(original) (raw)
%!PS-Adobe-2.0 %%Creator: dvips(k) 5.86 Copyright 1999 Radical Eye Software %%Title: ghap_TR1.dvi %%Pages: 14 %%PageOrder: Ascend %%BoundingBox: 0 0 612 792 %%DocumentFonts: Helvetica %%EndComments %DVIPSWebPage: (www.radicaleye.com) %DVIPSCommandLine: dvips -t letter ghap_TR1.dvi -o ghap_TR1.ps %DVIPSParameters: dpi=600, compressed %DVIPSSource: TeX output 2003.12.22:0015 %%BeginProcSet: texc.pro %! /TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72 mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0 0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{ landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize mul 0}ifelse TR}if Resolution VResolution vsize -72 div 1 add mul TR[ matrix currentmatrix{A A round sub abs 0.00001 lt{round}if}forall round exch round exch]setmatrix}N/@landscape{/isls true N}B/@manualfeed{ statusdict/manualfeed true put}B/@copies{/#copies X}B/FMat[1 0 0 -1 0 0] N/FBB[0 0 0 0]N/nn 0 N/IEn 0 N/ctr 0 N/df-tail{/nn 8 dict N nn begin /FontType 3 N/FontMatrix fntrx N/FontBBox FBB N string/base X array /BitMaps X/BuildChar{CharBuilder}N/Encoding IEn N end A{/foo setfont}2 array copy cvx N load 0 nn put/ctr 0 N[}B/sf 0 N/df{/sf 1 N/fntrx FMat N df-tail}B/dfs{div/sf X/fntrx[sf 0 0 sf neg 0 0]N df-tail}B/E{pop nn A definefont setfont}B/Cw{Cd A length 5 sub get}B/Ch{Cd A length 4 sub get }B/Cx{128 Cd A length 3 sub get sub}B/Cy{Cd A length 2 sub get 127 sub} B/Cdx{Cd A length 1 sub get}B/Ci{Cd A type/stringtype ne{ctr get/ctr ctr 1 add N}if}B/id 0 N/rw 0 N/rc 0 N/gp 0 N/cp 0 N/G 0 N/CharBuilder{save 3 1 roll S A/base get 2 index get S/BitMaps get S get/Cd X pop/ctr 0 N Cdx 0 Cx Cy Ch sub Cx Cw add Cy setcachedevice Cw Ch true[1 0 0 -1 -.1 Cx sub Cy .1 sub]/id Ci N/rw Cw 7 add 8 idiv string N/rc 0 N/gp 0 N/cp 0 N{ rc 0 ne{rc 1 sub/rc X rw}{G}ifelse}imagemask restore}B/G{{id gp get/gp gp 1 add N A 18 mod S 18 idiv pl S get exec}loop}B/adv{cp add/cp X}B /chg{rw cp id gp 4 index getinterval putinterval A gp add/gp X adv}B/nd{ /cp 0 N rw exit}B/lsh{rw cp 2 copy get A 0 eq{pop 1}{A 255 eq{pop 254}{ A A add 255 and S 1 and or}ifelse}ifelse put 1 adv}B/rsh{rw cp 2 copy get A 0 eq{pop 128}{A 255 eq{pop 127}{A 2 idiv S 128 and or}ifelse} ifelse put 1 adv}B/clr{rw cp 2 index string putinterval adv}B/set{rw cp fillstr 0 4 index getinterval putinterval adv}B/fillstr 18 string 0 1 17 {2 copy 255 put pop}for N/pl[{adv 1 chg}{adv 1 chg nd}{1 add chg}{1 add chg nd}{adv lsh}{adv lsh nd}{adv rsh}{adv rsh nd}{1 add adv}{/rc X nd}{ 1 add set}{1 add clr}{adv 2 chg}{adv 2 chg nd}{pop nd}]A{bind pop} forall N/D{/cc X A type/stringtype ne{]}if nn/base get cc ctr put nn /BitMaps get S ctr S sf 1 ne{A A length 1 sub A 2 index S get sf div put }if put/ctr ctr 1 add N}B/I{cc 1 add D}B/bop{userdict/bop-hook known{ bop-hook}if/SI save N @rigin 0 0 moveto/V matrix currentmatrix A 1 get A mul exch 0 get A mul add .99 lt{/QV}{/RV}ifelse load def pop pop}N/eop{ SI restore userdict/eop-hook known{eop-hook}if showpage}N/@start{ userdict/start-hook known{start-hook}if pop/VResolution X/Resolution X 1000 div/DVImag X/IEn 256 array N 2 string 0 1 255{IEn S A 360 add 36 4 index cvrs cvn put}for pop 65781.76 div/vsize X 65781.76 div/hsize X}N /p{show}N/RMat[1 0 0 -1 0 0]N/BDot 260 string N/Rx 0 N/Ry 0 N/V{}B/RV/v{ /Ry X/Rx X V}B statusdict begin/product where{pop false[(Display)(NeXT) (LaserWriter 16/600)]{A length product length le{A length product exch 0 exch getinterval eq{pop true exit}if}{pop}ifelse}forall}{false}ifelse end{{gsave TR -.1 .1 TR 1 1 scale Rx Ry false RMat{BDot}imagemask grestore}}{{gsave TR -.1 .1 TR Rx Ry scale 1 1 false RMat{BDot} imagemask grestore}}ifelse B/QV{gsave newpath transform round exch round exch itransform moveto Rx 0 rlineto 0 Ry neg rlineto Rx neg 0 rlineto fill grestore}B/a{moveto}B/delta 0 N/tail{A/delta X 0 rmoveto}B/M{S p delta add tail}B/b{S p tail}B/c{-4 M}B/d{-3 M}B/e{-2 M}B/f{-1 M}B/g{0 M} B/h{1 M}B/i{2 M}B/j{3 M}B/k{4 M}B/w{0 rmoveto}B/l{p -4 w}B/m{p -3 w}B/n{ p -2 w}B/o{p -1 w}B/q{p 1 w}B/r{p 2 w}B/s{p 3 w}B/t{p 4 w}B/x{0 S rmoveto}B/y{3 2 roll p a}B/bos{/SS save N}B/eos{SS restore}B end %%EndProcSet %%BeginProcSet: special.pro %! TeXDict begin/SDict 200 dict N SDict begin/@SpecialDefaults{/hs 612 N /vs 792 N/ho 0 N/vo 0 N/hsc 1 N/vsc 1 N/ang 0 N/CLIP 0 N/rwiSeen false N /rhiSeen false N/letter{}N/note{}N/a4{}N/legal{}N}B/@scaleunit 100 N /@hscale{@scaleunit div/hsc X}B/@vscale{@scaleunit div/vsc X}B/@hsize{ /hs X/CLIP 1 N}B/@vsize{/vs X/CLIP 1 N}B/@clip{/CLIP 2 N}B/@hoffset{/ho X}B/@voffset{/vo X}B/@angle{/ang X}B/@rwi{10 div/rwi X/rwiSeen true N}B /@rhi{10 div/rhi X/rhiSeen true N}B/@llx{/llx X}B/@lly{/lly X}B/@urx{ /urx X}B/@ury{/ury X}B/magscale true def end/@MacSetUp{userdict/md known {userdict/md get type/dicttype eq{userdict begin md length 10 add md maxlength ge{/md md dup length 20 add dict copy def}if end md begin /letter{}N/note{}N/legal{}N/od{txpose 1 0 mtx defaultmatrix dtransform S atan/pa X newpath clippath mark{transform{itransform moveto}}{transform{ itransform lineto}}{6 -2 roll transform 6 -2 roll transform 6 -2 roll transform{itransform 6 2 roll itransform 6 2 roll itransform 6 2 roll curveto}}{{closepath}}pathforall newpath counttomark array astore/gc xdf pop ct 39 0 put 10 fz 0 fs 2 F/|______Courier fnt invertflag{PaintBlack} if}N/txpose{pxs pys scale ppr aload pop por{noflips{pop S neg S TR pop 1 -1 scale}if xflip yflip and{pop S neg S TR 180 rotate 1 -1 scale ppr 3 get ppr 1 get neg sub neg ppr 2 get ppr 0 get neg sub neg TR}if xflip yflip not and{pop S neg S TR pop 180 rotate ppr 3 get ppr 1 get neg sub neg 0 TR}if yflip xflip not and{ppr 1 get neg ppr 0 get neg TR}if}{ noflips{TR pop pop 270 rotate 1 -1 scale}if xflip yflip and{TR pop pop 90 rotate 1 -1 scale ppr 3 get ppr 1 get neg sub neg ppr 2 get ppr 0 get neg sub neg TR}if xflip yflip not and{TR pop pop 90 rotate ppr 3 get ppr 1 get neg sub neg 0 TR}if yflip xflip not and{TR pop pop 270 rotate ppr 2 get ppr 0 get neg sub neg 0 S TR}if}ifelse scaleby96{ppr aload pop 4 -1 roll add 2 div 3 1 roll add 2 div 2 copy TR .96 dup scale neg S neg S TR}if}N/cp{pop pop showpage pm restore}N end}if}if}N/normalscale{ Resolution 72 div VResolution 72 div neg scale magscale{DVImag dup scale }if 0 setgray}N/psfts{S 65781.76 div N}N/startTexFig{/psf$SavedState save N userdict maxlength dict begin/magscale true def normalscale currentpoint TR/psf$ury psfts/psf$urx psfts/psf$lly psfts/psf$llx psfts /psf$y psfts/psf$x psfts currentpoint/psf$cy X/psf$cx X/psf$sx psf$x psf$urx psf$llx sub div N/psf$sy psf$y psf$ury psf$lly sub div N psf$sx psf$sy scale psf$cx psf$sx div psf$llx sub psf$cy psf$sy div psf$ury sub TR/showpage{}N/erasepage{}N/copypage{}N/p 3 def @MacSetUp}N/doclip{ psf$llx psf$lly psf$urx psf$ury currentpoint 6 2 roll newpath 4 copy 4 2 roll moveto 6 -1 roll S lineto S lineto S lineto closepath clip newpath moveto}N/endTexFig{end psf$SavedState restore}N/@beginspecial{SDict begin/SpecialSave save N gsave normalscale currentpoint TR @SpecialDefaults count/ocount X/dcount countdictstack N}N/@setspecial{ CLIP 1 eq{newpath 0 0 moveto hs 0 rlineto 0 vs rlineto hs neg 0 rlineto closepath clip}if ho vo TR hsc vsc scale ang rotate rwiSeen{rwi urx llx sub div rhiSeen{rhi ury lly sub div}{dup}ifelse scale llx neg lly neg TR }{rhiSeen{rhi ury lly sub div dup scale llx neg lly neg TR}if}ifelse CLIP 2 eq{newpath llx lly moveto urx lly lineto urx ury lineto llx ury lineto closepath clip}if/showpage{}N/erasepage{}N/copypage{}N newpath}N /@endspecial{count ocount sub{pop}repeat countdictstack dcount sub{end} repeat grestore SpecialSave restore end}N/@defspecial{SDict begin}N /@fedspecial{end}B/li{lineto}B/rl{rlineto}B/rc{rcurveto}B/np{/SaveX currentpoint/SaveY X N 1 setlinecap newpath}N/st{stroke SaveX SaveY moveto}N/fil{fill SaveX SaveY moveto}N/ellipse{/endangle X/startangle X /yrad X/xrad X/savematrix matrix currentmatrix N TR xrad yrad scale 0 0 1 startangle endangle arc savematrix setmatrix}N end %%EndProcSet TeXDict begin 40258431 52099146 1000 600 600 (ghap_TR1.dvi) @start %DVIPSBitmapFont: Fa cmex9 9 6 /Fa 6 63 df<1430147014E0EB01C0EB03801307EB0F00131E133E133C5B13F85B12015B 1203A2485AA2120F5BA2121F90C7FCA25AA2123EA2127EA5127C12FCB3127C127EA5123E A2123FA27EA27F120FA27F1207A26C7EA212017F12007F13787F133E131E7FEB07801303 EB01C0EB00E0147014301459758223>0 D<12C07E12707E7E121E7E6C7E7F12036C7E7F 12007F1378137CA27FA2133F7FA21480130FA214C0A21307A214E0A5130314F0B314E013 07A514C0A2130FA21480A2131F1400A25B133EA25BA2137813F85B12015B485A12075B48 C7FC121E121C5A5A5A5A14597D8223>I56 D58 D60 D62 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fb cmsy9 9 6 /Fb 6 107 df<007FB712FCB812FEA26C16FC2F047A943C>0 D<123C127E12FFA4127E12 3C08087A9615>I<0060153000F815F86C1401007EEC03F06CEC07E06C6CEB0FC06C6CEB 1F806C6CEB3F006C6C137E6C6C5B6C6C485A90387E03F06D485A90381F8FC090380FDF80 6DB4C7FC6D5A6D5AA2497E497E90380FDF8090381F8FC090383F07E090387E03F0496C7E 48486C7E4848137E48487F4848EB1F804848EB0FC048C7EA07E0007EEC03F048EC01F848 140000601530252475A43C>I47 D<1630167816F8A2ED01F0A2ED03E0A2ED07C0A2ED0F80A2ED1F00A2153EA25DA25DA24A 5AA24A5AA24A5AA24A5AA24AC7FCA2143EA25CA25CA2495AA2495AA2495AA2495AA249C8 FCA2133EA25BA25BA2485AA2485AA2485AA2485AA248C9FCA2123EA25AA25AA25A126025 4675B500>54 D<126012F0B3B3B3B31260044B78B715>106 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fc cmsy6 6 5 /Fc 5 107 df0 D<127812FCA4127806067A8F13>I48 D<1570A215F015E01401EC03C01580140715005C140E141E5C14381478 147014F05C1301495A5C130791C7FC5B130E131E131C133C5B137013F05B12015B120348 5A90C8FC5A120E121E121C123C5A127012F05A12601C2F77A300>54 D<12E0B3B3AD033179A413>106 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fd msam10 10 1 /Fd 1 45 df<1538157CA215FE4A7EA2913803EF80A2913807C7C0A291380F83E0021F7F 150191383E00F8A24A137C02FC137E4A133E49487FA249486D7EA249486D7E010F814A13 0349C76C7EA2013E6E7E013FB6FCA36D5D90CBFCAA007FB812FCB912FEA26C17FCCCFCAE 007FB812FCB912FEA26C17FC37407BC942>44 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fe cmsy5 5 3 /Fe 3 49 df0 D<13E0A438F0E1E0EAF843387E4FC0380F5E00 EA01F0A2EA0F5E387E4FC038F843E0EAF0E13800E000A413127B921F>3 D48 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Ff cmmib10 10 1 /Ff 1 19 df<15FF020713C0021F13F091387F83F89138FF01FCD901FE7F903907FC00FF 495A494814804A137F133F495A01FF15C05C4815FFA24890C7FCA25A5B000F5CA2485AA2 4B1380123F5BA290B7FC481600A39038F0000F00FF5D5BA24B5AA25B5E153F5EA249495A A25E15FF5E4A90C7FCA2007F495A4A5A5D6C6C485A001F495A6D485A6C6CB4C8FC3803FF FC6C13F038003F802A3C7CBA2F>18 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fg cmmi9 9 19 /Fg 19 118 df<010FB712F0A218E0903A003FC0001F170317015D1700147F18C092C8FC A25CA25CA20101150118804A91C7FCA21303A25CA21307A25CA2130FA25CA2131FA25CA2 133FA25CA2137FA291CAFCA25BA25B487EB6FCA334337DB22F>0 D<147F903803FFE090380FC0F890383F007C017C017E1360497F484815E0484890381F80 C0120748481481EEC1804848130F003F15C390C7140016C74815C6007E15CE16DC16D816 F8485D5E5E127CA3151F6C143F037713C06C903801E7E03A0F800783E13B07C07E03E380 3B01FFF801FF003A007F80007C2B227EA031>11 DI<1307D90FC01338011F 147C16FC5CA2013F1301A202005BA2491303A2017E5CA201FE1307A2495CA20001140FA2 495C17800003021F13C016C149EC8180A20007EC3F836D017F130016034B5A3A0FFC03CF 869039FE070F8E9039DFFE07FC9039C3F801F0D81FC0C9FCA25BA2123FA290CAFCA25AA2 127EA212FEA25A12382A327FA02E>22 D<123C127EB4FCA21380A2127F123D1201A41203 1300A25A1206120E120C121C5A5A126009177A8715>59 D<010FB612F017FEEFFF80903B 003FC0003FE0EF0FF017074B14F81703027F15FCA292C7FCA25C18F84A140718F0010115 0F18E04AEC1FC0EF3F800103ED7F00EE01FE4AEB07F891B612E04915809139F8001FF04A EB03FCEE00FE010F157FA24AEC3F80A2011F16C0A25CA2133F18804A147FA2017FEDFF00 5F91C712014C5A494A5A4C5A49EC3FE00001913801FF80B748C7FC16F816C036337DB23A >66 D<0107B512E05BA29039001FF0005DA25DA2143FA25DA2147FA292C7FCA25CA25CA2 1301A25CA21303A25CA21307A25CA2130FA25CA2131FA25CA2133FA25CA2137FA291C8FC 5B007F13FEB5FCA223337EB222>73 D<020FB512C0A39139000FF000A35EA2151F5EA315 3F5EA3157F93C7FCA35D5DA314015DA314035DA314075DA3140F5DA2123E007F131F485C A2143F485C4849C8FC12C06C13FE386001F8387003F0383C0FC0D80FFFC9FCEA03F82A35 7BB22A>I<010FB67E17F817FE903A003FC001FF9338003FC0EF1FE04B130FEF07F0147F A292C713F8A25CEF0FF05CA20101ED1FE018C04AEC3F8018000103157E4C5A4AEB07F0EE 3FC049B500FEC7FC16F89138F0007E82010F6E7E707E5C83131FA25CA2013F141FA25CA2 017F143F5F91C7FC180649160E180C49161C00011718B500FC011F133893380FE0700407 13E0C93803FFC09338007F0037357DB23A>82 D97 D<147F903803FFC090380FC0 F090383F0038137C4913F83801F0013803E0031207EA0FC090388001F0001F90C7FC123F 90C8FCA25A127EA45AA3127C150C151C15386C147015E06CEB03C0390F800F003807C07E 3801FFF038007F801E227EA021>99 D103 DII107 D109 DI<011F131F90397FC07FE09039E3E1E0 F09039C3E380783A01C1F7007CD981FE133CD983FC133E00035BEB03F0163FEA07071206 00025B1200010F147F167E5CA2011F14FE16FC5CA2013FEB01F8A291380003F016E04913 07ED0FC002801380ED1F009038FFC03E9038FEE0F89038FC7FE0EC1F80000190C8FCA25B A21203A25BA21207A25BB57EA3283083A027>112 D<13F8D803FEEB01C0D8070FEB03E0 000EEB8007121C001813C00038140FEA301F0070018013C01260013F131F00E013000040 1580C65A017E133F13FE491400A25D120149137E1602EDFE0716064913FCA2160E020113 0C9039F803F81C1618000090380F7C38D97C1C137090393FF81FE0903907E0078028227E A02C>117 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fh cmmi5 5 10 /Fh 10 117 df<127012F812FCA2127C120CA31218A2123012601240060D7A8413>59 