mt 6258 4615 L 899 389 mt 6258 389 L 899 4615 mt 899 389 L 6258 4615 mt 6258 389 L 899 389 mt 899 389 L 6258 389 mt 6258 389 L gs 899 389 5360 4227 MR c np 149 -356 149 -217 148 -307 149 -28 149 -193 149 67 149 -604 149 119 149 -234 148 -60 149 -241 149 58 149 -152 149 -190 149 -196 149 -112 148 -239 149 3 149 -138 149 -141 149 -67 149 -62 149 -123 149 -85 148 -96 149 -69 149 -96 149 -45 149 -72 149 -65 149 -50 148 -60 149 -30 149 -36 149 -29 899 4566 36 MP stroke gr 530 3402 mt -90 rotate (Relative error in log-bounds) s 90 rotate 3243 4944 mt (Scaled std) s gs 899 389 5360 4227 MR c np DA 149 185 149 -408 148 -92 149 -309 149 -213 149 -114 149 -96 149 -166 149 -298 148 -32 149 -127 149 -58 149 -161 149 -134 149 -186 149 -64 148 -212 149 -133 149 -100 149 -93 149 -116 149 -110 149 -80 149 -96 148 -106 149 -58 149 -91 149 -64 149 -80 149 -43 149 -61 148 -44 149 -42 149 -34 149 -29 899 4564 36 MP stroke DO 149 -98 149 -227 148 -143 149 -221 149 -177 149 -123 149 -214 149 -123 149 -127 148 -181 149 -198 149 -75 149 -182 149 -171 149 -92 149 -143 148 -123 149 -139 149 -138 149 -96 149 -109 149 -101 149 -102 149 -85 148 -85 149 -91 149 -72 149 -70 149 -70 149 -55 149 -53 148 -49 149 -41 149 -34 149 -28 899 4564 36 MP stroke gr DO SO end eplot epage end showpage %%EndDocument endTexFig 15 717 a Fr(Figure)19 b(3:)27 b(Sigmoid)16 b(net)o(w)o(orks.)33 b(Median)18 b(relativ)o(e)h(errors)15 763 y(b)q(et)o(w)o(een)f(the)e (upp)q(er)h(and)f(lo)o(w)o(er)g(b)q(ounds)h(\(log)e(scale\))i(as)f(a)15 808 y(function)f(of)f Fl(\033)252 779 y Ft(p)p 287 779 25 2 v 29 x Fl(n)h Fr(for)g Fl(n)g Fr(b)o(y)g Fl(n)g Fr(t)o(w)o(o-lev)o(el)g(net)o(w)o(orks.)22 b(Solid)15 854 y(line:)17 b Fl(n)11 b Fr(=)h(8;)g(dashed)i(line:)j Fl(n)11 b Fr(=)h(32;)g(dotted)h(line:)k Fl(n)11 b Fr(=)h(128.)15 983 y(form)g(for)i(the)g(join)o(t)f(distribution:)186 1063 y Fl(P)6 b Fr(\()p Fl(S)260 1069 y Fk(1)279 1063 y Fl(;)h(:)g(:)g(:)e(;)i(S)397 1069 y Fj(n)419 1063 y Ft(j)p Fl(\022)q Fr(\))12 b(=)523 1023 y Fi(Y)544 1112 y Fj(i)583 1063 y Fl(P)6 b Fr(\()p Fl(S)657 1069 y Fj(i)671 1063 y Ft(j)p Fr(pa)o([)p Fl(i)p Fr(])p Fl(;)h(\022)q Fr(\))97 b(\(21\))15 1173 y(Unlik)o(e)25 b(sigmoid)e(net)o(w)o(orks,)28 b(ho)o(w)o(ev)o(er,)g(the)e(conditional)15 1218 y(probabilities)13 b(for)g(a)h(noisy-OR)f(net)o(w)o(ork)h(are)h(de\014ned)g(as)86 1349 y Fl(P)6 b Fr(\()p Fl(S)160 1355 y Fj(i)173 1349 y Ft(j)p Fr(pa[)p Fl(i)p Fr(])p Fl(;)h(\022)q Fr(\))41 b(=)437 1266 y Fi(0)437 1341 y(@)473 1349 y Fr(1)9 b Ft(\000)570 1310 y Fi(Y)545 1401 y Fj(j)r Fe(2)p Fk(pa)o([)p Fj(i)p Fk(])648 1349 y Fr(\(1)g Ft(\000)g Fl(q)754 1355 y Fj(ij)783 1349 y Fr(\))799 1332 y Fj(S)819 1336 y Fh(j)837 1266 y Fi(1)837 1341 y(A)874 1274 y Fj(S)894 1278 y Fh(i)437 1525 y Ft(\002)476 1442 y Fi(0)476 1516 y(@)537 1486 y(Y)512 1576 y Fj(j)r Fe(2)p Fk(pa[)p Fj(i)p Fk(])615 1525 y Fr(\(1)h Ft(\000)f Fl(q)722 1531 y Fj(ij)751 1525 y Fr(\))767 1508 y Fj(S)787 1512 y Fh(j)805 1442 y Fi(1)805 1516 y(A)841 1450 y Fk(1)p Fe(\000)p Fj(S)904 1454 y Fh(i)916 1525 y Fr(\(22\))15 1646 y(where,)16 b(for)f(example,)f(the)h (parameter)g Fl(q)680 1652 y Fj(ij)724 1646 y Fr(corresp)q(onds)i(to)15 1698 y(the)d(probabilit)o(y)d(that)j(the)g Fl(j)477 1683 y Fj(th)524 1698 y Fr(paren)o(t)g(of)f Fl(i)g Fr(alone)g(can)g(turn)15 1743 y Fl(S)40 1749 y Fj(i)67 1743 y Fr(on.)k(A)c(constan)o(t)g (\\leak")e(or)i(\\bias")f(can)g(b)q(e)h(included)g(b)o(y)15 1789 y(in)o(tro)q(ducing)f(a)h(dumm)o(y)d(\(paren)o(t\))k(v)n(ariable)d (whose)j(v)n(alue)e(is)15 1835 y(alw)o(a)o(ys)h(\014xed)h(to)g(one.)15 1905 y(In)i(the)g(follo)o(wing)d(t)o(w)o(o)i(sections)i(w)o(e)f(dev)o (elop)g(metho)q(ds)f(for)15 1951 y(computing)c(upp)q(er)i(and)f(lo)o(w) o(er)g(b)q(ounds)h(on)f(marginal)e(prob-)15 1996 y(abilities)k(for)g (noisy-OR)g(net)o(w)o(orks.)22 b(Similarly)12 b(to)i(the)i(case)15 2042 y(of)e(sigmoid)f(net)o(w)o(orks)i(the)h(upp)q(er)f(b)q(ound)g(is)g (applicable)f(to)15 2088 y(a)k(restricted)i(class)f(of)e(net)o(w)o (orks)i(while)e(the)i(lo)o(w)o(er)f(b)q(ound)15 2133 y(remains)11 b(generic.)18 b(F)m(or)11 b(clarit)o(y)g(of)g(the)h (forthcoming)e(deriv)n(a-)15 2179 y(tions)k(w)o(e)g(in)o(tro)q(duce)g (the)h(notation:)143 2249 y Fl(P)6 b Fr(\()p Fl(S)217 2255 y Fj(i)242 2249 y Fr(=)12 b(0)p Ft(j)p Fr(pa)o([)p Fl(i)p Fr(])p Fl(;)7 b(\022)q Fr(\))41 b(=)595 2209 y Fi(Y)570 2300 y Fj(j)r Fe(2)p Fk(pa)o([)p Fj(i)p Fk(])673 2249 y Fr(\(1)9 b Ft(\000)h Fl(q)780 2255 y Fj(ij)808 2249 y Fr(\))824 2232 y Fj(S)844 2236 y Fh(j)496 2382 y Fr(=)42 b Fl(e)589 2356 y Fe(\000)621 2328 y Fi(P)664 2372 y Fh(j)q Fg(2)p Ff(pa[)p Fh(i)p Ff(])763 2356 y Fj(\022)779 2360 y Fh(ij)805 2356 y Fj(S)825 2360 y Fh(j)916 2382 y Fr(\(23\))15 2451 y(with)14 b Fl(\022)129 2457 y Fj(ij)170 2451 y Fr(=)e Ft(\000)7 b Fr(log)o(\(1)j Ft(\000)f Fl(q)413 2457 y Fj(ij)442 2451 y Fr(\))j Ft(\025)f Fr(0.)15 2553 y Fs(3.1)48 b(UPPER)15 b(BOUND)g(F)o(OR)h(NOISY-OR)124 2599 y(NETW)o(ORK)15 2684 y Fr(The)10 b(motiv)n(ation)d(and,)j(in)f (broad)g(outline,)h(the)g(upp)q(er)h(b)q(ound)15 2729 y(deriv)n(ation)j(itself)h(can)h(b)q(e)g(carried)g(o)o(v)o(er)f(from)f (the)h(sigmoid)15 2775 y(setting)f(to)g(the)h(noisy-OR)e(case.)1065 42 y(Consider)37 b(a)e(t)o(w)o(o-lev)o(el)h(or)g(bipartite)g(net)o(w)o (ork)g(with)1065 87 y Ft(f)p Fl(S)1111 93 y Fj(i)1125 87 y Ft(g)1146 93 y Fj(i)p Fe(2)p Fj(L)1203 97 y Ff(1)1235 87 y Fr(and)14 b Ft(f)p Fl(S)1362 93 y Fj(i)1376 87 y Ft(g)1397 93 y Fj(i)p Fe(2)p Fj(L)1454 97 y Ff(2)1486 87 y Fr(\(where)h Fl(L)1650 93 y Fk(2)1681 87 y Ft(!)c Fl(L)1762 93 y Fk(1)1781 87 y Fr(\))j(denoting)g(the)1065 133 y(t)o(w)o(o)d(sets)i(of)e(v)n(ariables.)17 b(As)12 b(b)q(efore)h(w)o(e)f(adopt)f(a)g(simplifying)1065 178 y(notation)h(in)g(whic)o(h)g(the)h(desired)g(marginal)d(probabilit)o(y) h(ex-)1065 224 y(clusiv)o(ely)e(consists)i(of)e(all)g(the)h(v)n (ariables)f(in)h(the)g(la)o(y)o(er)f Fl(L)1945 230 y Fk(1)1964 224 y Fr(.)17 b(T)m(o)1065 270 y(compute)d(suc)o(h)g (marginal)e(w)o(e)i(need)h(to)f(sum)f(the)i(noisy-OR)1065 315 y(join)o(t)e(distribution,)1141 390 y Fl(P)6 b Fr(\()p Fl(S)1215 396 y Fk(1)1234 390 y Fl(;)h(:)g(:)g(:)e(;)i(S)1352 396 y Fj(n)1374 390 y Ft(j)p Fl(\022)q Fr(\))12 b(=)1183 469 y(=)1267 430 y Fi(Y)1257 519 y Fj(i)p Fe(2)p Fj(L)1314 523 y Ff(1)1330 469 y Fr(\(1)d Ft(\000)g Fl(e)1436 445 y Fe(\000)1468 417 y Fi(P)1512 461 y Fh(j)1533 445 y Fj(\022)1549 449 y Fh(ij)1576 445 y Fj(S)1596 449 y Fh(j)1614 469 y Fr(\))1630 452 y Fj(S)1650 456 y Fh(i)1665 469 y Fl(e)1684 445 y Fe(\000)p Fk(\(1)p Fe(\000)p Fj(S)1786 449 y Fh(i)1800 445 y Fk(\))1818 417 y Fi(P)1862 461 y Fh(j)1883 445 y Fj(\022)1899 449 y Fh(ij)1926 445 y Fj(S)1946 449 y Fh(j)1257 588 y Ft(\002)1308 548 y Fi(Y)1296 637 y Fj(j)r Fe(2)p Fj(L)1357 641 y Ff(2)1380 588 y Fl(P)d Fr(\()p Fl(S)1454 594 y Fj(j)1471 588 y Ft(j)p Fl(\022)1502 594 y Fj(j)1520 588 y Fr(\))430 b(\(24\))1065 709 y(o)o(v)o(er)14 b(the)g(v)n(ariables)f(in)h Fl(L)1474 715 y Fk(2)1493 709 y Fr(.)j(W)m(e)d(note)g(that)g(in)f(case)i(of)e(fully)1065 755 y(connected)21 b(bipartite)f(net)o(w)o(orks)g(the)g(complexit)o(y)d (of)i(p)q(er-)1065 800 y(forming)d(this)i(calculation)f(increases)i (exp)q(onen)o(tially)e(with)1065 846 y(the)23 b(n)o(um)o(b)q(er)f(of)g (v)n(ariables)g(in)g Fl(L)1627 852 y Fk(1)1668 846 y Fr(that)h(are)g(set)g(to)g(one)1065 892 y(\(D'Am)o(brosio,)c(1994\);)k (imp)q(ortan)o(tly)m(,)18 b(and)j(unlik)o(e)e(in)h(the)1065 937 y(sigmoid)14 b(case,)j(the)g(complexit)o(y)d(do)q(es)j(not)g(v)n (ary)e(exp)q(onen-)1065 983 y(tially)10 b(with)h(the)h(n)o(um)o(b)q(er) f(of)g(marginalized)e(v)n(ariables.)17 b(Nev-)1065 1029 y(ertheless,)c(w)o(e)e(fo)q(cus)g(on)f(the)i(case)f(where)h(the)f (exact)h(metho)q(d)1065 1074 y(of)h(obtaining)g(the)h(marginal)d (probabilit)o(y)i(is)g(infeasible.)1065 1145 y(T)m(o)d(\014nd)h(an)f (upp)q(er)h(b)q(ound)g(in)f(the)h(noisy-OR)f(setting)h(w)o(e)g(use)1065 1191 y(the)k(follo)o(wing)c(v)n(ariational)h(transformation)g(\(for)i (a)g(deriv)n(a-)1065 1236 y(tion)f(and)h(discussion)g(see)i(app)q (endix)d(B\))1343 1319 y(1)c Ft(\000)h Fl(e)1434 1302 y Fe(\000)p Fj(x)1492 1319 y Fr(=)i(min)1541 1346 y Fj(\030)q Fe(\025)p Fk(0)1612 1319 y Fl(e)1631 1302 y Fj(\030)q(x)p Fe(\000)p Fj(F)t Fk(\()p Fj(\030)q Fk(\))1966 1319 y Fr(\(25\))1065 1420 y(where)j Fl(F)6 b Fr(\()p Fl(\030)r Fr(\))13 b(=)f Ft(\000)p Fl(\030)d Fr(log)e Fl(\030)k Fr(+)f(\()p Fl(\030)i Fr(+)e(1\))d(log)o(\()p Fl(\030)12 b Fr(+)e(1\).)19 b(By)14 b(insert-)1065 1466 y(ing)h(this)i (transformation)d(in)o(to)h(the)i(join)o(t)e(distribution)h(w)o(e)1065 1512 y(obtain:)1065 1587 y Fl(P)6 b Fr(\()p Fl(S)1139 1593 y Fk(1)1158 1587 y Fl(;)h(:)g(:)g(:)t(;)g(S)1275 1593 y Fj(n)1298 1587 y Ft(j)p Fl(\022)q Fr(\))12 b(=)1117 1674 y(=)1211 1634 y Fi(Y)1200 1723 y Fj(i)p Fe(2)p Fj(L)1257 1727 y Ff(1)1281 1674 y Fr(min)1301 1701 y Fj(\030)1316 1705 y Fh(i)1357 1615 y Fi(\032)1388 1674 y Fl(e)1407 1650 y Fj(S)1427 1654 y Fh(i)1441 1650 y Fk([)1450 1622 y Fi(P)1494 1665 y Fh(j)1515 1650 y Fj(\022)1531 1654 y Fh(ij)1557 1650 y Fj(S)1577 1654 y Fh(j)1593 1650 y Fe(\000)p Fj(F)t Fk(\()p Fj(\030)1672 1654 y Fh(i)1686 1650 y Fk(\)])1710 1615 y Fi(\033)1748 1674 y Fl(e)1767 1650 y Fe(\000)p Fk(\(1)p Fe(\000)p Fj(S)1869 1654 y Fh(i)1883 1650 y Fk(\))1901 1622 y Fi(P)1945 1665 y Fh(j)1966 1650 y Fj(\022)1982 1654 y Fh(ij)2009 1650 y Fj(S)2029 1654 y Fh(j)1200 1792 y Ft(\002)1252 1752 y Fi(Y)1239 1841 y Fj(j)r Fe(2)p Fj(L)1300 1845 y Ff(2)1323 1792 y Fl(P)6 b Fr(\()p Fl(S)1397 1798 y Fj(j)1415 1792 y Ft(j)p Fl(\022)1446 1798 y Fj(j)1463 1792 y Fr(\))494 b(\(26\))1117 1928 y(=)51 b(min)1227 1955 y Fj(\030)1277 1869 y Fi(\032)1308 1928 y Fl(e)1327 1902 y Fe(\000)1359 1874 y Fi(P)1402 1917 y Fh(i)p Fg(2)p Fh(L)1453 1923 y Ff(1)1477 1902 y Fj(S)1497 1906 y Fh(i)1510 1902 y Fj(F)t Fk(\()p Fj(\030)1563 1906 y Fh(i)1577 1902 y Fk(\))1592 1928 y Ft(\002)1217 2030 y Fi(Y)1205 2119 y Fj(j)r Fe(2)p Fj(L)1266 2123 y Ff(2)1289 2011 y Fi(\024)1311 2069 y Fl(e)1330 2015 y Fi(P)1374 2058 y Fh(i)p Fg(2)p Fh(L)1425 2064 y Ff(1)1443 2043 y Fk(\()p Fj(S)1476 2047 y Fh(i)1490 2043 y Fj(\030)1505 2047 y Fh(i)1518 2043 y Fk(+)p Fj(S)1563 2047 y Fh(i)1577 2043 y Fe(\000)p Fk(1\))p Fj(\022)1649 2047 y Fh(ij)1677 2011 y Fi(\025)1699 2019 y Fj(S)1719 2023 y Fh(j)1744 2069 y Fl(P)6 b Fr(\()p Fl(S)1818 2075 y Fj(j)1835 2069 y Ft(j)p Fl(\022)1866 2075 y Fj(j)1884 2069 y Fr(\))1900 1984 y Fi(9)1900 2021 y(=)1900 2096 y(;)1973 2069 y Fr(\(27\))1107 2174 y Fj(def)1117 2200 y Fr(=)51 b(min)1227 2227 y Fj(\030)1270 2200 y Ft(f)1311 2189 y Fr(~)1302 2200 y Fl(P)5 b Fr(\()p Fl(S)1375 2206 y Fk(1)1395 2200 y Fl(;)i(:)g(:)g(:)t(;)g(S)1512 2206 y Fj(n)1535 2200 y Ft(j)p Fl(\022)q(;)g(\030)r Fr(\))k Ft(g)319 b Fr(\(28\))1065 2299 y(where)13 b(w)o(e)f(ha)o(v)o(e)f (regroup)q(ed)i(terms)f(b)o(y)f(rewriting)h(the)g(pro)q(d-)1065 2345 y(uct)f(o)o(v)o(er)f Fl(i)i Ft(2)g Fl(L)1312 2351 y Fk(1)1341 2345 y Fr(as)e(a)g(sum)g(in)g(the)h(exp)q(onen)o(t)g(and)f (collecting)1065 2390 y(the)19 b(terms)e(dep)q(ending)i(on)e(the)i(v)n (ariables)e Ft(f)p Fl(S)1823 2396 y Fj(j)1841 2390 y Ft(g)1862 2396 y Fj(j)r Fe(2)p Fj(L)1923 2400 y Ff(2)1940 2390 y Fr(.)30 b(W)m(e)1065 2436 y(can)12 b(see)h(that)e(the)i (implicitl)o(y)c(de\014ned)k(\(and)e(unnormalized\))1074 2478 y(~)1065 2489 y Fl(P)5 b Fr(\()p Fl(S)1138 2495 y Fk(1)1158 2489 y Fl(;)i(:)g(:)g(:)t(;)g(S)1275 2495 y Fj(n)1298 2489 y Ft(j)p Fl(\022)q(;)g(\030)r Fr(\))j(factorizes)h(o)o (v)o(er)f Fl(S)1685 2495 y Fj(j)1703 2489 y Fr(.)16 b(As)11 b(in)f(the)g(sigmoid)1065 2534 y(case,)16 b(this)e(factorial)g(prop)q (ert)o(y)i(allo)o(ws)d(us)i(to)g(\014nd)g(a)f(closed)1065 2580 y(form)e(upp)q(er)j(b)q(ound)f(on)g(the)g(marginal:)1223 2655 y Fl(P)6 b Fr(\()p Ft(f)p Fl(S)1318 2661 y Fj(i)1332 2655 y Ft(g)1353 2661 y Fj(i)p Fe(2)p Fj(L)1410 2665 y Ff(1)1427 2655 y Ft(j)p Fl(\022)q Fr(\))12 b(=)1264 2726 y(=)1379 2686 y Fi(X)1338 2777 y Fe(f)p Fj(S)1375 2781 y Fh(j)1391 2777 y Fe(g)1408 2781 y Fh(j)q Fg(2)p Fh(L)1461 2787 y Ff(2)1486 2726 y Fl(P)6 b Fr(\()p Fl(S)1560 2732 y Fk(1)1579 2726 y Fl(;)h(:)g(:)g(:)e(;)i(S)1697 2732 y Fj(n)1719 2726 y Ft(j)p Fl(\022)q Fr(\))p eop %%Page: 6 6 6 5 bop 214 44 a Fr(=)329 4 y Fi(X)288 95 y Fe(f)p Fj(S)325 99 y Fh(j)341 95 y Fe(g)358 99 y Fh(j)q Fg(2)p Fh(L)411 105 y Ff(2)436 44 y Fr(min)463 71 y Fj(\030)522 33 y Fr(~)512 44 y Fl(P)6 b Fr(\()p Fl(S)586 50 y Fk(1)605 44 y Fl(;)h(:)g(:)g(:)e(;)i(S)723 50 y Fj(n)745 44 y Ft(j)p Fl(\022)q(;)g(\030)r Fr(\))84 b(\(29\))214 170 y Ft(\024)42 b Fr(min)315 197 y Fj(\030)405 130 y Fi(X)364 221 y Fe(f)p Fj(S)401 225 y Fh(j)417 221 y Fe(g)434 225 y Fh(j)q Fg(2)p Fh(L)487 231 y Ff(2)522 159 y Fr(~)512 170 y Fl(P)6 b Fr(\()p Fl(S)586 176 y Fk(1)605 170 y Fl(;)h(:)g(:)g(:)e(;)i(S)723 176 y Fj(n)745 170 y Ft(j)p Fl(\022)q(;)g(\030)r Fr(\))84 b(\(30\))15 290 y(where)17 b(the)g(last)f(summation)d(can)j(no)o(w)g(b)q(e)h(p)q(erformed)f(ex-)15 336 y(actly)e(to)f(yield:)15 403 y Fl(P)6 b Fr(\()p Ft(f)p Fl(S)110 409 y Fj(i)124 403 y Ft(g)145 409 y Fj(i)p Fe(2)p Fj(L)202 413 y Ff(1)220 403 y Ft(j)p Fl(\022)q Fr(\))11 b Ft(\024)98 490 y Fr(min)125 517 y Fj(\030)174 432 y Fi(\032)205 490 y Fl(e)224 464 y Fe(\000)256 436 y Fi(P)300 480 y Fh(i)p Fg(2)p Fh(L)351 486 y Ff(1)374 464 y Fj(S)394 468 y Fh(i)408 464 y Fj(F)t Fk(\()p Fj(\030)461 468 y Fh(i)475 464 y Fk(\))504 490 y Ft(\002)115 592 y Fi(Y)103 681 y Fj(j)r Fe(2)p Fj(L)164 685 y Ff(2)187 573 y Fi(\022)217 631 y Fj(P)t Fk(\()p Fj(S)275 635 y Fh(j)292 631 y Fk(=1)p Fe(j)p Fj(\022)360 635 y Fh(j)375 631 y Fk(\))p Fl(e)407 577 y Fi(P)451 621 y Fh(i)p Fg(2)p Fh(L)502 627 y Ff(1)520 605 y Fk(\()p Fj(S)553 609 y Fh(i)566 605 y Fj(\030)581 609 y Fh(i)595 605 y Fk(+)p Fj(S)640 609 y Fh(i)654 605 y Fe(\000)p Fk(1\))p Fj(\022)726 609 y Fh(ij)754 631 y Fr(+)p Fj(P)t Fk(\()p Fj(S)844 635 y Fh(j)860 631 y Fk(=0)p Fe(j)p Fj(\022)928 635 y Fh(j)943 631 y Fk(\))956 573 y Fi(\023)987 546 y(9)987 584 y(=)987 658 y(;)957 744 y Fr(\(31\))15 811 y(This)h(b)q(ound)g(\(i\))g(alw)o(a)o(ys)g(sta)o (ys)g(b)q(elo)o(w)g(\(or)g(equal)g(to\))g(one)h(as)15 856 y(it)f(is)h(less)h(than)e(or)h(equal)g(to)f(one)h(whenev)o(er)i (all)c Fl(\030)k Fr(are)e(set)h(to)15 902 y(zero,)h(and)f(\(ii\))f(is)h (exact)h(when)g(all)e Fl(S)609 908 y Fj(i)637 902 y Fr(in)h Fl(L)714 908 y Fk(1)747 902 y Fr(are)g(zero)h(or)f(in)15 948 y(the)g(limit)e(of)h(v)n(anishing)g(parameters)g Fl(\022)650 954 y Fj(ij)680 948 y Fr(.)15 1018 y(Similarly)6 b(to)k(the)g(sigmoid)d(case)k(w)o(e)f(ma)o(y)d(simplify)g(the)j(mini-) 15 1064 y(mization)g(pro)q(cess)k(b)o(y)d(considering)i(log)6 b Fl(P)g Fr(\()p Ft(f)p Fl(S)753 1070 y Fj(i)767 1064 y Ft(g)788 1070 y Fj(i)p Fe(2)p Fj(L)845 1074 y Ff(1)863 1064 y Ft(j)p Fl(\022)q Fr(\))12 b(and)15 1109 y(in)o(tro)q(ducing)f(a) g(Legendre)h(transformation)e(for)h(log)o(\()p Ft(\001)p Fr(\).)17 b(This)15 1155 y(yields:)15 1232 y(log)7 b Fl(P)f Fr(\()p Ft(f)p Fl(S)171 1238 y Fj(i)184 1232 y Ft(g)205 1238 y Fj(i)p Fe(2)p Fj(L)262 1242 y Ff(1)280 1232 y Ft(j)p Fl(\022)q Fr(\))12 b Ft(\024)390 1193 y Fi(X)384 1282 y Fj(i)p Fe(2)p Fj(L)441 1286 y Ff(1)464 1232 y Fl(S)489 1238 y Fj(i)503 1232 y Fl(F)6 b Fr(\()p Fl(\030)570 1238 y Fj(i)584 1232 y Fr(\))98 1367 y(+)146 1328 y Fi(X)137 1417 y Fj(j)r Fe(2)p Fj(L)198 1421 y Ff(2)221 1367 y Fl(\025)245 1373 y Fj(j)270 1309 y Fi(\022)300 1367 y Fj(P)t Fk(\()p Fj(S)358 1371 y Fh(j)375 1367 y Fk(=1)p Fe(j)p Fj(\022)443 1371 y Fh(j)458 1367 y Fk(\))p Fl(e)490 1313 y Fi(P)534 1356 y Fh(i)p Fg(2)p Fh(L)585 1362 y Ff(1)603 1341 y Fk(\()p Fj(S)636 1345 y Fh(i)649 1341 y Fj(\030)664 1345 y Fh(i)677 1341 y Fk(+)p Fj(S)722 1345 y Fh(i)736 1341 y Fe(\000)p Fk(1\))p Fj(\022)808 1345 y Fh(ij)836 1367 y Fr(+)p Fj(P)t Fk(\()p Fj(S)926 1371 y Fh(j)943 1367 y Fk(=0)p Fe(j)p Fj(\022)1011 1371 y Fh(j)1026 1367 y Fk(\))1039 1309 y Fi(\023)98 1487 y Fr(+)146 1447 y Fi(X)137 1536 y Fj(j)r Fe(2)p Fj(L)198 1540 y Ff(2)214 1487 y Fr([)p Ft(\000)h Fr(log)f Fl(\025)349 1493 y Fj(j)376 1487 y Ft(\000)k Fr(1])552 b(\(32\))15 1600 y(where)15 b(w)o(e)f(ha)o(v)o(e)f(dropp)q(ed)h(the)h(explicit)e (reference)j(to)d(mini-)15 1646 y(mization.)i(The)c(gain)e(again)g(is)i (the)g(con)o(v)o(exit)o(y)f(of)g(the)h(b)q(ound)15 1692 y(with)j(resp)q(ect)i(to)d(an)o(y)h(of)f(the)i Fl(\030)h Fr(or)d Fl(\025)h Fr(v)n(ariables.)15 1793 y Fs(3.2)48 b(GENERIC)17 b(LO)o(WER)e(BOUND)h(F)o(OR)124 1839 y(NOISY-OR)f(NETW)o (ORK)15 1924 y Fr(The)g(earlier)g(w)o(ork)g(on)g(lo)o(w)o(er)f(b)q (ounds)i(b)o(y)e(Saul,)g(et)i(al.)k(w)o(as)15 1969 y(restricted)g(to)d (sigmoid)e(net)o(w)o(orks;)k(w)o(e)f(extend)h(that)e(w)o(ork)15 2015 y(here)h(b)o(y)e(deriving)g(a)g(lo)o(w)o(er)g(b)q(ound)h(for)f (generic)i(noisy-OR)15 2061 y(net)o(w)o(orks.)29 b(W)m(e)17 b(refer)i(to)e(section)h(2.2)e(for)h(the)i(framew)o(ork)15 2106 y(and)d(commence)f(from)f(the)j(noisy-OR)e(coun)o(terpart)j(of)d (eq.)15 2152 y(\(18\).)j(Th)o(us,)103 2219 y(log)6 b Fl(P)g Fr(\()p Ft(f)p Fl(S)258 2225 y Fj(i)272 2219 y Ft(g)293 2225 y Fj(i)p Fe(2)p Fj(L)352 2219 y Ft(j)p Fl(\022)q Fr(\))144 2290 y Ft(\025)218 2250 y Fi(X)242 2339 y Fj(i)285 2290 y Fl(E)316 2296 y Fj(Q)344 2290 y Ft(f)11 b Fr(log)c Fl(P)f Fr(\()p Fl(S)511 2296 y Fj(i)525 2290 y Ft(j)p Fr(pa)o([)p Fl(i)p Fr(])p Fl(;)h(\022)q Fr(\))k Ft(g)e Fr(+)h Fl(H)791 2296 y Fj(Q)916 2290 y Fr(\(33\))144 2412 y(=)218 2372 y Fi(X)242 2460 y Fj(i)285 2412 y Fl(E)316 2418 y Fj(Q)344 2412 y Ft(f)h Fl(S)401 2418 y Fj(i)422 2412 y Fr(log\(1)e Ft(\000)h Fl(e)583 2387 y Fe(\000)615 2359 y Fi(P)658 2403 y Fh(j)680 2387 y Fj(\022)696 2391 y Fh(ij)722 2387 y Fj(S)742 