D<137F3801FFC0EA07C3380F03E0381C07C0EA3C0348C7FCA25AA500701340007813E038 3C03C0381FFF00EA07F813127C911B>99 D103 DI<137013F8A213F013E01300A6EA0F80EA1FC0EA31 E01261A2EAC3C01203EA0780A3EA0F001308EA1E18A213301370EA0FE0EA07800D1D7D9C 16>III<3A0F01F807 E03A3F87FE1FF83A33CE1F387C3A63D80F603CD8C3F013C001E01380D803C01300A22607 801E5BA3EEF04048484814C0ED01E0EEE18016E3001E90397800FF00000C0130137C2A12 7D9133>109 D<137E3801FF80EA0381380703C0380E0780EB0300EA0F80EA07F86CB4FC 6C1380EA000FEA3003127812F8EB0700EAF00EEA7FFCEA1FF012127C911C>115 D<13C0EA01E0A3EA03C0A4EAFFFCA2EA0780A2EA0F00A4121EA31304EA3C0CA213181370 EA1FE0EA0F800E1A7D9917>I E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fi cmbx10 10 31 /Fi 31 118 df45 DI<141E143E14FE1307133FB5FCA313CFEA000FB3B3A600 7FB61280A4213779B630>49 DII65 D68 D71 DI77 D80 D82 DI<003FB91280A4D9F800EBF003D87FC09238007FC049 161F007EC7150FA2007C1707A200781703A400F818E0481701A4C892C7FCB3AE010FB7FC A43B387DB742>I97 D<13FFB5FCA412077EAF4AB47E020F13F0023F13FC91 38FE03FFDAF00013804AEB7FC00280EB3FE091C713F0EE1FF8A217FC160FA217FEAA17FC A3EE1FF8A217F06E133F6EEB7FE06E14C0903AFDF001FF80903AF8FC07FE009039F03FFF F8D9E00F13E0D9C00390C7FC2F3A7EB935>I<903801FFC0010F13FC017F13FFD9FF8013 802603FE0013C048485AEA0FF8121F13F0123F6E13804848EB7F00151C92C7FC12FFA912 7FA27F123FED01E06C7E15036C6CEB07C06C6C14806C6C131FC69038C07E006DB45A010F 13F00101138023257DA42A>II<903803FF80011F13F0017F13FC3901FF83FE3A03FE007F804848133F 484814C0001FEC1FE05B003FEC0FF0A2485A16F8150712FFA290B6FCA301E0C8FCA4127F A36C7E1678121F6C6C14F86D14F000071403D801FFEB0FE06C9038C07FC06DB51200010F 13FC010113E025257DA42C>I<161FD907FEEBFFC090387FFFE348B6EAEFE02607FE0713 8F260FF801131F48486C138F003F15CF4990387FC7C0EEC000007F81A6003F5DA26D13FF 001F5D6C6C4890C7FC3907FE07FE48B512F86D13E0261E07FEC8FC90CAFCA2123E123F7F 6C7E90B512F8EDFF8016E06C15F86C816C815A001F81393FC0000F48C8138048157F5A16 3FA36C157F6C16006D5C6C6C495AD81FF0EB07FCD807FEEB3FF00001B612C06C6C91C7FC 010713F02B377DA530>103 D<13FFB5FCA412077EAFED7FC0913803FFF8020F13FE9138 1F03FFDA3C01138014784A7E4A14C05CA25CA291C7FCB3A3B5D8FC3F13FFA4303A7DB935 >II<13FFB5FCA412077EB3B3ACB512FCA4163A7DB91B>108 D<01FED97FE0EB0FFC00FF902601FFFC90383FFF80020701FF90B512E0DA1F81903983F0 3FF0DA3C00903887801F000749DACF007F00034914DE6D48D97FFC6D7E4A5CA24A5CA291 C75BB3A3B5D8FC1FB50083B512F0A44C257DA451>I<01FEEB7FC000FF903803FFF8020F 13FE91381F03FFDA3C011380000713780003497E6D4814C05CA25CA291C7FCB3A3B5D8FC 3F13FFA430257DA435>I<903801FFC0010F13F8017F13FFD9FF807F3A03FE003FE04848 6D7E48486D7E48486D7EA2003F81491303007F81A300FF1680A9007F1600A3003F5D6D13 07001F5DA26C6C495A6C6C495A6C6C495A6C6C6CB45A6C6CB5C7FC011F13FC010113C029 257DA430>I<9039FF01FF80B5000F13F0023F13FC9138FE07FFDAF00113800007496C13 C06C0180EB7FE091C713F0EE3FF8A2EE1FFCA3EE0FFEAA17FC161FA217F8163F17F06E13 7F6E14E06EEBFFC0DAF00313809139FC07FE0091383FFFF8020F13E0020390C7FC91C9FC ACB512FCA42F357EA435>I<9038FE03F000FFEB0FFEEC3FFF91387C7F809138F8FFC000 075B6C6C5A5CA29138807F80ED3F00150C92C7FC91C8FCB3A2B512FEA422257EA427> 114 D<90383FF0383903FFFEF8000F13FF381FC00F383F0003007E1301007C130012FC15 787E7E6D130013FCEBFFE06C13FCECFF806C14C06C14F06C14F81203C614FC131F903800 7FFE140700F0130114007E157E7E157C6C14FC6C14F8EB80019038F007F090B512C000F8 140038E01FF81F257DA426>I<130FA55BA45BA25B5BA25A1207001FEBFFE0B6FCA30003 90C7FCB21578A815F86CEB80F014816CEBC3E090383FFFC06D1380903803FE001D357EB4 25>I<01FFEC3FC0B5EB3FFFA4000714016C80B3A35DA25DA26C5C6E4813E06CD9C03E13 FF90387FFFFC011F13F00103138030257DA435>I E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fj cmsy7 7 6 /Fj 6 73 df0 D<1338A50060130C00F8133E00FC137E00FE13 FE383FBBF83807FFC000011300EA007C48B4FC000713C0383FBBF838FE38FE00FC137E00 F8133E0060130C00001300A517197B9A22>3 D<13E0EA01F0EA03F8A3EA07F0A313E0A2 120F13C0A3EA1F80A21300A25A123EA35AA3127812F8A25A12100D1E7D9F13>48 D<49B5FC130F133F01FFC7FCEA01F8EA03E0EA078048C8FC121E121C123C123812781270 A212F05AA2B7FCA300E0C8FCA27E1270A212781238123C121C121E7E6C7EEA03E0EA01F8 6CB4FC013FB5FC130F130120277AA12D>50 D<150EA2151E151C153C1578157015F015E0 140115C0140315801407EC0F00140E141E141C143C14381478147014F0495A5C13035C13 0791C7FC5B131E131C133C13381378137013F05B1201485A5B120790C8FC5A120E121E12 1C123C5A127012F05A12601F3576A800>54 D72 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fk cmr5 5 6 /Fk 6 94 df22 D48 D<1360EA01E0120F12FF12F11201B3A3387FFF80A2 111C7B9B1C>II<12FFA312E0B3B112FFA308297A9E11>91 D<12FFA31207B3B112FFA308297E9E11>93 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fl cmex10 10 11 /Fl 11 106 df2 DI<151E153E157C15F8EC01F0EC03 E01407EC0FC0EC1F8015005C147E5CA2495A495AA2495AA2495AA2495AA249C7FCA2137E A213FE5B12015BA212035BA21207A25B120FA35B121FA45B123FA548C8FCA912FEB3A812 7FA96C7EA5121F7FA4120F7FA312077FA21203A27F1201A27F12007F137EA27FA26D7EA2 6D7EA26D7EA26D7EA26D7E6D7EA2147E80801580EC0FC0EC07E01403EC01F0EC00F8157C 153E151E1F94718232>16 D<12F07E127C7E7E6C7E7F6C7E6C7E12017F6C7E137EA27F6D 7EA26D7EA26D7EA26D7EA26D7EA26D7EA280147E147F80A21580141FA215C0A2140F15E0 A3140715F0A4140315F8A5EC01FCA9EC00FEB3A8EC01FCA9EC03F8A515F01407A415E014 0FA315C0141FA21580A2143F1500A25C147E14FE5CA2495AA2495AA2495AA2495AA2495A A249C7FC137EA25B485A5B1203485A485A5B48C8FC123E5A5A5A1F947D8232>I<161E16 7EED01FE1507ED0FF8ED3FE0ED7FC0EDFF80913801FE004A5A4A5A5D140F4A5A5D143F5D 147F92C7FCA25C5CB3B3B3A313015CA3495AA213075C495AA2495A495A137F49C8FC485A 485AEA07F0EA1FE0485AB4C9FC12FCA2B4FCEA3FC06C7EEA07F0EA03FC6C7E6C7E6D7E13 3F6D7E6D7EA26D7E801303A26D7EA3801300B3B3B3A38080A281143F81141F816E7E1407 816E7E6E7E913800FF80ED7FC0ED3FE0ED0FF8ED07FE1501ED007E161E27C675823E>26 D40 D80 D88 DI104 DI E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fm cmmi10 10 40 /Fm 40 121 df<0103B812805BA290260007F8C7FC4B141FF00F00140F845DA2141FA25D 1806143FA25DA2147F95C7FC92CAFCA25CA25CA21301A25CA21303A25CA21307A25CA213 0FA25CA2131FA25CA2133FA25CA2137FA291CBFC497EB612C0A339397DB833>0 D11 DII17 DI22 D<1406A6913807FFC04A13E0 91383F80609138FDFFE0903903F87F804948C7FC495A495A495A137F91C8FC5B5B1201A2 5BA512007F137E90383F3FF090381FFFFC90380FC01C90381FFFF890383C7FE001F0C8FC 485A485A485AA248C9FC121EA25AA2127C1278A312F87EA2127E127F7FEA3FE013FC6CB4 FC6C13E06C13F8000113FF6C6C13C0010F13F001037FEB007F140F14031400A4010C5BEB 0E0190380783E0903801FF80D9007EC7FC234B7EB924>24 D<013FB512FE90B7FC5A5A48 15FE260F801CC7FCEA1E005A00385B5A5A481378C7FC147014F0A4495AA31303A3495AA3 130FA25C131FA3133FA291C8FC131E28257EA324>28 D<1503A35DA21506A2150EA2150C A2151CA21518A21538A21530A21570A2EC07FE91383FFFC0903901FCE3F0903907E0E0F8 90391F80C03ED93E007FEB7C01D801F8EC0F80D803F0018013C0D807E014071403D80FC0 15E0D81F801300A248485AA2007E1306A2020E130F12FE48010C14C0A2021CEB1F80A202 18EB3F00A20238137E007C5D1430007E4A5A003E90387003F06CEC07C09138600F80D80F 80013FC7FC3903E0E0FC3901F8E7F039007FFF80D90FFCC8FCEB01C0A25CA21303A291C9 FCA25BA21306A2130EA2130CA22B4B7CB931>30 D<121C127FEAFF80A5EA7F00121C0909 798817>58 D<121C127FEAFF80A213C0A3127F121C1200A412011380A2120313005A1206 120E5A5A5A12600A19798817>II<150C151E153EA2153C157CA2157815F8A215F01401A215E01403A215C014 07A21580140FA215005CA2141E143EA2143C147CA2147814F8A25C1301A25C1303A2495A A25C130FA291C7FC5BA2131E133EA2133C137CA2137813F8A25B1201A25B1203A25B1207 A25B120FA290C8FC5AA2121E123EA2123C127CA2127812F8A25A12601F537BBD2A>I<17 60177017F01601A21603A21607160FA24C7EA216331673166316C3A2ED0183A2ED030315 0683150C160115181530A21560A215C014011580DA03007FA202061300140E140C5C021F B5FC5CA20260C7FC5C83495A8349C8FC1306A25BA25B13385B01F01680487E000716FFB5 6C013F13FF5EA2383C7DBB3E>65 D<0103B77E4916F018FC903B0007F80003FE4BEB00FF F07F80020FED3FC0181F4B15E0A2141FA25DA2143F19C04B143F1980027F157F190092C8 12FE4D5A4A4A5AEF0FF04AEC1FC005FFC7FC49B612FC5F02FCC7B4FCEF3FC00103ED0FE0 717E5C717E1307844A1401A2130F17035CA2131F4D5A5C4D5A133F4D5A4A4A5A4D5A017F 4BC7FC4C5A91C7EA07FC49EC3FF0B812C094C8FC16F83B397DB83F>I<9339FF8001C003 0F13E0037F9038F80380913A01FF807E07913A07F8000F0FDA1FE0EB079FDA3F80903803 BF0002FFC76CB4FCD901FC80495A4948157E495A495A4948153E017F163C49C9FC5B1201 484816385B1207485A1830121F4993C7FCA2485AA3127F5BA312FF90CCFCA41703A25F17 06A26C160E170C171C5F6C7E5F001F5E6D4A5A6C6C4A5A16076C6C020EC8FC6C6C143C6C 6C5C6CB4495A90393FE00FC0010FB5C9FC010313FC9038007FC03A3D7CBA3B>I71 D<0103B5D8F803B512F8495DA290260007F8C73807F800 4B5DA2020F150F615DA2021F151F615DA2023F153F615DA2027F157F96C7FC92C8FCA24A 5D605CA249B7FC60A202FCC7120101031503605CA201071507605CA2010F150F605CA201 1F151F605CA2013F153F605CA2017F157F95C8FC91C8FC496C4A7EB690B6FCA345397DB8 45>I<0107B512FCA216F890390007F8005DA2140FA25DA2141FA25DA2143FA25DA2147F A292C7FCA25CA25CA21301A25CA21303A25CA21307A25CA2130FA25CA2131FA25CA2133F A25CA2137FA291C8FC497EB6FCA326397DB824>I<0203B512FCA3DA000113006F5AA215 015EA315035EA315075EA3150F5EA3151F5EA3153F5EA3157F93C7FCA35D5DA31401A25D A21403120FD83F805B127FEBC007D8FF805BA24A5AEB001F00FC5C00E0495A006049C8FC 007013FE383801F8381E07F03807FFC0D801FEC9FC2E3B7AB82E>I<0103B612F849EDFF 8018E0903B0007F8001FF84BEB03FCEF00FE020F157FA24BEC3F80A2021F16C0A25DA214 3FF07F805DA2027FEDFF006092C7485A4D5A4A4A5A4D5A4AEC1F80057FC7FC0101EC07F8 91B612E094C8FC9139FC000FC00103EC03F0707E4A6D7E831307177E5C177F010F5D5F5C A2011F1401A25CA2133F16034A4A1360A2017F17E019C091C71401496C01011480B61503 933900FE0700EF7E0ECAEA1FFCEF07F03B3B7DB83F>82 D<49B500F890387FFFF095B5FC 1AE0D90003018090380FFC004BC713E00201ED07804EC7FC6E6C140E606F5C705B606F6C 485A4D5A031F91C8FCEEE0065F6F6C5A5F03075B705A16F96FB45A94C9FC6F5AA36F7EA3 4B7FED037F9238063FC0150E4B6C7E1538ED700F03E07F15C04A486C7EEC030002061303 4A805C4A6D7E14704A1300494880495A49C86C7E130E011E153F017E4B7ED803FF4B7E00 7F01E0011FEBFFC0B5FC6144397EB845>88 D<147E903803FF8090390FC1C38090391F00 EFC0017E137F49133F485A4848EB1F8012075B000F143F48481400A2485A5D007F147E90 C7FCA215FE485C5AA214015D48150CA21403EDF01C16181407007C1538007E010F133000 3E131F027B13706C01E113E03A0F83C0F9C03A03FF007F80D800FCEB1F0026267DA42C> 97 D99 D<163FED1FFFA3ED007F167EA216FEA216FCA21501A216F8A21503A216F0A215 07A2027E13E0903803FF8790380FC1CF90381F00EF017EEB7FC049133F485A4848131F00 0715805B000F143F485A1600485A5D127F90C7127EA215FE5A485CA21401A248ECF80CA2 1403161CEDF0181407007C1538007E010F1330003E131F027B13706C01E113E03A0F83C0 F9C03A03FF007F80D800FCEB1F00283B7DB92B>II103 DI<14E0EB03F8A21307A314F0EB01C090C7FCAB13F8EA03FEEA070F000E13 80121C121812381230EA701F1260133F00E0130012C05BEA007EA213FE5B1201A25B1203 5BA20007131813E01438000F133013C01470EB806014E014C01381EB838038078700EA03 FEEA00F815397EB71D>I<150FED3F80A2157FA31600151C92C7FCABEC0F80EC3FE0ECF0 F0903801C0F849487E14005B130E130C131CEB1801133801305BA2EB0003A25DA21407A2 5DA2140FA25DA2141FA25DA2143FA292C7FCA25CA2147EA214FEA25CA21301001E5B123F 387F83F0A238FF87E0495A00FE5BD87C1FC8FCEA707EEA3FF8EA0FC0214981B722>II109 DI<90390F8003F090391FE00FFC903939F03C1F903A70F8700F80903AE0FD E007C09038C0FF80030013E00001491303018015F05CEA038113015CA2D800031407A25C A20107140FA24A14E0A2010F141F17C05CEE3F80131FEE7F004A137E16FE013F5C6E485A 4B5A6E485A90397F700F80DA383FC7FC90387E1FFCEC07E001FEC9FCA25BA21201A25BA2 1203A25B1207B512C0A32C3583A42A>112 D<02FC13C0903803FF0190380F838390383F 01C790397E00EF8049137F485A4848133F000715005B485A001F5C157E485AA2007F14FE 90C75AA3481301485CA31403485CA314075D140F127C141F007E495A003E137F381F01EF 380F839F3903FF1F80EA00FC1300143F92C7FCA35C147EA314FE5C130190387FFFF0A322 357DA425>I<3903E001F83907F807FE390E3C1E07391C3E381F3A183F703F800038EBE0 7F0030EBC0FF00705B00601500EC007E153CD8E07F90C7FCEAC07EA2120013FE5BA31201 5BA312035BA312075BA3120F5BA3121F5B0007C9FC21267EA425>I116 D<13F8D803FE1438D8070F147C000E6D13 FC121C1218003814011230D8701F5C12601503EAE03F00C001005B5BD8007E1307A201FE 5C5B150F1201495CA2151F120349EC80C0A2153F1681EE0180A2ED7F0303FF130012014A 5B3A00F8079F0E90397C0E0F1C90393FFC07F8903907F001F02A267EA430>I<903907E0 01F090391FF807FC9039783E0E0F9039E01F1C1FD801C09038383F803A03800FF07F0100 EBE0FF5A000E4A1300000C157E021F133C001C4AC7FC1218A2C7123FA292C8FCA25CA214 7EA214FEA24A130CA20101141C001E1518003F5BD87F81143801835C00FF1560010714E0 3AFE0E7C01C0D87C1C495A2778383E0FC7FC391FF00FFC3907C003F029267EA42F>120 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fn cmsy10 10 12 /Fn 12 107 df<007FB81280B912C0A26C17803204799641>0 D<121C127FEAFF80A5EA 7F00121C0909799917>I8 D15 D24 D47 D<91381FFFFE91B6FC1303010F14FED91FF0C7FCEB7F8001FEC8FCEA01F8485A485A485A 5B48C9FCA2123EA25AA2127812F8A25AA2B712FE16FFA216FE00F0C9FCA27EA21278127C A27EA27EA26C7E7F6C7E6C7E6C7EEA00FEEB7F80EB1FF06DB512FE010314FF1300021F13 FE283279AD37>50 D54 D72 D102 D<12FCEAFFC0EA07F0EA01FCEA007E7F80131F80130FB3A7801307806D7E6D7EEB00 7EEC1FF0EC07F8EC1FF0EC7E00495A495A495A5C130F5CB3A7131F5C133F91C7FC137E48 5AEA07F0EAFFC000FCC8FC1D537ABD2A>I<126012F0B3B3B3B3A91260045377BD17>106 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fo cmti10 10 49 /Fo 49 122 df<150C151C153815F0EC01E0EC03C0EC0780EC0F00141E5C147C5C5C495A 1303495A5C130F49C7FCA2133EA25BA25BA2485AA212035B12075BA2120F5BA2121FA290 C8FCA25AA2123EA2127EA2127CA412FC5AAD1278A57EA3121C121EA2120E7EA26C7E6C7E A212001E5274BD22>40 D<140C140E80EC0380A2EC01C015E0A2140015F0A21578A4157C 153CAB157CA715FCA215F8A21401A215F0A21403A215E0A21407A215C0140F1580A2141F 1500A2143EA25CA25CA2495AA2495A5C1307495A91C7FC5B133E133C5B5B485A12035B48 C8FC120E5A12785A12C01E527FBD22>I<387FFFF8A2B5FCA214F0150579941E>45 D<120EEA3F80127F12FFA31300127E123C0909778819>I48 D50 DI<157F913803FFC0020F13E0EC3F8191387E00F002F81370903903F003F0903807E007 EB0FC0EB1F80020013E04914C0017E90C7FC13FE5B485AA21203485AA2380FE07E9038E1 FF809038E783E0391FCE01F09038DC00F813F84848137C5B157E5B485AA390C712FE5A5A A214015D5AA214035DA348495A5D140F5D4A5A6C49C7FC127C147C6C485A6C485A6CB45A 6C1380D801FCC8FC243A76B72A>54 DI65 D<0107B612FCEFFF8018C0903B000FF0001FF04BEB07F81703021F15FC17014B14FEA202 3F1400A24B1301A2147F18FC92C7120318F84A140718F04AEC0FE0EF1FC00101ED3F80EF 7F004AEB01FEEE07F849B612E05F9139F80007F0EE01FC01076E7E177F4AEC3F80A2010F 16C0171F5CA2131F173F5CA2133FEF7F805C1800017F5D4C5A91C7485A5F49140FEE1FE0 494A5A00014AB45AB748C7FC16F816C037397BB83A>II<0103B612FEEFFFC018F0903B0007F8 000FF84BEB03FCEF00FE020F157FF03F804B141F19C0021F150F19E05D1807143F19F05D A2147FA292C8FCA25C180F5CA2130119E04A151FA2130319C04A153FA201071780187F4A 1600A2010F16FEA24A4A5A60011F15034D5A4A5D4D5A013F4B5A173F4A4AC7FC17FC017F EC03F84C5A91C7EA1FC04949B45A007F90B548C8FCB712F016803C397CB83F>I<0107B8 FCA3903A000FF000034BEB007F183E141F181E5DA2143FA25D181C147FA29238000380A2 4A130718004A91C7FC5E13015E4A133E167E49B512FEA25EECF8000107147C163C4A1338 A2010F147818E04A13701701011F16C016004A14031880013F150718004A5CA2017F151E 173E91C8123C177C4915FC4C5A4914070001ED7FF0B8FCA25F38397BB838>I71 D<0103B5D8F80FB512E0A390260007F8C7381FE0004B5DA2020F153F615DA2021F157F96 C7FC5DA2023F5D605DA2027F14016092C7FCA24A1403605CA249B7FC60A202FCC7120701 03150F605CA20107151F605CA2010F153F605CA2011F157F95C8FC5CA2013F5D5F5CA201 7F14015F91C7FC491403007FD9FE01B512F8B55BA243397CB83E>I<0103B512F8A39039 0007F8005DA2140FA25DA2141FA25DA2143FA25DA2147FA292C7FCA25CA25CA21301A25C A21303A25CA21307A25CA2130FA25CA2131FA25CA2133FA25CA2137FA291C8FC497EB6FC A25C25397CB820>I<0207B512F0A391390007FC006F5AA215075EA3150F5EA3151F5EA3 153F5EA3157F93C7FCA35D5DA314015DA314035DA31407A25DA2140FA2003F5C5A141F48 5CA24A5A12FC00E049C8FC14FE00705B495A6C485A381E0FC06CB4C9FCEA01F82C3B78B8 2C>I<902607FFF8923807FFF0614F13E0D9000FEFF0004F5AA2021F167FF1EFC0141DDA 1CFCEC01CF023C16DF9538039F800238ED071FA20278ED0E3F97C7FC0270151CA202F04B 5AF0707E14E0037E14E0010117FE4D485A02C0EC0380A20103ED0701610280140EA20107 ED1C0305385B14006F137049160705E05B010EEC01C0A2011E913803800F61011CEC0700 A2013C020E131F4C5C1338ED1FB80178163F04F091C8FC01705CA201F04A5B187E00015D D807F816FEB500C09039007FFFFC151E150E4C397AB84A>77 D<902603FFF891B512E0A2 81D90007923807F8006F6E5A61020F5E81DA0E7F5DA2021E6D1307033F92C7FC141C82DA 3C1F5C70130EEC380FA202786D131E0307141C147082DAF003143C70133814E015010101 6E1378030014705C8201036E13F0604A1480163F010715C1041F5B91C7FC17E149EC0FE3 60010E15F31607011E15FF95C8FC011C80A2013C805F1338160013785F01F8157CEA03FC 267FFFE0143CB51538A243397CB83E>II<0107B612F817FF1880903B000FF0003FE04BEB0FF0 EF03F8141FEF01FC5DA2023F15FEA25DA2147FEF03FC92C7FCA24A15F817074A15F0EF0F E01301EF1FC04AEC3F80EFFE0001034A5AEE0FF091B612C04CC7FCD907F8C9FCA25CA213 0FA25CA2131FA25CA2133FA25CA2137FA291CAFCA25BA25B1201B512FCA337397BB838> I<0103B612F017FEEFFF80903B0007F8003FC04BEB0FF01707020FEC03F8EF01FC5DA202 1F15FEA25DA2143FEF03FC5DA2027FEC07F818F092C7120F18E04AEC1FC0EF3F004A14FE EE01F80101EC0FE091B6128004FCC7FC9138FC003F0103EC0F80834A6D7E8301071403A2 5C83010F14075F5CA2011F140FA25CA2133F161F4AECE007A2017F160F180E91C7FC4902 0F131C007F01FE153CB5913807F078040313F0CAEAFFE0EF3F80383B7CB83D>82 D<92383FC00E913901FFF01C020713FC91391FC07E3C91393F001F7C027CEB0FF84A1307 49481303495A4948EB01F0A2495AA2011F15E091C7FCA34915C0A36E90C7FCA2806D7E14 FCECFF806D13F015FE6D6D7E6D14E0010080023F7F14079138007FFC150F15031501A215 00A2167C120EA3001E15FC5EA3003E4A5AA24B5AA2007F4A5A4B5A6D49C7FC6D133ED8F9 F013FC39F8FC03F839F07FFFE0D8E01F138026C003FCC8FC2F3D7ABA2F>I<0007B812E0 A25AD9F800EB001F01C049EB07C0485AD900011403121E001C5C003C1780140312380078 5C00701607140700F01700485CA2140FC792C7FC5DA2141FA25DA2143FA25DA2147FA292 C9FCA25CA25CA21301A25CA21303A25CA21307A25CA2130FA25CEB3FF0007FB512F8B6FC A2333971B83B>I<14F8EB07FE90381F871C90383E03FE137CEBF801120148486C5A485A 120FEBC001001F5CA2EA3F801403007F5C1300A21407485C5AA2140F5D48ECC1C0A2141F 15831680143F1587007C017F1300ECFF076C485B9038038F8E391F0F079E3907FE03FC39 01F000F0222677A42A>97 D<133FEA1FFFA3C67E137EA313FE5BA312015BA312035BA312 07EBE0F8EBE7FE9038EF0F80390FFC07C013F89038F003E013E0D81FC013F0A21380A212 3F1300A214075A127EA2140F12FE4814E0A2141F15C05AEC3F80A215005C147E5C387801 F8007C5B383C03E0383E07C0381E1F80D80FFEC7FCEA01F01C3B77B926>I<147F903803 FFC090380FC1E090381F0070017E13784913383901F801F83803F003120713E0120FD81F C013F091C7FC485AA2127F90C8FCA35A5AA45AA3153015381578007C14F0007EEB01E000 3EEB03C0EC0F806CEB3E00380F81F83803FFE0C690C7FC1D2677A426>II<147F90 3803FFC090380FC1E090383F00F0017E13785B485A485A485A120F4913F8001F14F0383F 8001EC07E0EC1F80397F81FF00EBFFF891C7FC90C8FC5A5AA55AA21530007C1438157800 7E14F0003EEB01E0EC03C06CEB0F806CEB3E00380781F83803FFE0C690C7FC1D2677A426 >IIIII<150E153F157FA3157E151C1500ABEC1F80EC 7FC0ECF1F0EB01C090380380F813071401130F130E131EEB1C03133C013813F0A2EB0007 A215E0A2140FA215C0A2141FA21580A2143FA21500A25CA2147EA214FEA25CA21301A25C A213035C121C387E07E0A238FE0FC05C49C7FCEAF83EEA787CEA3FF0EA0FC0204883B619 >I108 DII<147F903803FFC090380FC1F090381F00F8 017E137C5B4848137E4848133E0007143F5B120F485AA2485A157F127F90C7FCA215FF5A 4814FEA2140115FC5AEC03F8A2EC07F015E0140F007C14C0007EEB1F80003EEB3F00147E 6C13F8380F83F03803FFC0C648C7FC202677A42A>I<9039078007C090391FE03FF09039 3CF0787C903938F8E03E9038787FC00170497EECFF00D9F0FE148013E05CEA01E113C15C A2D80003143FA25CA20107147FA24A1400A2010F5C5E5C4B5A131F5EEC80035E013F495A 6E485A5E6E48C7FC017F133EEC70FC90387E3FF0EC0F8001FEC9FCA25BA21201A25BA212 03A25B1207B512C0A3293580A42A>II<39 03C003F0390FF01FFC391E783C0F381C7C703A3C3EE03F8038383FC0EB7F800078150000 701300151CD8F07E90C7FCEAE0FE5BA2120012015BA312035BA312075BA3120F5BA3121F 5BA3123F90C9FC120E212679A423>I<14FE903807FF8090380F83C090383E00E04913F0 0178137001F813F00001130313F0A215E00003EB01C06DC7FC7FEBFFC06C13F814FE6C7F 6D13807F010F13C01300143F141F140F123E127E00FE1480A348EB1F0012E06C133E0070 5B6C5B381E03E06CB45AD801FEC7FC1C267AA422>II<13F8D803FEEB01C0D8078FEB03E0390E0F8007121E121C00 38140F131F007815C01270013F131F00F0130000E015805BD8007E133FA201FE14005B5D 120149137EA215FE120349EBFC0EA20201131E161C15F813E0163CD9F003133814070001 ECF07091381EF8F03A00F83C78E090393FF03FC090390FC00F00272679A42D>I<01F013 0ED803FC133FD8071EEB7F80EA0E1F121C123C0038143F49131F0070140FA25BD8F07E14 0000E08013FEC6485B150E12015B151E0003141C5BA2153C000714385B5DA35DA24A5A14 0300035C6D48C7FC0001130E3800F83CEB7FF8EB0FC0212679A426>I<01F01507D803FC 903903801F80D8071E903907C03FC0D80E1F130F121C123C0038021F131F49EC800F0070 1607A249133FD8F07E168000E0ED000313FEC64849130718000001147E5B03FE5B000316 0E495BA2171E00070101141C01E05B173C1738A217781770020314F05F0003010713016D 486C485A000190391E7C07802800FC3C3E0FC7FC90393FF81FFE90390FE003F0322679A4 37>I<903907E007C090391FF81FF89039787C383C9038F03E703A01E01EE0FE3803C01F 018013C0D8070014FC481480000E1570023F1300001E91C7FC121CA2C75AA2147EA214FE A25CA21301A24A1370A2010314F016E0001C5B007E1401010714C000FEEC0380010F1307 010EEB0F0039781CF81E9038387C3C393FF03FF03907C00FC027267CA427>I<13F0D803 FCEB01C0D8071EEB03E0D80E1F1307121C123C0038140F4914C01270A249131FD8F07E14 8012E013FEC648133F160012015B5D0003147E5BA215FE00075C5BA214015DA314035D14 070003130FEBF01F3901F87FE038007FF7EB1FC7EB000F5DA2141F003F5C48133F92C7FC 147E147C007E13FC387001F8EB03E06C485A383C1F80D80FFEC8FCEA03F0233679A428> I E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fp cmbx12 12 33 /Fp 33 122 df49 DII<163FA25E5E 5D5DA25D5D5D5DA25D92B5FCEC01F7EC03E7140715C7EC0F87EC1F07143E147E147C14F8 EB01F0EB03E0130714C0EB0F80EB1F00133E5BA25B485A485A485A120F5B48C7FC123E5A 12FCB91280A5C8000F90C7FCAC027FB61280A531417DC038>I65 D67 D69 D72 DI77 D82 DI<003FBA12E0A59026FE000FEB 8003D87FE09338003FF049171F90C71607A2007E1803007C1801A300781800A400F819F8 481978A5C81700B3B3A20107B8FCA545437CC24E>I<903801FFE0011F13FE017F6D7E48 B612E03A03FE007FF84848EB1FFC6D6D7E486C6D7EA26F7FA36F7F6C5A6C5AEA00F090C7 FCA40203B5FC91B6FC1307013F13F19038FFFC01000313E0000F1380381FFE00485A5B12 7F5B12FF5BA35DA26D5B6C6C5B4B13F0D83FFE013EEBFFC03A1FFF80FC7F0007EBFFF86C ECE01FC66CEB8007D90FFCC9FC322F7DAD36>97 D99 DIII104 D<137C48B4FC4813804813C0A24813E0A56C13C0A26C13806C1300EA007C90C7FCAAEB7F C0EA7FFFA512037EB3AFB6FCA518467CC520>I107 DI<90277F8007FEEC0FFCB590263FFFC090387FFF8092B5D8F001B512E0 02816E4880913D87F01FFC0FE03FF8913D8FC00FFE1F801FFC0003D99F009026FF3E007F 6C019E6D013C130F02BC5D02F86D496D7EA24A5D4A5DA34A5DB3A7B60081B60003B512FE A5572D7CAC5E>I<90397F8007FEB590383FFF8092B512E0028114F8913987F03FFC9138 8F801F000390399F000FFE6C139E14BC02F86D7E5CA25CA35CB3A7B60083B512FEA5372D 7CAC3E>II<90397FC00FF8 B590B57E02C314E002CF14F89139DFC03FFC9139FF001FFE000301FCEB07FF6C496D1380 4A15C04A6D13E05C7013F0A2EF7FF8A4EF3FFCACEF7FF8A318F017FFA24C13E06E15C06E 5B6E4913806E4913006E495A9139DFC07FFC02CFB512F002C314C002C091C7FCED1FF092 C9FCADB67EA536407DAC3E>I<90387F807FB53881FFE0028313F0028F13F8ED8FFC9138 9F1FFE000313BE6C13BC14F8A214F0ED0FFC9138E007F8ED01E092C7FCA35CB3A5B612E0 A5272D7DAC2E>114 D<90391FFC038090B51287000314FF120F381FF003383FC0004913 3F48C7121F127E00FE140FA215077EA27F01E090C7FC13FE387FFFF014FF6C14C015F06C 14FC6C800003806C15806C7E010F14C0EB003F020313E0140000F0143FA26C141F150FA2 7EA26C15C06C141FA26DEB3F8001E0EB7F009038F803FE90B55A00FC5CD8F03F13E026E0 07FEC7FC232F7CAD2C>IIII120 DI E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fq cmmi6 6 16 /Fq 16 118 df<90B612F0A2903807C001ED0070495AA21630A249C7FCA4013E1400A45B A45BA4485AA4485AA31207B57E91C8FC24227CA125>0 D11 DI<127812FCA212FEA2127E1206A3120CA2121C121812301260 124007107A8513>59 D<1308A4131CA500C0EB0180397FBEFF00381FFFFC000713F00001 13C06C6CC7FCA2497E13F73801E3C013C1380380E0EB006000067F00041310487F19197D 9820>63 D<90B6FC16E0903907C003F0ED00F8494813FC167C167EA249C7127C16FCA2ED 01F8013EEB03F0ED07E0ED1F8090393FFFFE005B90397C003F80ED07C0ED03E04914F015 01A216F8484814F01503A2ED07E04848EB0FC0ED1F80ED3F00000714FEB612F815C02722 7CA12E>66 D<131FEBFF8C3801E0DE3803807E3807007C48133C121E123E003C5B127CA3 485BA215401560903801E0C012781303393807E180391C1CF300380FF87F3807E03C1B17 7E9522>97 D103 D<13F8EA0FF0A21200A248 5AA4485AA4380787E0EB9FF8EBB83CEBE01C380FC01E1380A21300001E5BA35C5AA2ECF0 201530481460EB01E015C0A239F000E380ECFF000060133C1C247CA224>I<1338137CA2 137813701300A7EA0780EA1FC0EA38E01230EA60F0EAC1E0A3EA03C0A3EA0780A2EA0F00 13041306EA1E0CA21318121CEA1E70EA0FE0EA07800F237DA116>I<1418143C147CA214 381400A7EB0780EB1FE01338EB60F013C0A2EA0180A2380001E0A4EB03C0A4EB0780A4EB 0F00A4131EA21238EA783CEAF8381378EA70F0EA7FC0001FC7FC162D81A119>I<13F8EA 0FF0A21200A2485AA4485AA43807801E147FEB81C3EB8387380F060F495A1318EB700E48 48C7FCA213FCEA1E7EEA3C0F80EB0781158039780F0300A21402EB070600F0138CEB03F8 386000F019247CA221>I<000F017E13FC3A1F81FF83FF3B31C383C707803A61EE03CC03 9026EC01F813C0D8C1F813F013F001E013E00003903903C0078013C0A2EE0F0039078007 80A2EE1E041706270F000F00130C163C1718A2001E011EEB1C70EE1FE0000C010CEB0780 2F177D9536>109 D<000F13FC381FC3FF3931C707803861EC0301F813C0EAC1F0A213E0 3903C00780A3EC0F00EA0780A2EC1E041506D80F00130C143C15181538001EEB1C70EC1F E0000CEB07801F177D9526>I<133013785BA4485AA4485AB51280A23803C000485AA448 C7FCA4121EA25B1480383C03001306A25BEA1C38EA0FF0EA07C011217D9F18>116 DI E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fr cmbx9 9 20 /Fr 20 118 df<120FEA3FC0EA7FE0EAFFF0A6EA7FE0EA3FC0EA0F000C0C7A8B19>46 D<147814F81303131FEA03FFB5FCA3EAFC1F1200B3B2007FB512FEA41F317AB02C>49 DII65 D70 D<003FB812F8A4D9F003EB801FD87F80ED03FC01001501007E1600007C177CA20078 173CA400F8173E48171EA4C71600B3A9011FB612F0A437327DB13E>84 D97 DI<90 3807FF80013F13F090B512FC3903FE01FE4848487EEA0FF8EA1FF0EA3FE0A2007F6D5A49 6C5A153000FF91C7FCA9127F7FA2003FEC07807F6C6C130F000FEC1F00D807FE133E3903 FF80FCC6EBFFF8013F13E0010790C7FC21217DA027>I<903803FF80013F13F090B512FC 48EB03FE3907FC007F4848EB3F804848EB1FC05B003FEC0FE0127F5B16F012FF150790B6 FCA301C0C8FCA4127F7F123F16F06C7E000F14016C6CEB03E0D803FEEB0FC03A01FF807F 806C6CB51200011F13FC010313E024217EA029>101 D<16F890390FFC07FE90387FFF9F 48B6127F3907FC0FFC380FF003001F14FED9E001133E003FECFF1C1600A6001F5CEBF003 000F5C3907FC0FF890B512E0486C1380D90FFCC7FC48C9FCA37F7F90B512F015FE6CECFF 8016E06C15F06C15F84815FC121F393F80001F48C7EA03FE481401481400A46C14016C6C EB03FC6C6CEB07F86C6CEB0FF0D80FFCEB7FE00003B61280C6ECFE00010F13E028327EA1 2C>103 DII108 D<2703F803FEEB03FE00FF90 3B1FFFC01FFFC0027FD9E07F7F913BF81FF0F81FF0903CF9E00FF9E00FF8260FFBC0EBFB C06CB4486CB4486C7E02001400495CA3495CB2B500E0B500E0B512E0A443217CA04A>I< 3901F81F8000FFEB7FF0ECFFF89038F9E3FC9038FBC7FE380FFF876C1307A213FEEC03FC EC01F8EC0060491300B1B512F0A41F217EA024>114 D<9038FFE1C0000713FF5A383F80 3F387E000F14075A14037EA26C6CC7FC13FCEBFFE06C13FC806CEBFF80000F14C06C14E0 C6FC010F13F0EB007F140F00F0130714037EA26C14E06C13076CEB0FC09038C01F8090B5 120000F913FC38E03FE01C217DA023>I<133CA5137CA313FCA21201A212031207001FB5 1280B6FCA3D807FCC7FCB0EC03C0A79038FE078012033901FF0F006C13FEEB3FFCEB0FF0 1A2F7EAE22>II E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fs cmtt10 10 34 /Fs 34 122 df44 D48 D50 D52 D<007FB512E015F8B612FE6C8016C03903F0003FED0FE0ED07F015 03A2ED01F8A6ED03F0A21507ED0FE0ED1FC0EDFF8090B612005D5D15FF16C09039F0001F E0ED07F0ED03F81501ED00FCA216FE167EA616FE16FC1501ED03F8150FED3FF0007FB612 E016C0B712806CECFE0015F027337FB22C>66 D<02FF13700107EBE0F84913F9013F13FD 