2391 y Fh(j)760 2412 y Fr(\))i Ft(g)218 2525 y Fr(+)257 2485 y Fi(X)282 2574 y Fj(i)324 2525 y Fl(E)355 2531 y Fj(Q)383 2525 y Ft(f)f(\000)p Fr(\(1)f Ft(\000)f Fl(S)560 2531 y Fj(i)575 2525 y Fr(\))598 2485 y Fi(X)620 2574 y Fj(j)665 2525 y Fl(\022)684 2531 y Fj(ij)713 2525 y Fl(S)738 2531 y Fj(j)768 2525 y Ft(g)g Fr(+)g Fl(H)874 2531 y Fj(Q)916 2525 y Fr(\(34\))15 2638 y(whic)o(h)21 b(is)h(obtained)f(b)o(y)g (writing)g(explicitly)f(the)i(form)e(of)15 2684 y(the)h(conditional)d (probabilities)i(for)f(noisy-OR)h(net)o(w)o(orks.)15 2729 y(While)15 b(the)h(second)g(exp)q(ectation)h(in)e(eq.)23 b(\(34\))15 b(simply)f(cor-)15 2775 y(resp)q(onds)d(to)f(replacing)f (the)i(binary)e(v)n(ariables)g Fl(S)790 2781 y Fj(i)814 2775 y Fr(with)h(their)1065 42 y(means)k Fl(\026)1218 48 y Fj(i)1246 42 y Fr(\(since)h Fl(Q)f Fr(is)g(factorized\),)h(the)g (\014rst)g(exp)q(ectation)1065 87 y(lac)o(ks)i(a)h(closed)g(form)e (expression.)30 b(T)m(o)17 b(compute)g(this)h(ex-)1065 133 y(p)q(ectation)e(e\016cien)o(tly)g(w)o(e)g(mak)o(e)e(use)j(of)e (the)i(follo)o(wing)c(ex-)1065 178 y(pansion:)1363 267 y(1)c Ft(\000)h Fl(e)1454 249 y Fe(\000)p Fj(x)1512 267 y Fr(=)1570 215 y Fe(1)1560 227 y Fi(Y)1556 316 y Fj(k)q Fk(=0)1623 267 y Fl(g)q Fr(\(2)1681 249 y Fj(k)1702 267 y Fl(x)p Fr(\))224 b(\(35\))1065 380 y(where)18 b Fl(g)q Fr(\()p Ft(\001)p Fr(\))g(is)f(the)h(sigmoid)d(function)h(\(see)j(app)q (endix)e(C\).)1065 425 y(This)e(expansion)g(con)o(v)o(erges)h(exp)q (onen)o(tially)f(fast)g(and)g(th)o(us)1065 471 y(only)h(a)g(few)h (terms)f(need)i(to)e(b)q(e)h(included)g(in)f(the)h(pro)q(duct)1065 517 y(for)e(go)q(o)q(d)g(accuracy)m(.)23 b(By)16 b(carrying)f(out)h (this)f(expansion)g(in)1065 562 y(the)h(b)q(ound)g(ab)q(o)o(v)o(e)f (and)g(explicitly)g(using)g(the)h(form)d(of)i(the)1065 608 y(sigmoid)c(function)j(w)o(e)g(get)1133 688 y(log)6 b Fl(P)g Fr(\()p Ft(f)p Fl(S)1288 694 y Fj(i)1302 688 y Ft(g)1323 694 y Fj(i)p Fe(2)p Fj(L)1382 688 y Ft(j)p Fl(\022)q Fr(\))1174 767 y Ft(\025)1248 727 y Fi(X)1272 816 y Fj(i)1315 727 y Fi(X)1336 817 y Fj(k)1382 767 y Fl(E)1413 773 y Fj(Q)1441 767 y Ft(f)11 b(\000)p Fl(S)1530 773 y Fj(i)1552 767 y Fr(log)o(\(1)e(+)h Fl(e)1712 743 y Fe(\000)p Fk(2)1755 730 y Fh(k)1778 715 y Fi(P)1822 758 y Fh(j)1843 743 y Fj(\022)1859 747 y Fh(ij)1886 743 y Fj(S)1906 747 y Fh(j)1924 767 y Fr(\))h Ft(g)1248 881 y(\000)1287 842 y Fi(X)1311 930 y Fj(i)1347 881 y Fr(\(1)e Ft(\000)h Fl(\026)1460 887 y Fj(i)1474 881 y Fr(\))1497 842 y Fi(X)1519 930 y Fj(j)1564 881 y Fl(\022)1583 887 y Fj(ij)1612 881 y Fl(\026)1637 887 y Fj(j)1664 881 y Fr(+)g Fl(H)1741 887 y Fj(Q)1966 881 y Fr(\(36\))1065 1007 y(No)o(w,)j(as)h(the)h(parameters)e Fl(\022)1527 1013 y Fj(ij)1571 1007 y Fr(are)h(non-negativ)o(e,)1370 1109 y Fl(e)1389 1085 y Fe(\000)p Fk(2)1432 1072 y Fh(k)1456 1057 y Fi(P)1500 1100 y Fh(j)1521 1085 y Fj(\022)1537 1089 y Fh(ij)1563 1085 y Fj(S)1583 1089 y Fh(j)1613 1109 y Ft(2)d Fr([0)p Fl(;)c Fr(1])1065 1188 y(and)19 b(w)o(e)g(ma)o(y)e (use)j(the)f(smo)q(oth)f(con)o(v)o(exit)o(y)g(prop)q(erties)j(of)1065 1234 y Ft(\000)7 b Fr(log\(1)j(+)h Fl(x)p Fr(\))k(\(for)g Fl(x)f Ft(2)g Fr([0)p Fl(;)7 b Fr(1]\))13 b(to)j(bring)f(the)h(exp)q (ectations)1065 1280 y(in)d(eq.)19 b(\(36\))13 b(inside)h(the)h(log.)i (This)d(results)h(in)1117 1359 y(log)6 b Fl(P)g Fr(\()p Ft(f)p Fl(S)1272 1365 y Fj(i)1286 1359 y Ft(g)1307 1365 y Fj(i)p Fe(2)p Fj(L)1366 1359 y Ft(j)p Fl(\022)q Fr(\))1158 1471 y Ft(\025)1232 1432 y Fi(X)1247 1521 y Fj(ik)1299 1471 y Ft(\000)p Fl(\026)1356 1477 y Fj(i)1377 1471 y Fr(log)1438 1388 y Fi(2)1438 1462 y(4)1465 1471 y Fr(1)j(+)1537 1432 y Fi(Y)1555 1520 y Fj(j)1590 1471 y Fr(\()p Fl(\026)1631 1477 y Fj(j)1648 1471 y Fl(e)1667 1454 y Fe(\000)p Fk(2)1710 1442 y Fh(k)1728 1454 y Fj(\022)1744 1458 y Fh(ij)1782 1471 y Fr(+)h(1)f Ft(\000)g Fl(\026)1920 1477 y Fj(j)1938 1471 y Fr(\))1954 1388 y Fi(3)1954 1462 y(5)1232 1596 y Ft(\000)1271 1556 y Fi(X)1295 1645 y Fj(i)1331 1596 y Fr(\(1)g Ft(\000)h Fl(\026)1444 1602 y Fj(i)1458 1596 y Fr(\))1481 1556 y Fi(X)1503 1645 y Fj(j)1548 1596 y Fl(\022)1567 1602 y Fj(ij)1596 1596 y Fl(\026)1621 1602 y Fj(j)1648 1596 y Fr(+)g Fl(H)1725 1602 y Fj(Q)1966 1596 y Fr(\(37\))1065 1721 y(A)15 b(more)f(sophisticated)h(and)g (accurate)h(w)o(a)o(y)e(of)h(computing)1065 1767 y(the)10 b(exp)q(ectations)h(in)e(eq.)17 b(\(36\))9 b(is)g(discussed)i(in)e(app) q(endix)h(D.)1065 1875 y Fs(3.3)48 b(NUMERICAL)17 b(EXPERIMENTS)g(F)o (OR)1174 1921 y(NOISY-OR)e(NETW)o(ORK)1065 2008 y Fr(The)20 b(metho)q(d)f(of)h(testing)g(used)h(here)g(w)o(as,)g(for)f(the)g(most) 1065 2053 y(part,)13 b(iden)o(tical)f(to)h(the)g(one)h(presen)o(ted)h (earlier)e(for)f(sigmoid)1065 2099 y(net)o(w)o(orks)18 b(\(section)g(2.3\).)26 b(The)18 b(only)e(di\013erence)j(w)o(as)e(that) 1065 2145 y(the)12 b(prior)g(distribution)f(o)o(v)o(er)h(the)h (parameters)f(de\014ning)f(the)1065 2190 y(conditional)j(probabilities) g(w)o(as)i(c)o(hosen)g(to)f(b)q(e)h(a)f(Diric)o(hlet)1065 2236 y(instead)f(of)f(a)h(Gaussian:)1381 2316 y Fl(q)1400 2322 y Fj(ij)1440 2316 y Ft(\030)e Fl(\036)p Fr(\(1)d Ft(\000)g Fl(q)1615 2322 y Fj(ij)1644 2316 y Fr(\))1660 2298 y Fj(\036)p Fe(\000)p Fk(1)1966 2316 y Fr(\(38\))1065 2400 y(\(recall)17 b(that)g Fl(P)6 b Fr(\()p Fl(S)1362 2406 y Fj(i)1392 2400 y Fr(=)17 b(0)p Ft(j)p Fr(pa)o([)p Fl(i)p Fr(])p Fl(;)7 b(\022)q Fr(\))16 b(=)1674 2369 y Fi(Q)1714 2413 y Fj(j)r Fe(2)p Fk(pa)o([)p Fj(i)p Fk(])1819 2400 y Fr(\(1)11 b Ft(\000)g Fl(q)1929 2406 y Fj(ij)1958 2400 y Fr(\))1974 2385 y Fj(S)1994 2389 y Fh(j)2012 2400 y Fr(\).)1065 2455 y(F)m(or)h(large)h Fl(\036)p Fr(,)f Fl(q)h Fr(sta)o(ys)g(small)d(\(or)j(1)7 b Ft(\000)g Fl(q)12 b Ft(\031)g Fr(1\))g(and)h(the)g(la)o(y)o(ers)1065 2501 y(of)19 b(the)h(bipartite)f(net)o(w)o(ork)h(are)f(only)g(w)o(eakly)g (connected;)1065 2547 y(smaller)13 b(v)n(alues)i(of)f Fl(\036)p Fr(,)h(on)f(the)i(other)g(hand,)e(mak)o(e)g(the)h(la)o(y-) 1065 2592 y(ers)j(strongly)f(dep)q(enden)o(t.)29 b(W)m(e)16 b(th)o(us)h(used)h Fl(\036)f Fr(to)g(v)n(ary)f(\(on)1065 2638 y(a)o(v)o(erage\))f(the)h(in)o(terdep)q(endence)i(b)q(et)o(w)o (een)e(the)g(t)o(w)o(o)e(la)o(y)o(ers.)1065 2684 y(T)m(o)f(facilitate)g (comparisons)g(with)h(the)g(b)q(ounds)h(deriv)o(ed)f(for)1065 2729 y(sigmoid)9 b(net)o(w)o(orks)j(w)o(e)f(used)i Fl(\033)1562 2735 y Fj(std)1620 2729 y Fr(\(see)g(eq.)18 b(\(20\)\))11 b(as)g(a)g(mea-)1065 2775 y(sure)k(of)e(dep)q(endence)k(b)q(et)o(w)o (een)e(the)g(la)o(y)o(ers.)p eop %%Page: 7 7 7 6 bop 15 42 a Fr(Figure)25 b(4)g(illustrates)g(the)g(accuracy)h(of)f (the)g(computed)15 87 y(b)q(ounds)15 b(as)g(a)f(function)g(of)g Fl(\033)482 93 y Fj(std)529 72 y Fk(9)548 87 y Fr(.)19 b(The)c(samples)f(with)g(zero)15 133 y(relativ)o(e)c(error)h(are)f (from)e(the)j(upp)q(er/lo)o(w)o(er)g(b)q(ounds)f(in)g(cases)15 178 y(where)i(all)e(the)i(v)n(ariables)f(in)g(the)h(desired)g(marginal) c(are)k(zero)15 224 y(since)f(the)g(b)q(ounds)g(b)q(ecome)f(exact)h (whenev)o(er)h(this)e(happ)q(ens.)15 270 y(The)i(lo)o(w)o(er)g(b)q (ound)g(is)g(sligh)o(tly)f(w)o(orse)h(than)g(the)h(one)f(for)g(sig-)15 315 y(moid)j(net)o(w)o(orks)i(most)f(lik)o(ely)f(due)j(to)f(the)g (symmetry)e(and)15 361 y(smo)q(other)e(nature)i(of)e(the)h(sigmoid)d (function.)18 b(As)c(with)f(the)15 407 y(sigmoid)e(net)o(w)o(orks)i (the)h(upp)q(er)g(b)q(ound)f(b)q(ecomes)g(less)g(accu-)15 452 y(rate)h(more)f(quic)o(kly)m(.)15 523 y(W)m(e)j(no)o(w)f(turn)i(to) f(the)g(e\013ects)i(of)e(increasing)g(the)h(net)o(w)o(ork)15 569 y(size.)i(Analogously)11 b(to)j(the)f(sigmoid)e(net)o(w)o(orks)j (the)g(ev)n(alua-)15 614 y(tion)f(times)g(for)g(the)h(b)q(ounds)h(v)n (ary)e(appro)o(ximately)e(linearly)15 660 y(with)i(the)h(n)o(um)o(b)q (er)f(of)g(parameters)g(in)g(these)i(t)o(w)o(o-lev)o(el)e(net-)15 706 y(w)o(orks,)18 b(alb)q(eit)e(with)h(sligh)o(tly)f(larger)h(co)q (e\016cien)o(ts)h(\(for)f(the)15 751 y(lo)o(w)o(er)12 b(b)q(ound\).)18 b(As)13 b(for)g(the)g(accuracy)h(of)e(the)h(b)q (ounds,)g(Fig-)15 797 y(ure)j(5)g(sho)o(ws)g(the)g(relativ)o(e)g (errors)572 782 y Fk(10)624 797 y Fr(b)q(et)o(w)o(een)h(the)f(b)q (ounds)15 843 y(across)h(di\013eren)o(t)f(net)o(w)o(ork)g(sizes.)25 b(The)17 b(errors)g(are)f(plotted)15 888 y(against)159 858 y Ft(p)p 194 858 25 2 v 30 x Fl(n=\036)e Fr(for)h Fl(n)g Fr(b)o(y)g Fl(n)g Fr(t)o(w)o(o-lev)o(el)f(net)o(w)o(orks,)h (where)h Fl(\036)15 934 y Fr(de\014nes)g(the)f(Diric)o(hlet)f(prior)g (distribution)g(for)g(the)h(param-)15 980 y(eters.)30 b(In)17 b(the)g(c)o(hosen)i(scale)e(the)h(net)o(w)o(ork)f(size)h(has)g (little)15 1025 y(e\013ect)e(on)d(the)i(errors)357 1010 y Fk(11)393 1025 y Fr(.)67 1082 y 13754155 10419816 2894397 12959006 39337492 40521564 startTexFig 67 1082 a %%BeginDocument: ../uai96/figures/nor-res.eps /MathWorks 150 dict begin /bdef {bind def} bind def /ldef {load def} bind def /xdef {exch def} bdef /xstore {exch store} bdef /c /clip ldef /cc /concat ldef /cp /closepath ldef /gr /grestore ldef /gs /gsave ldef /mt /moveto ldef /np /newpath ldef /cm /currentmatrix ldef /sm /setmatrix ldef /rc {rectclip} bdef /rf {rectfill} bdef /rm /rmoveto ldef /rl /rlineto ldef /s /show ldef /sc {setcmykcolor} bdef /sr /setrgbcolor ldef /w /setlinewidth ldef /j /setlinejoin ldef /cap /setlinecap ldef /pgsv () def /bpage {/pgsv save def} bdef /epage {pgsv restore} bdef /bplot /gsave ldef /eplot {stroke grestore} bdef /portraitMode 0 def /landscapeMode 1 def /dpi2point 0 def /FontSize 0 def /FMS { /FontSize xstore %save size off stack findfont [FontSize 0 0 FontSize neg 0 0] makefont setfont }bdef /reencode { exch dup where {pop load} {pop StandardEncoding} ifelse exch dup 3 1 roll findfont dup length dict begin { 1 index /FID ne {def}{pop pop} ifelse } forall /Encoding exch def currentdict end definefont pop } bdef /isroman { findfont /CharStrings get /Agrave known } bdef /FMSR { 3 1 roll 1 index dup isroman {reencode} {pop pop} ifelse exch FMS } bdef /csm { 1 dpi2point div -1 dpi2point div scale neg translate landscapeMode eq {90 rotate} if } bdef /SO { [] 0 setdash } bdef /DO { [.5 dpi2point mul 4 dpi2point mul] 0 setdash } bdef /DA { [6 dpi2point mul] 0 setdash } bdef /DD { [.5 dpi2point mul 4 dpi2point mul 6 dpi2point mul 4 dpi2point mul] 0 setdash } bdef /L { lineto stroke } bdef /MP { 3 1 roll moveto 1 sub {rlineto} repeat } bdef /AP { {rlineto} repeat } bdef /PP { closepath fill } bdef /DP { closepath stroke } bdef /MR { 4 -2 roll moveto dup 0 exch rlineto exch 0 rlineto neg 0 exch rlineto closepath } bdef /FR { MR stroke } bdef /PR { MR fill } bdef /L1i { { currentfile picstr readhexstring pop } image } bdef /tMatrix matrix def /MakeOval { newpath tMatrix currentmatrix pop translate scale 0 0 1 0 360 arc tMatrix setmatrix } bdef /FO { MakeOval stroke } bdef /PO { MakeOval fill } bdef /PD { 2 copy moveto lineto stroke } bdef currentdict end def MathWorks begin 0 cap end MathWorks begin bpage bplot /dpi2point 12 def portraitMode 0216 7344 csm 312 -48 6653 5024 MR c np 76 dict begin %Colortable dictionary /c0 { 0 0 0 sr} bdef /c1 { 1 1 1 sr} bdef /c2 { 1 0 0 sr} bdef /c3 { 0 1 0 sr} bdef /c4 { 0 0 1 sr} bdef /c5 { 1 1 0 sr} bdef /c6 { 1 0 1 sr} bdef /c7 { 0 1 1 sr} bdef /Helvetica /ISOLatin1Encoding 144 FMSR 1 j c1 0 0 6917 5187 PR 6 w DO 4 w SO 6 w c0 899 4615 mt 6258 4615 L 899 389 mt 6258 389 L 899 4615 mt 899 389 L 6258 4615 mt 6258 389 L 899 4615 mt 899 4615 L 6258 4615 mt 6258 4615 L 899 4615 mt 6258 4615 L 899 4615 mt 899 389 L 899 4615 mt 899 4615 L 1598 4615 mt 1598 4561 L 1598 389 mt 1598 443 L 1458 4784 mt (0.05) s 2763 4615 mt 2763 4561 L 2763 389 mt 2763 443 L 2663 4784 mt (0.1) s 3928 4615 mt 3928 4561 L 3928 389 mt 3928 443 L 3788 4784 mt (0.15) s 5093 4615 mt 5093 4561 L 5093 389 mt 5093 443 L 4993 4784 mt (0.2) s 6258 4615 mt 6258 4561 L 6258 389 mt 6258 443 L 6118 4784 mt (0.25) s 899 4615 mt 953 4615 L 6258 4615 mt 6204 4615 L 580 4668 mt (-0.1) s 899 4231 mt 953 4231 L 6258 4231 mt 6204 4231 L 500 4284 mt (-0.08) s 899 3847 mt 953 3847 L 6258 3847 mt 6204 3847 L 500 3900 mt (-0.06) s 899 3462 mt 953 3462 L 6258 3462 mt 6204 3462 L 500 3515 mt (-0.04) s 899 3078 mt 953 3078 L 6258 3078 mt 6204 3078 L 500 3131 mt (-0.02) s 899 2694 mt 953 2694 L 6258 2694 mt 6204 2694 L 784 2747 mt (0) s 899 2310 mt 953 2310 L 6258 2310 mt 6204 2310 L 584 2363 mt (0.02) s 899 1926 mt 953 1926 L 6258 1926 mt 6204 1926 L 584 1979 mt (0.04) s 899 1542 mt 953 1542 L 6258 1542 mt 6204 1542 L 584 1595 mt (0.06) s 899 1157 mt 953 1157 L 6258 1157 mt 6204 1157 L 584 1210 mt (0.08) s 899 773 mt 953 773 L 6258 773 mt 6204 773 L 664 826 mt (0.1) s 899 4615 mt 6258 4615 L 899 389 mt 6258 389 L 899 4615 mt 899 389 L 6258 4615 mt 6258 389 L 899 389 mt 899 389 L 6258 389 mt 6258 389 L gs 899 389 5360 4227 MR c np gr 8 w 1 cap 906 2694 PD 988 2694 PD 927 2694 PD 960 2694 PD 912 2694 PD 1122 2694 PD 905 2694 PD 1060 2694 PD 907 2694 PD 949 2694 PD 899 2422 PD 984 2694 PD 949 2424 PD 1145 2215 PD 914 2694 PD 935 2694 PD 1047 2694 PD 939 2694 PD 1020 2281 PD 990 2694 PD 941 2694 PD 1017 2694 PD 930 2694 PD 1134 2694 PD 957 2201 PD 949 2694 PD 980 2694 PD 1003 2694 PD 1044 2694 PD 982 2694 PD 991 2694 PD 906 2404 PD 904 2379 PD 929 2422 PD 1285 2269 PD 939 2694 PD 903 2694 PD 989 2694 PD 1140 2694 PD 954 2367 PD 943 2694 PD 1138 2458 PD 1087 2694 PD 1078 2694 PD 976 2360 PD 1086 2694 PD 1176 2430 PD 899 2694 PD 1028 2694 PD 926 2694 PD 1122 2694 PD 1065 2694 PD 1119 2694 PD 1009 2694 PD 1123 2305 PD 1062 2340 PD 911 2416 PD 1184 2694 PD 1217 2694 PD 1164 2215 PD 1095 2694 PD 1112 2694 PD 1148 2694 PD 948 2694 PD 1052 2694 PD 1212 2084 PD 1009 2694 PD 1110 2694 PD 971 2694 PD 930 2694 PD 1041 2359 PD 974 2694 PD 1316 2694 PD 1034 2694 PD 1038 2694 PD 1018 2694 PD 932 2694 PD 1235 2694 PD 903 2694 PD 1243 2694 PD 1339 2694 PD 1129 2694 PD 1121 2694 PD 1196 2694 PD 1409 2694 PD 987 2694 PD 1202 1991 PD 1054 2694 PD 1290 2694 PD 1294 2694 PD 1064 2359 PD 1060 2338 PD 1077 2335 PD 991 2333 PD 1363 2060 PD 1257 2694 PD 957 2314 PD 1420 2694 PD 1023 2311 PD 1257 2242 PD 987 2694 PD 1097 2694 PD 1137 2694 PD 1206 2298 PD 1200 2694 PD 1221 2694 PD 1575 2694 PD 1143 2694 PD 1107 2408 PD 1230 2445 PD 1200 2292 PD 1081 2404 PD 999 2316 PD 1220 2694 PD 1229 2400 PD 1193 2694 PD 1083 2694 PD 1389 2108 PD 1082 2321 PD 1328 2694 PD 1553 2694 PD 1826 2227 PD 1120 2694 PD 1209 2694 PD 1260 2694 PD 1486 2694 PD 1170 2694 PD 1112 2302 PD 1523 2694 PD 1356 2694 PD 1107 2694 PD 1256 2108 PD 1424 2262 PD 1379 2694 PD 1422 2389 PD 1337 2188 PD 1440 2694 PD 1027 2257 PD 1310 2694 PD 1296 2694 PD 1312 2298 PD 1191 2694 PD 1198 2694 PD 1229 2694 PD 1228 2694 PD 1587 2026 PD 1356 2694 PD 1215 2694 PD 1438 2241 PD 1178 2694 PD 1331 2264 PD 1348 2210 PD 1529 2107 PD 1587 2694 PD 1302 2319 PD 1287 2694 PD 1173 2271 PD 1295 2318 PD 1448 2694 PD 1233 2694 PD 1386 2228 PD 1377 2694 PD 1210 2241 PD 1149 2694 PD 1511 2694 PD 1788 2694 PD 1489 2694 PD 1350 2269 PD 1421 2271 PD 1107 2694 PD 1272 2694 PD 1630 2249 PD 1268 2428 PD 1354 2694 PD 1389 2085 PD 1347 2694 PD 1530 2694 PD 1835 2246 PD 1507 2303 PD 1279 2694 PD 1259 2694 PD 1386 2278 PD 1657 2694 PD 1435 2694 PD 1399 2694 PD 1501 2249 PD 1353 2204 PD 1381 2354 PD 1373 2311 PD 1725 2694 PD 1810 1771 PD 1556 2230 PD 1452 2694 PD 1669 2106 PD 1317 2289 PD 1252 2201 PD 1244 2296 PD 1712 2181 PD 1595 2694 PD 1449 2192 PD 1484 2193 PD 1764 2694 PD 1574 2694 PD 1811 2694 PD 1488 2186 PD 1555 2047 PD 1527 2113 PD 1367 2136 PD 1297 2694 PD 1579 2694 PD 1378 2168 PD 1506 2694 PD 1857 2163 PD 1358 2694 PD 1648 2694 PD 1738 2096 PD 1567 2395 PD 1659 2196 PD 1686 2694 PD 1678 2694 PD 1442 2694 PD 1695 2694 PD 1658 2357 PD 1672 2694 PD 1688 2169 PD 1601 2694 PD 1364 2191 PD 1477 2694 PD 1884 2349 PD 2252 2028 PD 1738 2694 PD 1369 2694 PD 1617 2183 PD 1593 2694 PD 1870 2694 PD 1740 2694 PD 1588 2694 PD 1734 2067 PD 1429 2694 PD 1601 2694 PD 1934 2102 PD 2080 2694 PD 1622 1982 PD 1588 2694 PD 1881 2694 PD 1957 2694 PD 1732 1767 PD 1876 2122 PD 2202 2128 PD 1944 2178 PD 1553 2199 PD 2098 2135 PD 2385 2279 PD 2016 2694 PD 2014 2247 PD 1783 2179 PD 1723 2694 PD 1733 2213 PD 1807 2694 PD 1756 2232 PD 1535 2313 PD 1789 2694 PD 1803 2694 PD 1719 2694 PD 1743 2694 PD 2102 2694 PD 1577 2694 PD 1486 2694 PD 1845 2694 PD 1921 2694 PD 1521 2110 PD 1892 2130 PD 1717 1946 PD 1765 2694 PD 2313 2694 PD 2564 2206 PD 1890 2093 PD 2166 2694 PD 1848 2019 PD 2223 2223 PD 2357 2694 PD 2498 1353 PD 1999 1982 PD 1979 2694 PD 2776 2053 PD 1919 2694 PD 2251 2249 PD 1621 2694 PD 1925 2694 PD 2002 2042 PD 1578 2694 PD 2050 2035 PD 2115 2100 PD 2392 2694 PD 2202 1914 PD 1851 2694 PD 1787 2694 PD 3228 2694 PD 1641 2694 PD 1745 2694 PD 1571 2189 PD 2198 1923 PD 2070 2694 PD 1684 2127 PD 2090 2228 PD 1656 2191 PD 1593 2050 PD 1897 2694 PD 1766 2694 PD 1844 2694 PD 2386 2694 PD 1887 2068 PD 1783 1858 PD 1392 2290 PD 1818 2694 PD 1777 2694 PD 2250 1924 PD 1565 2694 PD 1786 2106 PD 2299 1742 PD 1905 2314 PD 2347 2063 PD 2496 2694 PD 2290 2049 PD 1966 2151 PD 2224 2190 PD 1972 2146 PD 1680 2694 PD 1823 2694 PD 2519 2694 PD 1828 2694 PD 2029 2025 PD 2304 2238 PD 2054 2030 PD 2155 2102 PD 1829 2164 PD 1652 2694 PD 2351 2694 PD 1727 2694 PD 1933 2257 PD 2371 2694 PD 2549 2052 PD 2227 2694 PD 1978 2694 PD 3155 2026 PD 2117 2694 PD 2379 2694 PD 2075 2694 PD 1948 2196 PD 1742 1847 PD 2050 2694 PD 1857 2103 PD 2310 1653 PD 2757 1997 PD 2239 1763 PD 1928 1820 PD 2211 2694 PD 2060 2694 PD 1972 2694 PD 1945 2694 PD 1794 2694 PD 2314 2368 PD 2254 2694 PD 1989 2694 PD 2927 1701 PD 2191 1928 PD 2810 2070 PD 2187 2694 PD 3010 2075 PD 2936 2250 PD 2377 