4913FFEBFF813901FE007F4848131FD807F0130F1507485A491303485A150148C7FCA25A 007EEC00F01600A212FE5AAB7E127EA3007F15F06CEC01F8A26C7EA26C6C13036D14F06C 6C130716E0D803FC131F6C6CEB3FC03A00FF81FF806DB512006D5B010F5B6D13F0010013 8025357DB32C>I<007FB612F0B712F8A37E3903F00001A7ED00F01600A4EC01E04A7EA4 90B5FCA5EBF003A46E5A91C8FCA5163C167EA8007FB612FEB7FCA36C15FC27337EB22C> 69 D72 D<387FFFE0B57EA36C5BD803F0 C8FCB3AE16F0ED01F8A8007FB6FCB7FCA36C15F025337DB22C>76 DIII<007FB512C0B612F88115FF6C15802603F00013C0153FED0FE0ED07 F0A2150316F81501A6150316F01507A2ED0FE0ED3FC015FF90B61280160015FC5D15C001 F0C8FCB0387FFF80B57EA36C5B25337EB22C>I<387FFFFCB67E15E015F86C803907E007 FE1401EC007F6F7E151FA26F7EA64B5AA2153F4BC7FCEC01FE140790B55A5D15E0818190 38E007FCEC01FE1400157F81A8160FEE1F80A5D87FFEEB1FBFB5ECFF00815E6C486D5AC8 EA01F029347EB22C>82 D<90381FF80790B5EA0F804814CF000714FF5A381FF01F383FC0 03497E48C7FC007E147F00FE143F5A151FA46CEC0F00007E91C7FC127F7FEA3FE0EA1FFC EBFFC06C13FC0003EBFFC06C14F06C6C7F01077F9038007FFEEC07FF02001380153FED1F C0A2ED0FE0A20078140712FCA56CEC0FC0A26CEC1F806D133F01E0EB7F009038FE01FF90 B55A5D00F914F0D8F83F13C0D8700790C7FC23357CB32C>I87 D<3801FFF0000713FE001F6D7E15E0 48809038C01FF81407EC01FC381F80000006C77EC8127EA3ECFFFE131F90B5FC1203120F 48EB807E383FF800EA7FC090C7FC12FE5AA47E007F14FEEB8003383FE01F6CB612FC6C15 FE6C14BF0001EBFE1F3A003FF007FC27247CA32C>97 D<903803FFE0011F13F8017F13FE 48B5FC48804848C6FCEA0FF0485A49137E4848131890C9FC5A127EA25AA8127EA2127F6C 140F6DEB1F806C7E6D133F6C6CEB7F003907FE03FF6CB55A6C5C6C6C5B011F13E0010390 C7FC21247AA32C>99 DIII104 D<1307EB1FC0A2497EA36D5AA20107C7FC90C8FCA7387FFFC080B5FC 7EA2EA0007B3A8007FB512FCB612FEA36C14FC1F3479B32C>I107 D<387FFFE0B57EA37EEA0003B3B3A5007FB61280B712C0A36C158022337BB22C>I<3A7F 83F007E09039CFFC1FF83AFFDFFE3FFCD87FFF13FF91B57E3A07FE1FFC3E01FCEBF83F49 6C487E01F013E001E013C0A301C01380B33B7FFC3FF87FF0027F13FFD8FFFE6D13F8D87F FC4913F0023F137F2D2481A32C>I<397FF01FE039FFF87FFC9038F9FFFE01FB7F6CB6FC 00019038F03F80ECC01F02807FEC000F5B5BA25BB3267FFFE0B5FCB500F11480A36C01E0 140029247FA32C>II<397FF01FE039FFF8FFF801FB13FE90B6FC6C158000019038 F07FC09138801FE091380007F049EB03F85BED01FC491300A216FE167EA816FE6D14FCA2 ED01F86D13036DEB07F0150F9138801FE09138E07FC091B51280160001FB5B01F813F8EC 3FC091C8FCAD387FFFE0B57EA36C5B27367FA32C>I114 D<90387FF8700003B512F8120F5A5A387FC00F 387E00034813015AA36CEB00F0007F140013F0383FFFC06C13FE6CEBFF80000314E0C66C 13F8010113FCEB0007EC00FE0078147F00FC143F151F7EA26C143F6D133E6D13FE9038F0 07FC90B5FC15F815E000F8148039701FFC0020247AA32C>I<131E133FA9007FB6FCB712 80A36C1500D8003FC8FCB1ED03C0ED07E0A5EC800F011FEB1FC0ECE07F6DB51280160001 035B6D13F89038003FE0232E7EAD2C>I<3A7FF003FF80486C487FA3007F7F0001EB000F B3A3151FA2153F6D137F3900FE03FF90B7FC6D15807F6D13CF902603FE07130029247FA3 2C>I<3A7FFF01FFFCB5008113FE148314816C010113FC3A03E0000F806C7E151F6D1400 12005D6D133E137C017E137E013E137CA2013F13FC6D5BA2EB0F815DA2EB07C1ECC3E0A2 EB03E3ECE7C0130114F75DEB00FFA292C7FC80A2143EA2147E147CA214FC5CA2EA0C0100 3F5BEA7F83EB87E0EA7E0F495A387FFF806C90C8FC6C5A6C5AEA07E027367EA32C>121 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Ft cmr9 9 68 /Ft 68 123 df<91393FE00FE0903A01FFF83FF8903A07E01EF83C903A1F800FF07E903A 3F001FE0FE017E133F4914C0485A1738484890381F8000ACB812C0A33B03F0001F8000B3 A7486C497EB50083B5FCA32F357FB42D>11 DII<14C01301EB0380EB0F00130E5B133C5B5BA2485A485AA212075B 120F90C7FC5AA2121E123EA3123C127CA55AB0127CA5123C123EA3121E121FA27E7F1207 7F1203A26C7E6C7EA213787F131C7F130FEB0380EB01C01300124A79B71E>40 D<12C07E1270123C121C7E120F6C7E6C7EA26C7E6C7EA27F1378137C133C133EA2131E13 1FA37F1480A5EB07C0B0EB0F80A514005BA3131E133EA2133C137C137813F85BA2485A48 5AA2485A48C7FC120E5A123C12705A5A124A7CB71E>I<156015F0B3A4007FB812C0B912 E0A26C17C0C800F0C8FCB3A4156033327CAB3C>43 D<123C127EB4FCA21380A2127F123D 1201A412031300A25A1206120E120C121C5A5A126009177A8715>II<123C127E12FFA4127E123C08087A8715>I<1530157815F8A215F01401A215E01403 A215C01407A21580140FA215005CA2143EA2143C147CA2147814F8A25C1301A25C1303A2 5C1307A2495AA291C7FC5BA2131E133EA2133C137CA2137813F8A25B1201A25B1203A248 5AA25B120FA290C8FC5AA2121E123EA2123C127CA2127812F8A25A12601D4B7CB726>I< EB0FE0EB7FFCEBF83E3903E00F803907C007C0EB8003000F14E0391F0001F0A24814F8A2 003E1300007E14FCA500FE14FEB2007E14FCA56CEB01F8A36C14F0A2390F8003E03907C0 07C0A23903E00F803900F83E00EB7FFCEB0FE01F347DB126>I<13075B5B137FEA07FFB5 FC13BFEAF83F1200B3B3A2497E007FB51280A319327AB126>IIII<000C14C0 380FC00F90B5128015005C5C14F014C0D80C18C7FC90C8FCA9EB0FC0EB7FF8EBF07C380F C03F9038001F80EC0FC0120E000CEB07E0A2C713F01403A215F8A41218127E12FEA315F0 140712F8006014E01270EC0FC06C131F003C14806CEB7F00380F80FE3807FFF8000113E0 38003F801D347CB126>I<14FE903807FF80011F13E090383F00F0017C13703901F801F8 EBF003EA03E01207EA0FC0EC01F04848C7FCA248C8FCA35A127EEB07F0EB1FFC38FE381F 9038700F809038E007C039FFC003E0018013F0EC01F8130015FC1400A24814FEA5127EA4 127F6C14FCA26C1301018013F8000F14F0EBC0030007EB07E03903E00FC03901F81F806C B51200EB3FFCEB0FE01F347DB126>I<1230123C003FB6FCA34814FEA215FC0070C71238 00601430157015E04814C01401EC0380C7EA07001406140E5C141814385CA25CA2495A13 03A3495AA2130FA3131F91C7FCA25BA55BA9131C20347CB126>III<007FB812C0B912E0A2 6C17C0CCFCAC007FB812C0B912E0A26C17C033147C9C3C>61 D<15E0A34A7EA24A7EA34A 7EA3EC0DFE140CA2EC187FA34A6C7EA202707FEC601FA202E07FECC00FA2D901807F1507 A249486C7EA301066D7EA2010E80010FB5FCA249800118C77EA24981163FA2496E7EA349 6E7EA20001821607487ED81FF04A7ED8FFFE49B512E0A333367DB53A>65 DIIIIIIII76 DIIII82 D<90381FE00390387FFC0748B5FC3907F01FCF390F8003FF48C7FC 003E80814880A200788000F880A46C80A27E92C7FC127F13C0EA3FF013FF6C13F06C13FF 6C14C06C14F0C680013F7F01037F9038003FFF140302001380157F153FED1FC0150F12C0 A21507A37EA26CEC0F80A26C15006C5C6C143E6C147E01C05B39F1FC03F800E0B512E001 1F138026C003FEC7FC22377CB42B>I<007FB712FEA390398007F001D87C00EC003E0078 161E0070160EA20060160600E01607A3481603A6C71500B3AB4A7E011FB512FCA330337D B237>II87 D89 D91 D93 D97 DII<153FEC0FFFA3EC007F81AE EB07F0EB3FFCEBFC0F3901F003BF3907E001FF48487E48487F8148C7FCA25A127E12FEAA 127E127FA27E6C6C5BA26C6C5B6C6C4813803A03F007BFFC3900F81E3FEB3FFCD90FE013 0026357DB32B>III<151F90391FC07F809039FFF8E3C039 01F07FC73907E03F033A0FC01F83809039800F8000001F80EB00074880A66C5CEB800F00 0F5CEBC01F6C6C48C7FCEBF07C380EFFF8380C1FC0001CC9FCA3121EA2121F380FFFFEEC FFC06C14F06C14FC4880381F0001003EEB007F4880ED1F8048140FA56C141F007C15006C 143E6C5C390FC001F83903F007E0C6B51280D91FFCC7FC22337EA126>III107 DI<2703F0 1FE013FF00FF90267FF80313C0903BF1E07C0F03E0903BF3803E1C01F02807F7003F387F D803FE1470496D486C7EA2495CA2495CB3486C496C487EB53BC7FFFE3FFFF0A33C217EA0 41>I<3903F01FC000FFEB7FF09038F1E0FC9038F3807C3907F7007EEA03FE497FA25BA2 5BB3486CEB7F80B538C7FFFCA326217EA02B>II<3903F03F8000FFEBFFE09038F3C0F89038F7007ED807FE7F6C48EB 1F804914C049130F16E0ED07F0A3ED03F8A9150716F0A216E0150F16C06D131F6DEB3F80 160001FF13FC9038F381F89038F1FFE0D9F07FC7FC91C8FCAA487EB512C0A325307EA02B >I<903807F00390383FFC07EBFC0F3901F8038F3807E001000F14DF48486CB4FC497F12 3F90C77E5AA25A5AA9127FA36C6C5B121F6D5B000F5B3907E003BF3903F0073F3800F81E EB3FF8EB0FE090C7FCAAED7F8091380FFFFCA326307DA029>I<3803E07C38FFE1FF9038 E38F809038E71FC0EA07EEEA03ECA29038FC0F8049C7FCA35BB2487EB512E0A31A217FA0 1E>II<1330A51370A313F0A2 1201A212031207381FFFFEB5FCA23803F000AF1403A814073801F806A23800FC0EEB7E1C EB1FF8EB07E0182F7FAD1E>IIIII<3A7FFF807FF8A33A07F8001FC0 0003EC0F800001EC070015066C6C5BA26D131C017E1318A26D5BA2EC8070011F1360ECC0 E0010F5BA2903807E180A214F3010390C7FC14FBEB01FEA26D5AA31478A21430A25CA214 E05CA2495A1278D8FC03C8FCA21306130EEA701CEA7838EA1FF0EA0FC025307F9F29>I< 003FB512F0A2EB000F003C14E00038EB1FC00030EB3F800070137F1500006013FE495A13 035CC6485A495AA2495A495A49C7FC153013FE485A12035B48481370485A001F14604913 E0485A387F000348130F90B5FCA21C207E9F22>I E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fu cmr6 6 9 /Fu 9 94 df<130C1338137013E0EA01C0EA038013005A120EA25AA25AA312781270A312 F0AB1270A312781238A37EA27EA27E7E1380EA01C0EA00E013701338130C0E317AA418> 40 D<12C012707E7E7E7E7E1380EA01C0A2EA00E0A21370A313781338A3133CAB1338A3 13781370A313E0A2EA01C0A2EA038013005A120E5A5A5A12C00E317CA418>I<1438B2B7 12FEA3C70038C7FCB227277C9F2F>43 D<13E01201120712FF12F91201B3A7487EB512C0 A212217AA01E>49 DI<13FF000313C0380F03 E0381C00F014F8003E13FC147CA2001E13FC120CC712F8A2EB01F0EB03E0EB0FC03801FF 00A2380003E0EB00F01478147C143E143F1230127812FCA2143E48137E0060137C003813 F8381E03F0380FFFC00001130018227DA01E>I61 D91 D93 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fv cmr7 7 52 /Fv 52 119 df<0207131CA34A133C020E1338A3021E1378021C1370A4023C13F002385B A3EC7801B812F8A33B0001E007800002C090C7FCA201035BEC800EA30107131EEC001CA2 49133CB812F8A327003C00F0C7FC01385BA3EB780101705BA4EBF00301E05BA300011307 01C090C8FCA32D337CA737>35 D<1306130C13181330136013E0EA01C0EA0380A2EA0700 5A120E121EA2121C123CA35AA512F85AAB7E1278A57EA3121C121EA2120E120F7EEA0380 A2EA01C0EA00E0136013301318130C13060F3B7AAB1A>40 D<12C012607E7E7E120E7EEA 0380A2EA01C013E0120013F0A213701378A3133CA5133E131EAB133E133CA51378A31370 13F0A213E0120113C0EA0380A2EA0700120E120C5A5A5A5A0F3B7DAB1A>I<140EB3A2B8 12E0A3C7000EC8FCB3A22B2B7DA333>43 D45 D<1238127C12FEA3127C123807077B8613>I48 D<13381378EA01F8121F12 FE12E01200B3AB487EB512F8A215267BA521>I<13FF000313E0380E03F0381800F84813 7C48137E00787F12FC6CEB1F80A4127CC7FC15005C143E147E147C5C495A495A5C495A01 0EC7FC5B5B903870018013E0EA0180390300030012065A001FB5FC5A485BB5FCA219267D A521>I<13FF000313E0380F01F8381C007C0030137E003C133E007E133FA4123CC7123E 147E147C5C495AEB07E03801FF8091C7FC380001E06D7E147C80143F801580A21238127C 12FEA21500485B0078133E00705B6C5B381F01F03807FFC0C690C7FC19277DA521>I<14 38A2147814F81301A2130313071306130C131C131813301370136013C012011380EA0300 5A120E120C121C5A12305A12E0B612E0A2C7EAF800A7497E90383FFFE0A21B277EA621> I<0018130C001F137CEBFFF85C5C1480D819FCC7FC0018C8FCA7137F3819FFE0381F81F0 381E0078001C7F0018133EC7FC80A21580A21230127C12FCA3150012F00060133E127000 305B001C5B380F03E03803FFC0C648C7FC19277DA521>II<1230123C003FB512E0A215C0481480A2 39700007000060130E140C48131C5C5CC75A5C1301495AA249C7FC5B130E131EA3133E13 3CA2137CA413FCA813781B287DA621>I<137F3803FFE0380781F8380E007C48131E5A80 1278A3127C007E131EEA3F80EBE03C6C6C5A380FFCF03807FFC06C5BC613E0487F38079F FC380F07FEEA1E0348C67E48133FEC1F8048130FA21407A315001278140E6C5B6C5B380F 80F03803FFE0C66CC7FC19277DA521>I<137F3801FFC03807C1E0380F0070001E137800 3E7F003C133E007C131EA200FC131FA41580A4007C133FA2123C003E137F001E135F380F 01DF3807FF9F3801FE1FD8001013001300A2143E123C007E133CA25C5C007C5B383003C0 381C0780D80FFFC7FCEA03F819277DA521>I61 D<140EA2141FA34A7EA3EC6FC0A2ECEFE014C7A290380183F0A390380301F8A20106 7F1400A249137EA2011C137F01187FA24980013FB5FCA2903960000FC0A201E080491307 A248486D7EA200038115011207D81FC0497ED8FFF890383FFFE0A22B2A7EA931>65 D<91387FC002903903FFF80690390FE01E0E90383F0007017CEB019ED801F0EB00FE4848 147E4848143E5B000F151E48C8FC48150E123EA2007E1506A2127C00FC1500A8127C007E 1506A2123EA2003F150C7E6C7E000715186D14386C6C14306C6C1460D8007CEB01C0013F EB038090390FE01E00903803FFF89038007FC0272A7DA82F>67 DII<91387FC002903903FFF80690390FE01E0E90383F0007017CEB019ED801F0 EB00FE4848147E4848143E5B000F151E48C8FC48150E123EA2007E1506A2127C00FC92C7 FCA792387FFFE0127C007E02001300167E123EA2123F7E6C7E6C7EA26C7ED801F814FEEA 007C013FEB039E90390FE00F0E903903FFFC029026007FE0C7FC2B2A7DA833>71 DI76 DI79 DI82 D<90387F80203903FFF06039078078E038 0E000E481307481303007813010070130012F0A21560A27E1500127C127FEA3FE013FF6C 13F06C13FC000313FFC61480010F13C0010013E0EC0FF014031401EC00F8A200C01478A4 6C1470A26C14F06C14E06CEB01C000EFEB078039E3E01F0038C0FFFC38801FF01D2A7DA8 25>I<007FB7FCA23A7E003F003F0078150F007081006081A200E01680481501A5C791C7 FCB3A64A7E013FB5FCA229287EA72F>I89 D91 D93 D<13FE3807FFC0380F03E0381C00F000 3E1378003F137C143C143E121EC7FCA3EB3FFEEA01FF3807F03EEA1FC0EA3F00127EA248 1418A3147E127EECDF38393F838FF0390FFE0FE03903F807C01D1C7E9A21>97 DIII<133F3801FFE03803E1 F0380F80F8381F007C143E123E007E131E141F127C12FCA2B6FCA200FCC7FCA4127C127E 1403123E6C1307380F800E3807C01C3803E0783800FFE0EB3F80181C7E9A1E>II<90387E03E03901FF9FF03807C3FC380F00F048EBF800001E13 78003E137CA6001E1378001F13F86C5BEBC3E0380DFF80D81C7EC7FC90C8FCA3121E380F FFF014FC6C13FF001F1480393E001FC000781307EC03E0481301A40078EB03C0007C1307 6CEB0F80390FC07E003803FFF838007FC01C277E9921>II<120EEA3F80A5EA0E00C7FCA7EA078012FFA2121F120FB3121FEAFFF8 A20D287EA713>I107 DI<260F81FC137F3BFF8FFF03FFC0903A9C0F8703E03B1FB007CC01F0 D80FE013D8903AC003F000F8A301805BAF486C486C487E3CFFF83FFE0FFF80A2311A7E99 37>I<380F81FC38FF8FFF90389C0F80391FB007C0EA0FE09038C003E0A31380AF391FC0 07F039FFF83FFEA21F1A7E9925>II<380F07C038FF1FF0EB38F8EA1F71EA0F 6113C1EBC0F014005BAF487EEAFFFCA2151A7E991A>114 D<3803F840380FFEC0EA3C07 EA7803EA7001EAF000A37E6C1300EA7FC013FC6CB4FC6C1380000713C0C613E0130738C0 03F0130113007EA26C13E0130100F813C038EE078038C7FF00EA81FC141C7E9A1A>I<13 C0A41201A312031207120F121FB512E0A23807C000AC1430A73803E060A23801F0C03800 FF80EB3F0014257FA31A>I<390F8003E000FF133FA2001F1307000F1303B01407A20007 130F9038C01BF03903E073FE3801FFE339007F83E01F1B7E9925>I<39FFF807FEA2390F E001F001C013E0000714C013E000031480EBF00300011400A23800F806A2EB7C0CA2EB7E 1CEB3E18A26D5AA2EB0FE0A36D5AA26D5AA21F1A7F9823>I E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fw cmmi7 7 23 /Fw 23 118 df<013FB612C0A2903901FC000F4A1303A20103EC0180A25CA21307A25CA2 010F91C7FCA25CA2131FA25CA2133FA291C9FCA25BA2137EA213FEA25BA21201A25BA212 03B512E0A22A287DA728>0 D11 DI<48B512F8000714FC4814F84814F0D83C07C7 FC1270EAC006130E1200A3131E131CA2133CA35BA313F8A3485AA26C5A1E1A7D981F>28 D<1238127C12FE12FFA2127F123B1203A31206A3120C121812381270122008127A8614> 59 D<1303A5497EA500C0140C00FC14FC397FE79FF8000FB512C000031400C613FCEB3F F06D5A497EA2EB7CF8EB7878EBF87CEBF03C48487E48487E497E3907000380000613011E 1D7E9C22>63 D<91387FFFE0A2913800FE005DA214015DA314035DA314075DA3140F5DA3 141F5DA3143F92C7FCA35C001E137E127FA214FE00FE5B387E01F8387803F0387007E038 3C1FC0D81FFFC8FCEA03F823297CA725>74 D<90263FFFF0EB7FF8A2D901FCC7EA1FC04A EC1E005F010315704C5A4AEB03804CC7FC0107141C5E4A13E04B5A010FEB0780030EC8FC 4A5A157C011F13FE14C3EC877F149E90393FB83F8014F09138C01FC0148049486C7EA201 7E6D7EA201FE6D7EA2496D7EA200016E7EA249147FA2000382B539C007FFF8A235287DA7 38>I97 D99 D<15F8141FA2EC01F0A21403A215E0A21407A215C0A2140FEB1F8F90387FCF 80EBF0EF3803C03FEA0780390F001F00A2001E5B123E003C133E127C147E5A147CA214FC 5AECF830A3903801F060A2EA7803010E13C0393C1CF980381FF07F3907C01E001D297CA7 23>II103 D<133EEA07FEA2EA007CA213FCA25BA21201A25BA2120314FCEBE3FF9038EF 0780D807FC13C0EBF00313E0A2EA0FC014071380A2121FEC0F801300A248EB1F00A2003E 1406143E127EEC7C0C127C151800FCEB3C30157048EB1FE00070EB0F801F297CA727>I< 130E131F5BA2133E131C90C7FCA7EA03E0487EEA0C78EA187C1230A212605B12C0A2EA01 F0A3485AA2485AA2EBC180EA0F81A2381F0300A213066C5A131CEA07F06C5A11287DA617 >I<1407EC0F80141FA21500140E91C7FCA7EB03E0EB07F8EB0C3C1318EB303E136013C0 A248485AA2C7FCA25CA4495AA4495AA4495AA4495AA21238D87C1FC7FC12FC133E485AEA 70F8EA7FE0EA1F80193380A61B>I<133EEA07FEA2EA007CA213FCA25BA21201A25BA212 03EC07809038E01FC0EC38600007EB61E014C3EBC187EBC307D80FC613C09038CC038001 B8C7FC13E0487E13FEEB3F80EB0FC0486C7E1303003E1460A2127EECC0C0127CECC18012 FC903801E30038F800FE0070137C1B297CA723>I<3B07801FC007E03B0FE07FF01FF83B 18F0E0F8783C3B30F1807CE03E903AFB007D801ED860FEEB3F005B49133E00C14A133E5B 1201A24848495BA35F4848485A1830EE01F0A23C0F8003E003E060A218C0933801E18027 1F0007C013E3933800FF00000E6D48137C341B7D993B>109 D<3907801FC0390FE07FF0 3918F0E0F83930F1807CEBFB00D860FE133C5B5B00C1147C5B1201A248485BA34A5AEA07 C01660EC03E0A23A0F8007C0C0A2EDC180913803C300D81F0013C7EC01FE000EEB00F823 1B7D9929>I<3807803E390FE0FF803818F3C13930F703C0EBFE073860FC0F13F8158039 C1F0070091C7FC1201A2485AA4485AA4485AA448C8FCA2120E1A1B7D991F>114 DI<131C133EA25BA45BA4485AB512E0A23801F000485A A4485AA4485AA448C7FC1460A214C0123EEB0180EB0300EA1E06EA1F1CEA0FF8EA03E013 267EA419>II E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fx cmr10 10 84 /Fx 84 125 df11 DIII<001C131C007F137F39FF80FF80A26D13C0A3007F137F001C 131C00001300A40001130101801380A20003130301001300485B00061306000E130E485B 485B485B006013601A197DB92A>34 D<017C166048B416F02607C3801401260F81C01403 D900E04A5A001E01784A5A003E6D141F003C013FEC7F80007C90271BE003FFC7FC0218B5 12BF007891381FFC3E00F8011CC75A020C14FC5F4C5A16035F4C5A160F5F4CC8FC021C5B 00780118133E007C5D16FC003C01385B003E90383001F0001EEB70036C01E05B903981C0 07C03907C3800F2601FF005BD8007C49C9FC90C748EB07C0033EEB1FF04BEB3C3803FCEB F81C4B497E913A01F001E00602030103130703E0497E912607C0071480020F15011580DA 1F00018013C04A010F1300143E5C14FC5C495A13035C495A130F4A0107130149C701C013 805B013E1603490203140001FC6F5A49020113064848913800F00E0003705A49ED3C3849 ED1FF06C48ED07C03A437BBD45>37 D<121C127FEAFF80A213C0A3127F121C1200A41201 1380A2120313005A1206120E5A5A5A12600A1979B917>39 D<146014E0EB01C0EB0380EB 0700130E131E5B5BA25B485AA2485AA212075B120F90C7FCA25A121EA2123EA35AA65AB2 127CA67EA3121EA2121F7EA27F12077F1203A26C7EA26C7E1378A27F7F130E7FEB0380EB 01C0EB00E01460135278BD20>I<12C07E12707E7E7E120F6C7E6C7EA26C7E6C7EA21378 A2137C133C133E131EA2131F7FA21480A3EB07C0A6EB03E0B2EB07C0A6EB0F80A31400A2 5B131EA2133E133C137C1378A25BA2485A485AA2485A48C7FC120E5A5A5A5A5A13527CBD 20>I<15301578B3A6007FB812F8B912FCA26C17F8C80078C8FCB3A6153036367BAF41> 43 D<121C127FEAFF80A213C0A3127F121C1200A412011380A2120313005A1206120E5A 5A5A12600A19798817>II<121C127FEAFF80A5EA7F00121C0909 798817>I<150C151E153EA2153C157CA2157815F8A215F01401A215E01403A215C01407 A21580140FA215005CA2141E143EA2143C147CA2147814F8A25C1301A25C1303A2495AA2 5C130FA291C7FC5BA2131E133EA2133C137CA2137813F8A25B1201A25B1203A25B1207A2 5B120FA290C8FC5AA2121E123EA2123C127CA2127812F8A25A12601F537BBD2A>IIIII<1538A2157815F8A214 0114031407A2140F141F141B14331473146314C313011483EB030313071306130C131C13 1813301370136013C01201EA038013005A120E120C5A123812305A12E0B712F8A3C73803 F800AB4A7E0103B512F8A325397EB82A>I<0006140CD80780133C9038F003F890B5FC5D 5D158092C7FC14FC38067FE090C9FCABEB07F8EB3FFE9038780F803907E007E090388003 F0496C7E12066E7EC87EA28181A21680A4123E127F487EA490C71300485C12E000605C12 700030495A00385C6C1303001E495A6C6C485A3907E03F800001B5C7FC38007FFCEB1FE0 213A7CB72A>II<12301238123E003FB612E0A316C0 5A168016000070C712060060140E5D151800E01438485C5D5DC712014A5A92C7FC5C140E 140C141C5CA25CA214F0495AA21303A25C1307A2130FA3495AA3133FA5137FA96DC8FC13 1E233B7BB82A>III<121C127FEA FF80A5EA7F00121CC7FCB2121C127FEAFF80A5EA7F00121C092479A317>I<121C127FEA FF80A5EA7F00121CC7FCB2121C127F5A1380A4127F121D1201A412031300A25A1206A212 0E5A121812385A1260093479A317>I<007FB812F8B912FCA26C17F8CCFCAE007FB812F8 B912FCA26C17F836167B9F41>61 D63 D<1538A3157CA315FEA34A7EA34A6C7EA202077FEC063F A2020E7FEC0C1FA2021C7FEC180FA202387FEC3007A202707FEC6003A202C07F1501A2D9 01807F81A249C77F167FA20106810107B6FCA24981010CC7121FA2496E7EA3496E7EA349 6E7EA213E0707E1201486C81D80FFC02071380B56C90B512FEA3373C7DBB3E>65 DI<913A01FF800180020FEBE003027F13F8903A01FF807E07903A03 FC000F0FD90FF0EB039F4948EB01DFD93F80EB00FF49C8127F01FE153F12014848151F48 48150FA248481507A2485A1703123F5B007F1601A35B00FF93C7FCAD127F6DED0180A312 3F7F001F160318006C7E5F6C7E17066C6C150E6C6C5D00001618017F15386D6C5CD91FE0 5C6D6CEB03C0D903FCEB0F80902701FF803FC7FC9039007FFFFC020F13F002011380313D 7BBA3C>III< B812F8A30001903880001F6C90C71201EE00FC177C173C171CA2170CA4170E1706A2ED01 80A21700A41503A21507151F91B5FCA3EC001F15071503A21501A692C8FCAD4813C0B612 C0A32F397DB836>IIII<013FB512E0A39039001FFC00EC07F8B3B3A3123FEA7F80EAFFC0A44A5A1380D87F005B 0070131F6C5C6C495A6C49C7FC380781FC3801FFF038007F80233B7DB82B>III< B5933807FFF86E5DA20001F0FC002600DFC0ED1BF8A2D9CFE01533A3D9C7F01563A3D9C3 F815C3A2D9C1FCEC0183A3D9C0FEEC0303A2027F1406A36E6C130CA36E6C1318A26E6C13 30A36E6C1360A26E6C13C0A3913901FC0180A3913900FE0300A2ED7F06A3ED3F8CA2ED1F D8A3ED0FF0A3486C6D5A487ED80FFC6D48497EB500C00203B512F8A2ED018045397DB84C >IIIIIII<003FB812E0A3D9C003EB001F273E0001FE130348EE 01F00078160000701770A300601730A400E01738481718A4C71600B3B0913807FF80011F B612E0A335397DB83C>IIII<007FB590383FFFFCA3C601F801071380D97F E0D903FCC7FC013FEC01F06D6C5C5F6D6C5C6D6C13034CC8FC6D6C1306160E6D6C5B6DEB 8018163891387FC0306E6C5A16E06E6C5A91380FF18015FB6EB4C9FC5D14036E7EA26E7F 6F7EA24B7E15DF9138019FF09138038FF8150F91380607FC91380E03FE140C4A6C7EEC38 000230804A6D7E14E04A6D7E49486D7E130391C76C7E01066E7E130E010C6E7E011C1401 013C8101FE822607FF80010713E0B500E0013FEBFF80A339397EB83E>II91 D<3901800180000313033907000700000E130E485B00181318003813380030133000 70137000601360A200E013E0485BA400CE13CE39FF80FF806D13C0A3007F137FA2393F80 3F80390E000E001A1974B92A>II< EB1FE0EBFFFC3803E03F3907000F80390F8007E0486C6C7E13E06E7EA26E7E6C5A6C5AC8 FCA4147FEB07FFEB3FE0EBFE00EA03F8EA0FF0EA1FC0123F485A90C7FC160C12FEA31401 A26C13036CEB077C903980063E18383FC01E3A0FE0781FF03A03FFF00FE03A007F8007C0 26277DA52A>97 DIIII<147E903803FF8090380FC1E0EB1F879038 3F0FF0137EA213FCA23901F803C091C7FCADB512FCA3D801F8C7FCB3AB487E387FFFF8A3 1C3B7FBA19>IIIIIII<2703F00FF0EB1FE000FFD93FFCEB7FF8913AF03F01E07E 903BF1C01F83803F3D0FF3800FC7001F802603F70013CE01FE14DC49D907F8EB0FC0A249 5CA3495CB3A3486C496CEB1FE0B500C1B50083B5FCA340257EA445>I<3903F00FF000FF EB3FFCECF03F9039F1C01F803A0FF3800FC03803F70013FE496D7EA25BA35BB3A3486C49 7EB500C1B51280A329257EA42E>II<3903F01FE000FFEB7FF89038F1 E07E9039F3801F803A0FF7000FC0D803FEEB07E049EB03F04914F849130116FC150016FE A3167FAA16FEA3ED01FCA26DEB03F816F06D13076DEB0FE001F614C09039F7803F009038 F1E07E9038F0FFF8EC1FC091C8FCAB487EB512C0A328357EA42E>II<3807E01F00FF EB7FC09038E1E3E09038E387F0380FE707EA03E613EE9038EC03E09038FC0080491300A4 5BB3A2487EB512F0A31C257EA421>II<1318A51338A31378A313F8120112031207001FB5FCB6FCA2 D801F8C7FCB215C0A93800FC011580EB7C03017E13006D5AEB0FFEEB01F81A347FB220> IIIIII<003FB512FCA2EB8003D83E0013F8003CEB07F00038EB0FE012300070EB1FC0EC 3F800060137F150014FE495AA2C6485A495AA2495A495A495AA290387F000613FEA2485A 485A0007140E5B4848130C4848131CA24848133C48C7127C48EB03FC90B5FCA21F247EA3 25>III E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fy cmbx12 14.4 22 /Fy 22 122 df66 D68 D72 DI80 D97 DI<913801FFF8021FEBFF8091B612F0010315FC010F9038C00FFE903A1FFE0001 FFD97FFC491380D9FFF05B4817C048495B5C5A485BA2486F138091C7FC486F1300705A48 92C8FC5BA312FFAD127F7FA27EA2EF03E06C7F17076C6D15C07E6E140F6CEE1F806C6DEC 3F006C6D147ED97FFE5C6D6CEB03F8010F9038E01FF0010390B55A01001580023F49C7FC 020113E033387CB63C>I<913803FFC0023F13FC49B6FC010715C04901817F903A3FFC00 7FF849486D7E49486D7E4849130F48496D7E48178048497F18C0488191C7FC4817E0A248 815B18F0A212FFA490B8FCA318E049CAFCA6127FA27F7EA218E06CEE01F06E14037E6C6D EC07E0A26C6DEC0FC06C6D141F6C6DEC3F806D6CECFF00D91FFEEB03FE903A0FFFC03FF8 010390B55A010015C0021F49C7FC020113F034387CB63D>101 DIII<137F497E000313E048 7FA2487FA76C5BA26C5BC613806DC7FC90C8FCADEB3FF0B5FCA512017EB3B3A6B612E0A5 1B547BD325>I108 D110 D<913801FFE0021F13FE91B612C0010315F0010F9038807FFC903A1FFC 000FFED97FF86D6C7E49486D7F48496D7F48496D7F4A147F48834890C86C7EA24883A248 486F7EA3007F1880A400FF18C0AC007F1880A3003F18006D5DA26C5FA26C5F6E147F6C5F 6C6D4A5A6C6D495B6C6D495B6D6C495BD93FFE011F90C7FC903A0FFF807FFC6D90B55A01 0015C0023F91C8FC020113E03A387CB643>I<903A3FF001FFE0B5010F13FE033FEBFFC0 92B612F002F301017F913AF7F8007FFE0003D9FFE0EB1FFFC602806D7F92C76C7F4A824A 6E7F4A6E7FA2717FA285187F85A4721380AC1A0060A36118FFA2615F616E4A5BA26E4A5B 6E4A5B6F495B6F4990C7FC03F0EBFFFC9126FBFE075B02F8B612E06F1480031F01FCC8FC 030313C092CBFCB1B612F8A5414D7BB54B>I<90397FE003FEB590380FFF80033F13E04B 13F09238FE1FF89139E1F83FFC0003D9E3E013FEC6ECC07FECE78014EF150014EE02FEEB 3FFC5CEE1FF8EE0FF04A90C7FCA55CB3AAB612FCA52F367CB537>114 D<903903FFF00F013FEBFE1F90B7FC120348EB003FD80FF81307D81FE0130148487F4980 127F90C87EA24881A27FA27F01F091C7FC13FCEBFFC06C13FF15F86C14FF16C06C15F06C 816C816C81C681013F1580010F15C01300020714E0EC003F030713F015010078EC007F00 F8153F161F7E160FA27E17E07E6D141F17C07F6DEC3F8001F8EC7F0001FEEB01FE9039FF C00FFC6DB55AD8FC1F14E0D8F807148048C601F8C7FC2C387CB635>I<143EA6147EA414 FEA21301A313031307A2130F131F133F13FF5A000F90B6FCB8FCA426003FFEC8FCB3A9EE 07C0AB011FEC0F8080A26DEC1F0015806DEBC03E6DEBF0FC6DEBFFF86D6C5B021F5B0203 13802A4D7ECB34>I118 D121 D E %EndDVIPSBitmapFont end %%EndProlog %%BeginSetup %%Feature: *Resolution 600dpi TeXDict begin %%BeginPaperSize: Letter letter %%EndPaperSize %%EndSetup %%Page: 1 1 1 0 bop 581 448 a Fy(Ba)l(y)l(esian)46 b(Haplot)l(yp)t(e)g(Inference)g (via)f(the)g(Diric)l(hlet)1741 598 y(Pro)t(cess)892 886 y Fx(Eric)27 b(P)-7 b(.)27 b(Xing)1342 856 y Fw(?)t Fv(1)1418 886 y Fx(,)g(Ro)r(ded)h(Sharan)1985 856 y Fw(??)s Fv(2)2093 886 y Fx(,)g(and)g(Mic)n(hael)f(I.)g(Jordan)2947 856 y Fv(1)p Fw(;)p Fv(3)704 1029 y Fu(1)777 1060 y Ft(Computer)e(Science)h (Division,)g(Univ)n(ersit)n(y)f(of)i(California,)h(Berk)n(eley)-6 b(,)26 b(CA)g(94720)599 1120 y Fu(2)672 1152 y Ft(In)n(ternational)g (Computer)f(Science)h(Institute,)f(1947)j(Cen)n(ter)d(St.,)h(Berk)n (eley)-6 b(,)26 b(CA)g(94704)746 1211 y Fu(3)819 1243 y Ft(Departmen)n(t)e(of)i(Statistics,)h(Univ)n(ersit)n(y)e(of)h (California,)j(Berk)n(eley)-6 b(,)26 b(CA)f(94720)648 -184 y Fs(Lecture)40 b(Notes)i(in)h(Bioinformatics,)37 b(Special)k(issue)g(for)h(2nd)h(RECOMB)e(Satellite)523 -84 y(Workshop)f(on)j(Computational)38 b(Methods)j(for)h(SNPs)g(and)h (Haplotypes,)c(2004)759 1446 y Fr(Abstract.)k Ft(The)28 b(problem)f(of)i(inferring)g(haplot)n(yp)r(es)f(from)g(genot)n(yp)r(es) g(of)h(sin-)759 1538 y(gle)38 b(n)n(ucleotide)f(p)r(olymorphisms)e (\(SNPs\))h(is)h(essen)n(tial)h(for)g(the)e(understand-)759 1629 y(ing)29 b(of)g(genetic)h(v)l(ariation)f(within)g(and)f(among)g(p) r(opulations,)i(with)e(imp)r(ortan)n(t)759 1720 y(applications)40 b(to)e(the)g(genetic)h(analysis)g(of)g(disease)h(prop)r(ensities)f(and) f(other)759 1812 y(complex)d(traits.)h(In)f(this)g(pap)r(er)h(w)n(e)g (presen)n(t)f(a)g(no)n(v)n(el)g(statistical)j(mo)r(del)d(for)759 1903 y(haplot)n(yp)r(e)e(inference.)i(Our)e(mo)r(del)g(is)h(a)f(Ba)n(y) n(esian)i(mo)r(del)e(based)g(on)g(a)h(prior)759 1994 y(kno)n(wn)f(as)i(the)e(Diric)n(hlet)h(pro)r(cess,)h(a)f(nonparametric) f(prior)h(whic)n(h)g(pro)n(vides)759 2086 y(con)n(trol)24 b(o)n(v)n(er)g(the)f(size)h(of)g(the)g(unkno)n(wn)e(p)r(o)r(ol)i(of)h (p)r(opulation)f(haplot)n(yp)r(es.)f(The)759 2177 y(mo)r(del)k(also)h (incorp)r(orates)h(a)e(lik)n(eliho)r(o)r(d)i(that)e(allo)n(ws)i (statistical)g(errors)f(in)f(the)759 2268 y(haplot)n(yp)r(e/genot)n(yp) r(e)21 b(relationship,)i(trading)e(o\013)g(these)h(errors)g(against)g (the)f(size)759 2360 y(of)32 b(the)f(p)r(o)r(ol)i(of)f(haplot)n(yp)r (es.)g(W)-6 b(e)31 b(describ)r(e)h(an)f(algorithm)h(based)f(on)h(Mark)n (o)n(v)759 2451 y(c)n(hain)24 b(Mon)n(te)g(Carlo)h(for)g(p)r(osterior)g (inference.)g(The)f(o)n(v)n(erall)g(result)g(is)h(a)f(\015exible)759 2542 y(Ba)n(y)n(esian)29 b(mo)r(del)e(that)h(is)h(reminiscen)n(t)e(of)h (parsimon)n(y)f(metho)r(ds)g(in)h(its)h(prefer-)759 