2694 PD 2333 1763 PD 2100 2694 PD 2045 2163 PD 2123 2694 PD 2279 2694 PD 2000 2236 PD 2134 2694 PD 2881 2209 PD 2225 2694 PD 1946 2058 PD 2286 1993 PD 2463 2037 PD 2744 1944 PD 2052 1989 PD 2230 1714 PD 2522 2088 PD 1900 2239 PD 2066 2694 PD 2043 2028 PD 2411 2071 PD 1939 2137 PD 3273 2694 PD 2088 2086 PD 2479 2694 PD 1647 2263 PD 2477 2136 PD 2766 2694 PD 2284 2207 PD 2256 2213 PD 2334 2175 PD 1899 1939 PD 2929 2694 PD 2339 2694 PD 2085 2107 PD 2388 1822 PD 2090 2190 PD 2055 2694 PD 2245 2694 PD 2168 2055 PD 2211 2110 PD 2408 2213 PD 3165 2002 PD 2376 2080 PD 2057 2694 PD 2199 1982 PD 2664 2004 PD 2476 2106 PD 2043 2221 PD 2796 2021 PD 2067 1976 PD 2559 1883 PD 2900 2008 PD 2276 2694 PD 2046 2250 PD 2358 2176 PD 2951 2035 PD 2768 2007 PD 2089 2694 PD 2483 1962 PD 2487 2195 PD 1917 2029 PD 2479 1980 PD 3094 2694 PD 2896 2261 PD 2388 1750 PD 1958 2694 PD 2271 2282 PD 2052 1881 PD 2258 2694 PD 2969 1525 PD 2034 1965 PD 2708 2011 PD 2202 2694 PD 2105 1872 PD 1844 2043 PD 2342 2694 PD 1982 1985 PD 2454 1829 PD 2962 2207 PD 2085 2000 PD 2770 1960 PD 2139 2164 PD 2620 1876 PD 2379 2694 PD 2150 2017 PD 2704 2058 PD 2955 1985 PD 3131 2694 PD 2283 2140 PD 2312 1910 PD 2926 2694 PD 2017 2694 PD 2216 2195 PD 2826 1618 PD 2293 2143 PD 3056 2100 PD 2091 2130 PD 2590 2098 PD 2704 2170 PD 2862 2103 PD 2420 2694 PD 2310 2231 PD 2878 2694 PD 2710 2694 PD 2975 1790 PD 2221 1935 PD 2309 1812 PD 2582 2694 PD 3040 2022 PD 2553 2323 PD 2899 1973 PD 2046 2286 PD 3209 2065 PD 2558 2236 PD 2556 2198 PD 3350 2694 PD 3309 1802 PD 2962 2149 PD 3214 1966 PD 2297 2694 PD 2983 2694 PD 2463 2025 PD 2477 2032 PD 3562 2089 PD 2878 1724 PD 2937 1991 PD 2837 2089 PD 3329 1527 PD 2791 2163 PD 2793 2037 PD 2719 2694 PD 2575 1854 PD 2981 1850 PD 2385 2694 PD 2534 2010 PD 2431 2173 PD 2547 2095 PD 2763 2227 PD 2568 1932 PD 2286 2117 PD 2806 2694 PD 2206 1914 PD 3036 1997 PD 2212 2188 PD 2951 1854 PD 2306 2694 PD 2637 2173 PD 2886 2117 PD 2853 2196 PD 3057 2016 PD 2553 2055 PD 2547 2043 PD 2613 1939 PD 2947 2193 PD 2674 1979 PD 2408 2125 PD 2768 1869 PD 2685 2059 PD 2898 1980 PD 2815 2694 PD 3165 2694 PD 3311 2694 PD 2617 2694 PD 2641 2191 PD 3106 2058 PD 2311 2001 PD 3109 2694 PD 2769 2052 PD 3156 2086 PD 2545 2694 PD 2571 2197 PD 3062 1706 PD 2858 2068 PD 2962 2694 PD 2555 2694 PD 3211 2154 PD 2932 2164 PD 3247 1873 PD 3300 1665 PD 2526 2694 PD 2686 1956 PD 3227 1951 PD 2907 2051 PD 2187 1997 PD 2637 2250 PD 2793 2059 PD 2667 2120 PD 2693 2004 PD 2925 2694 PD 2693 2013 PD 2592 2694 PD 3761 1985 PD 2333 2060 PD 2818 2037 PD 3577 1971 PD 2753 2075 PD 2989 2126 PD 3289 2694 PD 2695 2189 PD 2981 2694 PD 3376 2694 PD 3536 2074 PD 3078 1831 PD 2458 2151 PD 2846 2694 PD 5328 2694 PD 2933 2082 PD 2658 1999 PD 3558 2694 PD 4415 1952 PD 3633 2694 PD 2805 1927 PD 3295 1752 PD 2484 1985 PD 2721 1949 PD 2822 2010 PD 2495 2694 PD 2765 2020 PD 2856 2117 PD 2885 1996 PD 3104 2091 PD 2929 2074 PD 4029 2137 PD 3883 2078 PD 3022 1912 PD 3016 1764 PD 3024 1968 PD 2950 2082 PD 4209 1838 PD 2795 1728 PD 2816 2694 PD 3620 2150 PD 3074 1911 PD 3019 1906 PD 2845 2694 PD 3157 2042 PD 3350 2694 PD 2944 1826 PD 2887 2218 PD 4145 2123 PD 3065 1853 PD 3530 1659 PD 3152 1836 PD 2526 1934 PD 3082 2020 PD 2807 1972 PD 3371 2141 PD 3436 1619 PD 3388 1798 PD 3245 1878 PD 4039 2694 PD 3413 2020 PD 3432 2102 PD 2850 1797 PD 3013 2694 PD 2671 2117 PD 2976 1881 PD 3301 2694 PD 2995 2067 PD 3732 1891 PD 2536 1524 PD 3529 2049 PD 3099 2694 PD 3936 2210 PD 2878 1948 PD 2764 1822 PD 2816 1821 PD 3182 1761 PD 3547 2031 PD 3504 1968 PD 3607 2031 PD 2745 1978 PD 3466 2155 PD 3408 2085 PD 3649 1810 PD 3851 1795 PD 3030 1887 PD 3922 1923 PD 2975 1911 PD 4054 2694 PD 3267 2045 PD 3790 2694 PD 3099 2694 PD 3429 1877 PD 3355 1946 PD 4505 1788 PD 3651 2139 PD 3225 1940 PD 2931 1938 PD 3311 2038 PD 3636 2694 PD 3367 1900 PD 3242 2032 PD 2854 2694 PD 3740 1717 PD 3273 2002 PD 3214 1783 PD 3776 1999 PD 2642 2694 PD 4475 1422 PD 3099 1812 PD 3755 1848 PD 3832 1825 PD 3841 1762 PD 3846 1993 PD 4364 1306 PD 4070 1785 PD 2979 2694 PD 3649 1954 PD 3371 2694 PD 3593 1952 PD 3776 1973 PD 4746 1304 PD 3431 1632 PD 3735 1936 PD 4347 1873 PD 3906 2694 PD 2694 2057 PD 3110 1914 PD 4284 1687 PD 3384 1957 PD 3222 2008 PD 3094 2095 PD 3929 1901 PD 3312 1805 PD 4741 2111 PD 5379 1298 PD 5191 1110 PD 4588 2047 PD 3903 1825 PD 3138 1996 PD 4231 1461 PD 3812 1729 PD 3508 2694 PD 3378 1748 PD 3655 1982 PD 3526 1821 PD 3200 1774 PD 3101 1960 PD 4862 1889 PD 4003 1808 PD 3801 1941 PD 3479 2060 PD 3496 1784 PD 3358 1969 PD 4146 1878 PD 3254 2694 PD 4226 2694 PD 3789 1772 PD 4013 1216 PD 4361 1866 PD 3525 1974 PD 3233 2694 PD 4237 1472 PD 4047 1862 PD 3411 2694 PD 3414 2039 PD 4129 1545 PD 4299 1849 PD 3881 2694 PD 4179 1919 PD 3996 1736 PD 3519 1904 PD 4436 1963 PD 5437 1971 PD 3247 1686 PD 3576 1881 PD 3715 1849 PD 3806 1510 PD 3153 2694 PD 3814 1942 PD 3383 1712 PD 3638 2694 PD 3314 1999 PD 4239 1731 PD 3895 1733 PD 4209 1569 PD 3647 2694 PD 3069 2109 PD 3735 1671 PD 3141 1976 PD 4255 1737 PD 3758 1653 PD 3440 1848 PD 4457 1958 PD 3155 1917 PD 3202 1845 PD 3763 1849 PD 3507 1852 PD 3486 1958 PD 3519 2694 PD 3404 2152 PD 4175 1867 PD 4559 1863 PD 4432 1946 PD 3760 1810 PD 4050 1700 PD 3081 1924 PD 3635 1731 PD 4333 1819 PD 4093 1627 PD 4263 1665 PD 4466 1950 PD 3271 1765 PD 3557 1854 PD 3416 2192 PD 4215 1968 PD 3174 1804 PD 3967 1870 PD 3314 1834 PD 3643 1638 PD 3415 1834 PD 3249 1976 PD 2761 2064 PD 4004 1784 PD 4456 1630 PD 3744 1911 PD 3708 1858 PD 6246 1533 PD 4260 1860 PD 3361 1940 PD 3899 2694 PD 3591 1944 PD 3783 2694 PD 4312 1820 PD 4479 1897 PD 3826 1873 PD 4215 1610 PD 3998 2694 PD 3717 1843 PD 4403 1710 PD 4010 1803 PD 4816 1786 PD 4478 2694 PD 4805 1215 PD 5317 1862 PD 4285 1924 PD 3926 2694 PD 5500 1453 PD 4117 2123 PD 3746 1951 PD 3595 1982 PD 3656 1522 PD 4537 2694 PD 4751 1393 PD 4746 1823 PD 3604 2694 PD 3565 2004 PD 4179 1959 PD 4678 1840 PD 4460 2059 PD 3948 1949 PD 4795 1395 PD 3912 2022 PD 3848 1863 PD 3865 1581 PD 4602 1685 PD 4116 2694 PD 3132 2694 PD 3802 1852 PD 4995 1269 PD 4394 1820 PD 3273 1970 PD 3169 2097 PD 3961 1782 PD 4617 1641 PD 3652 1865 PD 5370 2694 PD 4557 1546 PD 4232 1923 PD 4910 1380 PD 3804 1845 PD 4273 1902 PD 4616 1867 PD 3819 2694 PD 3219 1761 PD 3957 1663 PD 4393 1851 PD 4238 1759 PD 3431 1828 PD 4387 1860 PD 4922 1886 PD 4338 1687 PD 4855 1448 PD 5041 1562 PD 4168 1719 PD 4041 1888 PD 3598 1752 PD 4599 2694 PD 3619 1814 PD 4875 1804 PD 4025 1957 PD 4160 1821 PD 3558 1675 PD 3564 1814 PD 3588 1930 PD 4490 1613 PD 4337 1699 PD 4021 1792 PD 3541 1855 PD 3875 1789 PD 4280 2694 PD 4036 1868 PD 4350 1438 PD 3688 1942 PD 3456 2694 PD 4265 1925 PD 4611 1383 PD 3716 2092 PD 3965 1865 PD 3767 1910 PD 4482 1718 PD 4113 1935 PD 4019 1951 PD 3745 2033 PD 5183 1589 PD 4727 2032 PD 4675 1496 PD 3839 1434 PD 3833 1798 PD 4311 1856 PD 5434 1836 PD 4686 1540 PD 3264 1857 PD 4279 1723 PD 4698 1832 PD 3795 1932 PD 5040 1668 PD 5218 1372 PD 3818 1830 PD 5349 1165 PD 3922 1306 PD 3586 1716 PD 4684 1569 PD 3912 1805 PD 4486 2694 PD 4477 1781 PD 3636 1935 PD 3736 1674 PD 3933 1717 PD 3787 2059 PD 4674 1255 PD 4278 2008 PD 4616 1591 PD 4236 2247 PD 5126 1495 PD 3352 1890 PD 4116 1592 PD 5113 1227 PD 3891 2694 PD 3583 1802 PD 3963 1761 PD 4142 1826 PD 4479 1857 PD 4658 1781 PD 5162 1789 PD 4650 1624 PD 4592 1593 PD 4551 2694 PD 5407 1164 PD 4364 1700 PD 3724 1790 PD 3618 1990 PD 4826 1356 PD 4702 1994 PD 4270 1756 PD 3770 1836 PD 4792 1815 PD 5797 1587 PD 3740 1732 PD 4344 1954 PD 3956 1547 PD 4843 1790 PD 3866 1640 PD 4173 1796 PD 4252 1626 PD 3864 1796 PD 5210 1905 PD 3617 1991 PD 3852 1957 PD 3911 1907 PD 4644 1457 PD 4184 1754 PD 3863 1731 PD 3633 1815 PD 4548 1050 PD 3823 1743 PD 4368 1736 PD 4871 1796 PD 4063 1545 PD 4150 1928 PD 4366 1623 PD 4405 1585 PD 4543 1771 PD 4723 1727 PD 3954 1785 PD 4320 1688 PD 4602 1571 PD 3994 1658 PD 4432 1597 PD 4920 1828 PD 4360 1741 PD 4204 1789 PD 4014 1901 PD 4965 1670 PD 4422 1482 PD 4402 1651 PD 4070 1973 PD 4492 1746 PD 3203 1943 PD 3961 1741 PD 4551 1910 PD 5289 1387 PD 4629 2694 PD 4071 1795 PD 3450 2035 PD 5035 1801 PD 4515 1909 PD 4311 1867 PD 4413 1647 PD 4756 1794 PD 4256 1666 PD 4570 1225 PD 4149 1719 PD 3903 1810 PD 4878 1254 PD 4883 1826 PD 4686 1752 PD 4561 1815 PD 5186 1410 PD 4758 1886 PD 4906 1698 PD 4491 1729 PD 5916 1121 PD 4715 1493 PD 4802 1764 PD 4808 1221 PD 4798 1738 PD 4781 1626 PD 4442 1618 PD 4941 1663 PD 4758 1599 PD 5030 1301 PD 5215 1468 PD 4098 1625 PD 4068 1873 PD 4013 1809 PD 5066 1720 PD 4747 1804 PD 4203 1756 PD 5213 1754 PD 4785 1882 PD 4026 2694 PD 4021 1794 PD 4678 1471 PD 3779 1725 PD 4413 1701 PD 3825 2040 PD 4622 1889 PD 4398 1926 PD 4154 1650 PD 4086 1715 PD 3756 1997 PD 4187 1821 PD 4348 1728 PD 4175 1879 PD 4835 1407 PD 5011 1499 PD 4205 1616 PD 4016 1810 PD 4906 1616 PD 5414 2694 PD 4232 1505 PD 4869 2067 PD 4771 1654 PD 4801 1780 PD 3598 2694 PD 4397 2014 PD 5048 1842 PD 5195 1709 PD 4973 1150 PD 4919 1663 PD 4798 1985 PD 4783 1556 PD 4180 1615 PD 4957 1385 PD 4864 1824 PD 4416 1746 PD 4994 1455 PD 4050 1799 PD 4112 1509 PD 4445 1602 PD 4357 1506 PD 4247 1535 PD 4937 1557 PD 4676 1863 PD 5040 1435 PD 4351 1638 PD 4269 1756 PD 5432 1303 PD 4176 1870 PD 4237 1699 PD 5154 1020 PD 5065 1483 PD 4829 1352 PD 5274 1448 PD 4487 1765 PD 5820 1316 PD 4777 1522 PD 5275 1627 PD 4459 2694 PD 5724 1632 PD 4833 1886 PD 4119 1670 PD 4561 1761 PD 4740 1732 PD 5387 1423 PD 5280 1606 PD 5035 1613 PD 4846 1662 PD 3978 1771 PD 4992 1854 PD 4578 1679 PD 5486 1897 PD 4249 1725 PD 5315 1013 PD 4635 1753 PD 4841 1652 PD 4480 1625 PD 5120 1061 PD 4333 1988 PD 6177 1690 PD 4738 1924 PD 6073 1240 PD 4637 1954 PD 4193 1830 PD 5107 1254 PD 5145 1320 PD 5319 1330 PD 4424 1621 PD 5807 2694 PD 4811 1752 PD 3818 1871 PD 5474 2694 PD 4646 2694 PD 5789 802 PD 5365 2694 PD 5460 1209 PD 5320 1791 PD 4982 2694 PD 5091 1879 PD 5314 1541 PD 5125 1218 PD 5302 1348 PD 5105 1678 PD 4783 1415 PD 5745 1743 PD 4654 2085 PD 5394 2694 PD 4611 2694 PD 4729 1592 PD 4588 1742 PD 5021 2694 PD 5680 1838 PD 4519 1633 PD 4423 1793 PD 4588 1580 PD 4981 2694 PD 4762 1633 PD 4417 1667 PD 5105 1351 PD 4954 2694 PD 4105 1810 PD 5330 1429 PD 4773 1135 PD 5092 920 PD 4644 1485 PD 4691 1492 PD 6194 2694 PD 5014 1411 PD 4507 1769 PD 4949 1425 PD 5185 1389 PD 4349 1865 PD 4630 1593 PD 5603 1364 PD 4562 1668 PD 6130 1114 PD 5027 1370 PD 5300 1683 PD 5368 1298 PD 4792 1636 PD 4812 1263 PD 4819 1429 PD 5011 1329 PD 5564 2694 PD 4746 1500 PD 4871 1266 PD 4936 1509 PD 5793 1115 PD 6024 1360 PD 5420 2694 PD 5334 1467 PD 5289 1363 PD 4909 2694 PD 5537 1450 PD 5517 1708 PD 5783 1381 PD 4856 1271 PD 5473 2694 PD 5513 1536 PD 5017 1698 PD 5223 1306 PD 5063 1146 PD 5208 2694 PD 5305 1361 PD 4920 1640 PD 4648 1546 PD 5311 1311 PD 5119 1451 PD 5972 1451 PD 4762 1519 PD 5236 1358 PD 5242 1632 PD 4781 1587 PD 4973 1413 PD 5181 1534 PD 5345 875 PD 5826 1706 PD 4886 1612 PD 4828 1579 PD 5782 952 PD 5412 1485 PD 5134 1660 PD 5127 1304 PD 5298 1097 PD 4626 1546 PD 4729 1387 PD 5289 1418 PD 4480 1740 PD 4690 1345 PD 5651 1663 PD 5743 1722 PD 5354 1857 PD 4538 1658 PD 5278 1334 PD 4852 1861 PD 5447 1705 PD 5223 1548 PD 4218 1784 PD 4435 1333 PD 5101 1800 PD 6052 1658 PD 4544 1468 PD 4051 1760 PD 4640 1659 PD 6039 1423 PD 4809 1644 PD 4982 1347 PD 5204 1469 PD 4462 1796 PD 4748 1693 PD 6211 1477 PD 5124 1735 PD 5573 1224 PD 5229 1426 PD 5425 931 PD 5717 1370 PD 5022 1624 PD 4650 1381 PD 4857 1694 PD 4430 1725 PD 4295 1603 PD 5657 1582 PD 4686 1694 PD 5143 1274 PD 5102 1592 PD 5122 1043 PD 5819 1706 PD 5669 1450 PD 5869 887 PD 5332 1222 PD 4838 1667 PD 5392 1599 PD 4778 1348 PD 4711 1393 PD 4721 1656 PD 4575 1576 PD 5047 1249 PD 5091 1638 PD 5255 1455 PD 5858 1293 PD 4841 1504 PD 6144 1224 PD 5915 1402 PD 4290 2694 PD 5095 1372 PD 6235 895 PD 4583 1786 PD 4766 1300 PD 5578 2694 PD 4754 1266 PD 5388 1425 PD 5564 1283 PD 5492 1636 PD 5113 1029 PD 5548 1803 PD 5378 1471 PD 6003 1060 PD 5348 1178 PD 5201 1536 PD 4468 1558 PD 5066 1899 PD 4638 1812 PD 4728 1500 PD 6188 1569 PD 5883 1511 PD 5192 1191 PD 4776 1732 PD 5377 1314 PD 4481 1475 PD 5046 1689 PD 5066 1897 PD 6066 2694 PD 5906 1650 PD 5171 1513 PD 5118 1494 PD 5620 1097 PD 4666 1564 PD 4543 1905 PD 4516 1593 PD 4909 1601 PD 5089 1371 PD 5381 1200 PD 5236 2694 PD 5041 1649 PD 5523 1401 PD 5935 1360 PD 5029 1331 PD 5038 1154 PD 5367 1782 PD 5873 910 PD 5949 1478 PD 4738 1627 PD 4545 1696 PD 5521 1458 PD 5736 982 PD 5024 1463 PD 4927 1431 PD 5485 1386 PD 4836 1243 PD 4745 1899 PD 5218 1311 PD 5370 1092 PD 5445 1228 PD 6047 883 PD 5927 1439 PD 5035 1161 PD 4425 1480 PD 6040 1291 PD 5868 1363 PD 5106 1221 PD 5037 1443 PD 5415 886 PD 4899 1606 PD 4940 1664 PD 5653 1021 PD 5158 1685 PD 5197 1604 PD 5124 1323 PD 5918 1036 PD 4895 1661 PD 5628 1685 PD 5783 1229 PD 5004 1369 PD 5284 1174 PD 6061 912 PD 5001 1531 PD 4850 1268 PD 5276 1378 PD 4915 1557 PD 5365 1238 PD 5924 1235 PD 4706 1497 PD 6086 1121 PD 5341 1346 PD 5994 856 PD 5503 1340 PD 5508 1795 PD 4986 1639 PD 5670 874 PD 4687 1742 PD 5502 1217 PD 5749 2694 PD 5023 1650 PD 4511 1564 PD 5378 1061 PD 5744 1230 PD 4990 1670 PD 5628 2694 PD 4576 2694 PD 5566 1494 PD 5162 1507 PD 4695 1447 PD 5006 1252 PD 5324 1225 PD 5847 1444 PD 4668 1678 PD 5761 1721 PD 6118 1407 PD 6053 1310 PD 6177 1400 PD 5728 1487 PD 5598 1144 PD 5424 1050 PD 5986 1765 PD 5254 1576 PD 5477 1087 PD 5190 1390 PD 4861 1411 PD 4647 1474 PD 5282 1302 PD 5889 817 PD 5920 1512 PD 5863 1686 PD 4800 1382 PD 5583 976 PD 4921 1476 PD 5826 983 PD 4740 1428 PD 6238 806 PD 5834 1904 PD 4980 1531 PD 5724 1505 PD 5815 1417 PD 5513 1613 PD 5299 1826 PD 4919 1132 PD 4787 1555 PD 6130 1364 PD 5443 1540 PD 5739 1297 PD 4822 1634 PD 5251 1154 PD 4729 1479 PD 5961 1525 PD 5836 1606 PD 5434 1560 PD 4828 1213 PD 5175 1672 PD 4972 1129 PD 6229 1546 PD 4656 1447 PD 5657 1166 PD 5582 1356 PD gs 899 389 5360 4227 MR c np gr 5554 1226 PD 4630 1368 PD 5741 1387 PD 5335 1035 PD 5216 1481 PD 5123 1369 PD 4858 1223 PD 5997 1599 PD 4627 1401 PD 6045 1097 PD 4958 1550 PD 6161 1339 PD 4771 2694 PD 5302 1394 PD 5243 1486 PD 6164 922 PD 5225 1418 PD 5177 968 PD 5480 1404 PD 5653 901 PD 4664 1583 PD 5722 1316 PD 5289 1745 PD 4957 1571 PD 5436 1368 PD 5623 1308 PD 5508 1204 PD 6110 1041 PD 6052 1089 PD 5999 1145 PD 4998 1016 PD 5923 815 PD 5998 820 PD 6071 1605 PD 5869 1215 PD 5767 1242 PD 4902 1442 PD 5500 1135 PD 5724 1361 PD 5760 1366 PD 5942 992 PD 5744 1306 PD 5595 1439 PD 5804 1018 PD 5655 1224 PD 4631 1597 PD 5572 1336 PD 4880 1562 PD 5594 1072 PD 5411 1384 PD gs 899 389 5360 4227 MR c np gr 5386 1285 PD 5503 1206 PD 5342 1380 PD 5100 1549 PD 5231 1808 PD 5190 1125 PD 4496 1572 PD 5342 1172 PD 4871 1581 PD 5173 1546 PD 6191 728 PD 5387 881 PD 4847 1386 PD 5514 1103 PD gs 899 389 5360 4227 MR c np gr 4935 1398 PD 4895 1333 PD 5279 1339 PD 5687 1232 PD 5473 1874 PD 5244 1645 PD gs 899 389 5360 4227 MR c np gr 5546 978 PD 5658 918 PD 5468 1045 PD 5596 1125 PD 4977 1446 PD 5332 1044 PD 5021 1412 PD 5169 1506 PD 5762 1190 PD 6008 653 PD 4853 1235 PD 5065 1269 PD 5690 823 PD 5594 1430 PD 5354 960 PD 5548 1169 PD 5108 1457 PD 5963 1079 PD 5686 814 PD 5806 1131 PD 6059 1192 PD 5140 1315 PD 5222 1537 PD 5465 1618 PD 5223 1319 PD 5379 742 PD 5729 1417 PD 5325 1409 PD gs 899 389 5360 4227 MR c np gr 5413 1342 PD 5172 1638 PD 6226 521 PD 5557 913 PD 4927 1418 PD 5449 2694 PD 6142 680 PD 5081 1526 PD 4883 1065 PD 5798 1089 PD 6205 1368 PD 5697 1571 PD 5163 1308 PD 5841 1142 PD 5883 1437 PD 4931 1258 PD 5279 2694 PD 5593 2694 PD 5505 1080 PD 4983 1366 PD 5356 1446 PD 4991 1480 PD 6016 1158 PD 4939 1234 PD 5456 1301 PD 4954 1294 PD 5421 1181 PD 5675 540 PD 5639 427 PD 5551 1533 PD 5479 1102 PD 5556 846 PD 5019 1058 PD 5884 1230 PD 5310 1415 PD 5811 1217 PD 5718 1151 PD 4880 1293 PD 5711 1144 PD 5546 915 PD 6182 1163 PD 5522 1021 PD 5112 1267 PD 5064 503 PD 5103 1297 PD 5841 1253 PD 5380 1242 PD 5301 1657 PD 5762 770 PD 5148 1051 PD 5837 1231 PD 5573 1118 PD 5180 1321 PD gs 899 389 5360 4227 MR c np gr 4909 1079 PD 6140 803 PD 5347 1347 PD 5701 946 PD 6114 1561 PD 5602 1647 PD 6007 1618 PD 5127 1564 PD 6164 623 PD 5268 1183 PD 5582 1005 PD 5437 454 PD 5409 1018 PD 5134 1689 PD 5288 1121 PD 6066 941 PD 5371 1361 PD 5136 1453 PD 4884 1346 PD 5792 715 PD 6207 853 PD 5551 556 PD 5435 1460 PD 5451 1381 PD 5513 1355 PD 5329 1599 PD 5654 1050 PD 4966 1271 PD 6221 678 PD 5256 1439 PD 5736 908 PD 6105 637 PD gs 899 389 5360 4227 MR c np gr 6108 1313 PD 5539 1418 PD 5940 1260 PD 5382 1032 PD 6082 711 PD 5823 397 PD 5562 1159 PD 5091 1589 PD gs 899 389 5360 4227 MR c np gr 5060 1088 PD 5635 1056 PD 5758 575 PD 5279 1045 PD 5513 1455 PD 6245 1237 PD 5649 1172 PD 6198 1067 PD 5435 1042 PD 5207 1044 PD 5327 997 PD 5553 2694 PD gs 899 389 5360 4227 MR c np gr 4938 1541 PD 5591 1059 PD 5449 1160 PD 5293 886 PD 5865 1288 PD 5941 912 PD 5907 753 PD gs 899 389 5360 4227 MR c np gr 5226 1315 PD 5927 711 PD 5761 880 PD 5283 1207 PD 5701 433 PD gs 899 389 5360 4227 MR c np gr 5311 693 PD 5270 1050 PD 5365 1063 PD 6014 778 PD 5323 1561 PD 5977 803 PD 5511 415 PD 5398 980 PD 5206 1097 PD 5662 1078 PD 5611 650 PD gs 899 389 5360 4227 MR c np gr 5435 1078 PD 5932 875 PD gs 899 389 5360 4227 MR c np gr 5858 2694 PD 5763 545 PD 5348 1559 PD 5800 2694 PD 5038 1411 PD 4954 739 PD 5913 1169 PD 5385 988 PD 5751 1199 PD 5765 1029 PD 5529 994 PD 4976 1843 PD 5436 635 PD 5495 1244 PD 5669 636 PD 5742 612 PD 5204 937 PD 5618 838 PD 5960 1582 PD 5114 1371 PD 5149 828 PD 5343 671 PD 5307 1716 PD 5150 1498 PD 5561 1354 PD 5984 571 PD 5080 606 PD 5918 823 PD 5369 1117 PD 5573 670 PD 5930 779 PD 5823 849 PD 5015 1402 PD 6107 886 PD 5454 1137 PD 6143 1155 PD 4994 1460 PD 5140 1397 PD 5806 906 PD 5445 1187 PD 5419 1253 PD 5233 940 PD 5424 742 PD 5866 809 PD 5083 1491 PD 6146 592 PD 5192 960 PD 5915 458 PD 5390 1018 PD 5072 1293 PD gs 899 389 5360 4227 MR c np gr 4680 1025 PD 6097 976 PD 6082 1091 PD 6110 733 PD 5321 1099 PD 5196 832 PD 5811 844 PD 5492 583 PD 6036 1187 PD 6015 1274 PD 5023 1178 PD gs 899 389 5360 4227 MR c np gr 5894 668 PD 5183 1504 PD 5368 767 PD 5161 966 PD 5094 1095 PD 5947 768 PD 5958 1143 PD gs 899 389 5360 4227 MR c np gr 5459 942 PD 5541 831 PD 4931 1297 PD 5598 1017 PD 6147 413 PD 5712 738 PD 4937 1347 PD 5450 976 PD 5612 1180 PD 5704 588 PD 5711 1239 PD gs 899 389 5360 4227 MR c np gr 5959 903 PD 5904 539 PD 5844 810 PD 5377 503 PD 6078 850 PD 5965 906 PD 6109 444 PD 5176 968 PD 5466 1289 PD 5655 557 PD 5023 1137 PD 5097 1660 PD 5828 807 PD 5748 1646 PD 5392 527 PD 4818 1385 PD 5820 729 PD 5496 1093 PD 5026 1131 PD 5594 1043 PD 5101 912 PD gs 899 389 5360 4227 MR c np gr 5738 642 PD 6104 682 PD 5574 1287 PD 5743 576 PD 5373 869 PD 4866 1146 PD 5172 909 PD gs 899 389 5360 4227 MR c np gr 5235 1284 PD gs 899 389 5360 4227 MR c np gr 5887 904 PD 4853 723 PD 6190 1287 PD 5176 666 PD 5452 1061 PD 5567 848 PD 5722 1006 PD 5247 1479 PD 5661 1218 PD 5717 912 PD 5197 746 PD 5526 1095 PD 5435 926 PD 5145 1201 PD 5541 947 PD 5684 514 PD 5772 814 PD gs 899 389 5360 4227 MR c np gr 5796 638 PD 5619 856 PD 5368 840 PD 6090 1012 PD 6226 728 PD 5959 1160 PD 5421 648 PD 5352 604 PD 5658 862 PD 5633 603 PD 5853 549 PD gs 899 389 5360 4227 MR c np gr 5725 418 PD gs 899 389 5360 4227 MR c np gr 6146 1304 PD 6252 666 PD 6041 413 PD 5429 853 PD 6100 1433 PD 5393 781 PD 5230 1012 PD 5966 501 PD 5152 1230 PD 5267 1126 PD 5566 787 PD gs 899 389 5360 4227 MR c np gr 6026 498 PD 5084 1024 PD 5184 1281 PD 5944 469 PD 5356 1243 PD 5995 955 PD 6083 1183 PD 5297 719 PD gs 899 389 5360 4227 MR c np gr 5352 437 PD 5594 898 PD 6227 953 PD gs 899 389 5360 4227 MR c np gr 5581 431 PD 5397 488 PD 5133 1107 PD gs 899 389 5360 4227 MR c np gr 5676 705 PD 5008 1213 PD 5773 1294 PD 5774 1061 PD 5316 473 PD 5462 1144 PD 6006 1626 PD 5702 1191 PD 5748 517 PD 5580 563 PD 5596 853 PD 6162 1171 PD 5344 1237 PD 5874 498 PD gs 899 389 5360 4227 MR c np gr 5791 890 PD gs 899 389 5360 4227 MR c np gr 5871 528 PD 5917 1218 PD 5783 396 PD 5813 912 PD 5081 489 PD 5239 1265 PD 5175 479 PD 5273 844 PD 5384 1046 PD gs 899 389 5360 4227 MR c np gr 5699 646 PD 5402 998 PD gs 899 389 5360 4227 MR c np gr 5324 427 PD 5954 629 PD 5788 597 PD gs 899 389 5360 4227 MR c np gr 5556 461 PD 5860 614 PD gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr 5747 1254 PD 5178 803 PD 6216 977 PD 5490 1065 PD 5685 550 PD 5652 1022 PD 5314 1191 PD 5930 1535 PD gs 899 389 5360 4227 MR c np gr 5991 703 PD 5227 984 PD 6109 888 PD gs 899 389 5360 4227 MR c np gr gs 899 389 5360 4227 MR c np gr 5508 895 PD 5507 1098 PD 5478 1171 PD 5761 955 PD 5218 622 PD gs 899 389 5360 4227 MR c np gr 5053 651 PD 5161 632 PD 5635 1144 PD 4898 1221 PD 5554 914 PD 5823 471 PD gs 899 389 5360 4227 MR c np gr 5738 1172 PD 5115 958 PD gs 899 389 5360 4227 MR c np gr 4978 1373 PD 5803 924 PD gs 899 389 5360 4227 MR c np gr 5069 769 PD 5601 919 PD 5626 1125 PD 6226 468 PD 5615 756 PD 5861 630 PD 5791 1323 PD gs 899 389 5360 4227 MR c np gr 6069 687 PD 5555 1222 PD 5162 966 PD 5140 916 PD 5853 688 PD gs 899 389 5360 4227 MR c np 6 w gr 6 w 8 w 906 2694 PD 988 2694 PD 927 2694 PD 960 2694 PD 912 2694 PD 1122 2694 PD 905 2694 PD 1060 2694 PD 907 2694 PD 949 2694 PD 899 2722 PD 984 2694 PD 949 2720 PD 1145 2742 PD 914 2694 PD 935 2694 PD 1047 2694 PD 939 2694 PD 1020 2748 PD 990 2694 PD 941 2694 PD 1017 2694 PD 930 2694 PD 1134 2694 PD 957 2741 PD 949 2694 PD 980 2694 PD 1003 2694 PD 1044 2694 PD 982 2694 PD 991 2694 PD 906 2730 PD 904 2730 PD 929 2722 PD 1285 2749 PD 939 2694 PD 903 2694 PD 989 2694 PD 1140 2694 PD 954 2733 PD 943 2694 PD 1138 2716 PD 1087 2694 PD 1078 2694 PD 976 2735 PD 1086 2694 PD 1176 2729 PD 899 2694 PD 1028 2694 PD 926 2694 PD 1122 2694 PD 1065 2694 PD 1119 2694 PD 1009 2694 PD 1123 2742 PD 1062 2750 PD 911 2734 PD 1184 2694 PD 1217 2694 PD 1164 2754 PD 1095 2694 PD 1112 2694 PD 1148 2694 PD 948 2694 PD 1052 2694 PD 1212 2777 PD 1009 2694 PD 1110 2694 PD 971 2694 PD 930 2694 PD 1041 2730 PD 974 2694 PD 1316 2694 PD 1034 2694 PD 1038 2694 PD 1018 2694 PD 932 2694 PD 1235 2694 PD 903 2694 PD 1243 2694 PD 1339 2694 PD 1129 2694 PD 1121 2694 PD 1196 2694 PD 1409 2694 PD 987 2694 PD 1202 2753 PD 1054 2694 PD 1290 2694 PD 1294 2694 PD 1064 2739 PD 1060 2737 PD 1077 2735 PD 991 2737 PD 1363 2759 PD 1257 2694 PD 957 2743 PD 1420 2694 PD 1023 2741 PD 1257 2752 PD 987 2694 PD 1097 2694 PD 1137 2694 PD 1206 2735 PD 1200 2694 PD 1221 2694 PD 1575 2694 PD 1143 2694 PD 1107 2738 PD 1230 2718 PD 1200 2747 PD 1081 2724 PD 999 2744 PD 1220 2694 PD 1229 2727 PD 1193 2694 PD 1083 2694 PD 1389 2803 PD 1082 2742 PD 1328 2694 PD 1553 2694 PD 1826 2760 PD 1120 2694 PD 1209 2694 PD 1260 2694 PD 1486 2694 PD 1170 2694 PD 1112 2739 PD 1523 2694 PD 1356 2694 PD 1107 2694 PD 1256 2780 PD 1424 2752 PD 1379 2694 PD 1422 2732 PD 1337 2750 PD 1440 2694 PD 1027 2752 PD 1310 2694 PD 1296 2694 PD 1312 2748 PD 1191 2694 PD 1198 2694 PD 1229 2694 PD 1228 2694 PD 1587 2834 PD 1356 2694 PD 1215 2694 PD 1438 2740 PD 1178 2694 PD 1331 2756 PD 1348 2756 PD 1529 2774 PD 1587 2694 PD 1302 2732 PD 1287 2694 PD 1173 2753 PD 1295 2744 PD 1448 2694 PD 1233 2694 PD 1386 2765 PD 1377 2694 PD 1210 2762 PD 1149 2694 PD 1511 2694 PD 1788 2694 PD 1489 2694 PD 1350 2750 PD 1421 2755 PD 1107 2694 PD 1272 2694 PD 1630 2763 PD 1268 2719 PD 1354 2694 PD 1389 2784 PD 1347 2694 PD 1530 2694 PD 1835 2764 PD 1507 2748 PD 1279 2694 PD 1259 2694 PD 1386 2752 PD 1657 2694 PD 1435 2694 PD 1399 2694 PD 1501 2758 PD 1353 2755 PD 1381 2734 PD 1373 2766 PD 1725 2694 PD 1810 2914 PD 1556 2762 PD 1452 2694 PD 1669 2803 PD 1317 2740 PD 1252 2758 PD 1244 2749 PD 1712 2767 PD 1595 2694 PD 1449 2778 PD 1484 2768 PD 1764 2694 PD 1574 2694 PD 1811 2694 PD 1488 2743 PD 1555 2792 PD 1527 2802 PD 1367 2783 PD 1297 2694 PD 1579 2694 PD 1378 2771 PD 1506 2694 PD 1857 2809 PD 1358 2694 PD 1648 2694 PD 1738 2798 PD 1567 2728 PD 1659 2772 PD 1686 2694 PD 1678 2694 PD 1442 2694 PD 1695 2694 PD 1658 2737 PD 1672 2694 PD 1688 2770 PD 1601 2694 PD 1364 2761 PD 1477 2694 PD 1884 2735 PD 2252 2779 PD 1738 2694 PD 1369 2694 PD 1617 2778 PD 1593 2694 PD 1870 2694 PD 1740 2694 PD 1588 2694 PD 1734 2802 PD 1429 2694 PD 1601 2694 PD 1934 2788 PD 2080 2694 PD 1622 2795 PD 1588 2694 PD 1881 2694 PD 1957 2694 PD 1732 2790 PD 1876 2817 PD 2202 2780 PD 1944 2781 PD 1553 2794 PD 2098 2772 PD 2385 2758 PD 2016 2694 PD 2014 2764 PD 1783 2777 PD 1723 2694 PD 1733 2768 PD 1807 2694 PD 1756 2764 PD 1535 2747 PD 1789 2694 PD 1803 2694 PD 1719 2694 PD 1743 2694 PD 2102 2694 PD 1577 2694 PD 1486 2694 PD 1845 2694 PD 1921 2694 PD 1521 2784 PD 1892 2792 PD 1717 2840 PD 1765 2694 PD 2313 2694 PD 2564 2786 PD 1890 2804 PD 2166 2694 PD 1848 2803 PD 2223 2766 PD 2357 2694 PD 2498 2925 PD 1999 2828 PD 1979 2694 PD 2776 2820 PD 1919 2694 PD 2251 2761 PD 1621 2694 PD 1925 2694 PD 2002 2821 PD 1578 2694 PD 2050 2820 PD 2115 2786 PD 2392 2694 PD 2202 2885 PD 1851 2694 PD 1787 2694 PD 3228 2694 PD 1641 2694 PD 1745 2694 PD 1571 2773 PD 2198 2821 PD 2070 2694 PD 1684 2766 PD 2090 2763 PD 1656 2767 PD 1593 2790 PD 1897 2694 PD 1766 2694 PD 1844 2694 PD 2386 2694 PD 1887 2769 PD 1783 2807 PD 1392 2760 PD 1818 2694 PD 1777 2694 PD 2250 2869 PD 1565 2694 PD 1786 2798 PD 2299 2885 PD 1905 2746 PD 2347 2782 PD 2496 2694 PD 2290 2809 PD 1966 2754 PD 2224 2785 PD 1972 2795 PD 1680 2694 PD 1823 2694 PD 2519 2694 PD 1828 2694 PD 2029 2823 PD 2304 2783 PD 2054 2808 PD 2155 2816 PD 1829 2790 PD 1652 2694 PD 2351 2694 PD 1727 2694 PD 1933 2781 PD 2371 2694 PD 2549 2805 PD 2227 2694 PD 1978 2694 PD 3155 2795 PD 2117 2694 PD 2379 2694 PD 2075 2694 PD 1948 2781 PD 1742 2881 PD 2050 2694 PD 1857 2806 PD 2310 2849 PD 2757 2853 PD 2239 2827 PD 1928 2912 PD 2211 2694 PD 2060 2694 PD 1972 2694 PD 1945 2694 PD 1794 2694 PD 2314 2738 PD 2254 2694 PD 1989 2694 PD 2927 2950 PD 2191 2848 PD 2810 2855 PD 2187 2694 PD 3010 2828 PD 2936 2749 PD 2377 2694 PD 2333 2931 PD 2100 2694 PD 2045 2813 PD 2123 2694 PD 2279 2694 PD 2000 2784 PD 2134 2694 PD 2881 2797 PD 2225 2694 PD 1946 2820 PD 2286 2856 PD 2463 2806 PD 2744 2870 PD 2052 2849 PD 2230 2827 PD 2522 2809 PD 1900 2769 PD 2066 2694 PD 2043 2848 PD 2411 2808 PD 1939 2805 PD 3273 2694 PD 2088 2805 PD 2479 2694 PD 1647 2760 PD 2477 2790 PD 2766 2694 PD 2284 2773 PD 2256 2792 PD 2334 2798 PD 1899 2847 PD 2929 2694 PD 2339 2694 PD 2085 2785 PD 2388 2852 PD 2090 2786 PD 2055 2694 PD 2245 2694 PD 2168 2803 PD 2211 2813 PD 2408 2799 PD 3165 2848 PD 2376 2816 PD 2057 2694 PD 2199 2839 PD 2664 2843 PD 2476 2817 PD 2043 2800 PD 2796 2852 PD 2067 2830 PD 2559 2840 PD 2900 2823 PD 2276 2694 PD 2046 2761 PD 2358 2785 PD 2951 2827 PD 2768 2846 PD 2089 2694 PD 2483 2856 PD 2487 2773 PD 1917 2810 PD 2479 2802 PD 3094 2694 PD 2896 2777 PD 2388 2856 PD 1958 2694 PD 2271 2771 PD 2052 2839 PD 2258 2694 PD 2969 2859 PD 2034 2837 PD 2708 2834 PD 2202 2694 PD 2105 2820 PD 1844 2825 PD 2342 2694 PD 1982 2794 PD 2454 2884 PD 2962 2767 PD 2085 2831 PD 2770 2826 PD 2139 2796 PD 2620 2828 PD 2379 2694 PD 2150 2844 PD 2704 2826 PD 2955 2826 PD 3131 2694 PD 2283 2783 PD 2312 2898 PD 2926 2694 PD 2017 2694 PD 2216 2791 PD 2826 2838 PD 2293 2817 PD 3056 2814 PD 2091 2820 PD 2590 2831 PD 2704 2819 PD 2862 2808 PD 2420 2694 PD 2310 2777 PD 2878 2694 PD 2710 2694 PD 2975 2868 PD 2221 2857 PD 2309 2852 PD 2582 2694 PD 3040 2883 PD 2553 2750 PD 2899 2869 PD 2046 2767 PD 3209 2817 PD 2558 2781 PD 2556 2783 PD 3350 2694 PD 3309 2888 PD 2962 2788 PD 3214 2817 PD 2297 2694 PD 2983 2694 PD 2463 2818 PD 2477 2839 PD 3562 2834 PD 2878 2873 PD 2937 2875 PD 2837 2822 PD 3329 2920 PD 2791 2801 PD 2793 2845 PD 2719 2694 PD 2575 2833 PD 2981 2892 PD 2385 2694 PD 2534 2848 PD 2431 2801 PD 2547 2835 PD 2763 2771 PD 2568 2844 PD 2286 2799 PD 2806 2694 PD 2206 2833 PD 3036 2870 PD 2212 2786 PD 2951 2894 PD 2306 2694 PD 2637 2807 PD 2886 2804 PD 2853 2793 PD 3057 2841 PD 2553 2814 PD 2547 2831 PD 2613 2837 PD 2947 2793 PD 2674 2815 PD 2408 2798 PD 2768 2834 PD 2685 2828 PD 2898 2869 PD 2815 2694 PD 3165 2694 PD 3311 2694 PD 2617 2694 PD 2641 2798 PD 3106 2828 PD 2311 2836 PD 3109 2694 PD 2769 2858 PD 3156 2830 PD 2545 2694 PD 2571 2780 PD 3062 2904 PD 2858 2831 PD 2962 2694 PD 2555 2694 PD 3211 2798 PD 2932 2811 PD 3247 2866 PD 3300 2916 PD 2526 2694 PD 2686 2837 PD 3227 2887 PD 2907 2860 PD 2187 2813 PD 2637 2772 PD 2793 2847 PD 2667 2812 PD 2693 2859 PD 2925 2694 PD 2693 2856 PD 2592 2694 PD 3761 2883 PD 2333 2841 PD 2818 2879 PD 3577 2851 PD 2753 2847 PD 2989 2801 PD 3289 2694 PD 2695 2795 PD 2981 2694 PD 3376 2694 PD 3536 2847 PD 3078 2956 PD 2458 2805 PD 2846 2694 PD 5328 2694 PD 2933 2844 PD 2658 2837 PD 3558 2694 PD 4415 2854 PD 3633 2694 PD 2805 2839 PD 3295 2946 PD 2484 2867 PD 2721 2838 PD 2822 2856 PD 2495 2694 PD 2765 2866 PD 2856 2820 PD 2885 2858 PD 3104 2833 PD 2929 2837 PD 4029 2829 PD 3883 2832 PD 3022 2874 PD 3016 2830 PD 3024 2830 PD 2950 2828 PD 4209 2916 PD 2795 2855 PD 2816 2694 PD 3620 2826 PD 3074 2904 PD 3019 2865 PD 2845 2694 PD 3157 2869 PD 3350 2694 PD 2944 2928 PD 2887 2791 PD 4145 2825 PD 3065 2942 PD 3530 2978 PD 3152 2954 PD 2526 2895 PD 3082 2877 PD 2807 2905 PD 3371 2822 PD 3436 2885 PD 3388 2913 PD 3245 2916 PD 4039 2694 PD 3413 2869 PD 3432 2844 PD 2850 2931 PD 3013 2694 PD 2671 2820 PD 2976 2895 PD 3301 2694 PD 2995 2838 PD 3732 2922 PD 2536 2896 PD 3529 2828 PD 3099 2694 PD 3936 2786 PD 2878 2840 PD 2764 2965 PD 2816 2908 PD 3182 2940 PD 3547 2857 PD 3504 2881 PD 3607 2890 PD 2745 2874 PD 3466 2818 PD 3408 2837 PD 3649 2973 PD 3851 2861 PD 3030 2886 PD 3922 2868 PD 2975 2903 PD 4054 2694 PD 3267 2857 PD 3790 2694 PD 3099 2694 PD 3429 2909 PD 3355 2823 PD 4505 2858 PD 3651 2832 PD 3225 2856 PD 2931 2880 PD 3311 2869 PD 3636 2694 PD 3367 2924 PD 3242 2826 PD 2854 2694 PD 3740 2897 PD 3273 2833 PD 3214 2916 PD 3776 2899 PD 2642 2694 PD 4475 3002 PD 3099 2874 PD 3755 2953 PD 3832 2931 PD 3841 3012 PD 3846 2872 PD 4364 2939 PD 4070 2908 PD 2979 2694 PD 3649 2930 PD 3371 2694 PD 3593 2866 PD 3776 2871 PD 4746 3075 PD 3431 2935 PD 3735 2883 PD 4347 2905 PD 3906 2694 PD 2694 2869 PD 3110 2870 PD 4284 2857 PD 3384 2883 PD 3222 2866 PD 3094 2817 PD 3929 2895 PD 3312 2915 PD 4741 2811 PD 5379 2888 PD 5191 2935 PD 4588 2877 PD 3903 2910 PD 3138 2855 PD 4231 2930 PD 3812 2895 PD 3508 2694 PD 3378 2878 PD 3655 2852 PD 3526 2973 PD 3200 2941 PD 3101 2889 PD 4862 2886 PD 4003 2905 PD 3801 2867 PD 3479 2834 PD 3496 2874 PD 3358 2845 PD 4146 2868 PD 3254 2694 PD 4226 2694 PD 3789 2924 PD 4013 2958 PD 4361 2914 PD 3525 2820 PD 3233 2694 PD 4237 3077 PD 4047 2919 PD 3411 2694 PD 3414 2855 PD 4129 2995 PD 4299 2931 PD 3881 2694 PD 4179 2906 PD 3996 2879 PD 3519 2892 PD 4436 2887 PD 5437 2898 PD 3247 2949 PD 3576 2929 PD 3715 2926 PD 3806 2977 PD 3153 2694 PD 3814 2870 PD 3383 2887 PD 3638 2694 PD 3314 2890 PD 4239 2978 PD 3895 2881 PD 4209 2961 PD 3647 2694 PD 3069 2805 PD 3735 2961 PD 3141 2847 PD 4255 2873 PD 3758 3014 PD 3440 2883 PD 4457 2838 PD 3155 2901 PD 3202 2898 PD 3763 2868 PD 3507 2923 PD 3486 2880 PD 3519 2694 PD 3404 2816 PD 4175 2944 PD 4559 2918 PD 4432 2896 PD 3760 3014 PD 4050 2917 PD 3081 2900 PD 3635 2935 PD 4333 2940 PD 4093 2958 PD 4263 2969 PD 4466 2843 PD 3271 2958 PD 3557 2896 PD 6132 2929 PD 3416 2820 PD 4215 2916 PD 3174 2962 PD 3967 2883 PD 3314 2913 PD 3643 3025 PD 3415 2922 PD 3249 2895 PD 2761 2831 PD 4004 2922 PD 4456 3002 PD 3744 2880 PD 3708 2864 PD 6246 2903 PD 4260 2960 PD 3361 2894 PD 3899 2694 PD 3591 2887 PD 3783 2694 PD 4312 2931 PD 4479 2931 PD 3826 2856 PD 4215 3034 PD 3998 2694 PD 3717 2900 PD 4403 3065 PD 4010 2924 PD 4816 2897 PD 4478 2694 PD 4805 3089 PD 5317 2832 PD 4285 2895 PD 3926 2694 PD 5500 2917 PD 4117 2831 PD 3746 2869 PD 3595 2893 PD 3656 2948 PD 4537 2694 PD 4751 3096 PD 4746 2949 PD 3604 2694 PD 3565 2905 PD 4179 2856 PD 4678 2879 PD 4460 2822 PD 3948 2949 PD 4795 2965 PD 3912 2849 PD 3848 2919 PD 3865 2968 PD 4602 2914 PD 4116 2694 PD 3132 2694 PD 3802 2897 PD 4995 2975 PD 4394 2891 PD 3273 2888 PD 3169 2828 PD 3961 2988 PD 4617 2993 PD 3652 2940 PD 5370 2694 PD 4557 3028 PD 4232 2890 PD 4910 3047 PD 3804 2890 PD 4273 2863 PD 4616 2803 PD 3819 2694 PD 3219 2903 PD 3957 2937 PD 4393 2881 PD 4238 2955 PD 3431 2895 PD 4387 2946 PD 4922 2867 PD 4338 2952 PD 4855 3045 PD 5041 2979 PD 4168 2985 PD 4041 2943 PD 3598 2892 PD 4599 2694 PD 3619 2921 PD 4875 2912 PD 4025 2914 PD 4160 3012 PD 3558 2886 PD 3564 2945 PD 3588 2886 PD 4490 2934 PD 4337 2939 PD 4021 2937 PD 3541 2937 PD 3875 2959 PD 4280 2694 PD 4036 2870 PD 4350 2938 PD 3688 2883 PD 3456 2694 PD 4265 2932 PD 4611 3029 PD 3716 2874 PD 3965 2981 PD 3767 2883 PD 4482 3194 PD 4113 2915 PD 4019 2914 PD 3745 2904 PD 5183 2995 PD 4727 2922 PD 4675 2972 PD 3839 3016 PD 3833 2876 PD 4311 2983 PD 5434 2912 PD 4686 3000 PD 3264 2904 PD 4279 2920 PD 4698 2922 PD 3795 2902 PD 5040 2881 PD 5218 2947 PD 3818 2941 PD 5349 3022 PD 3922 2997 PD 3586 3070 PD 4684 2961 PD 3912 2978 PD 4486 2694 PD 4477 2944 PD 3636 2926 PD 3736 2959 PD 3933 2953 PD 3787 2863 PD 4674 2958 PD 4278 2854 PD 4616 2992 PD 4236 2793 PD 5126 2937 PD 3352 2892 PD 4116 2943 PD 5113 3021 PD 3891 2694 PD 3583 2952 PD 3963 2964 PD 4142 2925 PD 4479 2904 PD 4658 2949 PD 5162 2956 PD 4650 3052 PD 4592 3116 PD 4551 2694 PD 5407 2947 PD 4364 3002 PD 3724 2967 PD 3618 2846 PD 4826 3024 PD 4702 2936 PD 4270 2919 PD 3770 2913 PD 4792 2952 PD 5797 2913 PD 3740 2922 PD 4344 2930 PD 3956 3045 PD 4843 2935 PD 3866 3120 PD 4173 2921 PD 4252 2984 PD 3864 2953 PD 5210 2928 PD 3617 2820 PD 3852 2847 PD 3911 2968 PD 4644 3016 PD 4184 3038 PD 3863 2895 PD 3633 3053 PD 4548 3074 PD 3823 2896 PD 4368 2977 PD 4871 2942 PD 4063 2965 PD 4150 2951 PD 4366 2950 PD 4405 2982 PD 4543 2942 PD 4723 2998 PD 3954 3002 PD 4320 2995 PD 4602 3040 PD 3994 2967 PD 4432 2954 PD 4920 2906 PD 4360 3016 PD 4204 3087 PD 4014 2972 PD 4965 3136 PD 4422 3030 PD 4402 2955 PD 4070 2934 PD 4492 2935 PD 3203 2879 PD 3961 3044 PD 4551 2947 PD 5289 3060 PD 4629 2694 PD 4071 2965 PD 3450 2851 PD 5035 2991 PD 4515 2936 PD 4311 2958 PD 4413 2931 PD 4756 2963 PD 4256 3013 PD 4570 2973 PD 4149 3000 PD 3903 2903 PD 4878 3123 PD 4883 2899 PD 4686 3079 PD 4561 2966 PD 5186 2970 PD 4758 3033 PD 4906 2987 PD 4491 3027 PD 5916 3059 PD 4715 3160 PD 4802 2985 PD 4808 3133 PD 4798 2993 PD 4781 3031 PD 4442 3002 PD 4941 3095 PD 4758 2964 PD 5030 3013 PD 5215 2981 PD 4098 3046 PD 4068 3021 PD 4013 3013 PD 5066 2917 PD 4747 2937 PD 4203 2959 PD 5213 3052 PD 4785 2970 PD 4026 2694 PD 4021 2941 PD 4678 3012 PD 3779 2959 PD 4413 3047 PD 3825 2899 PD 4622 2883 PD 4398 3048 PD 4154 2991 PD 4086 3003 PD 3756 2958 PD 4187 3032 PD 4348 3024 PD 4175 2979 PD 4835 3243 PD 5011 3084 PD 4205 2981 PD 4016 2949 PD 4906 3128 PD 5414 2694 PD 4232 2958 PD 4869 2941 PD 4771 2933 PD 4801 2941 PD 3598 2694 PD 4397 2829 PD 5048 2886 PD 5195 3020 PD 4973 3164 PD 4919 2986 PD 4798 3014 PD 4783 3027 PD 4180 2975 PD 4957 2999 PD 4864 3033 PD 4416 3004 PD 4994 3147 PD 4050 2962 PD 4112 3113 PD 4445 2928 PD 4357 3016 PD 4247 3027 PD 4937 2952 PD 4676 2951 PD 5040 3113 PD 4351 2995 PD 4269 2977 PD 5432 3019 PD 4176 2908 PD 4237 3032 PD 5154 3115 PD 5065 3049 PD 4829 3014 PD 5274 2932 PD 4487 3130 PD 5820 3071 PD 4777 3050 PD 5275 3118 PD 4459 2694 PD 5724 3037 PD 4833 3022 PD 4119 2986 PD 4561 3028 PD 4740 2977 PD 5387 3086 PD 5280 3063 PD 5035 3004 PD 4846 3008 PD 3978 3060 PD 4992 3048 PD 4578 2991 PD 5486 3020 PD 4249 3126 PD 5315 3094 PD 4635 2890 PD 4841 3023 PD 4480 3004 PD 5120 3070 PD 4333 2988 PD 6177 3070 PD 4738 3018 PD 6073 3327 PD 4637 2939 PD 4193 2995 PD 5107 3065 PD 5145 3387 PD 5319 2957 PD 4424 3056 PD 5807 2694 PD 4811 2915 PD 3818 2927 PD 5474 2694 PD 4646 2694 PD 5789 3234 PD 5365 2694 PD 5460 3221 PD 5320 2978 PD 4982 2694 PD 5091 2991 PD 5314 3068 PD 5125 3193 PD 5302 2951 PD 5105 3054 PD 4783 3055 PD 5745 3129 PD 4654 2920 PD 5394 2694 PD 4611 2694 PD 4729 3053 PD 4588 2897 PD 5021 2694 PD 5680 2884 PD 4519 3107 PD 4423 2894 PD 4588 3096 PD 4981 2694 PD 4762 3029 PD 4417 3080 PD 5105 3132 PD 4954 2694 PD 4105 3000 PD 5330 3021 PD 4773 2975 PD 5092 3206 PD 4644 2989 PD 4691 3083 PD 6194 2694 PD 5014 3039 PD 4507 2956 PD 4949 3099 PD 5185 3057 PD 4349 2969 PD 4630 3042 PD 5603 3042 PD 4562 2948 PD 6130 3090 PD 5027 3131 PD 5300 3048 PD 5368 3042 PD 4792 3057 PD 4812 3072 PD 4819 2956 PD 5011 3042 PD 5564 2694 PD 4746 3108 PD 4871 3038 PD 4936 2957 PD 5793 3113 PD 6024 2976 PD 5420 2694 PD 5334 3107 PD 5289 3090 PD 4909 2694 PD 5537 3137 PD 5517 3068 PD 5783 3198 PD 4856 3091 PD 5473 2694 PD 5513 2962 PD 5017 2921 PD 5223 3044 PD 5063 3087 PD 5208 2694 PD 5305 3073 PD 4920 2987 PD 4648 2979 PD 5311 3189 PD 5119 3099 PD 5972 3098 PD 4762 3023 PD 5236 3207 PD 5242 2987 PD 4781 3163 PD 4973 3040 PD 5181 2966 PD 5345 3204 PD 5826 2833 PD 4886 3118 PD 4828 3153 PD 5782 3239 PD 5412 3040 PD 5134 3196 PD 5127 3236 PD 5298 3069 PD 4626 3126 PD 4729 3163 PD 5289 3073 PD 4480 2958 PD 4690 3115 PD 5651 3143 PD 5743 3051 PD 5354 3076 PD 4538 2909 PD 5278 3091 PD 4852 3115 PD 5447 3149 PD 5223 3318 PD 4218 2995 PD 4435 3044 PD 5101 2899 PD 6052 3056 PD 4544 3014 PD 4051 3033 PD 4640 3120 PD 6039 2966 PD 4809 2995 PD 4982 3055 PD 5204 3195 PD 4462 3074 PD 4748 3003 PD 6211 3218 PD 5124 3056 PD 5573 3075 PD 5229 3066 PD 5425 3161 PD 5717 2997 PD 5022 3201 PD 4650 3052 PD 4857 3010 PD 4430 3004 PD 4295 2937 PD 5657 3215 PD 4686 3007 PD 5143 3048 PD 5102 3053 PD 5122 3155 PD 5819 2889 PD 5669 3144 PD 5869 3147 PD 5332 2947 PD 4838 3115 PD 5392 2958 PD 4778 3097 PD 4711 3142 PD 4721 3052 PD 4575 3015 PD 5047 3020 PD 5091 3046 PD 5255 3082 PD 5858 3073 PD 4841 3201 PD 6144 3289 PD 5915 3053 PD 4290 2694 PD 5095 3109 PD 6235 3110 PD 4583 2891 PD 4766 3055 PD 5578 2694 PD 4754 3176 PD 5388 3337 PD 5564 3331 PD 5492 3194 PD 5113 3211 PD 5548 3075 PD 5378 3141 PD 6003 3151 PD 5348 3127 PD 5201 2953 PD 4468 3060 PD 5066 3057 PD 4638 3065 PD 4728 3257 PD 6188 3265 PD 5883 3125 PD 5192 3084 PD 4776 3152 PD 5377 3310 PD 4481 3084 PD 5046 3042 PD 5066 3064 PD 6066 2694 PD 5906 3018 PD 5171 3024 PD 5118 3026 PD 5620 3043 PD 4666 3002 PD 4543 2955 PD 4516 3057 PD 4909 3070 PD 5089 3090 PD 5381 3047 PD 5236 2694 PD 5041 3061 PD 5523 2983 PD 5935 3166 PD 5029 3050 PD 5038 3137 PD 5367 2996 PD 5873 3240 PD 5949 3189 PD 4738 3225 PD 4545 3131 PD 5521 3358 PD 5736 3104 PD 5024 3073 PD 4927 3054 PD 5485 3209 PD 4836 3294 PD 4745 3094 PD 5218 3266 PD 5370 3127 PD 5445 3140 PD 6047 3156 PD 5927 3151 PD 5035 3145 PD 4425 3053 PD 6040 3159 PD 5868 3233 PD 5106 3144 PD 5037 3174 PD 5415 3376 PD 4899 3190 PD 4940 2956 PD 5653 3169 PD 5158 2981 PD 5197 3135 PD 5124 3103 PD 5918 3111 PD 4895 2961 PD 5628 3137 PD 5783 3103 PD 5004 3259 PD 5284 3252 PD 6061 3124 PD 5001 2964 PD 4850 3286 PD 5276 3234 PD 4915 3104 PD 5365 3142 PD 5924 3103 PD 4706 2991 PD 6086 3162 PD 5341 3213 PD 5994 3245 PD 5503 3250 PD 5508 3182 PD 4986 3047 PD 5670 3239 PD 4687 3026 PD 5502 3124 PD 5749 2694 PD 5023 3035 PD 4511 3038 PD 5378 3054 PD 5744 2999 PD 4990 3020 PD 5628 2694 PD 4576 2694 PD 5566 3111 PD 5162 2965 PD 4695 3147 PD 5006 3139 PD 5324 3282 PD 5847 3159 PD 4668 3130 PD 5761 3306 PD 6118 3306 PD 6053 3116 PD 6177 3238 PD 5728 2957 PD 5598 3257 PD 5424 3121 PD 5986 3032 PD 5254 3174 PD 5477 3131 PD 5190 3179 PD 4861 3209 PD 4647 3025 PD 5282 2975 PD 5889 3236 PD 5920 2955 PD 5863 3154 PD 4800 3071 PD 5583 3176 PD 4921 3109 PD 5826 3512 PD 4740 3008 PD 6238 3103 PD 5834 2955 PD 4980 3214 PD 5724 3178 PD 5815 3390 PD 5513 2982 PD 5299 3154 PD 4919 3243 PD 4787 3267 PD 6130 3041 PD 5443 3307 PD 5739 3340 PD 4822 3190 PD 5251 3198 PD 4729 3108 PD 5961 3141 PD 5836 3190 PD 5434 3088 PD 4828 3150 PD 5175 3068 PD 4972 3199 PD 6229 3183 PD 4656 3073 PD 5657 3083 PD 5582 3162 PD gs 899 389 5360 4227 MR c np gr 5554 3228 PD 4630 3107 PD 5741 3074 PD 5335 3157 PD 5216 3081 PD 5123 3026 PD 4858 3150 PD 5997 3054 PD 4627 3160 PD 6045 3166 PD 4958 3079 PD 6161 3041 PD 4771 2694 PD 5302 3115 PD 5243 3167 PD 6164 3266 PD 5225 3097 PD 5177 3243 PD 5480 3292 PD 5653 3314 PD 4664 3079 PD 5722 3073 PD 5289 3269 PD 4957 3234 PD 5436 3182 PD 5623 3129 PD 5508 3303 PD 6110 3140 PD 6052 3178 PD 5999 3094 PD 4998 3119 PD 5923 3148 PD 5998 3119 PD 6071 3175 PD 5869 3140 PD 5767 3261 PD 4902 3231 PD 5500 3214 PD 5724 3367 PD 5760 3273 PD 5942 3106 PD 5744 3473 PD 5595 2999 PD 5804 3289 PD 5655 3070 PD 4631 2976 PD 5572 3278 PD 4880 3169 PD 5594 3405 PD 5411 3306 PD gs 899 389 5360 4227 MR c np gr 5386 3145 PD 5503 3019 PD 5342 3368 PD 5100 3289 PD 5231 3122 PD 5190 3182 PD 4496 3075 PD 5342 3211 PD 4871 3107 PD 5173 3127 PD 6191 3152 PD 5387 3225 PD 4847 3178 PD 5514 3149 PD gs 899 389 5360 4227 MR c np gr 4935 3116 PD 4895 3166 PD 5279 3288 PD 5687 3031 PD 5473 3104 PD 5244 3055 PD gs 899 389 5360 4227 MR c np gr 5546 3308 PD 5658 3319 PD 5468 3512 PD 5596 3047 PD 4977 3059 PD 5332 3197 PD 5021 3295 PD 5169 3305 PD 5762 3140 PD 6008 3432 PD 4853 3072 PD 5065 3342 PD 5690 3280 PD 5594 3432 PD 5354 3298 PD 5548 3222 PD 5108 3155 PD 5963 3405 PD 5686 3274 PD 5806 3023 PD 6059 3567 PD 5140 3529 PD 5222 3474 PD 5465 3150 PD 5223 3141 PD 5379 3294 PD 5729 3327 PD 5325 3166 PD gs 899 389 5360 4227 MR c np gr 5413 3365 PD 5172 3019 PD 6226 3283 PD 5557 3125 PD 4927 3020 PD 5449 2694 PD 6142 3325 PD 5081 3522 PD 4883 3188 PD 5798 3236 PD 6205 3172 PD 5697 3142 PD 5163 3101 PD 5841 3198 PD 5883 3329 PD 4931 3112 PD 5279 2694 PD 5593 2694 PD 5505 3248 PD 4983 3070 PD 5356 3292 PD 4991 3083 PD 6016 3251 PD 4939 3192 PD 5456 3439 PD 4954 3047 PD 5421 3286 PD 5675 3546 PD 5639 3187 PD 5551 3361 PD 5479 3151 PD 5556 3157 PD 5019 3336 PD 5884 3238 PD 5310 3347 PD 5811 3082 PD 5718 3147 PD 4880 3111 PD 5711 3143 PD 5546 3243 PD 6182 3523 PD 5522 3481 PD 5112 3380 PD 5064 3286 PD 5103 3158 PD 5841 3234 PD 5380 3150 PD 5301 3263 PD 5762 3101 PD 5148 3092 PD 5837 3261 PD 5573 3478 PD 5180 3163 PD gs 899 389 5360 4227 MR c np gr 4909 3266 PD 6140 3528 PD 5347 3202 PD 5701 3541 PD 6114 3011 PD 5602 3329 PD 6007 3417 PD 5127 3205 PD 6164 3075 PD 5268 3423 PD 5582 3305 PD 5437 3361 PD 5409 3169 PD 5134 3229 PD 5288 3151 PD 6066 3188 PD 5371 3283 PD 5136 3213 PD 4884 3121 PD 5792 3326 PD 6207 3226 PD 5551 3561 PD 5435 3049 PD 5451 3212 PD 5513 3294 PD 5329 3289 PD 5654 3743 PD 4966 3286 PD 6221 3199 PD 5256 3100 PD 5736 3417 PD 6105 3623 PD gs 899 389 5360 4227 MR c np gr 6108 3040 PD 5539 3090 PD 5940 3606 PD 5382 3103 PD 6082 3291 PD 5823 3302 PD 6222 3359 PD 5562 3068 PD 5091 3135 PD gs 899 389 5360 4227 MR c np gr 5060 3127 PD 5635 3212 PD 5758 3393 PD 5279 3166 PD 5513 3125 PD 6245 3219 PD 5649 3675 PD 5771 3302 PD 6198 3249 PD 5435 3243 PD 5207 3645 PD 5327 3364 PD 5553 2694 PD 5290 3332 PD 4938 3478 PD 5591 3407 PD 5449 3503 PD 5293 3509 PD 5865 3376 PD 5941 3521 PD 5907 3238 PD gs 899 389 5360 4227 MR c np gr 5226 3251 PD 5927 3343 PD 5761 3189 PD 5283 3309 PD 5701 3362 PD gs 899 389 5360 4227 MR c np gr 5311 3490 PD 5270 3289 PD 5365 3170 PD 6014 3270 PD 5323 3588 PD 5977 3359 PD 5511 3249 PD 5398 3265 PD 5206 3486 PD 5662 3243 PD 5611 3447 PD gs 899 389 5360 4227 MR c np gr 5435 3208 PD 5932 3489 PD gs 899 389 5360 4227 MR c np gr 5858 2694 PD 5763 3163 PD 5348 3212 PD 5800 2694 PD 5038 3085 PD 4954 3281 PD 5913 3305 PD 5385 3292 PD 5751 3341 PD 5765 3143 PD 5529 3284 PD 4976 3254 PD 5436 3237 PD 5495 3329 PD 5669 3337 PD 5742 3459 PD 5204 3383 PD 5618 3621 PD 5960 3475 PD 5114 3337 PD 5149 3212 PD 5343 3486 PD 5307 3344 PD 5150 3126 PD 5561 3103 PD 5984 3580 PD 5080 3863 PD 5918 3223 PD 5369 3482 PD 5573 3214 PD 5930 3226 PD 5823 3361 PD 5015 3325 PD 6107 3285 PD 5454 3210 PD 6143 3129 PD 4994 3057 PD 5140 3319 PD 5806 3242 PD 5445 3417 PD 5419 3305 PD 5233 3229 PD 5424 3295 PD 5866 3266 PD 5083 3262 PD 6146 3391 PD 5192 3245 PD 5915 3240 PD 5390 3372 PD 5072 3338 PD gs 899 389 5360 4227 MR c np gr 4680 3295 PD 6097 3354 PD 6082 3488 PD 6110 3244 PD 5321 3549 PD 5196 3399 PD 5811 3401 PD 5492 3198 PD 6036 3174 PD 6015 3224 PD 5023 3277 PD gs 899 389 5360 4227 MR c np gr 5894 3160 PD 5183 3589 PD 5368 3255 PD 5161 3248 PD 5094 3275 PD 5947 3797 PD 5958 3221 PD 5459 3321 PD 5394 3468 PD 5541 3361 PD 4931 3164 PD 5598 3278 PD 6147 3565 PD 5712 3419 PD 4937 3362 PD 5450 3485 PD 5612 3463 PD 5704 3265 PD 5711 3186 PD gs 899 389 5360 4227 MR c np gr 5959 3481 PD 5904 3142 PD 5844 3154 PD 5377 3445 PD 6078 3388 PD 5965 3340 PD 6109 3455 PD 5176 3178 PD 5466 3357 PD 5655 3574 PD 5023 3704 PD 5874 3322 PD 5097 3368 PD 5828 3403 PD 6106 3269 PD 5748 3265 PD 5392 3523 PD 4818 3458 PD 5820 3713 PD 5496 3509 PD 5026 3228 PD 5594 3415 PD 5101 3265 PD 5438 3481 PD 5738 3261 PD 6104 3310 PD 5574 3227 PD 5743 3345 PD 5373 3792 PD 4866 3346 PD 5172 3225 PD 5984 3500 PD 5235 3268 PD gs 899 389 5360 4227 MR c np gr 5887 3229 PD 4853 3278 PD 6190 3681 PD 5176 3183 PD 5737 3382 PD 5452 3316 PD 5373 3496 PD 5567 3225 PD 5722 3268 PD 5247 3549 PD 5661 3243 PD 5717 3169 PD 5197 3192 PD 5526 3216 PD 5435 3187 PD 5145 3257 PD 5541 3274 PD 5684 3292 PD 5772 3720 PD 5703 3583 PD 5796 3237 PD 5619 3339 PD 5368 3348 PD 6090 3323 PD 6226 3118 PD 5959 3425 PD 5421 3232 PD 5352 3302 PD 5658 3276 PD 5633 3218 PD 5853 3366 PD 5733 3578 PD 5725 3295 PD 6245 3373 PD 6146 3300 PD 6252 3296 PD 6041 3487 PD 5429 3309 PD 6100 3354 PD 5393 3306 PD 5230 3286 PD 5966 3799 PD 5564 3397 PD 5152 3130 PD 5267 3599 PD 5566 3604 PD 5763 3651 PD 6026 3464 PD 5084 3277 PD 5760 3376 PD 5184 3106 PD 5944 3332 PD 5356 3608 PD 5995 3226 PD 6083 3153 PD 5297 3281 PD 6037 3479 PD 6068 3508 PD 5352 3378 PD 6257 3304 PD 5594 3446 PD 6227 3764 PD gs 899 389 5360 4227 MR c np gr 5596 3478 PD 5581 3367 PD 5397 3371 PD 5133 3286 PD gs 899 389 5360 4227 MR c np gr 5676 3725 PD 5008 3306 PD 5773 3390 PD 5774 3279 PD 5316 3195 PD 5462 3436 PD 6006 3449 PD 5702 3281 PD 5748 3349 PD 5580 3350 PD 5596 3546 PD 6162 3296 PD 5642 3311 PD 5344 3501 PD 5874 3712 PD 5967 3432 PD 5791 3418 PD 5871 3258 PD 5917 3904 PD 5783 3313 PD 5813 3278 PD 6012 3323 PD 5081 3414 PD 5239 3290 PD 5175 3579 PD 5273 3300 PD 5384 3469 PD 5681 3533 PD 5699 3368 PD 5402 3264 PD 6086 3444 PD 5324 3361 PD 5954 3134 PD 5860 3406 PD 5788 3434 PD 5692 3712 PD 5556 3375 PD 5860 3898 PD 5765 3669 PD gs 899 389 5360 4227 MR c np gr 5747 3450 PD 5178 3384 PD 6216 3528 PD 5920 3330 PD 5490 3211 PD 5685 3931 PD 5652 3721 PD 5314 3643 PD 5930 3357 PD 5991 3425 PD 5227 3737 PD 6109 3290 PD gs 899 389 5360 4227 MR c np gr 5271 3575 PD 5508 3366 PD 5507 3474 PD 5478 3507 PD 5761 3428 PD 5218 3373 PD 5053 3543 PD 5161 3502 PD 5217 3510 PD 5635 3491 PD 4898 3385 PD 5554 3466 PD 5891 3444 PD 5823 3576 PD gs 899 389 5360 4227 MR c np gr 5738 3239 PD 5115 3819 PD 5680 3364 PD 4978 3189 PD 5803 3504 PD 5880 3500 PD 5069 3563 PD 5601 3623 PD 5626 3315 PD 5968 3295 PD 6226 3462 PD 5615 3562 PD 6221 3496 PD 5861 3483 PD 5791 3157 PD gs 899 389 5360 4227 MR c np gr 6069 3178 PD 5555 3274 PD 5162 3349 PD 5140 3528 PD 5853 3491 PD 5569 3591 PD gs 899 389 5360 4227 MR c np 6 w 318 -29 466 -61 466 -143 466 -225 466 -269 466 -167 466 -106 466 -111 466 -75 466 -122 466 -73 466 -448 466 0 466 0 541 2694 15 MP stroke 318 29 466 60 466 1 466 96 466 132 466 74 466 53 466 36 466 32 466 44 466 26 466 70 466 0 466 0 541 2694 15 MP stroke gr 6 w 3435 4944 mt (Stdv) s 446 3501 mt -90 rotate (Relative errors in log-likelihood) s 90 rotate end eplot epage end showpage %%EndDocument endTexFig 15 1829 a Fr(Figure)e(4:)k(Noisy-OR)c(net)o(w)o(ork.)18 b(Accuracy)c(of)f(the)g(b)q(ounds)15 1874 y(for)i(8)g(b)o(y)g(8)g(t)o (w)o(o-lev)o(el)f(net)o(w)o(orks.)23 b(The)16 b(solid)e(lines)i(are)f (the)15 1920 y(median)h(relativ)o(e)h(errors)i(in)e(log-lik)o(eliho)q (o)q(d)e(as)i(a)g(function)15 1966 y(of)12 b Fl(\033)85 1972 y Fj(std)132 1966 y Fr(.)17 b(The)c(upp)q(er)g(and)f(lo)o(w)o(er)g (curv)o(es)i(corresp)q(ond)f(to)f(the)15 2011 y(upp)q(er)j(and)f(lo)o (w)o(er)f(b)q(ounds)h(resp)q(ectiv)o(ely)m(.)15 2177 y Fp(4)56 b(DISCUSSION)19 b(AND)g(FUTURE)99 2235 y(W)n(ORK)15 2336 y Fr(Applying)i(probabilistic)g(metho)q(ds)g(to)h(real)g(w)o(orld) f(infer-)15 2382 y(ence)g(problems)f(can)g(lead)g(to)g(the)g(emergence) h(of)f(cliques)15 2428 y(that)e(are)g(prohibitiv)o(ely)e(large)h(for)h (exact)g(algorithms)d(\(for)p 15 2477 250 2 v 67 2504 a Fd(9)84 2520 y Fn(The)i(sligh)o(t)h(unev)o(enness)h(of)e(the)f (samples)j(are)e(due)g(to)g(the)15 2562 y(non-linear)f(relationship)h (b)q(et)o(w)o(een)d(the)g(Diric)o(hlet)j(parameter)d Fc(\036)15 2603 y Fn(and)g Fc(\033)112 2607 y Fb(std)156 2603 y Fn(.)52 2632 y Fd(10)84 2648 y Fn(The)f(errors)g(are)g(for)g (the)g(w)o(orst)g(case)g(marginal,)i(i.e.,)e(for)15 2689 y Fc(P)5 b Fn(\()p Fa(f)p Fc(S)102 2693 y Fb(i)126 2689 y Fn(=)11 b(1)p Fa(g)205 2693 y Fb(i)p Fo(2)p Fb(L)258 2698 y Ff(1)276 2689 y Fn(\).)52 2718 y Fd(11)84 2733 y Fn(The)16 b(8)f(b)o(y)h(8)f(net)o(w)o(ork)h(is)g(to)q(o)g(small)g(to) g(b)q(e)g(in)g(the)f(desired)15 2775 y(asymptotic)g(regime.)1149 0 y 12731173 9946231 3354869 12959006 36508876 38811238 startTexFig 1149 0 a %%BeginDocument: ../uai96/figures/nor-scale.eps /MathWorks 150 dict begin /bdef {bind def} bind def /ldef {load def} bind def /xdef {exch def} bdef /xstore {exch store} bdef /c /clip ldef /cc /concat ldef /cp /closepath ldef /gr /grestore ldef /gs /gsave ldef /mt /moveto ldef /np /newpath ldef /cm /currentmatrix ldef /sm /setmatrix ldef /rc {rectclip} bdef /rf {rectfill} bdef /rm /rmoveto ldef /rl /rlineto ldef /s /show ldef /sc {setcmykcolor} bdef /sr /setrgbcolor ldef /w /setlinewidth ldef /j /setlinejoin ldef /cap /setlinecap ldef /pgsv () def /bpage {/pgsv save def} bdef /epage {pgsv restore} bdef /bplot /gsave ldef /eplot {stroke grestore} bdef /portraitMode 0 def /landscapeMode 1 def /dpi2point 0 def /FontSize 0 def /FMS { /FontSize xstore %save size off stack findfont [FontSize 0 0 FontSize neg 0 0] makefont setfont }bdef /reencode { exch dup where {pop load} {pop StandardEncoding} ifelse exch dup 3 1 roll findfont dup length dict begin { 1 index /FID ne {def}{pop pop} ifelse } forall /Encoding exch def currentdict end definefont pop } bdef /isroman { findfont /CharStrings get /Agrave known } bdef /FMSR { 3 1 roll 1 index dup isroman {reencode} {pop pop} ifelse exch FMS } bdef /csm { 1 dpi2point div -1 dpi2point div scale neg translate landscapeMode eq {90 rotate} if } bdef /SO { [] 0 setdash } bdef /DO { [.5 dpi2point mul 4 dpi2point mul] 0 setdash } bdef /DA { [6 dpi2point mul] 0 setdash } bdef /DD { [.5 dpi2point mul 4 dpi2point mul 6 dpi2point mul 4 dpi2point mul] 0 setdash } bdef /L { lineto stroke } bdef /MP { 3 1 roll moveto 1 sub {rlineto} repeat } bdef /AP { {rlineto} repeat } bdef /PP { closepath fill } bdef /DP { closepath stroke } bdef /MR { 4 -2 roll moveto dup 0 exch rlineto exch 0 rlineto neg 0 exch rlineto closepath } bdef /FR { MR stroke } bdef /PR { MR fill } bdef /L1i { { currentfile picstr readhexstring pop } image } bdef /tMatrix matrix def /MakeOval { newpath tMatrix currentmatrix pop translate scale 0 0 1 0 360 arc tMatrix setmatrix } bdef /FO { MakeOval stroke } bdef /PO { MakeOval fill } bdef /PD { 2 copy moveto lineto stroke } bdef currentdict end def MathWorks begin 0 cap end MathWorks begin bpage bplot /dpi2point 12 def portraitMode 0216 7344 csm 396 260 6051 4716 MR c np 76 dict begin %Colortable dictionary /c0 { 0 0 0 sr} bdef /c1 { 1 1 1 sr} bdef /c2 { 1 0 0 sr} bdef /c3 { 0 1 0 sr} bdef /c4 { 0 0 1 sr} bdef /c5 { 1 1 0 sr} bdef /c6 { 1 0 1 sr} bdef /c7 { 0 1 1 sr} bdef /Helvetica /ISOLatin1Encoding 144 FMSR 1 j c1 0 0 6917 5187 PR 6 w DO 4 w SO 6 w c0 899 4615 mt 6258 4615 L 899 389 mt 6258 389 L 899 4615 mt 899 389 L 6258 4615 mt 6258 389 L 899 4615 mt 899 4615 L 6258 4615 mt 6258 4615 L 899 4615 mt 6258 4615 L 899 4615 mt 899 389 L 899 4615 mt 899 4615 L 899 4615 mt 899 4561 L 899 389 mt 899 443 L 859 4784 mt (0) s 1494 4615 mt 1494 4561 L 1494 389 mt 1494 443 L 1354 4784 mt (0.01) s 2090 4615 mt 2090 4561 L 2090 389 mt 2090 443 L 1950 4784 mt (0.02) s 2685 4615 mt 2685 4561 L 2685 389 mt 2685 443 L 2545 4784 mt (0.03) s 3281 4615 mt 3281 4561 L 3281 389 mt 3281 443 L 3141 4784 mt (0.04) s 3876 4615 mt 3876 4561 L 3876 389 mt 3876 443 L 3736 4784 mt (0.05) s 4472 4615 mt 4472 4561 L 4472 389 mt 4472 443 L 4332 4784 mt (0.06) s 5067 4615 mt 5067 4561 L 5067 389 mt 5067 443 L 4927 4784 mt (0.07) s 5663 4615 mt 5663 4561 L 5663 389 mt 5663 443 L 5523 4784 mt (0.08) s 6258 4615 mt 6258 4561 L 6258 389 mt 6258 443 L 6118 4784 mt (0.09) s 899 4615 mt 953 4615 L 6258 4615 mt 6204 4615 L 784 4668 mt (0) s 899 4192 mt 953 4192 L 6258 4192 mt 6204 4192 L 584 4245 mt (0.01) s 899 3770 mt 953 3770 L 6258 3770 mt 6204 3770 L 584 3823 mt (0.02) s 899 3347 mt 953 3347 L 6258 3347 mt 6204 3347 L 584 3400 mt (0.03) s 899 2925 mt 953 2925 L 6258 2925 mt 6204 2925 L 584 2978 mt (0.04) s 899 2502 mt 953 2502 L 6258 2502 mt 6204 2502 L 584 2555 mt (0.05) s 899 2079 mt 953 2079 L 6258 2079 mt 6204 2079 L 584 2132 mt (0.06) s 899 1657 mt 953 1657 L 6258 1657 mt 6204 1657 L 584 1710 mt (0.07) s 899 1234 mt 953 1234 L 6258 1234 mt 6204 1234 L 584 1287 mt (0.08) s 899 812 mt 953 812 L 6258 812 mt 6204 812 L 584 865 mt (0.09) s 899 389 mt 953 389 L 6258 389 mt 6204 389 L 664 442 mt (0.1) s 899 4615 mt 6258 4615 L 899 389 mt 6258 389 L 899 4615 mt 899 389 L 6258 4615 mt 6258 389 L 899 389 mt 899 389 L 6258 389 mt 6258 389 L gs 899 389 5360 4227 MR c np 984 -627 895 -894 789 -835 684 -608 579 -415 474 -335 368 -270 263 -195 158 -253 952 4432 10 MP stroke gr 530 3402 mt -90 rotate (Relative error in log-bounds) s 90 rotate gs 899 389 5360 4227 MR c np DA 152 -220 1000 -1336 895 -969 789 -650 684 -436 579 -374 474 -221 368 -145 263 -102 158 -82 952 4535 11 MP stroke DO 1000 -1517 895 -991 789 -700 684 -459 579 -297 474 -179 368 -97 263 -56 158 -34 952 4585 10 MP stroke gr DO SO end eplot epage end showpage %%EndDocument endTexFig 1065 717 a Fr(Figure)i(5:)23 b(Noisy-OR)17 b(net)o(w)o(ork.)26 b(Median)17 b(relativ)o(e)g(errors)1065 763 y(b)q(et)o(w)o(een)12 b(the)g(upp)q(er)g(and)f(lo)o(w)o(er)g(b)q(ounds)g(\(in)g(log)f (scale\))i(as)f(a)1065 808 y(function)i(of)1273 779 y Ft(p)p 1308 779 25 2 v 29 x Fl(n=\036)g Fr(for)f Fl(n)h Fr(b)o(y)g Fl(n)g Fr(t)o(w)o(o-lev)o(el)g(net)o(w)o(orks.)18 b(Solid)1065 854 y(line:)f Fl(n)11 b Fr(=)h(8;)g(dashed)i(line:)j Fl(n)11 b Fr(=)h(32;)g(dotted)h(line:)k Fl(n)11 b Fr(=)h(128.)1065 983 y(example,)k(in)g(medical)f(diagnosis\).)25 b(W)m(e)16 b(fo)q(cused)i(on)e(deal-)1065 1028 y(ing)g(with)h(suc)o(h)h(large)f (\(sub\)structures)j(in)d(the)h(con)o(text)g(of)1065 1074 y(sigmoid)c(b)q(elief)i(net)o(w)o(orks)i(and)e(noisy-OR)g(net)o(w) o(orks.)26 b(F)m(or)1065 1120 y(these)19 b(net)o(w)o(orks)g(w)o(e)f (dev)o(elop)q(ed)g(tec)o(hniques)i(for)d(comput-)1065 1165 y(ing)11 b(upp)q(er)i(and)f(lo)o(w)o(er)g(b)q(ounds)g(on)g (marginal)d(probabilities.)1065 1211 y(The)k(b)q(ounds)h(serv)o(e)g(as) f(an)g(alternativ)o(e)g(to)f(sampling)f(meth-)1065 1257 y(o)q(ds)20 b(in)f(the)i(presence)h(of)d(in)o(tractable)h(structures.) 39 b(They)1065 1302 y(can)16 b(de\014ne)h(in)o(terv)n(al)e(b)q(ounds)i (for)f(the)g(marginals)e(and)i(can)1065 1348 y(b)q(e)d(used)g(to)f (impro)o(v)o(e)f(the)i(accuracy)g(of)f(decision)h(making)c(in)1065 1394 y(in)o(tractable)14 b(net)o(w)o(orks.)1065 1464 y(T)m(o)o(w)o(ard)19 b(extending)i(the)g(w)o(ork)f(presen)o(ted)i(in)e (this)g(pap)q(er)1065 1510 y(w)o(e)f(note)h(that)f(b)q(oth)g(the)h(upp) q(er)g(and)f(lo)o(w)o(er)g(b)q(ounds)h(can)1065 1556 y(b)q(e)k(impro)o(v)o(ed)e(b)o(y)h(considering)h(a)f(mixture)f (partitioning)1065 1601 y(\(Jaakk)o(ola)9 b(&)h(Jordan,)g(1996\))f(of)g (the)i(space)g(of)e(marginalized)1065 1647 y(v)n(ariables)15 b(instead)h(of)f(using)g(a)h(completely)e(factorized)i(ap-)1065 1693 y(pro)o(ximation.)e(F)m(urthermore,)c(the)g(restriction)h(of)e (the)i(upp)q(er)1065 1738 y(b)q(ounds)g(for)g(t)o(w)o(o-lev)o(el)f(net) o(w)o(orks)h(can)g(b)q(e)h(o)o(v)o(ercome,)e(for)h(ex-)1065 1784 y(ample,)h(b)o(y)i(in)o(terlacing)g(them)f(with)h(sampling)e(tec)o (hniques,)1065 1830 y(although)d(other)h(extensions)h(ma)o(y)d(b)q(e)i (p)q(ossible)g(as)g(w)o(ell.)16 b(F)m(ol-)1065 1875 y(lo)o(wing)f(Saul) h(&)h(Jordan)f(\(1996\))g(w)o(e)h(ma)o(y)d(also)i(merge)g(the)1065 1921 y(obtained)i(b)q(ounds)h(with)f(exact)h(metho)q(ds)f(whenev)o(er)h (they)1065 1967 y(are)14 b(feasible.)1065 2085 y Fp(Ac)n(kno)n (wledgmen)n(ts)1065 2181 y Fr(The)g(authors)g(wish)g(to)g(thank)g(L.)f (K.)g(Saul)h(and)f(the)i(anon)o(y-)1065 2227 y(mous)d(review)o(ers)i (for)f(helpful)f(commen)o(ts)f(and)i(suggestions.)1065 2345 y Fp(References)1065 2424 y Fr(P)m(.)j(Da)o(y)o(an,)g(G.)f(Hin)o (ton,)i(R.)e(Neal,)i(and)f(R.)g(Zemel)g(\(1995\).)1065 2470 y(The)e(Helmholtz)e(mac)o(hine.)17 b Fq(Neur)n(al)d(Computation)g Fs(7)p Fr(:)k(889-)1065 2515 y(904.)1065 2577 y(P)m(.)f(Dagum)f(and)i (M.)f(Lub)o(y)h(\(1993\).)30 b(Appro)o(ximate)16 b(prob-)1065 2622 y(abilistic)f(reasoning)g(in)h(Ba)o(y)o(esian)f(b)q(elief)h(net)o (w)o(orks)g(is)g(NP-)1065 2668 y(hard.)i Fq(A)o(rti\014cial)c(Intel)r (ligenc)n(e)g Fs(60)p Fr(:)j(141-153.)1065 2729 y(B.)h(D'Am)o(brosio)e (\(1994\).)31 b(Sym)o(b)q(olic)17 b(probabilistic)g(infer-)1065 2775 y(ence)j(in)f(large)f(BN20)h(net)o(w)o(orks.)34 b(In)19 b Fq(Pr)n(o)n(c)n(e)n(e)n(dings)g(of)h(the)p eop %%Page: 8 8 8 7 bop 15 42 a Fq(T)m(enth)16 b(Confer)n(enc)n(e)f(on)h(Unc)n (ertainty)g(in)f(A)o(rti\014cial)g(Intel)r(li-)15 87 y(genc)n(e.)k(Mor)n(gan)d(Kaufmann.)15 149 y Fr(G.)j(Hin)o(ton,)i(P)m (.)e(Da)o(y)o(an,)h(B.)g(F)m(rey)m(,)g(and)g(R.)f(Neal)h(\(1995\).)15 195 y(The)12 b(w)o(ak)o(e-sleep)f(algorithm)e(for)i(unsup)q(ervised)i (neural)f(net-)15 240 y(w)o(orks.)18 b Fq(Scienc)n(e)d Fs(268)p Fr(:)i(1158-1161.)15 302 y(D.)11 b(Hec)o(k)o(erman)g (\(1989\).)17 b(A)11 b(tractable)i(inference)g(algorithm)15 348 y(for)g(diagnosing)f(m)o(ultiple)e(diseases.)20 b(In)13 b Fq(Pr)n(o)n(c)n(e)n(e)n(dings)h(of)g(the)15 394 y(Fifth)k(Confer)n (enc)n(e)g(on)h(Unc)n(ertainty)f(in)h(A)o(rti\014cial)e(Intel)r(li-)15 439 y(genc)n(e.)i(Mor)n(gan)d(Kaufmann.)15 501 y Fr(T.)21 b(Jaakk)o(ola,)f(L.)h(Saul,)h(and)e(M.)h(Jordan)g(\(1996\).)39 b(F)m(ast)15 547 y(learning)10 b(b)o(y)g(b)q(ounding)f(lik)o(eliho)q(o) q(ds)g(in)h(sigmoid-t)o(yp)q(e)e(b)q(elief)15 593 y(net)o(w)o(orks.)23 b(T)m(o)14 b(app)q(ear)i(in)f Fq(A)n(dvanc)n(es)i(of)f(Neur)n(al)f (Informa-)15 638 y(tion)g(Pr)n(o)n(c)n(essing)g(Systems)g(8.)k(MIT)c (Pr)n(ess)p Fr(.)15 700 y(T.)10 b(Jaakk)o(ola)g(and)h(M.)f(Jordan)h (\(1996\).)17 b(Mixture)11 b(mo)q(del)e(ap-)15 746 y(pro)o(ximations)e (for)i(b)q(elief)h(net)o(w)o(orks.)17 b(Man)o(uscript)10 b(in)g(prepa-)15 792 y(ration.)15 854 y(F.)g(V.)f(Jensen,)k(S.)c(L.)h (Lauritzen,)h(and)f(K.)g(G.)f(Olesen)i(\(1990\).)15 899 y(Ba)o(y)o(esian)i(up)q(dating)g(in)f(causal)h(probabilistic)f(net)o(w) o(orks)i(b)o(y)15 945 y(lo)q(cal)19 b(computations.)34 b Fq(Computational)21 b(Statistics)e(Quar-)15 991 y(terly)13 b Fs(4)p Fr(:)18 b(269-282.)15 1053 y(S.)g(L.)h(Lauritzen)g(and)g(D.)f (J.)h(Spiegelhalter)g(\(1988\).)32 b(Lo-)15 1098 y(cal)10 b(computations)f(with)g(probabilities)h(on)g(graphical)f(struc-)15 1144 y(tures)14 b(and)f(their)h(application)e(to)h(exp)q(ert)h (systems.)k Fq(J.)c(R)n(oy.)15 1190 y(Statist.)k(So)n(c.)i(B)14 b Fs(50)p Fr(:154-227.)15 1252 y(P)m(.)f(McCullagh)g(&)i(J.)f(A.)f (Nelder)i(\(1983\).)j Fq(Gener)n(alize)n(d)c(lin-)15 1297 y(e)n(ar)h(mo)n(dels)p Fr(.)i(London:)h(Chapman)12 b(and)i(Hall.)15 1359 y(R.)21 b(Neal.)43 b(Connectionist)22 b(learning)g(of)f(b)q(elief)h(net)o(w)o(orks)15 1405 y(\(1992\).)17 b Fq(A)o(rti\014cial)d(Intel)r(ligenc)n(e)g Fs(56)p Fr(:)j(71-113.)15 1467 y(J.)e(P)o(earl)f(\(1988\).)20 b Fq(Pr)n(ob)n(abilistic)15 b(R)n(e)n(asoning)i(in)e(Intel)r(ligent)15 1512 y(Systems)p Fr(.)j(Morgan)c(Kaufmann:)i(San)e(Mateo.)15 1574 y(L.)21 b(K.)g(Saul,)i(T.)e(Jaakk)o(ola,)g(and)g(M.)g(I.)g(Jordan) h(\(1996\).)15 1620 y(Mean)17 b(\014eld)f(theory)i(for)e(sigmoid)e(b)q (elief)i(net)o(w)o(orks.)27 b Fq(JAIR)15 1666 y Fs(4)p Fr(:)18 b(61-76.)15 1728 y(L.)g(Saul)f(and)h(M.)g(Jordan)g(\(1996\).)31 b(Exploiting)16 b(tractable)15 1773 y(substructures)22 b(in)c(in)o(tractable)g(net)o(w)o(orks.)33 b(T)m(o)17 b(app)q(ear)i(in)15 1819 y Fq(A)n(dvanc)n(es)j(of)f(Neur)n(al)g (Information)g(Pr)n(o)n(c)n(essing)g(Systems)15 1865 y(8.)e(MIT)c(Pr)n(ess)p Fr(.)15 1927 y(M.)d(A.)f(Sh)o(w)o(e,)i(B.)f (Middleton,)f(D.)g(E.)h(Hec)o(k)o(erman,)g(M.)g(Hen-)15 1972 y(rion,)20 b(E.)g(J.)g(Horvitz.)36 b(H.)19 b(P)m(.)g(Lehmann,)h (G.)f(F.)g(Co)q(op)q(er)15 2018 y(\(1991\).)26 b(Probabilistic)16 b(diagnosis)g(using)h(a)f(reform)o(ulation)15 2064 y(of)j(the)h (INTERNIST-1/QMR)f(kno)o(wledge)g(base.)35 b Fq(Meth.)15 2109 y(Inform.)19 b(Me)n(d.)f Fs(30)p Fr(:)g(241-255.)15 2228 y Fp(A)56 b(SIGMOID)19 b(TRANSF)n(ORMA)-5 b(TION)15 2325 y Fr(Here)17 b(w)o(e)g(deriv)o(e)f(and)g(discuss)h(the)g(follo)o (wing)d(transforma-)15 2371 y(tion:)204 2430 y Fl(g)q Fr(\()p Fl(x)p Fr(\))e(=)400 2402 y(1)p 342 2420 138 2 v 342 2458 a(1)d(+)g Fl(e)432 2446 y Fe(\000)p Fj(x)496 2430 y Fr(=)27 b(min)540 2458 y Fj(\030)q Fe(2)p Fk([0)p Fj(;)p Fk(1])647 2430 y Fl(e)666 2412 y Fj(\030)q(x)p Fe(\000)p Fj(H)r Fk(\()p Fj(\030)q Fk(\))15 2518 y Fr(Although)14 b(a)h(pro)q(of)f(b)o(y)h(hindsigh)o(t)f(w)o(ould)g(b)q(e)i(shorter)g (than)15 2564 y(a)g(direct)h(deriv)n(ation)f(w)o(e)g(presen)o(t)i(the)g (deriv)n(ation)d(for)h(it)g(is)15 2610 y(more)i(informativ)o(e.)31 b(T)m(o)18 b(this)h(end,)h(let)f(us)h(switc)o(h)f(to)g(log)15 2655 y(scale)14 b(and)g(consider)73 2729 y Ft(\000)7 b Fr(log)o(\(1)j(+)f Fl(e)272 2712 y Fe(\000)p Fj(x)319 2729 y Fr(\))j(=)g Ft(\000)7 b Fr(log)525 2689 y Fi(X)491 2780 y Fj(m)p Fe(2f)p Fk(0)p Fj(;)p Fk(1)p Fe(g)626 2729 y Fl(e)645 2712 y Fe(\000)p Fj(mx)1164 61 y Fr(=)42 b Ft(\000)7 b Fr(log)1372 22 y Fi(X)1338 113 y Fj(m)p Fe(2f)p Fk(0)p Fj(;)p Fk(1)p Fe(g)1473 61 y Fl(\030)1493 44 y Fj(m)1525 61 y Fr(\(1)i Ft(\000)h Fl(\030)r Fr(\))1649 44 y Fk(1)p Fe(\000)p Fj(m)1805 33 y Fl(e)1824 18 y Fe(\000)p Fj(mx)p 1728 52 250 2 v 1728 90 a Fl(\030)1748 78 y Fj(m)1779 90 y Fr(\(1)g Ft(\000)f Fl(\030)r Fr(\))1903 78 y Fk(1)p Fe(\000)p Fj(m)1164 202 y Fr(=)42 b Ft(\000)7 b Fr(log)g Fl(E)r Ft(f)1473 174 y Fl(e)1492 159 y Fe(\000)p Fj(mx)p 1396 192 V 1396 230 a Fl(\030)1416 218 y Fj(m)1448 230 y Fr(\(1)i Ft(\000)h Fl(\030)r Fr(\))1572 218 y Fk(1)p Fe(\000)p Fj(m)1651 202 y Ft(g)1164 318 y(\024)42 b Fl(E)r Ft(f\000)7 b Fr(log)1473 290 y Fl(e)1492 275 y Fe(\000)p Fj(mx)p 1396 309 V 1396 347 a Fl(\030)1416 335 y Fj(m)1448 347 y Fr(\(1)i Ft(\000)h Fl(\030)r Fr(\))1572 335 y Fk(1)p Fe(\000)p Fj(m)1651 318 y Ft(g)1164 405 y Fr(=)42 b Fl(\030)r(x)9 b Fr(+)h Fl(\030)e Fr(log)f Fl(\030)k Fr(+)f(\(1)f Ft(\000)g Fl(\030)r Fr(\))e(log\(1)i Ft(\000)h Fl(\030)r Fr(\))1164 463 y(=)42 b Fl(\030)r(x)9 b Ft(\000)h Fl(H)s Fr(\()p Fl(\030)r Fr(\))1065 531 y(whic)o(h)22 b(follo)o(ws)e(from)g(in)o (terpreting)j Fl(\030)1698 516 y Fj(m)1730 531 y Fr(\(1)14 b Ft(\000)h Fl(\030)r Fr(\))1864 516 y Fk(1)p Fe(\000)p Fj(m)1960 531 y Fr(as)22 b(a)1065 576 y(probabilit)o(y)e(mass)h(for)g Fl(m)h Fr(and)g(from)e(an)h(application)g(of)1065 622 y(Jensen's)16 b(inequalit)o(y)m(.)j(By)14 b(actually)g(p)q(erforming)f (the)i(mini-)1065 668 y(mization)7 b(o)o(v)o(er)j Fl(\030)h Fr(giv)o(es)e Fl(\030)1462 653 y Fe(\003)1493 668 y Fr(=)j Fl(g)q Fr(\()p Ft(\000)p Fl(x)p Fr(\))d(and)h(leads)f(to)g(an)g(equal-) 1065 713 y(it)o(y)17 b(instead)i(of)e(a)g(b)q(ound.)31 b(The)18 b(geometry)f(of)g(the)i(b)q(ound)1065 759 y(when)c Fl(\030)h Fr(is)e(k)o(ept)g(\014xed)h(for)f(all)f Fl(x)g Fr(is)h(illustrated)g(in)g(\014gure)h(6.)1065 805 y(The)e(v)n(alue)f (of)g Fl(x)g Fr(for)g(whic)o(h)h(the)g(c)o(hosen)g Fl(\030)i Fr(is)d(optimal)e(is)i(the)1065 850 y(p)q(oin)o(t)h(where)i(the)g(b)q (ound)f(is)g(exact.)1065 921 y(W)m(e)g(\014nally)f(note)i(that)g(the)g (ab)q(o)o(v)o(e)f(transformation)f(can)h(b)q(e)1065 967 y(understo)q(o)q(d)h(as)f(a)g(t)o(yp)q(e)g(of)f(Legendre)j (transformation.)1162 1022 y 12333325 9946231 4802068 13814169 35916840 38811238 startTexFig 1162 1022 a %%BeginDocument: ../uai96/figures/sig-trans.eps /MathWorks 150 dict begin /bdef {bind def} bind def /ldef {load def} bind def /xdef {exch def} bdef /xstore {exch store} bdef /c /clip ldef /cc /concat ldef /cp /closepath ldef /gr /grestore ldef /gs /gsave ldef /mt /moveto ldef /np /newpath ldef /cm /currentmatrix ldef /sm /setmatrix ldef /rc {rectclip} bdef /rf {rectfill} bdef /rm /rmoveto ldef /rl /rlineto ldef /s /show ldef /sc {setcmykcolor} bdef /sr /setrgbcolor ldef /w /setlinewidth ldef /j /setlinejoin ldef /cap /setlinecap ldef /pgsv () def /bpage {/pgsv save def} bdef /epage {pgsv restore} bdef /bplot /gsave ldef /eplot {stroke grestore} bdef /portraitMode 0 def /landscapeMode 1 def /dpi2point 0 def /FontSize 0 def /FMS { /FontSize xstore %save size off stack findfont [FontSize 0 0 FontSize neg 0 0] makefont setfont }bdef /reencode { exch dup where {pop load} {pop StandardEncoding} ifelse exch dup 3 1 roll findfont dup length dict begin { 1 index /FID ne {def}{pop pop} ifelse } forall /Encoding exch def currentdict end definefont pop } bdef /isroman { findfont /CharStrings get /Agrave known } bdef /FMSR { 3 1 roll 1 index dup isroman {reencode} {pop pop} ifelse exch FMS } bdef /csm { 1 dpi2point div -1 dpi2point div scale neg translate landscapeMode eq {90 rotate} if } bdef /SO { [] 0 setdash } bdef /DO { [.5 dpi2point mul 4 dpi2point mul] 0 setdash } bdef /DA { [6 dpi2point mul] 0 setdash } bdef /DD { [.5 dpi2point mul 4 dpi2point mul 6 dpi2point mul 4 dpi2point mul] 0 setdash } bdef /L { lineto stroke } bdef /MP { 3 1 roll moveto 1 sub {rlineto} repeat } bdef /AP { {rlineto} repeat } bdef /PP { closepath fill } bdef /DP { closepath stroke } bdef /MR { 4 -2 roll moveto dup 0 exch rlineto exch 0 rlineto neg 0 exch rlineto closepath } bdef /FR { MR stroke } bdef /PR { MR fill } bdef /L1i { { currentfile picstr readhexstring pop } image } bdef /tMatrix matrix def /MakeOval { newpath tMatrix currentmatrix pop translate scale 0 0 1 0 360 arc tMatrix setmatrix } bdef /FO { MakeOval stroke } bdef /PO { MakeOval fill } bdef /PD { 2 copy moveto lineto stroke } bdef currentdict end def MathWorks begin 0 cap end MathWorks begin bpage bplot /dpi2point 12 def portraitMode 0216 7344 csm 662 260 5685 4557 MR c np 76 dict begin %Colortable dictionary /c0 { 0 0 0 sr} bdef /c1 { 1 1 1 sr} bdef /c2 { 1 0 0 sr} bdef /c3 { 0 1 0 sr} bdef /c4 { 0 0 1 sr} bdef /c5 { 1 1 0 sr} bdef /c6 { 1 0 1 sr} bdef /c7 { 0 1 1 sr} bdef /Helvetica /ISOLatin1Encoding 144 FMSR 1 j c1 0 0 6917 5187 PR 6 w DO 4 w SO 6 w c0 899 4615 mt 6258 4615 L 899 389 mt 6258 389 L 899 4615 mt 899 389 L 6258 4615 mt 6258 389 L 899 4615 mt 899 4615 L 6258 4615 mt 6258 4615 L 899 4615 mt 6258 4615 L 899 4615 mt 899 389 L 899 4615 mt 899 4615 L 899 4615 mt 899 4561 L 899 389 mt 899 443 L 775 4784 mt (-3) s 1792 4615 mt 1792 4561 L 1792 389 mt 1792 443 L 1668 4784 mt (-2) s 2685 4615 mt 2685 4561 L 2685 389 mt 2685 443 L 2561 4784 mt (-1) s 3579 4615 mt 3579 4561 L 3579 389 mt 3579 443 L 3539 4784 mt (0) s 4472 4615 mt 4472 4561 L 4472 389 mt 4472 443 L 4432 4784 mt (1) s 5365 4615 mt 5365 4561 L 5365 389 mt 5365 443 L 5325 4784 mt (2) s 6258 4615 mt 6258 4561 L 6258 389 mt 6258 443 L 6218 4784 mt (3) s 899 4615 mt 953 4615 L 6258 4615 mt 6204 4615 L 784 4668 mt (0) s 899 4192 mt 953 4192 L 6258 4192 mt 6204 4192 L 664 4245 mt (0.1) s 899 3770 mt 953 3770 L 6258 3770 mt 6204 3770 L 664 3823 mt (0.2) s 899 3347 mt 953 3347 L 6258 3347 mt 6204 3347 L 664 3400 mt (0.3) s 899 2925 mt 953 2925 L 6258 2925 mt 6204 2925 L 664 2978 mt (0.4) s 899 2502 mt 953 2502 L 6258 2502 mt 6204 2502 L 664 2555 mt (0.5) s 899 2079 mt 953 2079 L 6258 2079 mt 6204 2079 L 664 2132 mt (0.6) s 899 1657 mt 953 1657 L 6258 1657 mt 6204 1657 L 664 1710 mt (0.7) s 899 1234 mt 953 1234 L 6258 1234 mt 6204 1234 L 664 1287 mt (0.8) s 899 812 mt 953 812 L 6258 812 mt 6204 812 L 664 865 mt (0.9) s 899 389 mt 953 389 L 6258 389 mt 6204 389 L 784 442 mt (1) s 899 4615 mt 6258 4615 L 899 389 mt 6258 389 L 899 4615 mt 899 389 L 6258 4615 mt 6258 389 L 899 389 mt 899 389 L 6258 389 mt 6258 389 L gs 899 389 5360 4227 MR c np 9 -2 9 -2 9 -2 9 -2 9 -2 9 -2 9 -2 8 -2 9 -2 9 -2 9 -2 9 -3 9 -2 9 -2 9 -2 9 -2 9 -2 9 -3 9 -2 9 -2 9 -3 8 -2 9 -2 9 -3 9 -2 9 -2 9 -3 9 -2 9 -3 9 -2 9 -3 9 -2 9 -3 9 -2 9 -3 9 -2 8 -3 9 -3 9 -2 9 -3 9 -3 9 -3 9 -2 9 -3 9 -3 9 -3 9 -3 9 -3 9 -3 9 -3 9 -3 8 -3 9 -3 9 -3 9 -3 9 -3 9 -3 9 -3 9 -3 9 -3 9 -4 9 -3 9 -3 9 -4 9 -3 8 -3 9 -4 9 -3 9 -4 9 -3 9 -4 9 -3 9 -4 9 -3 9 -4 9 -4 9 -3 9 -4 9 -4 9 -4 8 -3 9 -4 9 -4 9 -4 9 -4 9 -4 9 -4 9 -4 9 -4 9 -4 9 -4 9 -4 9 -5 9 -4 9 -4 8 -4 9 -5 9 -4 9 -4 5374 888 100 MP stroke 9 -5 9 -4 9 -5 9 -4 9 -5 9 -4 9 -5 9 -5 9 -4 9 -5 8 -5 9 -5 9 -4 9 -5 9 -5 9 -5 9 -5 9 -5 9 -5 9 -5 9 -5 9 -6 9 -5 9 -5 9 -5 8 -6 9 -5 9 -5 9 -6 9 -5 9 -6 9 -5 9 -6 9 -6 9 -5 9 -6 9 -6 9 -5 9 -6 9 -6 8 -6 9 -6 9 -6 9 -6 9 -6 9 -6 9 -6 9 -6 9 -6 9 -7 9 -6 9 -6 9 -7 9 -6 8 -6 9 -7 9 -6 9 -7 9 -7 9 -6 9 -7 9 -7 9 -6 9 -7 9 -7 9 -7 9 -7 9 -7 9 -7 8 -7 9 -7 9 -7 9 -7 9 -8 9 -7 9 -7 9 -7 9 -8 9 -7 9 -8 9 -7 9 -8 9 -7 8 -8 9 -8 9 -7 9 -8 9 -8 9 -8 9 -8 9 -7 9 -8 9 -8 9 -8 9 -8 9 -8 9 -9 9 -8 8 -8 4490 1509 100 MP stroke 9 -8 9 -9 9 -8 9 -8 9 -9 9 -8 9 -9 9 -8 9 -9 9 -8 9 -9 9 -9 9 -8 9 -9 8 -9 9 -9 9 -8 9 -9 9 -9 9 -9 9 -9 9 -9 9 -9 9 -9 9 -9 9 -10 9 -9 9 -9 8 -9 9 -10 9 -9 9 -9 9 -10 9 -9 9 -9 9 -10 9 -9 9 -10 9 -10 9 -9 9 -10 9 -9 9 -10 8 -10 9 -10 9 -9 9 -10 9 -10 9 -10 9 -10 9 -10 9 -9 9 -10 9 -10 9 -10 9 -10 9 -10 9 -10 8 -11 9 -10 9 -10 9 -10 9 -10 9 -10 9 -10 9 -11 9 -10 9 -10 9 -10 9 -11 9 -10 9 -10 8 -11 9 -10 9 -10 9 -11 9 -10 9 -11 9 -10 9 -11 9 -10 9 -10 9 -11 9 -10 9 -11 9 -10 9 -11 8 -10 9 -11 9 -10 9 -11 9 -10 9 -11 9 -11 9 -10 9 -11 9 -10 9 -11 9 -10 3605 2470 100 MP stroke 9 -11 9 -10 8 -11 9 -11 9 -10 9 -11 9 -10 9 -11 9 -10 9 -11 9 -10 9 -11 9 -11 9 -10 9 -11 9 -10 9 -11 8 -10 9 -11 9 -10 9 -11 9 -10 9 -11 9 -10 9 -10 9 -11 9 -10 9 -11 9 -10 9 -11 9 -10 9 -10 8 -11 9 -10 9 -10 9 -11 9 -10 9 -10 9 -10 9 -11 9 -10 9 -10 9 -10 9 -10 9 -10 9 -10 8 -11 9 -10 9 -10 9 -10 9 -10 9 -10 9 -10 9 -9 9 -10 9 -10 9 -10 9 -10 9 -10 9 -9 9 -10 8 -10 9 -10 9 -9 9 -10 9 -9 9 -10 9 -10 9 -9 9 -10 9 -9 9 -9 9 -10 9 -9 9 -9 9 -10 8 -9 9 -9 9 -9 9 -10 9 -9 9 -9 9 -9 9 -9 9 -9 9 -9 9 -9 9 -9 9 -8 9 -9 8 -9 9 -9 9 -8 9 -9 9 -9 9 -8 9 -9 9 -8 9 -9 2721 3445 100 MP stroke 9 -8 9 -9 9 -8 9 -8 9 -9 9 -8 8 -8 9 -8 9 -9 9 -8 9 -8 9 -8 9 -8 9 -8 9 -7 9 -8 9 -8 9 -8 9 -8 9 -7 9 -8 8 -8 9 -7 9 -8 9 -7 9 -8 9 -7 9 -8 9 -7 9 -7 9 -7 9 -8 9 -7 9 -7 9 -7 8 -7 9 -7 9 -7 9 -7 9 -7 9 -7 9 -7 9 -6 9 -7 9 -7 9 -6 9 -7 9 -7 9 -6 9 -7 8 -6 9 -6 9 -7 9 -6 9 -6 9 -7 9 -6 9 -6 9 -6 9 -6 9 -6 9 -6 9 -6 9 -6 8 -6 9 -6 9 -6 9 -5 9 -6 9 -6 9 -5 9 -6 9 -6 9 -5 9 -6 9 -5 9 -6 9 -5 9 -5 8 -6 9 -5 9 -5 9 -5 9 -6 9 -5 9 -5 9 -5 9 -5 9 -5 9 -5 9 -5 9 -5 9 -4 9 -5 8 -5 9 -5 9 -4 9 -5 9 -5 1837 4089 100 MP stroke 9 -4 9 -5 9 -4 9 -5 9 -4 9 -5 9 -4 9 -4 9 -5 8 -4 9 -4 9 -4 9 -5 9 -4 9 -4 9 -4 9 -4 9 -4 9 -4 9 -4 9 -4 9 -4 9 -4 9 -4 8 -3 9 -4 9 -4 9 -4 9 -3 9 -4 9 -4 9 -3 9 -4 9 -3 9 -4 9 -3 9 -4 9 -3 9 -4 8 -3 9 -3 9 -4 9 -3 9 -3 9 -4 9 -3 9 -3 9 -3 9 -3 9 -3 9 -3 9 -3 9 -3 8 -3 9 -3 9 -3 9 -3 9 -3 9 -3 9 -3 9 -3 9 -3 9 -2 9 -3 9 -3 9 -3 9 -2 9 -3 8 -3 9 -2 9 -3 9 -2 9 -3 9 -2 9 -3 9 -2 9 -3 9 -2 9 -3 9 -2 9 -2 9 -3 9 -2 8 -2 9 -3 9 -2 9 -2 9 -3 9 -2 9 -2 9 -2 9 -2 9 -2 9 -3 9 -2 9 -2 9 -2 8 -2 9 -2 953 4403 100 MP stroke 9 -2 9 -2 9 -2 9 -2 9 -2 9 -2 899 4415 7 MP stroke DA 2 -6 9 -23 9 -22 9 -23 9 -23 9 -22 9 -23 9 -22 9 -22 9 -22 8 -22 9 -22 9 -22 9 -22 9 -21 9 -22 9 -21 9 -21 9 -21 9 -21 9 -21 9 -21 9 -21 9 -20 9 -21 8 -20 9 -20 9 -21 9 -20 9 -20 9 -20 9 -19 9 -20 9 -20 9 -19 9 -20 9 -19 9 -19 9 -19 8 -19 9 -19 9 -19 9 -19 9 -18 9 -19 9 -18 9 -19 9 -18 9 -18 9 -18 9 -18 9 -18 9 -18 9 -18 8 -17 9 -18 9 -17 9 -18 9 -17 9 -17 9 -17 9 -17 9 -17 9 -17 9 -17 9 -17 9 -16 9 -17 9 -16 8 -16 9 -17 9 -16 9 -16 9 -16 9 -16 9 -16 9 -16 9 -15 9 -16 9 -16 9 -15 9 -16 9 -15 8 -15 9 -15 9 -15 9 -16 9 -14 9 -15 9 -15 9 -15 9 -15 9 -14 9 -15 9 -14 9 -14 9 -15 9 -14 8 -14 4097 1791 100 MP stroke 9 -14 9 -14 9 -14 9 -14 9 -14 9 -14 9 -13 9 -14 9 -13 9 -14 9 -13 9 -14 9 -13 9 -13 8 -13 9 -13 9 -13 9 -13 9 -13 9 -13 9 -13 9 -12 9 -13 9 -12 9 -13 9 -12 9 -13 9 -12 8 -12 9 -12 9 -13 9 -12 9 -12 9 -12 9 -11 9 -12 9 -12 9 -12 9 -11 9 -12 9 -12 9 -11 9 -11 8 -12 9 -11 9 -11 9 -12 9 -11 9 -11 9 -11 9 -11 9 -11 9 -11 9 -10 9 -11 9 -11 9 -10 8 -11 9 -11 9 -10 9 -10 9 -11 9 -10 9 -10 9 -11 9 -10 9 -10 9 -10 9 -10 9 -10 9 -10 9 -10 8 -10 9 -9 9 -10 9 -10 9 -9 9 -10 9 -10 9 -9 9 -10 9 -9 9 -9 9 -10 9 -9 9 -9 9 -9 8 -9 9 -9 9 -9 9 -9 9 -9 9 -9 9 -9 9 -9 9 -9 9 -8 9 -9 9 -9 3212 2894 100 MP stroke 9 -8 9 -9 8 -8 9 -9 9 -8 9 -9 9 -8 9 -8 9 -8 9 -9 9 -8 9 -8 9 -8 9 -8 9 -8 9 -8 9 -8 8 -8 9 -8 9 -7 9 -8 9 -8 9 -8 9 -7 9 -8 9 -7 9 -8 9 -8 9 -7 9 -7 9 -8 9 -7 8 -7 9 -8 9 -7 9 -7 9 -7 9 -8 9 -7 9 -7 9 -7 9 -7 9 -7 9 -7 9 -6 9 -7 8 -7 9 -7 9 -7 9 -6 9 -7 9 -7 9 -6 9 -7 9 -7 9 -6 9 -7 9 -6 9 -6 9 -7 9 -6 8 -6 9 -7 9 -6 9 -6 9 -6 9 -7 9 -6 9 -6 9 -6 9 -6 9 -6 9 -6 9 -6 9 -6 9 -6 8 -6 9 -6 9 -5 9 -6 9 -6 9 -6 9 -5 9 -6 9 -6 9 -5 9 -6 9 -5 9 -6 9 -5 8 -6 9 -5 9 -6 9 -5 9 -6 9 -5 9 -5 9 -5 9 -6 2328 3566 100 MP stroke 9 -5 9 -5 9 -5 9 -5 9 -6 9 -5 8 -5 9 -5 9 -5 9 -5 9 -5 9 -5 9 -5 9 -5 9 -5 9 -4 9 -5 9 -5 9 -5 9 -5 8 -4 9 -5 9 -5 9 -4 9 -5 9 -5 9 -4 9 -5 9 -4 9 -5 9 -4 9 -5 9 -4 9 -5 9 -4 8 -5 9 -4 9 -4 9 -5 9 -4 9 -4 9 -4 9 -5 9 -4 9 -4 9 -4 9 -4 9 -5 9 -4 9 -4 8 -4 9 -4 9 -4 9 -4 9 -4 9 -4 9 -4 9 -4 9 -4 9 -4 9 -4 9 -3 9 -4 9 -4 8 -4 9 -4 9 -3 9 -4 9 -4 9 -4 9 -3 9 -4 9 -4 9 -3 9 -4 9 -3 9 -4 9 -4 9 -3 8 -4 9 -3 9 -4 9 -3 9 -4 9 -3 9 -3 9 -4 9 -3 9 -4 9 -3 9 -3 9 -4 9 -3 9 -3 8 -3 9 -4 9 -3 9 -3 9 -3 1444 3975 100 MP stroke 9 -4 9 -3 9 -3 9 -3 9 -3 9 -3 9 -3 9 -3 9 -4 8 -3 9 -3 9 -3 9 -3 9 -3 9 -3 9 -3 9 -3 9 -2 9 -3 9 -3 9 -3 9 -3 9 -3 9 -3 8 -3 9 -2 9 -3 9 -3 9 -3 9 -2 9 -3 9 -3 9 -3 9 -2 9 -3 9 -3 9 -2 9 -3 9 -3 8 -2 9 -3 9 -3 9 -2 9 -3 9 -2 9 -3 9 -2 9 -3 9 -2 9 -3 9 -2 9 -3 9 -2 8 -3 9 -2 9 -3 9 -2 9 -2 9 -3 9 -2 9 -3 899 4144 62 MP stroke gr DA SO end eplot epage end showpage %%EndDocument endTexFig 1065 1739 a Fr(Figure)21 b(6:)31 b(Geometry)20 b(of)h(the)g(sigmoid)d (transformation.)1065 1784 y(The)c(dashed)h(curv)o(e)g(plots)f(exp)p Ft(f)p Fl(\030)r(x)9 b Ft(\000)h Fl(H)s Fr(\()p Fl(\030)r Fr(\))p Ft(g)k Fr(as)g(a)f(function)1065 1830 y(of)g Fl(x)h Fr(for)f(a)h(\014xed)g Fl(\030)i Fr(\(=0)p Fl(:)p Fr(5\).)1065 1997 y Fp(B)56 b(NOISY-OR)18 b(TRANSF)n(ORMA)-5 b(TION)1065 2093 y Fr(Here)15 b(w)o(e)f(pro)o(vide)g(a)g(deriv)n(ation) f(for)g(the)i(transformation)1343 2166 y(1)9 b Ft(\000)h Fl(e)1434 2149 y Fe(\000)p Fj(x)1492 2166 y Fr(=)i(min)1541 2193 y Fj(\030)q Fe(\025)p Fk(1)1612 2166 y Fl(e)1631 2149 y Fj(\030)q(x)p Fe(\000)p Fj(F)t Fk(\()p Fj(\030)q Fk(\))1966 2166 y Fr(\(39\))1065 2258 y(presen)o(ted)k(in)d(the)i (text.)k(Switc)o(hing)13 b(to)h(log)e(scale)j(w)o(e)f(\014nd)1065 2361 y(log\(1)9 b Ft(\000)g Fl(e)1225 2344 y Fe(\000)p Fj(x)1272 2361 y Fr(\))j(=)g Ft(\000)7 b Fr(log)1507 2333 y(1)p 1449 2351 138 2 v 1449 2389 a(1)i Ft(\000)g Fl(e)1539 2377 y Fe(\000)p Fj(x)1603 2361 y Fr(=)j Ft(\000)7 b Fr(log)1760 2309 y Fe(1)1747 2321 y Fi(X)1746 2411 y Fj(k)q Fk(=0)1814 2361 y Fl(e)1833 2344 y Fe(\000)p Fj(k)q(x)1107 2500 y Fr(=)41 b Ft(\000)7 b Fr(log)1294 2448 y Fe(1)1280 2461 y Fi(X)1280 2550 y Fj(k)q Fk(=0)1340 2500 y Fr(\(1)j Ft(\000)f Fl(q)q Fr(\))p Fl(q)1484 2483 y Fj(k)1550 2472 y Fl(e)1569 2457 y Fe(\000)p Fj(k)q(x)p 1510 2490 165 2 v 1510 2528 a Fr(\(1)g Ft(\000)g Fl(q)q Fr(\))p Fl(q)1653 2516 y Fj(k)1107 2634 y Fr(=)41 b Ft(\000)7 b Fr(log)g Fl(E)r Ft(f)1379 2606 y Fl(e)1398 2591 y Fe(\000)p Fj(k)q(x)p 1339 2624 V 1339 2662 a Fr(\(1)i Ft(\000)g Fl(q)q Fr(\))p Fl(q)1482 2650 y Fj(k)1508 2634 y Ft(g)1107 2753 y(\024)41 b Fl(E)r Ft(f\000)7 b Fr(log)1379 2725 y Fl(e)1398 2710 y Fe(\000)p Fj(k)q(x)p 1339 2743 V 1339 2781 a Fr(\(1)i Ft(\000)g Fl(q)q Fr(\))p Fl(q)1482 2769 y Fj(k)1508 2753 y Ft(g)p eop %%Page: 9 9 9 8 bop 57 69 a Fr(=)144 17 y Fe(1)131 29 y Fi(X)130 118 y Fj(k)q Fk(=0)191 69 y Fr(\(1)9 b Ft(\000)g Fl(q)q Fr(\))p Fl(q)334 51 y Fj(k)355 69 y Fl(k)q(x)g Fr(+)466 17 y Fe(1)453 29 y Fi(X)452 118 y Fj(k)q Fk(=0)513 69 y Fr(\(1)g Ft(\000)g Fl(q)q Fr(\))p Fl(q)656 51 y Fj(k)677 69 y Fr([log)o(\(1)g Ft(\000)h Fl(q)q Fr(\))f(+)h Fl(k)d Fr(log)g Fl(q)q Fr(])57 185 y(=)171 157 y Fl(q)p 135 176 92 2 v 135 214 a Fr(1)i Ft(\000)h Fl(q)232 185 y(x)f Fr(+)g(log\(1)g Ft(\000)g Fl(q)q Fr(\))h(+)575 157 y Fl(q)p 539 176 V 539 214 a Fr(1)f Ft(\000)h Fl(q)643 185 y Fr(log)c Fl(q)15 270 y Fr(where)22 b(w)o(e)f(ha)o(v)o(e)f(in)o (terpreted)j(\(1)14 b Ft(\000)g Fl(q)q Fr(\))p Fl(q)686 255 y Fj(k)727 270 y Fr(as)21 b(a)f(probabil-)15 316 y(it)o(y)i(distribution)g(for)g Fl(k)i Fr(and)e(used)i(Jensen's)g (inequalit)o(y)m(.)15 361 y(Minimizing)15 b(the)j(ab)q(o)o(v)o(e)g(b)q (ound)f(with)h(resp)q(ect)i(to)d Fl(q)i Fr(giv)o(es)15 407 y Fl(q)35 392 y Fe(\003)67 407 y Fr(=)13 b Fl(e)131 392 y Fe(\000)p Fj(x)192 407 y Fr(and)i(the)g(b)q(ound)f(b)q(ecomes)h (exact.)21 b(The)15 b(original)15 453 y(transformation)c(follo)o(ws)h (b)o(y)h(setting)g Fl(\030)h Fr(=)d Fl(q)q(=)p Fr(\(1)d Ft(\000)g Fl(q)q Fr(\).)18 b(If)12 b(the)15 498 y(v)n(alue)j(of)g Fl(\030)j Fr(is)e(k)o(ept)g(constan)o(t,)h(the)f(transformation)e (yields)15 544 y(a)h(b)q(ound,)h(the)g(geometry)f(of)g(whic)o(h)h(is)g (sho)o(wn)f(in)g(\014gure)i(7.)15 590 y(The)d(p)q(oin)o(t)f(where)h (the)g(b)q(ound)f(touc)o(hes)i(the)f(1)7 b Ft(\000)i Fl(e)833 574 y Fe(\000)p Fj(x)893 590 y Fr(curv)o(e)15 635 y(de\014nes)15 b Fl(x)f Fr(for)f(whic)o(h)h(the)h(constan)o(t)f Fl(\030)i Fr(is)e(optimal.)15 706 y(As)20 b(in)g(the)g(sigmoid)e(case)i (the)h(resulting)f(transformation)15 751 y(can)14 b(b)q(e)h(seen)g(as)f (a)f(t)o(yp)q(e)i(of)e(Legendre)i(transformation.)112 801 y 12333325 9946231 4802068 13814169 35916840 38811238 startTexFig 112 801 a %%BeginDocument: ../uai96/figures/nor-trans.eps /MathWorks 150 dict begin /bdef {bind def} bind def /ldef {load def} bind def /xdef {exch def} bdef /xstore {exch store} bdef /c /clip ldef /cc /concat ldef /cp /closepath ldef /gr /grestore ldef /gs /gsave ldef /mt /moveto ldef /np /newpath ldef /cm /currentmatrix ldef /sm /setmatrix ldef /rc {rectclip} bdef /rf {rectfill} bdef /rm /rmoveto ldef /rl /rlineto ldef /s /show ldef /sc {setcmykcolor} bdef /sr /setrgbcolor ldef /w /setlinewidth ldef /j /setlinejoin ldef /cap /setlinecap ldef /pgsv () def /bpage {/pgsv save def} bdef /epage {pgsv restore} bdef /bplot /gsave ldef /eplot {stroke grestore} bdef /portraitMode 0 def /landscapeMode 1 def /dpi2point 0 def /FontSize 0 def /FMS { /FontSize xstore %save size off stack findfont [FontSize 0 0 FontSize neg 0 0] makefont setfont }bdef /reencode { exch dup where {pop load} {pop StandardEncoding} ifelse exch dup 3 1 roll findfont dup length dict begin { 1 index /FID ne {def}{pop pop} ifelse } forall /Encoding exch def currentdict end definefont pop } bdef /isroman { findfont /CharStrings get /Agrave known } bdef /FMSR { 3 1 roll 1 index dup isroman {reencode} {pop pop} ifelse exch FMS } bdef /csm { 1 dpi2point div -1 dpi2point div scale neg translate landscapeMode eq {90 rotate} if } bdef /SO { [] 0 setdash } bdef /DO { [.5 dpi2point mul 4 dpi2point mul] 0 setdash } bdef /DA { [6 dpi2point mul] 0 setdash } bdef /DD { [.5 dpi2point mul 4 dpi2point mul 6 dpi2point mul 4 dpi2point mul] 0 setdash } bdef /L { lineto stroke } bdef /MP { 3 1 roll moveto 1 sub {rlineto} repeat } bdef /AP { {rlineto} repeat } bdef /PP { closepath fill } bdef /DP { closepath stroke } bdef /MR { 4 -2 roll moveto dup 0 exch rlineto exch 0 rlineto neg 0 exch rlineto closepath } bdef /FR { MR stroke } bdef /PR { MR fill } bdef /L1i { { currentfile picstr readhexstring pop } image } bdef /tMatrix matrix def /MakeOval { newpath tMatrix currentmatrix pop translate scale 0 0 1 0 360 arc tMatrix setmatrix } bdef /FO { MakeOval stroke } bdef /PO { MakeOval fill } bdef /PD { 2 copy moveto lineto stroke } bdef currentdict end def MathWorks begin 0 cap end MathWorks begin bpage bplot /dpi2point 12 def portraitMode 0216 7344 csm 662 260 5685 4557 MR c np 76 dict begin %Colortable dictionary /c0 { 0 0 0 sr} bdef /c1 { 1 1 1 sr} bdef /c2 { 1 0 0 sr} bdef /c3 { 0 1 0 sr} bdef /c4 { 0 0 1 sr} bdef /c5 { 1 1 0 sr} bdef /c6 { 1 0 1 sr} bdef /c7 { 0 1 1 sr} bdef /Helvetica /ISOLatin1Encoding 144 FMSR 1 j c1 0 0 6917 5187 PR 6 w DO 4 w SO 6 w c0 899 4615 mt 6258 4615 L 899 389 mt 6258 389 L 899 4615 mt 899 389 L 6258 4615 mt 6258 389 L 899 4615 mt 899 4615 L 6258 4615 mt 6258 4615 L 899 4615 mt 6258 4615 L 899 4615 mt 899 389 L 899 4615 mt 899 4615 L 899 4615 mt 899 4561 L 899 389 mt 899 443 L 859 4784 mt (0) s 1792 4615 mt 1792 4561 L 1792 389 mt 1792 443 L 1692 4784 mt (0.5) s 2685 4615 mt 2685 4561 L 2685 389 mt 2685 443 L 2645 4784 mt (1) s 3579 4615 mt 3579 4561 L 3579 389 mt 3579 443 L 3479 4784 mt (1.5) s 4472 4615 mt 4472 4561 L 4472 389 mt 4472 443 L 4432 4784 mt (2) s 5365 4615 mt 5365 4561 L 5365 389 mt 5365 443 L 5265 4784 mt (2.5) s 6258 4615 mt 6258 4561 L 6258 389 mt 6258 443 L 6218 4784 mt (3) s 899 4615 mt 953 4615 L 6258 4615 mt 6204 4615 L 784 4668 mt (0) s 899 4192 mt 953 4192 L 6258 4192 mt 6204 4192 L 664 4245 mt (0.1) s 899 3770 mt 953 3770 L 6258 3770 mt 6204 3770 L 664 3823 mt (0.2) s 899 3347 mt 953 3347 L 6258 3347 mt 6204 3347 L 664 3400 mt (0.3) s 899 2925 mt 953 2925 L 6258 2925 mt 6204 2925 L 664 2978 mt (0.4) s 899 2502 mt 953 2502 L 6258 2502 mt 6204 2502 L 664 2555 mt (0.5) s 899 2079 mt 953 2079 L 6258 2079 mt 6204 2079 L 664 2132 mt (0.6) s 899 1657 mt 953 1657 L 6258 1657 mt 6204 1657 L 664 1710 mt (0.7) s 899 1234 mt 953 1234 L 6258 1234 mt 6204 1234 L 664 1287 mt (0.8) s 899 812 mt 953 812 L 6258 812 mt 6204 812 L 664 865 mt (0.9) s 899 389 mt 953 389 L 6258 389 mt 6204 389 L 784 442 mt (1) s 899 4615 mt 6258 4615 L 899 389 mt 6258 389 L 899 4615 mt 899 389 L 6258 4615 mt 6258 389 L 899 389 mt 899 389 L 6258 389 mt 6258 389 L gs 899 389 5360 4227 MR c np 18 -3 18 -2 18 -2 17 -2 18 -2 18 -2 18 -3 18 -2 18 -2 18 -3 17 -2 18 -2 18 -3 18 -2 18 -2 18 -3 18 -2 18 -3 17 -2 18 -3 18 -3 18 -2 18 -3 18 -2 18 -3 17 -3 18 -3 18 -2 18 -3 18 -3 18 -3 18 -3 17 -3 18 -3 18 -3 18 -3 18 -3 18 -3 18 -3 18 -3 17 -3 18 -3 18 -3 18 -4 18 -3 18 -3 18 -4 17 -3 18 -3 18 -4 18 -3 18 -4 18 -3 18 -4 17 -4 18 -3 18 -4 18 -4 18 -4 18 -3 18 -4 18 -4 17 -4 18 -4 18 -4 18 -4 18 -4 18 -4 18 -4 17 -5 18 -4 18 -4 18 -5 18 -4 18 -4 18 -5 17 -4 18 -5 18 -5 18 -4 18 -5 18 -5 18 -5 18 -4 17 -5 18 -5 18 -5 18 -5 18 -5 18 -6 18 -5 17 -5 18 -5 18 -6 18 -5 18 -6 18 -5 18 -6 17 -5 4490 955 100 MP stroke 18 -6 18 -6 18 -5 18 -6 18 -6 18 -6 18 -6 17 -6 18 -7 18 -6 18 -6 18 -6 18 -7 18 -6 17 -7 18 -6 18 -7 18 -7 18 -7 18 -7 18 -7 17 -7 18 -7 18 -7 18 -7 18 -7 18 -8 18 -7 18 -8 17 -7 18 -8 18 -8 18 -8 18 -8 18 -8 18 -8 17 -8 18 -8 18 -8 18 -9 18 -8 18 -9 18 -8 17 -9 18 -9 18 -9 18 -9 18 -9 18 -9 18 -10 17 -9 18 -9 18 -10 18 -10 18 -9 18 -10 18 -10 18 -10 17 -10 18 -11 18 -10 18 -11 18 -10 18 -11 18 -11 17 -11 18 -11 18 -11 18 -11 18 -11 18 -12 18 -11 17 -12 18 -12 18 -12 18 -12 18 -12 18 -12 18 -13 18 -12 17 -13 18 -13 18 -13 18 -13 18 -13 18 -13 18 -14 17 -13 18 -14 18 -14 18 -14 18 -14 18 -14 18 -15 17 -14 18 -15 18 -15 18 -15 18 -15 2721 1913 100 MP stroke 18 -15 18 -16 18 -15 17 -16 18 -16 18 -16 18 -16 18 -17 18 -16 18 -17 17 -17 18 -17 18 -17 18 -18 18 -17 18 -18 18 -18 17 -18 18 -19 18 -18 18 -19 18 -19 18 -19 18 -19 18 -20 17 -19 18 -20 18 -20 18 -21 18 -20 18 -21 18 -21 17 -21 18 -21 18 -21 18 -22 18 -22 18 -22 18 -23 17 -22 18 -23 18 -23 18 -24 18 -23 18 -24 18 -24 18 -24 17 -25 18 -24 18 -25 18 -26 18 -25 18 -26 18 -26 17 -26 18 -27 18 -27 18 -27 18 -27 18 -28 18 -28 17 -28 18 -28 18 -29 18 -29 18 -29 18 -30 18 -30 18 -30 17 -31 18 -31 18 -31 18 -31 18 -32 18 -32 18 -32 17 -33 18 -33 18 -34 18 -33 18 -35 18 -34 18 -35 17 -35 18 -35 18 -36 18 -36 18 -37 18 -37 18 -37 18 -38 17 -38 18 -38 18 -39 18 -39 18 -40 18 -40 18 -40 17 -41 953 4490 100 MP stroke 18 -41 18 -42 18 -42 899 4615 4 MP stroke DA 9 -13 18 -23 18 -23 18 -23 18 -22 18 -23 18 -22 17 -22 18 -22 18 -23 18 -21 18 -22 18 -22 18 -22 18 -21 17 -22 18 -21 18 -21 18 -21 18 -21 18 -21 18 -21 17 -20 18 -21 18 -20 18 -21 18 -20 18 -20 18 -20 17 -20 18 -20 18 -20 18 -19 18 -20 18 -19 18 -20 18 -19 17 -19 18 -19 18 -19 18 -19 18 -19 18 -19 18 -18 17 -19 18 -18 18 -19 18 -18 18 -18 18 -18 18 -18 17 -18 18 -18 18 -17 18 -18 18 -17 18 -18 18 -17 17 -18 18 -17 18 -17 18 -17 18 -17 18 -17 18 -16 18 -17 17 -17 18 -16 18 -16 18 -17 18 -16 18 -16 18 -16 17 -16 18 -16 18 -16 18 -16 18 -16 18 -15 18 -16 17 -15 18 -16 18 -15 18 -15 18 -15 18 -15 18 -15 18 -15 17 -15 18 -15 18 -15 18 -14 18 -15 18 -14 18 -15 17 -14 18 -14 18 -15 18 -14 2864 1796 100 MP stroke 18 -14 18 -14 18 -14 17 -14 18 -13 18 -14 18 -14 18 -13 18 -14 18 -13 18 -14 17 -13 18 -13 18 -13 18 -13 18 -13 18 -13 18 -13 17 -13 18 -13 18 -13 18 -12 18 -13 18 -13 18 -12 17 -12 18 -13 18 -12 18 -12 18 -12 18 -13 18 -12 18 -12 17 -11 18 -12 18 -12 18 -12 18 -12 18 -11 18 -12 17 -11 18 -12 18 -11 18 -11 18 -12 18 -11 18 -11 17 -11 18 -11 18 -11 18 -11 18 -11 18 -11 18 -11 18 -11 17 -10 18 -11 18 -10 18 -11 18 -10 18 -11 18 -10 17 -11 18 -10 18 -10 18 -10 18 -10 18 -10 18 -10 17 -10 18 -10 18 -10 18 -10 18 -10 18 -9 18 -10 18 -10 17 -9 18 -10 18 -9 18 -10 18 -9 18 -9 18 -10 17 -9 18 -9 18 -9 18 -9 18 -9 18 -9 18 -9 17 -9 18 -9 18 -9 18 -9 18 -8 18 -9 18 -9 18 -8 1095 2896 100 MP stroke 17 -9 18 -9 18 -8 18 -8 18 -9 18 -8 18 -9 17 -8 18 -8 18 -8 18 -8 899 2988 12 MP stroke gr DA SO end eplot epage end showpage %%EndDocument endTexFig 15 1518 a Fr(Figure)h(7:)23 b(Geometry)15 b(of)h(the)h(noisy-OR)e (transformation.)15 1564 y(The)g(dashed)g(curv)o(e)h(giv)o(es)e(exp)q Ft(f)p Fl(\030)r(x)9 b Ft(\000)h Fl(F)c Fr(\()p Fl(\030)r Fr(\))p Ft(g)14 b Fr(as)h(a)f(function)15 1610 y(of)f Fl(x)h Fr(when)g Fl(\030)i Fr(is)e(\014xed)g(at)g(0)p Fl(:)p Fr(5.)15 1767 y Fp(C)57 b(NOISY-OR)18 b(EXP)-5 b(ANSION)15 1861 y Fr(The)14 b(noisy-OR)f(expansion)313 1950 y(1)c Ft(\000)h Fl(e)404 1933 y Fe(\000)p Fj(x)462 1950 y Fr(=)520 1898 y Fe(1)510 1911 y Fi(Y)506 2000 y Fj(k)q Fk(=0)573 1950 y Fl(g)q Fr(\(2)631 1933 y Fj(k)652 1950 y Fl(x)p Fr(\))224 b(\(40\))15 2046 y(follo)o(ws)12 b(simply)g(from)146 2128 y(1)d Ft(\000)g Fl(e)236 2111 y Fe(\000)p Fj(x)325 2128 y Fr(=)404 2100 y(\(1)g(+)g Fl(e)510 2085 y Fe(\000)p Fj(x)558 2100 y Fr(\)\(1)g Ft(\000)g Fl(e)680 2085 y Fe(\000)p Fj(x)728 2100 y Fr(\))p 404 2119 340 2 v 505 2157 a(1)g(+)g Fl(e)595 2145 y Fe(\000)p Fj(x)325 2213 y Fr(=)42 b Fl(g)q Fr(\()p Fl(x)p Fr(\)\(1)9 b Ft(\000)h Fl(e)583 2195 y Fe(\000)p Fk(2)p Fj(x)647 2213 y Fr(\))325 2301 y(=)42 b Fl(g)q Fr(\()p Fl(x)p Fr(\))481 2273 y(\(1)9 b(+)h Fl(e)588 2258 y Fe(\000)p Fk(2)p Fj(x)651 2273 y Fr(\)\(1)g Ft(\000)f Fl(e)774 2258 y Fe(\000)p Fk(2)p Fj(x)838 2273 y Fr(\))p 481 2292 373 2 v 591 2330 a(1)g(+)g Fl(e)681 2318 y Fe(\000)p Fk(2)p Fj(x)325 2386 y Fr(=)42 b Fl(g)q Fr(\()p Fl(x)p Fr(\))p Fl(g)q Fr(\(2)p Fl(x)p Fr(\)\(1)9 b Ft(\000)h Fl(e)681 2369 y Fe(\000)p Fk(4)p Fj(x)745 2386 y Fr(\))155 b(\(41\))15 2440 y(and)15 b(induction.)23 b(F)m(or)15 b Fl(x)f(>)h Fr(0)g(the)h(accuracy)h(of)e(the)h(expan-)15 2494 y(sion)d(is)g(go)o(v)o(erned)h(b)o(y)f(1)8 b Ft(\000)h Fl(e)461 2479 y Fe(\000)p Fk(2)504 2467 y Fh(k)522 2479 y Fj(x)556 2494 y Fr(whic)o(h)k(go)q(es)h(to)f(one)h(exp)q(o-)15 2540 y(nen)o(tially)f(fast.)19 b(Also)14 b(since)h Fl(g)q Fr(\(2)537 2525 y Fj(k)558 2540 y Fr(0\))d(=)g(1)p Fl(=)p Fr(2,)h(the)i(expansion)15 2586 y(b)q(ecomes)k(\()206 2569 y Fk(1)p 206 2576 17 2 v 206 2600 a(2)228 2586 y Fr(\))244 2571 y Fj(N)294 2586 y Fr(at)f Fl(x)i Fr(=)f(0,)g(where)h Fl(N)k Fr(is)18 b(the)i(n)o(um)o(b)q(er)e(of)15 2638 y(terms)13 b(included.)18 b(As)c(this)g(approac)o(hes)g(1)9 b Ft(\000)f Fl(e)756 2623 y Fe(\000)p Fk(0)813 2638 y Fr(=)k(0)h(exp)q(o-)15 2684 y(nen)o(tially)f(fast,)h(w)o(e)g(conclude)h (that)g(the)f(rapid)g(con)o(v)o(ergence)15 2729 y(is)19 b(uniform.)33 b(Figure)19 b(8)g(illustrates)h(the)g(accuracy)h(of)d (the)15 2775 y(expansion)c(for)f(small)f Fl(N)5 b Fr(.)1162 0 y 12333325 9946231 4802068 13814169 35916840 38811238 startTexFig 1162 0 a %%BeginDocument: ../uai96/figures/nor-exp.eps /MathWorks 150 dict begin /bdef {bind def} bind def /ldef {load def} bind def /xdef {exch def} bdef /xstore {exch store} bdef /c /clip ldef /cc /concat ldef /cp /closepath ldef /gr /grestore ldef /gs /gsave ldef /mt /moveto ldef /np /newpath ldef /cm /currentmatrix ldef /sm /setmatrix ldef /rc {rectclip} bdef /rf {rectfill} bdef /rm /rmoveto ldef /rl /rlineto ldef /s /show ldef /sc {setcmykcolor} bdef /sr /setrgbcolor ldef /w /setlinewidth ldef /j /setlinejoin ldef /cap /setlinecap ldef /pgsv () def /bpage {/pgsv save def} bdef /epage {pgsv restore} bdef /bplot /gsave ldef /eplot {stroke grestore} bdef /portraitMode 0 def /landscapeMode 1 def /dpi2point 0 def /FontSize 0 def /FMS { /FontSize xstore %save size off stack findfont [FontSize 0 0 FontSize neg 0 0] makefont setfont }bdef /reencode { exch dup where {pop load} {pop StandardEncoding} ifelse exch dup 3 1 roll findfont dup length dict begin { 1 index /FID ne {def}{pop pop} ifelse } forall /Encoding exch def currentdict end definefont pop } bdef /isroman { findfont /CharStrings get /Agrave known } bdef /FMSR { 3 1 roll 1 index dup isroman {reencode} {pop pop} ifelse exch FMS } bdef /csm { 1 dpi2point div -1 dpi2point div scale neg translate landscapeMode eq {90 rotate} if } bdef /SO { [] 0 setdash } bdef /DO { [.5 dpi2point mul 4 dpi2point mul] 0 setdash } bdef /DA { [6 dpi2point mul] 0 setdash } bdef /DD { [.5 dpi2point mul 4 dpi2point mul 6 dpi2point mul 4 dpi2point mul] 0 setdash } bdef /L { lineto stroke } bdef /MP { 3 1 roll moveto 1 sub {rlineto} repeat } bdef /AP { {rlineto} repeat } bdef /PP { closepath fill } bdef /DP { closepath stroke } bdef /MR { 4 -2 roll moveto dup 0 exch rlineto exch 0 rlineto neg 0 exch rlineto closepath } bdef /FR { MR stroke } bdef /PR { MR fill } bdef /L1i { { currentfile picstr readhexstring pop } image } bdef /tMatrix matrix def /MakeOval { newpath tMatrix currentmatrix pop translate scale 0 0 1 0 360 arc tMatrix setmatrix } bdef /FO { MakeOval stroke } bdef /PO { MakeOval fill } bdef /PD { 2 copy moveto lineto stroke } bdef currentdict end def MathWorks begin 0 cap end MathWorks begin bpage bplot /dpi2point 12 def portraitMode 0216 7344 csm 662 260 5685 4557 MR c np 76 dict begin %Colortable dictionary /c0 { 0 0 0 sr} bdef /c1 { 1 1 1 sr} bdef /c2 { 1 0 0 sr} bdef /c3 { 0 1 0 sr} bdef /c4 { 0 0 1 sr} bdef /c5 { 1 1 0 sr} bdef /c6 { 1 0 1 sr} bdef /c7 { 0 1 1 sr} bdef /Helvetica /ISOLatin1Encoding 144 FMSR 1 j c1 0 0 6917 5187 PR 6 w DO 4 w SO 6 w c0 899 4615 mt 6258 4615 L 899 389 mt 6258 389 L 899 4615 mt 899 389 L 6258 4615 mt 6258 389 L 899 4615 mt 899 4615 L 6258 4615 mt 6258 4615 L 899 4615 mt 6258 4615 L 899 4615 mt 899 389 L 899 4615 mt 899 4615 L 899 4615 mt 899 4561 L 899 389 mt 899 443 L 859 4784 mt (0) s 1792 4615 mt 1792 4561 L 1792 389 mt 1792 443 L 1692 4784 mt (0.5) s 2685 4615 mt 2685 4561 L 2685 389 mt 2685 443 L 2645 4784 mt (1) s 3579 4615 mt 3579 4561 L 3579 389 mt 3579 443 L 3479 4784 mt (1.5) s 4472 4615 mt 4472 4561 L 4472 389 mt 4472 443 L 4432 4784 mt (2) s 5365 4615 mt 5365 4561 L 5365 389 mt 5365 443 L 5265 4784 mt (2.5) s 6258 4615 mt 6258 4561 L 6258 389 mt 6258 443 L 6218 4784 mt (3) s 899 4615 mt 953 4615 L 6258 4615 mt 6204 4615 L 784 4668 mt (0) s 899 4192 mt 953 4192 L 6258 4192 mt 6204 4192 L 664 4245 mt (0.1) s 899 3770 mt 953 3770 L 6258 3770 mt 6204 3770 L 664 3823 mt (0.2) s 899 3347 mt 953 3347 L 6258 3347 mt 6204 3347 L 664 3400 mt (0.3) s 899 2925 mt 953 2925 L 6258 2925 mt 6204 2925 L 664 2978 mt (0.4) s 899 2502 mt 953 2502 L 6258 2502 mt 6204 2502 L 664 2555 mt (0.5) s 899 2079 mt 953 2079 L 6258 2079 mt 6204 2079 L 664 2132 mt (0.6) s 899 1657 mt 953 1657 L 6258 1657 mt 6204 1657 L 664 1710 mt (0.7) s 899 1234 mt 953 1234 L 6258 1234 mt 6204 1234 L 664 1287 mt (0.8) s 899 812 mt 953 812 L 6258 812 mt 6204 812 L 664 865 mt (0.9) s 899 389 mt 953 389 L 6258 389 mt 6204 389 L 784 442 mt (1) s 899 4615 mt 6258 4615 L 899 389 mt 6258 389 L 899 4615 mt 899 389 L 6258 4615 mt 6258 389 L 899 389 mt 899 389 L 6258 389 mt 6258 389 L gs 899 389 5360 4227 MR c np 18 -3 18 -2 18 -2 17 -2 18 -2 18 -2 18 -3 18 -2 18 -2 18 -3 17 -2 18 -2 18 -3 18 -2 18 -2 18 -3 18 -2 18 -3 17 -2 18 -3 18 -3 18 -2 18 -3 18 -2 18 -3 17 -3 18 -3 18 -2 18 -3 18 -3 18 -3 18 -3 17 -3 18 -3 18 -3 18 -3 18 -3 18 -3 18 -3 18 -3 17 -3 18 -3 18 -3 18 -4 18 -3 18 -3 18 -4 17 -3 18 -3 18 -4 18 -3 18 -4 18 -3 18 -4 17 -4 18 -3 18 -4 18 -4 18 -4 18 -3 18 -4 18 -4 17 -4 18 -4 18 -4 18 -4 18 -4 18 -4 18 -4 17 -5 18 -4 18 -4 18 -5 18 -4 18 -4 18 -5 17 -4 18 -5 18 -5 18 -4 18 -5 18 -5 18 -5 18 -4 17 -5 18 -5 18 -5 18 -5 18 -5 18 -6 18 -5 17 -5 18 -5 18 -6 18 -5 18 -6 18 -5 18 -6 17 -5 4490 955 100 MP stroke 18 -6 18 -6 18 -5 18 -6 18 -6 18 -6 18 -6 17 -6 18 -7 18 -6 18 -6 18 -6 18 -7 18 -6 17 -7 18 -6 18 -7 18 -7 18 -7 18 -7 18 -7 17 -7 18 -7 18 -7 18 -7 18 -7 18 -8 18 -7 18 -8 17 -7 18 -8 18 -8 18 -8 18 -8 18 -8 18 -8 17 -8 18 -8 18 -8 18 -9 18 -8 18 -9 18 -8 17 -9 18 -9 18 -9 18 -9 18 -9 18 -9 18 -10 17 -9 18 -9 18 -10 18 -10 18 -9 18 -10 18 -10 18 -10 17 -10 18 -11 18 -10 18 -11 18 -10 18 -11 18 -11 17 -11 18 -11 18 -11 18 -11 18 -11 18 -12 18 -11 17 -12 18 -12 18 -12 18 -12 18 -12 18 -12 18 -13 18 -12 17 -13 18 -13 18 -13 18 -13 18 -13 18 -13 18 -14 17 -13 18 -14 18 -14 18 -14 18 -14 18 -14 18 -15 17 -14 18 -15 18 -15 18 -15 18 -15 2721 1913 100 MP stroke 18 -15 18 -16 18 -15 17 -16 18 -16 18 -16 18 -16 18 -17 18 -16 18 -17 17 -17 18 -17 18 -17 18 -18 18 -17 18 -18 18 -18 17 -18 18 -19 18 -18 18 -19 18 -19 18 -19 18 -19 18 -20 17 -19 18 -20 18 -20 18 -21 18 -20 18 -21 18 -21 17 -21 18 -21 18 -21 18 -22 18 -22 18 -22 18 -23 17 -22 18 -23 18 -23 18 -24 18 -23 18 -24 18 -24 18 -24 17 -25 18 -24 18 -25 18 -26 18 -25 18 -26 18 -26 17 -26 18 -27 18 -27 18 -27 18 -27 18 -28 18 -28 17 -28 18 -28 18 -29 18 -29 18 -29 18 -30 18 -30 18 -30 17 -31 18 -31 18 -31 18 -31 18 -32 18 -32 18 -32 17 -33 18 -33 18 -34 18 -33 18 -35 18 -34 18 -35 17 -35 18 -35 18 -36 18 -36 18 -37 18 -37 18 -37 18 -38 17 -38 18 -38 18 -39 18 -39 18 -40 18 -40 18 -40 17 -41 953 4490 100 MP stroke 18 -41 18 -42 18 -42 899 4615 4 MP stroke DO 18 -2 18 -2 18 -2 17 -2 18 -2 18 -2 18 -2 18 -2 18 -2 18 -2 17 -2 18 -3 18 -2 18 -2 18 -2 18 -2 18 -2 18 -3 17 -2 18 -2 18 -3 18 -2 18 -2 18 -3 18 -2 17 -2 18 -3 18 -2 18 -3 18 -2 18 -3 18 -2 17 -3 18 -2 18 -3 18 -2 18 -3 18 -3 18 -2 18 -3 17 -3 18 -3 18 -2 18 -3 18 -3 18 -3 18 -3 17 -3 18 -3 18 -3 18 -3 18 -3 18 -3 18 -3 17 -3 18 -3 18 -3 18 -3 18 -3 18 -3 18 -4 18 -3 17 -3 18 -4 18 -3 18 -3 18 -4 18 -3 18 -4 17 -3 18 -4 18 -3 18 -4 18 -3 18 -4 18 -4 17 -3 18 -4 18 -4 18 -4 18 -3 18 -4 18 -4 18 -4 17 -4 18 -4 18 -4 18 -4 18 -4 18 -4 18 -4 17 -4 18 -5 18 -4 18 -4 18 -4 18 -5 18 -4 17 -4 4490 888 100 MP stroke 18 -5 18 -4 18 -5 18 -4 18 -5 18 -4 18 -5 17 -5 18 -4 18 -5 18 -5 18 -5 18 -4 18 -5 17 -5 18 -5 18 -5 18 -5 18 -5 18 -5 18 -5 17 -6 18 -5 18 -5 18 -5 18 -6 18 -5 18 -5 18 -6 17 -5 18 -6 18 -5 18 -6 18 -6 18 -5 18 -6 17 -6 18 -5 18 -6 18 -6 18 -6 18 -6 18 -6 17 -6 18 -6 18 -6 18 -6 18 -6 18 -6 18 -7 17 -6 18 -6 18 -7 18 -6 18 -6 18 -7 18 -6 18 -7 17 -7 18 -6 18 -7 18 -7 18 -6 18 -7 18 -7 17 -7 18 -7 18 -7 18 -7 18 -7 18 -7 18 -7 17 -7 18 -8 18 -7 18 -7 18 -7 18 -8 18 -7 18 -8 17 -7 18 -8 18 -7 18 -8 18 -8 18 -7 18 -8 17 -8 18 -8 18 -8 18 -7 18 -8 18 -8 18 -8 17 -8 18 -8 18 -9 18 -8 18 -8 2721 1509 100 MP stroke 18 -8 18 -9 18 -8 17 -8 18 -9 18 -8 18 -9 18 -8 18 -9 18 -8 17 -9 18 -9 18 -8 18 -9 18 -9 18 -9 18 -8 17 -9 18 -9 18 -9 18 -9 18 -9 18 -9 18 -9 18 -9 17 -10 18 -9 18 -9 18 -9 18 -10 18 -9 18 -9 17 -10 18 -9 18 -9 18 -10 18 -9 18 -10 18 -10 17 -9 18 -10 18 -9 18 -10 18 -10 18 -10 18 -9 18 -10 17 -10 18 -10 18 -10 18 -10 18 -9 18 -10 18 -10 17 -10 18 -10 18 -10 18 -10 18 -11 18 -10 18 -10 17 -10 18 -10 18 -10 18 -10 18 -11 18 -10 18 -10 18 -10 17 -11 18 -10 18 -10 18 -11 18 -10 18 -10 18 -11 17 -10 18 -11 18 -10 18 -11 18 -10 18 -10 18 -11 17 -10 18 -11 18 -10 18 -11 18 -10 18 -11 18 -10 18 -11 17 -10 18 -11 18 -11 18 -10 18 -11 18 -10 18 -11 17 -10 953 2470 100 MP stroke 18 -11 18 -10 18 -11 899 2502 4 MP stroke DA 18 -2 18 -3 18 -2 17 -2 18 -2 18 -2 18 -3 18 -2 18 -2 18 -2 17 -3 18 -2 18 -3 18 -2 18 -2 18 -3 18 -2 18 -3 17 -2 18 -3 18 -3 18 -2 18 -3 18 -2 18 -3 17 -3 18 -3 18 -2 18 -3 18 -3 18 -3 18 -3 17 -3 18 -3 18 -2 18 -3 18 -3 18 -4 18 -3 18 -3 17 -3 18 -3 18 -3 18 -4 18 -3 18 -3 18 -3 17 -4 18 -3 18 -4 18 -3 18 -4 18 -3 18 -4 17 -3 18 -4 18 -4 18 -4 18 -3 18 -4 18 -4 18 -4 17 -4 18 -4 18 -4 18 -4 18 -4 18 -4 18 -4 17 -4 18 -5 18 -4 18 -4 18 -5 18 -4 18 -4 17 -5 18 -4 18 -5 18 -5 18 -4 18 -5 18 -5 18 -5 17 -5 18 -4 18 -5 18 -5 18 -6 18 -5 18 -5 17 -5 18 -5 18 -6 18 -5 18 -5 18 -6 18 -5 17 -6 4490 954 100 MP stroke 18 -6 18 -5 18 -6 18 -6 18 -6 18 -6 18 -6 17 -6 18 -6 18 -6 18 -6 18 -7 18 -6 18 -6 17 -7 18 -6 18 -7 18 -7 18 -6 18 -7 18 -7 17 -7 18 -7 18 -7 18 -7 18 -7 18 -7 18 -8 18 -7 17 -8 18 -7 18 -8 18 -7 18 -8 18 -8 18 -8 17 -8 18 -8 18 -8 18 -8 18 -9 18 -8 18 -8 17 -9 18 -9 18 -8 18 -9 18 -9 18 -9 18 -9 17 -9 18 -9 18 -9 18 -10 18 -9 18 -9 18 -10 18 -10 17 -10 18 -9 18 -10 18 -10 18 -10 18 -11 18 -10 17 -10 18 -11 18 -10 18 -11 18 -11 18 -11 18 -11 17 -11 18 -11 18 -11 18 -11 18 -12 18 -11 18 -12 18 -12 17 -11 18 -12 18 -12 18 -12 18 -13 18 -12 18 -12 17 -13 18 -12 18 -13 18 -13 18 -13 18 -13 18 -13 17 -13 18 -13 18 -13 18 -14 18 -13 2721 1866 100 MP stroke 18 -14 18 -14 18 -14 17 -14 18 -14 18 -14 18 -14 18 -14 18 -15 18 -14 17 -15 18 -15 18 -15 18 -14 18 -15 18 -16 18 -15 17 -15 18 -15 18 -16 18 -15 18 -16 18 -16 18 -15 18 -16 17 -16 18 -16 18 -17 18 -16 18 -16 18 -16 18 -17 17 -16 18 -17 18 -17 18 -16 18 -17 18 -17 18 -17 17 -17 18 -17 18 -17 18 -17 18 -17 18 -18 18 -17 18 -17 17 -18 18 -17 18 -18 18 -17 18 -18 18 -18 18 -17 17 -18 18 -18 18 -17 18 -18 18 -18 18 -18 18 -18 17 -17 18 -18 18 -18 18 -18 18 -18 18 -18 18 -17 18 -18 17 -18 18 -18 18 -18 18 -17 18 -18 18 -18 18 -18 17 -17 18 -18 18 -17 18 -18 18 -17 18 -18 18 -17 17 -18 18 -17 18 -17 18 -17 18 -17 18 -17 18 -17 18 -17 17 -17 18 -17 18 -17 18 -16 18 -17 18 -16 18 -16 17 -16 953 3510 100 MP stroke 18 -17 18 -16 18 -16 899 3559 4 MP stroke DD 18 -3 18 -2 18 -2 17 -2 18 -2 18 -2 18 -3 18 -2 18 -2 18 -3 17 -2 18 -2 18 -3 18 -2 18 -2 18 -3 18 -2 18 -3 17 -2 18 -3 18 -3 18 -2 18 -3 18 -2 18 -3 17 -3 18 -3 18 -2 18 -3 18 -3 18 -3 18 -3 17 -3 18 -3 18 -3 18 -3 18 -3 18 -3 18 -3 18 -3 17 -3 18 -3 18 -3 18 -4 18 -3 18 -3 18 -4 17 -3 18 -3 18 -4 18 -3 18 -4 18 -3 18 -4 17 -4 18 -3 18 -4 18 -4 18 -4 18 -3 18 -4 18 -4 17 -4 18 -4 18 -4 18 -4 18 -4 18 -4 18 -4 17 -5 18 -4 18 -4 18 -5 18 -4 18 -4 18 -5 17 -4 18 -5 18 -5 18 -4 18 -5 18 -5 18 -5 18 -4 17 -5 18 -5 18 -5 18 -5 18 -5 18 -6 18 -5 17 -5 18 -5 18 -6 18 -5 18 -6 18 -5 18 -6 17 -5 4490 955 100 MP stroke 18 -6 18 -6 18 -5 18 -6 18 -6 18 -6 18 -6 17 -6 18 -7 18 -6 18 -6 18 -6 18 -7 18 -6 17 -7 18 -6 18 -7 18 -7 18 -7 18 -7 18 -7 17 -7 18 -7 18 -7 18 -7 18 -7 18 -8 18 -7 18 -8 17 -7 18 -8 18 -8 18 -8 18 -8 18 -8 18 -8 17 -8 18 -8 18 -8 18 -9 18 -8 18 -9 18 -8 17 -9 18 -9 18 -9 18 -9 18 -9 18 -9 18 -10 17 -9 18 -9 18 -10 18 -10 18 -9 18 -10 18 -10 18 -10 17 -10 18 -11 18 -10 18 -11 18 -10 18 -11 18 -11 17 -10 18 -11 18 -12 18 -11 18 -11 18 -12 18 -11 17 -12 18 -12 18 -12 18 -12 18 -12 18 -12 18 -12 18 -13 17 -13 18 -12 18 -13 18 -13 18 -14 18 -13 18 -13 17 -14 18 -13 18 -14 18 -14 18 -14 18 -15 18 -14 17 -15 18 -14 18 -15 18 -15 18 -15 2721 1912 100 MP stroke 18 -15 18 -16 18 -15 17 -16 18 -16 18 -16 18 -16 18 -16 18 -17 18 -17 17 -16 18 -17 18 -17 18 -18 18 -17 18 -18 18 -18 17 -18 18 -18 18 -18 18 -18 18 -19 18 -19 18 -19 18 -19 17 -19 18 -20 18 -19 18 -20 18 -20 18 -20 18 -21 17 -20 18 -21 18 -21 18 -21 18 -21 18 -21 18 -22 17 -22 18 -21 18 -22 18 -23 18 -22 18 -22 18 -23 18 -23 17 -23 18 -23 18 -23 18 -24 18 -23 18 -24 18 -24 17 -23 18 -24 18 -25 18 -24 18 -24 18 -25 18 -24 17 -25 18 -24 18 -25 18 -25 18 -24 18 -25 18 -25 18 -25 17 -25 18 -25 18 -24 18 -25 18 -25 18 -25 18 -24 17 -25 18 -24 18 -25 18 -24 18 -24 18 -24 18 -24 17 -24 18 -23 18 -24 18 -23 18 -23 18 -22 18 -23 18 -22 17 -22 18 -21 18 -22 18 -21 18 -20 18 -21 18 -20 17 -20 953 4030 100 MP stroke 18 -19 18 -19 18 -19 899 4087 4 MP stroke gr DD SO end eplot epage end showpage %%EndDocument endTexFig 1065 717 a Fr(Figure)16 b(8:)21 b(Accuracy)c(of)e(the)h(noisy-OR)f (expansion.)23 b(Dot-)1065 763 y(ted)e(line:)30 b Fl(N)d Fr(=)c(1;)g(dashed)e(line:)30 b Fl(N)d Fr(=)c(2;)g(dotdashed:)1065 808 y Fl(N)j Fr(=)21 b(3.)34 b Fl(N)25 b Fr(is)19 b(the)h(n)o(um)o(b)q (er)f(of)g(terms)g(included)g(in)g(the)1065 854 y(expansion.)1065 987 y Fp(D)56 b(QUADRA)-5 b(TIC)20 b(BOUND)1065 1084 y Fr(F)m(or)k Fl(X)33 b Ft(2)c Fr([0)p Fl(;)7 b Fr(1])22 b(w)o(e)j(can)g(b)q(ound)f Ft(\000)7 b Fr(log\(1)16 b(+)h Fl(X)s Fr(\))25 b(b)o(y)f(a)1065 1130 y(quadratic)14 b(expression:)1141 1205 y Ft(\000)9 b Fr(log\(1)g(+)h Fl(X)s Fr(\))i Ft(\025)g Fl(a)p Fr(\()p Fl(X)h Ft(\000)c Fl(x)p Fr(\))1599 1187 y Fk(2)1627 1205 y Fr(+)h Fl(b)p Fr(\()p Fl(X)i Ft(\000)e Fl(x)p Fr(\))f(+)h Fl(c)66 b Fr(\(42\))1065 1279 y(where)21 b Fl(c)g Fr(=)g Ft(\000)7 b Fr(log\(1)13 b(+)h Fl(x)p Fr(\),)20 b Fl(b)h Fr(=)g Ft(\000)p Fr(1)p Fl(=)p Fr(\(1)13 b(+)h Fl(x)p Fr(\),)20 b(and)g Fl(a)h Fr(=)1065 1325 y Ft(\000)p Fr([\(1)11 b Ft(\000)g Fl(x)p Fr(\))p Fl(b)g Fr(+)h Fl(c)f Fr(+)g(log)c(2])p Fl(=)p Fr(\(1)j Ft(\000)i Fl(x)p Fr(\))1631 1310 y Fk(2)1649 1325 y Fr(.)27 b(The)17 b(co)q(e\016cen)o(ts)i(can)1065 1371 y(b)q(e)c(deriv)o(ed)g(b)o(y)g(requiring)f(that)h(the)g(quadratic) g(expression)1065 1416 y(and)d(its)f(deriv)n(ativ)o(e)h(are)g(exact)g (at)g Fl(X)j Fr(=)d Fl(x)p Fr(,)f(and)h(b)o(y)f(c)o(ho)q(osing)1065 1462 y(the)h(largest)g(p)q(ossible)g Fl(a)f Fr(suc)o(h)h(that)g(the)g (expression)h(remains)1065 1508 y(a)i(b)q(ound.)22 b(The)15 b(resulting)h(appro)o(ximation)c(is)j(go)q(o)q(d)f(for)h(all)1065 1553 y Fl(x)c Ft(2)g Fr([0)p Fl(;)c Fr(1])12 b(and)i(can)g(b)q(e)h (optimized)d(b)o(y)i(setting)g Fl(x)d Fr(=)h Fl(E)r Ft(f)p Fl(X)s Ft(g)p Fr(.)1065 1624 y(Let)19 b(us)f(no)o(w)g(use)h(this)f (quadratic)g(b)q(ound)g(in)g(eq.)31 b(\(36\))18 b(to)1065 1669 y(b)q(etter)e(appro)o(ximate)d(the)j(exp)q(ectations.)22 b(T)m(o)14 b(simplify)e(the)1065 1715 y(ensuing)i(form)o(ulas)e(w)o(e)i (use)h(the)f(notation)1205 1808 y Fl(E)1236 1814 y Fj(Q)1263 1808 y Ft(f)e Fl(e)1315 1784 y Fe(\000)p Fk(2)1358 1772 y Fh(k)1381 1756 y Fi(P)1425 1800 y Fh(j)1446 1784 y Fj(\022)1462 1788 y Fh(ij)1489 1784 y Fj(S)1509 1788 y Fh(j)1538 1808 y Ft(g)g Fr(=)1246 1885 y(=)1320 1845 y Fi(Y)1339 1934 y Fj(j)1380 1839 y Fi(\020)1405 1885 y Fl(\026)1430 1891 y Fj(j)1447 1885 y Fl(e)1466 1868 y Fe(\000)p Fk(2)1509 1855 y Fh(k)1527 1868 y Fj(\022)1543 1872 y Fh(ij)1581 1885 y Fr(+)d(1)g Ft(\000)h Fl(\026)1719 1891 y Fj(j)1736 1839 y Fi(\021)1773 1885 y Fr(=)h Fl(X)1853 1863 y Fk(\()p Fj(k)q Fk(\))1850 1896 y Fj(i)1966 1885 y Fr(\(43\))1065 2006 y(With)i(these)j(w)o(e)e(straigh)o(tforw)o(ardly) e(\014nd)1127 2080 y(log)6 b Fl(P)g Fr(\()p Ft(f)p Fl(S)1282 2086 y Fj(i)1296 2080 y Ft(g)1317 2086 y Fj(i)p Fe(2)p Fj(L)1376 2080 y Ft(j)p Fl(\022)q Fr(\))1168 2155 y Ft(\025)1242 2116 y Fi(X)1257 2205 y Fj(ik)1309 2155 y Fl(\026)1334 2161 y Fj(i)1348 2155 y Fl(a)1370 2161 y Fj(ik)1409 2109 y Fi(h)1428 2155 y Fl(X)1465 2133 y Fk(\()p Fj(k)q Fk(+1\))1462 2167 y Fj(i)1564 2155 y Ft(\000)j Fr(2)p Fl(X)1663 2133 y Fk(\()p Fj(k)q Fk(\))1660 2167 y Fj(i)1710 2155 y Fl(x)1734 2133 y Fk(\()p Fj(k)q Fk(\))1734 2167 y Fj(i)1789 2155 y Fr(+)h(\()p Fl(x)1871 2133 y Fk(\()p Fj(k)q Fk(\))1871 2167 y Fj(i)1917 2155 y Fr(\))1933 2138 y Fk(2)1952 2109 y Fi(i)1242 2273 y Fr(+)1281 2234 y Fi(X)1296 2323 y Fj(ik)1348 2273 y Fl(\026)1373 2279 y Fj(i)1394 2227 y Fi(h)1413 2273 y Fl(b)1431 2279 y Fj(ik)1463 2273 y Fr(\()p Fl(X)1516 2252 y Fk(\()p Fj(k)q Fk(\))1513 2285 y Fj(i)1573 2273 y Ft(\000)f Fl(x)1638 2252 y Fk(\()p Fj(k)q Fk(\))1638 2285 y Fj(i)1684 2273 y Fr(\))h(+)f Fl(c)1769 2279 y Fj(ik)1801 2227 y Fi(i)1242 2388 y Ft(\000)1281 2348 y Fi(X)1305 2437 y Fj(i)1341 2388 y Fr(\(1)g Ft(\000)h Fl(\026)1454 2394 y Fj(i)1468 2388 y Fr(\))1491 2348 y Fi(X)1513 2437 y Fj(j)1558 2388 y Fl(\022)1577 2394 y Fj(ij)1606 2388 y Fl(\026)1631 2394 y Fj(j)1658 2388 y Fr(+)g Fl(H)1735 2394 y Fj(Q)1966 2388 y Fr(\(44\))1065 2523 y(whic)o(h)j(is)h(optimized)e(with)h(resp)q(ect)j(to)d Fl(x)1726 2501 y Fk(\()p Fj(k)q Fk(\))1726 2535 y Fj(i)1786 2523 y Fr(simply)e(b)o(y)i(set-)1065 2582 y(ting)20 b Fl(x)1181 2561 y Fk(\()p Fj(k)q Fk(\))1181 2594 y Fj(i)1250 2582 y Fr(=)k Fl(X)1343 2561 y Fk(\()p Fj(k)q Fk(\))1340 2594 y Fj(i)1390 2582 y Fr(.)38 b(The)21 b(simpler)f(b)q(ound)h(in)f (eq.)39 b(\(37\))1065 2628 y(corresp)q(onds)17 b(to)e(ignoring)f(the)h (quadratic)g(correction,)h(i.e.,)1065 2673 y(using)e Fl(a)1196 2679 y Fj(ik)1239 2673 y Fr(=)e(0)i(ab)q(o)o(v)o(e.)p eop %%Trailer end userdict /end-hook known{end-hook}if %%EOF