2634 y(ence)22 b(for)h(small)f(haplot)n(yp)r(e)f(p)r(o)r(ols.)j(W)-6 b(e)21 b(apply)h(our)f(approac)n(h)h(to)g(the)g(analysis)h(of)759 2725 y(b)r(oth)f(sim)n(ulated)f(and)h(real)h(genot)n(yp)r(e)f(data,)g (and)g(compare)g(to)g(extan)n(t)f(metho)r(ds.)p 523 4748 473 4 v 544 4801 a Fq(?)606 4833 y Ft(Corresp)r(onding)27 b(author.)513 4893 y Fq(??)606 4924 y Ft(R.)f(S.)f(is)h(supp)r(orted)f (b)n(y)g(NSF)g(ITR)g(Gran)n(t)h(CCR-0121555.)p eop %%Page: 2 2 2 1 bop 523 232 a Ft(2)523 448 y Fp(1)112 b(In)m(tro)s(duction)523 655 y Fx(The)26 b(a)n(v)-5 b(ailabilit)n(y)25 b(of)i(a)f(nearly)f (complete)h(h)n(uman)g(genome)g(sequence)f(mak)n(es)h(it)g(p)r(ossible) 523 754 y(to)f(b)r(egin)h(to)f(explore)f(individual)i(di\013erences)f (b)r(et)n(w)n(een)g(DNA)i(sequences)d(on)h(a)g(genome-)523 854 y(wide)d(scale,)e(and)h(to)h(searc)n(h)e(for)g(asso)r(ciations)g (of)h(suc)n(h)g(genot)n(ypic)g(v)-5 b(ariation)20 b(with)i(disease)523 954 y(and)c(other)g(phenot)n(yp)r(es)h([19)o(].)g(Single)f(n)n (ucleotide)g(p)r(olymorphisms)g(\(SNPs\))h(comprise)f(the)523 1053 y(largest)g(class)h(of)h(individual)g(di\013erences)f(in)h(DNA)h (and)e(ha)n(v)n(e)g(b)r(ecome)g(a)h(fo)r(cus)f(of)h(researc)n(h)523 1153 y(in)n(terest|millions)k(of)g(SNPs)h(ha)n(v)n(e)e(th)n(us)i(far)f (b)r(een)g(detected)h(out)g(of)f(an)h(estimated)f(total)523 1253 y(of)k(ten)g(million)f(common)g(SNPs)h([20)o(,)g(23)o(].)648 1354 y(The)c(list)h(of)g(alleles)f(in)h(con)n(tiguous)f(sites)h(in)g(a) f(lo)r(cal)g(region)g(of)g(a)h(single)f(c)n(hromosome)523 1453 y(is)h(called)f(a)h Fo(haplotyp)l(e)p Fx(.)i(F)-7 b(or)24 b(diploid)h(organisms,)e(t)n(w)n(o)h(haplot)n(yp)r(es)g(go)g (together)g(to)h(mak)n(e)523 1553 y(up)d(a)f Fo(genotyp)l(e)p Fx(,)h(whic)n(h)f(is)h(the)f(list)h(of)f(unordered)g(pairs)f(of)h (alleles)g(in)h(the)g(region.)e(That)h(is,)523 1652 y(a)31 b(genot)n(yp)r(e)g(is)g(obtained)g(from)g(a)g(pair)g(of)g(haplot)n(yp)r (es)g(b)n(y)g(omitting)h(the)f(sp)r(eci\014cation)523 1752 y(of)k(the)h(asso)r(ciation)e(of)h(eac)n(h)f(allele)h(with)h(one)f (of)g(the)h(t)n(w)n(o)e(c)n(hromosomes|its)f Fo(phase)p Fx(.)523 1852 y(Common)19 b(t)n(yping)g(metho)r(ds)g(yield)g(the)h (genot)n(yp)r(es)e(of)h(a)f(set)i(of)f(individuals,)g(and)g(t)n (ypically)523 1951 y(do)38 b(not)h(pro)n(vide)e(phase)h(information;)g (the)h(latter)f(information)g(can)g(b)r(e)h(obtained)f(at)523 2051 y(a)j(considerably)f(higher)h(cost)g([18)o(].)h(It)f(is)h (therefore)e(desirable)h(to)g(dev)n(elop)g(metho)r(ds)523 2151 y(for)34 b(inferring)f(haplot)n(yp)r(es)h(from)g(genot)n(yp)r(es)f (and)h(p)r(ossibly)g(other)g(data)f(sources)g(\(e.g.,)523 2250 y(p)r(edigrees\).)648 2351 y(F)-7 b(rom)32 b(the)i(p)r(oin)n(t)f (of)g(view)g(of)g(p)r(opulation)g(genetics,)g(the)h(basic)e(mo)r(del)i (underlying)523 2451 y(the)h(haplot)n(yp)r(e)g(inference)g(problem)f (is)h(a)f(\014nite)i(mixture)f(mo)r(del.)g(That)g(is,)g(letting)g Fn(H)523 2551 y Fx(denote)26 b(the)h(set)g(of)f(all)g(p)r(ossible)g (haplot)n(yp)r(es)g(asso)r(ciated)f(with)i(a)f(giv)n(en)g(region)f(\(a) i(set)f(of)523 2650 y(cardinalit)n(y)32 b(2)986 2620 y Fw(k)1060 2650 y Fx(in)i(the)f(case)g(of)g(binary)g(p)r (olymorphisms,)g(where)f Fm(k)37 b Fx(is)c(the)h(n)n(um)n(b)r(er)f(of) 523 2750 y(heterozygous)26 b(sites\),)h(the)h(probabilit)n(y)f(of)g(a)h (genot)n(yp)r(e)e(is)i(giv)n(en)f(b)n(y:)1262 2952 y Fm(p)p Fx(\()p Fm(g)s Fx(\))c(=)1593 2873 y Fl(X)1521 3052 y Fw(h)1560 3060 y Fk(1)1592 3052 y Fw(;h)1651 3060 y Fk(2)1683 3052 y Fj(2H)1799 2952 y Fm(p)p Fx(\()p Fm(h)1921 2964 y Fv(1)1958 2952 y Fm(;)14 b(h)2043 2964 y Fv(2)2080 2952 y Fx(\)1\()p Fm(h)2234 2964 y Fv(1)2290 2952 y Fn(\010)k Fm(h)2421 2964 y Fv(2)2481 2952 y Fx(=)k Fm(g)s Fx(\))p Fm(;)633 b Fx(\(1\))523 3228 y(where)20 b(1\()p Fm(h)878 3240 y Fv(1)918 3228 y Fn(\010)s Fm(h)1034 3240 y Fv(2)1094 3228 y Fx(=)j Fm(g)s Fx(\))d(is)g(the)g(indicator)f(function)i(of)f (the)h(ev)n(en)n(t)e(that)i(haplot)n(yp)r(es)e Fm(h)3214 3240 y Fv(1)3271 3228 y Fx(and)523 3327 y Fm(h)571 3339 y Fv(2)636 3327 y Fx(are)26 b(consisten)n(t)h(with)h Fm(g)s Fx(.)f(Under)g(the)h(assumption)f(of)g(Hardy-W)-7 b(ein)n(b)r(erg)26 b(equilibrium)523 3427 y(\(HWE\),)j(an)e(assumption) g(that)h(is)g(standard)f(in)h(the)g(literature)f(and)g(will)h(also)f(b) r(e)h(made)523 3527 y(here,)f(the)h(mixing)g(prop)r(ortion)e Fm(p)p Fx(\()p Fm(h)1679 3539 y Fv(1)1716 3527 y Fm(;)14 b(h)1801 3539 y Fv(2)1838 3527 y Fx(\))28 b(is)f(assumed)g(to)h(factor) f(as)g Fm(p)p Fx(\()p Fm(h)2878 3539 y Fv(1)2915 3527 y Fx(\))p Fm(p)p Fx(\()p Fm(h)3069 3539 y Fv(2)3106 3527 y Fx(\).)648 3628 y(Giv)n(en)35 b(this)i(basic)e(statistical)h (structure,)f(the)h(simplest)h(metho)r(dology)d(for)i(haplo-)523 3727 y(t)n(yp)r(e)25 b(inference)h(is)f(maxim)n(um)g(lik)n(eliho)r(o)r (d)g(via)f(the)i(EM)f(algorithm,)f(treating)g(the)i(haplo-)523 3827 y(t)n(yp)r(e)31 b(iden)n(tities)f(as)g(laten)n(t)g(v)-5 b(ariables)29 b(and)i(estimating)f(the)h(parameters)d Fm(p)p Fx(\()p Fm(h)p Fx(\))j([7)o(].)g(This)523 3927 y(metho)r(dology)19 b(has)h(rather)g(sev)n(ere)f(computational)h (requiremen)n(ts,)f(in)i(that)g(a)f(probabilit)n(y)523 4026 y(distribution)32 b(m)n(ust)h(b)r(e)f(main)n(tained)g(on)g(the)h (\(large\))e(set)i(of)f(p)r(ossible)g(haplot)n(yp)r(es,)f(but)523 4126 y(ev)n(en)c(more)g(fundamen)n(tally)g(it)h(fails)g(to)f(capture)g (the)h(notion)f(that)h(small)f(sets)g(of)h(haplo-)523 4226 y(t)n(yp)r(es)k(should)h(b)r(e)f(preferred.)g(This)g(notion)g (deriv)n(es)f(from)i(an)f(underlying)g(assumption)523 4325 y(that)27 b(for)f(relativ)n(ely)g(short)g(regions)f(there)i(is)f (limited)i(div)n(ersit)n(y)d(in)i(a)g(p)r(opulation)f(due)h(to)523 4425 y(p)r(opulation)g(b)r(ottlenec)n(ks)h(and)f(relativ)n(ely)f(lo)n (w)h(rates)g(of)h(recom)n(bination)e(and)h(m)n(utation.)648 4526 y(One)36 b(approac)n(h)e(to)j(dealing)f(with)h(this)g(issue)f(is)g (to)h(form)n(ulate)f(a)g(notion)g(of)h(\\par-)523 4625 y(simon)n(y)-7 b(,")36 b(and)g(to)h(dev)n(elop)f(algorithms)f(that)i (directly)g(attempt)g(to)g(maximize)f(parsi-)523 4725 y(mon)n(y)-7 b(.)24 b(Sev)n(eral)f(imp)r(ortan)n(t)h(pap)r(ers)g(ha)n (v)n(e)f(tak)n(en)h(this)g(approac)n(h)f([3)o(,)i(12)o(,)f(6,)g(22)o(]) h(and)f(ha)n(v)n(e)523 4825 y(yielded)i(new)g(insigh)n(ts)g(and)g (practical)f(algorithms.)f(Another)i(approac)n(h)e(is)i(to)g(elab)r (orate)523 4924 y(the)e(probabilistic)f(mo)r(del,)i(in)f(particular)e (b)n(y)i(incorp)r(orating)e(priors)h(on)g(the)i(parameters.)p eop %%Page: 3 3 3 2 bop 3367 232 a Ft(3)523 448 y Fx(Di\013eren)n(t)34 b(priors)e(ha)n(v)n(e)g(b)r(een)i(discussed)f(b)n(y)g(di\013eren)n(t)h (authors,)e(ranging)g(from)h(simple)523 548 y(Diric)n(hlet)27 b(priors)f([17)o(])h(to)g(priors)f(based)g(on)h(the)g(coalescen)n(t)f (pro)r(cess)g([21)o(])h(to)g(priors)f(that)523 648 y(capture)h(asp)r (ects)g(of)g(recom)n(bination)f([11)o(].)i(These)f(mo)r(dels)h(pro)n (vide)e(implicit)i(notions)f(of)523 747 y(parsimon)n(y)-7 b(,)26 b(via)h(the)h(implicit)h(\\Oc)n(kham)d(factor")g(of)h(the)h(Ba)n (y)n(esian)e(formalism)h([2)o(].)648 862 y(Both)36 b(parsimon)n (y-based)e(and)j(statistical)f(approac)n(hes)e(are)i(useful)h(in)g(the) g(case)f(of)523 962 y(ph)n(ylogenetic)25 b(inference)h([8],)g(and)g(w)n (e)f(feel)i(that)f(it)g(is)g(lik)n(ely)g(that)g(b)r(oth)g(will)h(con)n (tin)n(ue)e(to)523 1061 y(pla)n(y)f(a)g(role)g(in)g(haplot)n(yp)r(e)g (inference)h(as)f(w)n(ell.)g(The)h(approac)n(h)d(that)j(w)n(e)f(tak)n (e)g(in)h(the)g(cur-)523 1161 y(ren)n(t)d(pap)r(er)f(is)h(statistical,) g(but)g(w)n(e)g(attempt)h(to)e(pro)n(vide)g(more)g(explicit)i(con)n (trol)d(o)n(v)n(er)h(the)523 1261 y(n)n(um)n(b)r(er)h(of)f(inferred)h (haplot)n(yp)r(es)f(than)h(has)f(b)r(een)h(pro)n(vided)f(b)n(y)g(the)h (statistical)g(metho)r(ds)523 1360 y(prop)r(osed)h(th)n(us)i(far,)f (and)g(the)h(resulting)f(inference)g(algorithm)f(has)h(commonalities)f (with)523 1460 y(the)28 b(parsimon)n(y-based)d(sc)n(hemes.)648 1575 y(Our)f(approac)n(h)g(is)h(based)g(on)g(a)g(nonparametric)e(prior) i(kno)n(wn)f(as)h(the)h Fo(Dirichlet)j(pr)l(o-)523 1675 y(c)l(ess)k Fx([9,)27 b(1)o(].)g(In)f(the)h(setting)f(of)h(\014nite)g (mixture)f(mo)r(dels,)h(the)f(Diric)n(hlet)h(pro)r(cess|not)e(to)523 1774 y(b)r(e)d(confused)f(with)g(the)h(Diric)n(hlet)f(distribution|is)g (able)g(to)g(capture)g(uncertain)n(t)n(y)f(ab)r(out)523 1874 y(the)k(n)n(um)n(b)r(er)g(of)g(mixture)g(comp)r(onen)n(ts)g ([e.g.,)f(5].)h(The)g(basic)g(setup)g(can)g(b)r(e)g(explained)g(in)523 1974 y(terms)30 b(of)g(an)g(urn)h(mo)r(del,)f(and)g(a)g(pro)r(cess)f (that)i(pro)r(ceeds)e(through)h(data)g(sequen)n(tially)-7 b(.)523 2073 y(Consider)32 b(an)h(urn)f(whic)n(h)h(at)g(the)g(outset)g (con)n(tains)f(a)h(ball)f(of)h(a)g(single)f(color.)g(A)n(t)h(eac)n(h) 523 2173 y(step)i(w)n(e)g(either)g(dra)n(w)f(a)h(ball)g(from)g(the)h (urn,)f(and)g(replace)f(it)i(with)f(t)n(w)n(o)g(balls)f(of)i(the)523 2272 y(same)24 b(color,)g(or)g(w)n(e)g(are)g(giv)n(en)g(a)h(ball)g(of)f (a)h(new)g(color)e(whic)n(h)i(w)n(e)g(place)f(in)h(the)h(urn,)e(with) 523 2372 y(a)i(parameter)e(de\014ning)i(the)g(probabilities)g(of)g (these)g(t)n(w)n(o)f(p)r(ossibilities.)h(The)g(asso)r(ciation)523 2472 y(of)38 b(data)f(p)r(oin)n(ts)g(to)h(colors)e(de\014nes)h(a)g (\\clustering")f(of)i(the)g(data.)f(T)-7 b(o)37 b(mak)n(e)g(the)h(link) 523 2571 y(with)e(Ba)n(y)n(esian)d(mixture)j(mo)r(dels,)f(w)n(e)g(asso) r(ciate)f(with)i(eac)n(h)f(color)f(a)h(dra)n(w)f(from)i(the)523 2671 y(distribution)28 b(de\014ning)f(the)h(parameters)e(of)i(the)g (mixture)f(comp)r(onen)n(ts.)648 2786 y(This)f(pro)r(cess)g(de\014nes)g (a)g Fo(prior)k(distribution)k Fx(for)26 b(a)g(mixture)h(mo)r(del)g (with)g(a)f(random)523 2886 y(n)n(um)n(b)r(er)38 b(of)f(comp)r(onen)n (ts.)h(Multiplying)g(this)g(prior)f(b)n(y)g(a)g(lik)n(eliho)r(o)r(d)h (yields)f(a)h Fo(p)l(oste-)523 2985 y(rior)29 b(distribution)p Fx(.)e(Mark)n(o)n(v)d(c)n(hain)i(Mon)n(te)g(Carlo)e(algorithms)h(ha)n (v)n(e)g(b)r(een)h(dev)n(elop)r(ed)g(to)523 3085 y(sample)37 b(from)f(the)i(p)r(osterior)d(distributions)i(asso)r(ciated)f(with)i (Diric)n(hlet)f(pro)r(cess)f(pri-)523 3184 y(ors)26 b([5,)i(16)o(].)648 3300 y(The)21 b(usefulness)f(of)h(this)g(framew)n(ork)e(for)i(the)g (haplot)n(yp)r(e)g(problem)f(should)h(b)r(e)g(clear|)523 3399 y(using)j(a)f(Diric)n(hlet)h(pro)r(cess)f(prior)f(w)n(e)i(in)g (essence)f(main)n(tain)g(a)h(p)r(o)r(ol)f(of)h(haplot)n(yp)r(e)g (candi-)523 3499 y(dates)j(that)h(gro)n(ws)d(as)h(observ)n(ed)g(genot)n (yp)r(es)g(are)h(pro)r(cessed.)f(The)h(gro)n(wth)f(is)h(con)n(trolled) 523 3598 y(via)d(a)f(parameter)g(in)h(the)g(prior)f(distribution)h (that)h(corresp)r(onds)d(to)i(the)g(c)n(hoice)f(of)h(a)g(new)523 3698 y(color)k(in)i(the)g(urn)f(mo)r(del,)h(and)f(via)g(the)h(lik)n (eliho)r(o)r(d,)f(whic)n(h)g(assesses)f(the)i(matc)n(h)f(of)h(the)523 3798 y(new)e(genot)n(yp)r(e)f(to)g(the)h(a)n(v)-5 b(ailable)26 b(haplot)n(yp)r(es.)648 3913 y(T)-7 b(o)29 b(expand)h(on)f(this)h (latter)g(p)r(oin)n(t,)g(an)f(adv)-5 b(an)n(tage)29 b(of)h(the)g (probabilistic)f(formalism)523 4012 y(is)37 b(its)g(abilit)n(y)g(to)g (elab)r(orate)f(the)h(observ)-5 b(ation)36 b(mo)r(del)h(for)g(the)h (genot)n(yp)r(es)e(to)h(include)523 4112 y(the)30 b(p)r(ossibilit)n(y)g (of)g(errors.)d(In)j(particular,)f(the)h(indicator)f(function)h(1\()p Fm(h)2886 4124 y Fv(1)2943 4112 y Fn(\010)20 b Fm(h)3076 4124 y Fv(2)3140 4112 y Fx(=)26 b Fm(g)s Fx(\))k(in)523 4212 y(Eq.)24 b(\(1\))h(is)f(susp)r(ect|there)g(are)g(man)n(y)g (reasons)e(wh)n(y)j(an)f(individual)g(genot)n(yp)r(e)g(ma)n(y)g(not)523 4311 y(matc)n(h)k(with)h(a)f(curren)n(t)g(p)r(o)r(ol)g(of)g(haplot)n (yp)r(es,)g(suc)n(h)g(as)g(the)g(p)r(ossibilit)n(y)g(of)h(m)n(utation)f (or)523 4411 y(recom)n(bination)23 b(in)h(the)g(meiosis)g(for)f(that)i (individual,)f(and)g(errors)d(in)k(the)f(genot)n(yping)f(or)523 4510 y(data)28 b(recording)e(pro)r(cess.)i(Suc)n(h)g(sources)f(of)h (small)g(di\013erences)g(should)g(not)g(lead)g(to)h(the)523 4610 y(inference)f(pro)r(cedure)e(spa)n(wning)h(new)g(haplot)n(yp)r (es.)648 4725 y(In)32 b(the)g(curren)n(t)g(pap)r(er)f(w)n(e)h(presen)n (t)f(a)h(statistical)g(mo)r(del)g(for)g(haplot)n(yp)r(e)f(inference)523 4825 y(based)i(on)g(a)g(Diric)n(hlet)g(pro)r(cess)f(prior)g(and)h(a)g (lik)n(eliho)r(o)r(d)g(that)g(includes)h(error)d(mo)r(dels)523 4924 y(for)22 b(genot)n(yp)r(es.)g(W)-7 b(e)23 b(describ)r(e)f(a)g (Mark)n(o)n(v)f(c)n(hain)h(Mon)n(te)g(Carlo)g(pro)r(cedure,)f(in)i (particular)p eop %%Page: 4 4 4 3 bop 523 232 a Ft(4)523 448 y Fx(a)28 b(pro)r(cedure)f(that)h(mak)n (es)f(use)h(of)f(b)r(oth)i(Gibbs)f(and)g(Metrop)r(olis-Hasting)e(up)r (dates,)j(for)523 548 y(p)r(osterior)23 b(inference.)h(W)-7 b(e)24 b(presen)n(t)g(results)f(of)h(applying)g(our)f(metho)r(d)i(to)f (the)g(analysis)f(of)523 648 y(b)r(oth)c(sim)n(ulated)g(and)g(real)e (genot)n(yp)r(e)h(data,)h(comparing)e(to)i(the)g(state-of-the-art)e (PHASE)523 747 y(algorithm)29 b([21)o(].)i(On)f(the)h(sim)n(ulated)f (data)g(our)g(predictions)g(are)f(comparable)g(to)h(those)523 847 y(obtained)g(b)n(y)g(PHASE.)g(On)g(a)g(real)f(dataset)g(of)i([4)o (])f(our)g(results)f(are)h(again)f(comparable)523 946 y(to)g(those)f(of)h(PHASE,)g(and)g(w)n(e)f(outp)r(erform)g(t)n(w)n(o)h (other)f(algorithms:)f(HAP)i([13,)g(6)o(])g(and)523 1046 y(HAPLOTYPER)35 b([17)o(].)i(On)f(data)g(from)g([10)o(],)h(whic)n(h)f (is)g(a)g(di\016cult)h(test)g(case)f(due)g(to)523 1146 y(the)k(small)e(n)n(um)n(b)r(er)h(of)g(individuals)g(in)g(the)h (sample,)f(w)n(e)f(outp)r(erform)h(PHASE)g(b)n(y)f(a)523 1245 y(signi\014can)n(t)27 b(margin.)523 1516 y Fp(2)112 b(The)38 b(Statistical)d(Mo)s(del)523 1720 y Fx(The)20 b(input)i(to)e(a)g(phasing)g(algorithm)f(can)h(b)r(e)h(represen)n(ted)e (as)h(a)g Fo(genotyp)l(e)j(matrix)e Fm(G)f Fx(with)523 1819 y(columns)29 b(corresp)r(onding)f(to)h(SNPs)h(in)g(their)f(order)f (along)h(the)h(c)n(hromosome)d(and)i(ro)n(ws)523 1919 y(corresp)r(onding)f(to)h(genot)n(yp)r(ed)g(individuals.)g Fm(G)2075 1931 y Fw(i;j)2183 1919 y Fx(represen)n(ts)f(the)i (information)e(on)i(the)523 2018 y(t)n(w)n(o)22 b(alleles)f(of)i(the)g Fm(i)p Fx(-th)f(individual)g(in)h(SNP)g Fm(j)5 b Fx(.)22 b(W)-7 b(e)23 b(denote)f(the)h(t)n(w)n(o)f(alleles)f(of)i(a)f(SNP)g(b)n (y)523 2118 y(0)h(and)g(1,)g(and)g Fm(G)1055 2130 y Fw(i;j)1157 2118 y Fx(can)g(tak)n(e)g(on)g(one)g(of)g(four)g(v)-5 b(alues:)23 b(0)g(or)g(1,)g(indicating)g(a)g(homozygous)523 2218 y(site;)d(2,)f(indicating)g(a)g(heterozygous)f(site;)i(and)f(')9 b(?',)20 b(indicating)f(missing)h(data.)f(\(Although)523 2317 y(w)n(e)35 b(fo)r(cus)g(on)g(binary)f(data)h(here,)g(it)g(is)g(w)n (orth)g(noting)f(that)i(our)e(metho)r(ds)i(generalize)523 2417 y(immediately)28 b(to)f(non-binary)g(data,)g(and)g(accommo)r(date) g(missing)g(data\).)648 2517 y(W)-7 b(e)21 b(will)h(describ)r(e)f(our)g (mo)r(del)g(in)h(terms)f(of)h(a)f(p)r(o)r(ol)g(of)g(ancestral)f(haplot) n(yp)r(es,)h(or)g Fo(tem-)523 2617 y(plates)p Fx(,)29 b(from)e(whic)n(h)h(eac)n(h)f(p)r(opulation)h(haplot)n(yp)r(e)f (originates)f([cf.)j(11)o(].)f(The)f(haplot)n(yp)r(e)523 2717 y(itself)i(ma)n(y)f(undergo)f(p)r(oin)n(t)i(m)n(utation)f(with)h (resp)r(ect)f(to)g(its)h(template.)g(The)f(size)g(of)h(the)523 2816 y(p)r(o)r(ol)22 b(and)g(its)g(comp)r(osition)g(are)f(b)r(oth)h (unkno)n(wn,)g(and)g(are)f(treated)h(as)f(random)g(v)-5 b(ariables)523 2916 y(under)25 b(a)g(Diric)n(hlet)h(pro)r(cess)e (prior.)g(W)-7 b(e)26 b(b)r(egin)g(b)n(y)f(pro)n(viding)f(a)h(brief)g (description)g(of)h(the)523 3016 y(Diric)n(hlet)32 b(pro)r(cess)e(and)i (subsequen)n(tly)f(sho)n(w)g(ho)n(w)g(this)h(pro)r(cess)f(can)g(b)r(e)i (incorp)r(orated)523 3115 y(in)n(to)27 b(a)h(mo)r(del)f(for)g(haplot)n (yp)r(e)h(inference.)523 3369 y Fi(2.1)95 b(The)32 b(Diric)m(hlet)f (Pro)s(cess)523 3540 y Fx(Rather)39 b(than)g(presen)n(t)g(the)g(Diric)n (hlet)h(pro)r(cess)e(in)h(full)h(generalit)n(y)-7 b(,)38 b(w)n(e)g(fo)r(cus)i(on)f(the)523 3639 y(sp)r(eci\014c)32 b(setting)f(of)h(a)f(mixture)g(mo)r(del,)h(and)f(mak)n(e)g(use)g(of)g (the)h(urn)g(mo)r(del)f(to)h(presen)n(t)523 3739 y(the)27 b(essen)n(tial)f(features)g(of)h(the)g(pro)r(cess.)f(F)-7 b(or)26 b(a)g(fuller)h(presen)n(tation,)f(see,)g([e.g.,)h(14)o(].)g(W) -7 b(e)523 3839 y(assume)24 b(that)h(data)f Fm(X)32 b Fx(arise)23 b(from)i(a)f(mixture)h(distribution)g(with)g(mixture)g (comp)r(onen)n(ts)523 3938 y Fm(p)p Fx(\()p Fm(x)p Fn(j)p Fm(\036)p Fx(\).)36 b(W)-7 b(e)35 b(assume)f(the)h(existence)f(of)h(a)f Fo(b)l(ase)j(me)l(asur)l(e)k Fm(G)p Fx(\()p Fm(\036)p Fx(\),)36 b(whic)n(h)e(is)h(one)f(of)h(the)523 4038 y(t)n(w)n(o)c (parameters)g(of)g(the)i(Diric)n(hlet)f(pro)r(cess.)f(\(The)h(other)g (is)f(the)i(parameter)d Fm(\034)9 b Fx(,)33 b(whic)n(h)523 4137 y(w)n(e)h(presen)n(t)g(b)r(elo)n(w\).)g(The)h(parameter)d Fm(G)p Fx(\()p Fm(\036)p Fx(\))k(is)e(not)h(the)g(prior)e(for)h Fm(\036)p Fx(,)h(but)g(is)f(used)g(to)523 4237 y(generate)26 b(a)i(prior)e(for)h Fm(\036)p Fx(,)h(in)g(the)g(manner)f(that)h(w)n(e)f (no)n(w)g(discuss.)648 4338 y(Consider)i(the)i(follo)n(wing)e(pro)r (cess)g(for)h(generating)f(samples)g Fn(f)p Fm(x)2728 4350 y Fv(1)2766 4338 y Fm(;)14 b(x)2850 4350 y Fv(2)2887 4338 y Fm(;)g(:)g(:)g(:)g(;)g(x)3119 4350 y Fw(n)3164 4338 y Fn(g)30 b Fx(from)523 4437 y(a)25 b(mixture)g(mo)r(del)g (consisting)f(of)h(an)f(unsp)r(eci\014ed)i(n)n(um)n(b)r(er)f(of)f (mixture)h(comp)r(onen)n(ts,)g(or)523 4537 y Fo(e)l(quivalenc)l(e)31 b(classes)p Fx(:)581 4724 y({)41 b(The)34 b(\014rst)f(sample)g Fm(x)1348 4736 y Fv(1)1420 4724 y Fx(is)g(sampled)g(from)h(a)f (distribution)g Fm(p)p Fx(\()p Fm(x)p Fn(j)p Fm(\036)2767 4736 y Fv(1)2806 4724 y Fx(\),)h(where)f(the)h(pa-)664 4824 y(rameter)27 b Fm(\036)1023 4836 y Fv(1)1088 4824 y Fx(is)h(sampled)f(from)g(the)h(base)f(measure)g Fm(G)p Fx(\()p Fm(\036)p Fx(\).)581 4924 y({)41 b(The)28 b Fm(i)p Fx(th)g(sample,)f Fm(x)1317 4936 y Fw(i)1345 4924 y Fx(,)h(is)f (sampled)g(from)h(the)g(distribution)f Fm(p)p Fx(\()p Fm(x)p Fn(j)p Fm(\036)2787 4936 y Fw(c)2817 4944 y Fh(i)2849 4924 y Fx(\),)h(where:)p eop %%Page: 5 5 5 4 bop 3367 232 a Ft(5)722 448 y Fn(\017)41 b Fx(The)27 b(equiv)-5 b(alence)26 b(class)g(of)g(sample)h Fm(i)p Fx(,)f Fm(c)2090 460 y Fw(i)2118 448 y Fx(,)g(is)h(dra)n(wn)f(from)g (the)h(follo)n(wing)e(distri-)805 548 y(bution:)1208 730 y Fm(p)p Fx(\()p Fm(c)1318 742 y Fw(i)1369 730 y Fx(=)d Fm(c)1492 742 y Fw(j)1555 730 y Fx(for)27 b(some)g Fm(j)h(<)22 b(i)p Fn(j)p Fm(c)2127 742 y Fv(1)2164 730 y Fm(;)14 b(:)g(:)g(:)g(;)g(c)2385 742 y Fw(i)p Fj(\000)p Fv(1)2497 730 y Fx(\))24 b(=)2753 669 y Fm(n)2803 681 y Fw(c)2833 689 y Fh(j)p 2651 711 319 4 v 2651 787 a Fm(i)18 b Fn(\000)g Fx(1)g(+)g Fm(\034)3299 730 y Fx(\(2\))1301 919 y Fm(p)p Fx(\()p Fm(c)1411 931 y Fw(i)1461 919 y Fn(6)p Fx(=)23 b Fm(c)1585 931 y Fw(j)1647 919 y Fx(for)28 b(all)f Fm(j)h(<)22 b(i)p Fn(j)p Fm(c)2127 931 y Fv(1)2164 919 y Fm(;)14 b(:)g(:)g(:)g(;)g(c)2385 931 y Fw(i)p Fj(\000)p Fv(1)2497 919 y Fx(\))24 b(=)2787 863 y Fm(\034)p 2651 900 V 2651 976 a(i)18 b Fn(\000)g Fx(1)g(+)g Fm(\034)2979 919 y(;)297 b Fx(\(3\))805 1132 y(where)30 b Fm(n)1098 1144 y Fw(c)1128 1152 y Fh(i)1189 1132 y Fx(is)g(the)h Fo(o)l(c)l(cup)l(ancy)j(numb)l(er)c Fx(of)g(class)g Fm(c)2443 1144 y Fw(i)2470 1132 y Fx(|the)h(n)n(um)n(b)r(er)g(of)f(previous)805 1231 y(samples)d(that)h(b)r(elong)f(to)h(class)e Fm(c)1892 1243 y Fw(i)1920 1231 y Fx(.)722 1331 y Fn(\017)41 b Fx(The)22 b(parameter)f Fm(\036)1411 1343 y Fw(c)1441 1351 y Fh(i)1493 1331 y Fx(asso)r(ciated)g(with)h(the)g(mixture)g(comp) r(onen)n(t)g Fm(c)2964 1343 y Fw(i)3014 1331 y Fx(is)f(obtained)805 1431 y(as)27 b(follo)n(ws:)805 1613 y Fm(\036)854 1625 y Fw(c)884 1633 y Fh(i)938 1613 y Fx(=)c Fm(\036)1075 1625 y Fw(c)1105 1633 y Fh(j)1223 1613 y Fx(if)28 b Fm(c)1335 1625 y Fw(i)1386 1613 y Fx(=)23 b Fm(c)1510 1625 y Fw(j)1572 1613 y Fx(for)k(some)g Fm(j)h(<)23 b(i)k Fx(\(i.e.,)h Fm(c)2338 1625 y Fw(i)2394 1613 y Fx(is)f(a)g(p)r(opulated)h(equiv)-5 b(alence)27 b(class\))805 1737 y Fm(\036)854 1749 y Fw(c)884 1757 y Fh(i)938 1737 y Fn(\030)c Fm(G)p Fx(\()p Fm(\036)p Fx(\))84 b(if)28 b Fm(c)1400 1749 y Fw(i)1451 1737 y Fn(6)p Fx(=)23 b Fm(c)1575 1749 y Fw(j)1637 1737 y Fx(for)k(all)h Fm(j)g(<)22 b(i)28 b Fx(\(i.e.,)g Fm(c)2311 1749 y Fw(i)2366 1737 y Fx(is)f(a)h(new)f(equiv)-5 b(alence)27 b(class\))p Fm(:)648 1920 y Fx(Eqs.)38 b(\(2\))h(and)f(\(3\))h(de\014ne)g(a)g (conditional)f(prior)f(for)i(the)g(equiv)-5 b(alence)38 b(class)g(indi-)523 2019 y(cator)h Fm(c)784 2031 y Fw(i)851 2019 y Fx(of)h(eac)n(h)f(sample)h(during)f(a)g(sequen)n(tial)h (sampling)f(pro)r(cess.)g(They)g(imply)h(a)523 2119 y(self-reinforcing) 22 b(prop)r(ert)n(y)g(for)h(the)h(c)n(hoice)f(of)g(equiv)-5 b(alence)23 b(class)g(of)g(eac)n(h)g(new)g(sample|)523 2218 y(previously)j(p)r(opulated)i(classes)e(are)h(more)g(lik)n(ely)g (to)g(b)r(e)h(c)n(hosen.)648 2318 y(It)36 b(is)f(imp)r(ortan)n(t)h(to)f (emphasize)g(that)h(the)g(pro)r(cess)f(that)h(w)n(e)f(ha)n(v)n(e)g (discussed)g(will)523 2418 y(b)r(e)e(used)g(as)f(a)h Fo(prior)j(distribution)p Fx(.)d(W)-7 b(e)34 b(no)n(w)e(em)n(b)r(ed)h (this)g(prior)f(in)h(a)f(full)i(mo)r(del)f(that)523 2517 y(includes)c(a)g(lik)n(eliho)r(o)r(d)g(for)g(the)h(observ)n(ed)e(data.) g(In)i(App)r(endix)g(A)g(w)n(e)f(dev)n(elop)f(Mark)n(o)n(v)523 2617 y(c)n(hain)f(Mon)n(te)g(Carlo)g(\(MCMC\))h(inference)f(pro)r (cedures)g(for)g(this)h(mo)r(del.)523 2866 y Fi(2.2)95 b(The)32 b(Mo)s(del)523 3031 y Fx(W)-7 b(e)21 b(presen)n(t)f(a)g (probabilistic)f(mo)r(del)i(for)f(the)g(generation)f(of)i(haplot)n(yp)r (es)e(in)i(a)f(p)r(opulation)523 3131 y(and)39 b(for)h(the)g (generation)e(of)h(genot)n(yp)r(es)g(from)g(these)h(haplot)n(yp)r(es.)f (W)-7 b(e)40 b(assume)f(that)523 3231 y(eac)n(h)e(individual's)h(genot) n(yp)r(e)g(is)g(formed)g(b)n(y)f(dra)n(wing)g(t)n(w)n(o)h(random)f Fo(templates)h Fx(from)523 3330 y(an)24 b(ancestral)e(p)r(o)r(ol,)i (and)g(that)g(these)g(templates)g(are)f(sub)5 b(ject)24 b(to)g(random)e(p)r(erturbation.)523 3430 y(The)h(mo)r(del)g(is)g (displa)n(y)n(ed)f(as)g(a)h(graphical)e(mo)r(del)i(\(also)f(kno)n(wn)g (as)h(a)f(Ba)n(y)n(esian)f(net)n(w)n(ork\))523 3530 y(in)28 b(Figure)f(1.)648 3629 y(Let)i Fm(J)38 b Fx(b)r(e)30 b(an)f(ordered)f(list)i(of)f(lo)r(ci)g(of)h(in)n(terest.)f(F)-7 b(or)29 b(eac)n(h)f(individual)i Fm(i)p Fx(,)f(w)n(e)g(denote)523 3729 y(his/her)e(paternal)g(haplot)n(yp)r(e)h(b)n(y)f Fm(H)1708 3741 y Fw(i)1731 3749 y Fk(0)1792 3729 y Fx(:=)c([)p Fm(H)1995 3741 y Fw(i)2018 3749 y Fk(0)2051 3741 y Fw(;)p Fv(1)2108 3729 y Fm(;)14 b(:)g(:)g(:)g(;)g(H)2362 3741 y Fw(i)2385 3749 y Fk(0)2417 3741 y Fw(;J)2484 3729 y Fx(])28 b(and)f(maternal)g(haplot)n(yp)r(e)523 3828 y(b)n(y)38 b Fm(H)718 3840 y Fw(i)741 3848 y Fk(1)818 3828 y Fx(:=)i([)p Fm(H)1038 3840 y Fw(i)1061 3848 y Fk(1)1094 3840 y Fw(;)p Fv(1)1151 3828 y Fm(;)14 b(:)g(:)g(:)f(;)h(H)1404 3840 y Fw(i)1427 3848 y Fk(1)1460 3840 y Fw(;J)1526 3828 y Fx(].)38 b(W)-7 b(e)38 b(denote)g(a)g(set)g(of)f(ancestral)g(templates) h(as)f Fi(A)j Fx(=)523 3928 y Fn(f)p Fm(A)627 3940 y Fv(1)664 3928 y Fm(;)14 b(A)763 3940 y Fv(2)800 3928 y Fm(;)g(:)g(:)g(:)p Fn(g)p Fx(,)34 b(where)h Fm(A)1343 3940 y Fw(k)1418 3928 y Fx(:=)g([)p Fm(A)1626 3940 y Fw(k)q(;)p Fv(1)1720 3928 y Fm(;)14 b(:)g(:)g(:)f(;)h(A)1966 3940 y Fw(k)q(;J)2069 3928 y Fx(])35 b(is)g(a)f(particular)f(mem)n(b)r (er)h(of)h(this)g(set.)523 4028 y(The)23 b(set)h Fi(A)f Fx(is)h(a)f(random)f(v)-5 b(ariable)22 b(whose)h(cardinalit)n(y)f(and)h (comp)r(osition)g(are)g(not)g(\014xed,)523 4127 y(but)41 b(rather)d(v)-5 b(ary)39 b(with)i(realizations)d(of)i(the)g(Diric)n (hlet)g(pro)r(cess)f(and)g(v)-5 b(ary)39 b(with)i(the)523 4227 y(observ)n(ed)26 b(data.)648 4327 y(In)f(our)f(framew)n(ork,)f (the)i(probabilit)n(y)f(distribution)h(of)f(the)i(haplot)n(yp)r(e)e(v) -5 b(ariable)24 b Fm(H)3327 4339 y Fw(i)3350 4347 y Fh(t)3382 4327 y Fx(,)523 4426 y(where)18 b(the)h(sub-subscript)f Fm(t)23 b Fn(2)h(f)p Fx(0)p Fm(;)14 b Fx(1)p Fn(g)i Fx(indexes)j (paternal)e(or)h(maternal)g(origin,)f(is)i(mo)r(deled)523 4526 y(b)n(y)33 b(a)f(mixture)h(mo)r(del)h(with)f(an)g(unsp)r (eci\014ed)g(n)n(um)n(b)r(er)g(of)g(mixture)g(comp)r(onen)n(ts,)g(eac)n (h)523 4625 y(corresp)r(onding)25 b(to)h(an)g(equiv)-5 b(alence)26 b(class)g(asso)r(ciated)f(with)i(a)f(particular)f (ancestor.)h(F)-7 b(or)523 4725 y(eac)n(h)30 b(individual)i Fm(i)p Fx(,)f(w)n(e)f(de\014ne)i(the)f(equiv)-5 b(alence)31 b(class)f(v)-5 b(ariables)30 b Fm(C)2752 4737 y Fw(i)2775 4745 y Fk(0)2843 4725 y Fx(and)h Fm(C)3067 4737 y Fw(i)3090 4745 y Fk(1)3159 4725 y Fx(for)g(the)523 4825 y(paternal)23 b(and)g(maternal)g(haplot)n(yp)r(es,)g(resp)r(ectiv)n(ely)-7 b(,)22 b(to)i(sp)r(ecify)g(the)g(ancestral)e(origin)g(of)523 4924 y(the)33 b(corresp)r(onding)e(haplot)n(yp)r(e.)i(The)g Fm(C)1859 4936 y Fw(i)1882 4944 y Fh(t)1947 4924 y Fx(are)f(the)h (random)f(v)-5 b(ariables)32 b(corresp)r(onding)p eop %%Page: 6 6 6 5 bop 523 232 a Ft(6)1154 1618 y @beginspecial 0 @llx 0 @lly 353 @urx 273 @ury 1944 @rwi @setspecial %%BeginDocument: figures/haplo5.eps %!PS-Adobe-2.0 EPSF-2.0 %%Title: haplo5.eps %%Creator: fig2dev Version 3.2 Patchlevel 3d %%CreationDate: Mon Dec 1 23:00:55 2003 %%For: epxing@mozaic.CS.Berkeley.EDU (Eric P. Xing,494 Soda,3-6228,) %%BoundingBox: 0 0 353 273 %%Magnification: 1.0000 %%EndComments /$F2psDict 200 dict def F2psDictbeginF2psDict begin F2psDictbeginF2psDict /mtrx matrix put /col-1 {0 setgray} bind def /col0 {0.000 0.000 0.000 srgb} bind def /col1 {0.000 0.000 1.000 srgb} bind def /col2 {0.000 1.000 0.000 srgb} bind def /col3 {0.000 1.000 1.000 srgb} bind def /col4 {1.000 0.000 0.000 srgb} bind def /col5 {1.000 0.000 1.000 srgb} bind def /col6 {1.000 1.000 0.000 srgb} bind def /col7 {1.000 1.000 1.000 srgb} bind def /col8 {0.000 0.000 0.560 srgb} bind def /col9 {0.000 0.000 0.690 srgb} bind def /col10 {0.000 0.000 0.820 srgb} bind def /col11 {0.530 0.810 1.000 srgb} bind def /col12 {0.000 0.560 0.000 srgb} bind def /col13 {0.000 0.690 0.000 srgb} bind def /col14 {0.000 0.820 0.000 srgb} bind def /col15 {0.000 0.560 0.560 srgb} bind def /col16 {0.000 0.690 0.690 srgb} bind def /col17 {0.000 0.820 0.820 srgb} bind def /col18 {0.560 0.000 0.000 srgb} bind def /col19 {0.690 0.000 0.000 srgb} bind def /col20 {0.820 0.000 0.000 srgb} bind def /col21 {0.560 0.000 0.560 srgb} bind def /col22 {0.690 0.000 0.690 srgb} bind def /col23 {0.820 0.000 0.820 srgb} bind def /col24 {0.500 0.190 0.000 srgb} bind def /col25 {0.630 0.250 0.000 srgb} bind def /col26 {0.750 0.380 0.000 srgb} bind def /col27 {1.000 0.500 0.500 srgb} bind def /col28 {1.000 0.630 0.630 srgb} bind def /col29 {1.000 0.750 0.750 srgb} bind def /col30 {1.000 0.880 0.880 srgb} bind def /col31 {1.000 0.840 0.000 srgb} bind def end save newpath 0 273 moveto 0 0 lineto 353 0 lineto 353 273 lineto closepath clip newpath 60.3 196.3 translate 1 -1 scale /cp {closepath} bind def /ef {eofill} bind def /gr {grestore} bind def /gs {gsave} bind def /sa {save} bind def /rs {restore} bind def /l {lineto} bind def /m {moveto} bind def /rm {rmoveto} bind def /n {newpath} bind def /s {stroke} bind def /sh {show} bind def /slc {setlinecap} bind def /slj {setlinejoin} bind def /slw {setlinewidth} bind def /srgb {setrgbcolor} bind def /rot {rotate} bind def /sc {scale} bind def /sd {setdash} bind def /ff {findfont} bind def /sf {setfont} bind def /scf {scalefont} bind def /sw {stringwidth} bind def /tr {translate} bind def /tnt {dup dup currentrgbcolor 4 -2 roll dup 1 exch sub 3 -1 roll mul add 4 -2 roll dup 1 exch sub 3 -1 roll mul add 4 -2 roll dup 1 exch sub 3 -1 roll mul add srgb} bind def /shd {dup dup currentrgbcolor 4 -2 roll mul 4 -2 roll mul 4 -2 roll mul srgb} bind def /DrawEllipse { /endangle exch def /startangle exch def /yrad exch def /xrad exch def /y exch def /x exch def /savematrix mtrx currentmatrix def x y tr xrad yrad sc 0 0 1 startangle endangle arc closepath savematrix setmatrix } def /$F2psBegin {$F2psDict begin /$F2psEnteredState save def} def /$F2psEnd {$F2psEnteredState restore end} def F2psBegin10setmiterlimit0.062990.06299scF2psBegin 10 setmiterlimit 0.06299 0.06299 sc % % Fig objects follow % 7.500 slw % Ellipse n 1799 1805 225 225 0 360 DrawEllipse gs col3 0.75 tnt ef gr gs col0 s gr % Ellipse n 2924 1805 225 225 0 360 DrawEllipse gs col3 0.75 tnt ef gr gs col0 s gr % Ellipse n 1124 1805 225 225 0 360 DrawEllipse gs col3 0.75 tnt ef gr gs col0 s gr /Times-Italic ff 240.00 scf sf 450 2295 m gs 1 -1 sc (H) col0 sh gr /Times-Italic ff 180.00 scf sf 630 2340 m gs 1 -1 sc (i) col0 sh gr /Times-Italic ff 90.00 scf sf 675 2385 m gs 1 -1 sc (1) col0 sh gr /Times-Italic ff 240.00 scf sf 450 1575 m gs 1 -1 sc (G) col0 sh gr /Times-Italic ff 180.00 scf sf 630 1620 m gs 1 -1 sc (i) col0 sh gr /Times-Italic ff 240.00 scf sf 450 855 m gs 1 -1 sc (H) col0 sh gr /Times-Italic ff 180.00 scf sf 630 900 m gs 1 -1 sc (i) col0 sh gr /Times-Italic ff 90.00 scf sf 675 945 m gs 1 -1 sc (0) col0 sh gr /Times-Italic ff 240.00 scf sf -90 2565 m gs 1 -1 sc (C) col0 sh gr /Times-Italic ff 180.00 scf sf 90 2610 m gs 1 -1 sc (i) col0 sh gr /Times-Italic ff 90.00 scf sf 135 2655 m gs 1 -1 sc (1) col0 sh gr /Times-Italic ff 240.00 scf sf -90 1125 m gs 1 -1 sc (C) col0 sh gr /Times-Italic ff 180.00 scf sf 90 1170 m gs 1 -1 sc (i) col0 sh gr /Times-Italic ff 90.00 scf sf 135 1215 m gs 1 -1 sc (0) col0 sh gr /Symbol ff 240.00 scf sf 4275 1935 m gs 1 -1 sc 350.0 rot (g) col0 sh gr % Polyline n -720 2070 m -495 1845 l -720 1620 l -945 1845 l cp gs col0 s gr /Symbol ff 240.00 scf sf -810 1890 m gs 1 -1 sc 350.0 rot (t) col0 sh gr /Times-Italic ff 240.00 scf sf 1620 -585 m gs 1 -1 sc (A) col0 sh gr /Times-Italic ff 150.00 scf sf 1800 -540 m gs 1 -1 sc (k,2) col0 sh gr /Times-Italic ff 240.00 scf sf 2745 -585 m gs 1 -1 sc (A) col0 sh gr /Times-Italic ff 150.00 scf sf 2925 -540 m gs 1 -1 sc (k,J) col0 sh gr /Times-Italic ff 240.00 scf sf 945 -585 m gs 1 -1 sc (A) col0 sh gr /Times-Italic ff 150.00 scf sf 1125 -540 m gs 1 -1 sc (k,1) col0 sh gr % Ellipse n 1799 1085 225 225 0 360 DrawEllipse gs col0 s gr % Ellipse n 2924 1085 225 225 0 360 DrawEllipse gs col0 s gr % Ellipse n 1124 1085 225 225 0 360 DrawEllipse gs col0 s gr % Polyline [60] 0 sd n 870 810 m 765 810 765 1245 105 arcto 4 {pop} repeat 765 1350 3180 1350 105 arcto 4 {pop} repeat 3285 1350 3285 915 105 arcto 4 {pop} repeat 3285 810 870 810 105 arcto 4 {pop} repeat cp gs col0 s gr [] 0 sd /Times-Roman ff 300.00 scf sf 2295 1080 m gs 1 -1 sc (...) col0 sh gr /Times-Italic ff 240.00 scf sf 1620 1131 m gs 1 -1 sc (H) col0 sh gr /Times-Italic ff 150.00 scf sf 1785 1170 m gs 1 -1 sc (i ,2) col0 sh gr /Times-Italic ff 240.00 scf sf 2745 1131 m gs 1 -1 sc (H) col0 sh gr /Times-Italic ff 150.00 scf sf 2910 1170 m gs 1 -1 sc (i ,J) col0 sh gr /Times-Italic ff 90.00 scf sf 1825 1215 m gs 1 -1 sc (0) col0 sh gr /Times-Italic ff 90.00 scf sf 2950 1215 m gs 1 -1 sc (0) col0 sh gr /Times-Italic ff 240.00 scf sf 945 1131 m gs 1 -1 sc (H) col0 sh gr /Times-Italic ff 150.00 scf sf 1110 1170 m gs 1 -1 sc (i ,1) col0 sh gr /Times-Italic ff 90.00 scf sf 1150 1215 m gs 1 -1 sc (0) col0 sh gr % Ellipse n 1799 2525 225 225 0 360 DrawEllipse gs col0 s gr % Ellipse n 2924 2525 225 225 0 360 DrawEllipse gs col0 s gr % Ellipse n 1124 2525 225 225 0 360 DrawEllipse gs col0 s gr % Polyline [60] 0 sd n 870 2250 m 765 2250 765 2685 105 arcto 4 {pop} repeat 765 2790 3180 2790 105 arcto 4 {pop} repeat 3285 2790 3285 2355 105 arcto 4 {pop} repeat 3285 2250 870 2250 105 arcto 4 {pop} repeat cp gs col0 s gr [] 0 sd /Times-Roman ff 300.00 scf sf 2295 2520 m gs 1 -1 sc (...) col0 sh gr /Times-Italic ff 240.00 scf sf 1620 2571 m gs 1 -1 sc (H) col0 sh gr /Times-Italic ff 150.00 scf sf 1785 2610 m gs 1 -1 sc (i ,2) col0 sh gr /Times-Italic ff 240.00 scf sf 2745 2571 m gs 1 -1 sc (H) col0 sh gr /Times-Italic ff 150.00 scf sf 2910 2610 m gs 1 -1 sc (i ,J) col0 sh gr /Times-Italic ff 90.00 scf sf 1825 2655 m gs 1 -1 sc (1) col0 sh gr /Times-Italic ff 90.00 scf sf 2950 2655 m gs 1 -1 sc (1) col0 sh gr /Times-Italic ff 240.00 scf sf 945 2571 m gs 1 -1 sc (H) col0 sh gr /Times-Italic ff 150.00 scf sf 1110 2610 m gs 1 -1 sc (i ,1) col0 sh gr /Times-Italic ff 90.00 scf sf 1150 2655 m gs 1 -1 sc (1) col0 sh gr /Times-Italic ff 240.00 scf sf 1632 1845 m gs 1 -1 sc (G) col0 sh gr /Times-Italic ff 150.00 scf sf 1770 1890 m gs 1 -1 sc (i,2) col0 sh gr /Times-Italic ff 240.00 scf sf 2757 1845 m gs 1 -1 sc (G) col0 sh gr /Times-Italic ff 150.00 scf sf 2895 1890 m gs 1 -1 sc (i,J) col0 sh gr % Ellipse n 44 1085 225 225 0 360 DrawEllipse gs col0 s gr % Ellipse n 44 2525 225 225 0 360 DrawEllipse gs col0 s gr % Ellipse n 4365 1845 270 180 0 360 DrawEllipse gs col0 s gr % Ellipse n 1125 -90 270 180 0 360 DrawEllipse gs col0 s gr % Ellipse n 1799 -670 225 225 0 360 DrawEllipse gs col0 s gr % Ellipse n 2924 -670 225 225 0 360 DrawEllipse gs col0 s gr % Ellipse n 1124 -670 225 225 0 360 DrawEllipse gs col0 s gr % Polyline [60] 0 sd n 870 -945 m 765 -945 765 -510 105 arcto 4 {pop} repeat 765 -405 3180 -405 105 arcto 4 {pop} repeat 3285 -405 3285 -840 105 arcto 4 {pop} repeat 3285 -945 870 -945 105 arcto 4 {pop} repeat cp gs col0 s gr [] 0 sd % Polyline n -270 495 m 3510 495 l 3510 3105 l -270 3105 l cp gs col0 s gr % Polyline [60] 0 sd n 870 1530 m 765 1530 765 1965 105 arcto 4 {pop} repeat 765 2070 3180 2070 105 arcto 4 {pop} repeat 3285 2070 3285 1635 105 arcto 4 {pop} repeat 3285 1530 870 1530 105 arcto 4 {pop} repeat cp gs col0 s gr [] 0 sd % Polyline n -720 -270 m -495 -495 l -720 -720 l -945 -495 l cp gs col0 s gr % Polyline n -135 -1190 m 3375 -1190 l 3375 225 l -135 225 l cp gs col0 s gr % Polyline gs clippath -120 -465 m -120 -525 l -270 -524 l -150 -494 l -270 -464 l cp eoclip n -495 -495 m -135 -495 l gs col0 s gr gr % arrowhead n -270 -464 m -150 -494 l -270 -524 l -270 -464 l cp gs 0.00 setgray ef gr col0 s % Polyline gs clippath -30 75 m -30 15 l -180 15 l -60 45 l -180 75 l cp eoclip n -720 1620 m -720 45 l -45 45 l gs col0 s gr gr % arrowhead n -180 75 m -60 45 l -180 15 l -180 75 l cp gs 0.00 setgray ef gr col0 s % Polyline 2 slj gs clippath 1095 1590 m 1155 1590 l 1155 1439 l 1125 1559 l 1095 1439 l cp eoclip n 1125 1305 m 1125 1575 l gs col0 s gr gr % arrowhead 0 slj n 1095 1439 m 1125 1559 l 1155 1439 l 1095 1439 l cp gs 0.00 setgray ef gr col0 s % Polyline 2 slj gs clippath 1155 2010 m 1095 2010 l 1095 2161 l 1125 2041 l 1155 2161 l cp eoclip n 1125 2295 m 1125 2025 l gs col0 s gr gr % arrowhead 0 slj n 1155 2161 m 1125 2041 l 1095 2161 l 1155 2161 l cp gs 0.00 setgray ef gr col0 s % Polyline 2 slj gs clippath 1770 1590 m 1830 1590 l 1830 1439 l 1800 1559 l 1770 1439 l cp eoclip n 1800 1305 m 1800 1575 l gs col0 s gr gr % arrowhead 0 slj n 1770 1439 m 1800 1559 l 1830 1439 l 1770 1439 l cp gs 0.00 setgray ef gr col0 s % Polyline 2 slj gs clippath 2895 1590 m 2955 1590 l 2955 1439 l 2925 1559 l 2895 1439 l cp eoclip n 2925 1305 m 2925 1575 l gs col0 s gr gr % arrowhead 0 slj n 2895 1439 m 2925 1559 l 2955 1439 l 2895 1439 l cp gs 0.00 setgray ef gr col0 s % Polyline 2 slj gs clippath 1830 2010 m 1770 2010 l 1770 2161 l 1800 2041 l 1830 2161 l cp eoclip n 1800 2295 m 1800 2025 l gs col0 s gr gr % arrowhead 0 slj n 1830 2161 m 1800 2041 l 1770 2161 l 1830 2161 l cp gs 0.00 setgray ef gr col0 s % Polyline 2 slj gs clippath 2955 2010 m 2895 2010 l 2895 2161 l 2925 2041 l 2955 2161 l cp eoclip n 2925 2295 m 2925 2025 l gs col0 s gr gr % arrowhead 0 slj n 2955 2161 m 2925 2041 l 2895 2161 l 2955 2161 l cp gs 0.00 setgray ef gr col0 s % Polyline 2 slj gs clippath 780 1110 m 780 1050 l 629 1050 l 749 1080 l 629 1110 l cp eoclip n 270 1080 m 765 1080 l gs col0 s gr gr % arrowhead 0 slj n 629 1110 m 749 1080 l 629 1050 l 629 1110 l cp gs 0.00 setgray ef gr col0 s % Polyline 2 slj gs clippath 780 2550 m 780 2490 l 629 2490 l 749 2520 l 629 2550 l cp eoclip n 270 2520 m 765 2520 l gs col0 s gr gr % arrowhead 0 slj n 629 2550 m 749 2520 l 629 2490 l 629 2550 l cp gs 0.00 setgray ef gr col0 s % Polyline 2 slj gs clippath 3270 1815 m 3270 1875 l 3421 1875 l 3301 1845 l 3421 1815 l cp eoclip n 4095 1845 m 3285 1845 l gs col0 s gr gr % arrowhead 0 slj n 3421 1815 m 3301 1845 l 3421 1875 l 3421 1815 l cp gs 0.00 setgray ef gr col0 s % Polyline 2 slj gs clippath -58 1270 m -100 1228 l -206 1334 l -100 1271 l -163 1377 l cp eoclip n -585 1755 m -90 1260 l gs col0 s gr gr % arrowhead 0 slj n -163 1377 m -100 1271 l -206 1334 l -163 1377 l cp gs 0.00 setgray ef gr col0 s % Polyline 2 slj gs clippath -99 2417 m -58 2372 l -169 2271 l -101 2374 l -209 2315 l cp eoclip n -585 1935 m -90 2385 l gs col0 s gr gr % arrowhead 0 slj n -209 2315 m -101 2374 l -169 2271 l -209 2315 l cp gs 0.00 setgray ef gr col0 s % Polyline 2 slj gs clippath 15 2310 m 75 2310 l 75 2159 l 45 2279 l 15 2159 l cp eoclip n 45 1305 m 45 2295 l gs col0 s gr gr % arrowhead 0 slj n 15 2159 m 45 2279 l 75 2159 l 15 2159 l cp gs 0.00 setgray ef gr col0 s % Polyline 2 slj gs clippath 787 834 m 843 813 l 789 672 l 804 795 l 733 693 l cp eoclip n 765 -675 m 765 -674 l 763 -672 l 762 -668 l 759 -661 l 754 -652 l 749 -640 l 743 -626 l 736 -609 l 728 -589 l 720 -568 l 711 -544 l 702 -519 l 693 -492 l 684 -464 l 675 -434 l 667 -402 l 660 -368 l 653 -333 l 646 -295 l 641 -253 l 636 -209 l 632 -162 l 630 -111 l 629 -56 l 630 0 l 632 53 l 636 106 l 641 156 l 647 205 l 654 252 l 661 296 l 669 339 l 678 380 l 686 419 l 696 456 l 705 493 l 715 528 l 725 562 l 735 595 l 745 626 l 755 656 l 765 684 l 773 709 l 782 732 l 789 752 l 795 769 l 800 783 l 804 794 l 810 810 l gs col0 s gr gr % arrowhead 0 slj n 733 693 m 804 795 l 789 672 l 733 693 l cp gs 0.00 setgray ef gr col0 s % Polyline 2 slj gs clippath 783 830 m 842 818 l 812 670 l 807 794 l 754 682 l cp eoclip n 855 -45 m 854 -44 l 853 -40 l 850 -35 l 846 -27 l 840 -16 l 834 -2 l 827 14 l 820 32 l 812 52 l 805 74 l 798 98 l 791 125 l 784 155 l 778 188 l 773 226 l 768 269 l 765 315 l 764 354 l 763 393 l 763 430 l 765 465 l 766 499 l 769 531 l 772 562 l 775 591 l 778 620 l 782 647 l 786 674 l 790 699 l 794 722 l 798 743 l 801 762 l 804 777 l 806 790 l 810 810 l gs col0 s gr gr % arrowhead 0 slj n 754 682 m 807 794 l 812 670 l 754 682 l cp gs 0.00 setgray ef gr col0 s % Polyline 2 slj gs clippath 774 2314 m 823 2279 l 733 2157 l 780 2272 l 685 2192 l cp eoclip n 765 -675 m 764 -674 l 763 -672 l 761 -669 l 758 -663 l 753 -655 l 746 -643 l 738 -629 l 728 -612 l 716 -592 l 702 -569 l 687 -542 l 671 -513 l 653 -481 l 635 -446 l 615 -409 l 595 -371 l 574 -330 l 554 -287 l 533 -244 l 512 -198 l 492 -152 l 471 -104 l 452 -55 l 433 -4 l 414 48 l 397 102 l 380 158 l 364 216 l 350 276 l 336 339 l 324 404 l 313 472 l 304 542 l 296 615 l 291 690 l 288 767 l 287 845 l 289 923 l 293 999 l 300 1073 l 309 1145 l 319 1214 l 331 1279 l 345 1342 l 359 1403 l 375 1460 l 392 1516 l 409 1569 l 428 1620 l 447 1669 l 467 1716 l 487 1762 l 508 1807 l 529 1850 l 551 1892 l 572 1933 l 594 1971 l 615 2009 l 636 2044 l 656 2078 l 675 2109 l 693 2138 l 710 2165 l 726 2189 l 739 2210 l 752 2228 l 762 2244 l 770 2257 l 777 2267 l 782 2274 l 790 2285 l gs col0 s gr gr % arrowhead 0 slj n 685 2192 m 780 2272 l 733 2157 l 685 2192 l cp gs 0.00 setgray ef gr col0 s % Polyline 2 slj gs clippath 772 2313 m 823 2282 l 744 2153 l 782 2271 l 693 2184 l cp eoclip n 855 -45 m 854 -44 l 852 -42 l 849 -39 l 844 -34 l 836 -26 l 827 -16 l 815 -3 l 800 12 l 784 30 l 765 50 l 745 73 l 724 98 l 702 125 l 679 154 l 655 185 l 632 217 l 609 251 l 585 287 l 563 324 l 541 363 l 520 404 l 499 448 l 480 494 l 462 543 l 445 595 l 430 650 l 416 709 l 405 772 l 395 838 l 389 908 l 385 980 l 385 1045 l 387 1110 l 391 1173 l 397 1236 l 405 1296 l 415 1354 l 426 1411 l 438 1465 l 452 1518 l 466 1569 l 482 1619 l 498 1667 l 515 1714 l 532 1760 l 550 1805 l 569 1848 l 588 1891 l 607 1933 l 626 1973 l 644 2011 l 663 2048 l 680 2083 l 697 2115 l 713 2145 l 728 2173 l 741 2197 l 753 2218 l 763 2236 l 771 2251 l 777 2263 l 782 2272 l 790 2285 l gs col0 s gr gr % arrowhead 0 slj n 693 2184 m 782 2271 l 744 2153 l 693 2184 l cp gs 0.00 setgray ef gr col0 s /Times-Italic ff 240.00 scf sf 3330 3060 m gs 1 -1 sc (I) col0 sh gr /Times-Roman ff 300.00 scf sf 2295 -630 m gs 1 -1 sc (...) col0 sh gr /Times-Roman ff 300.00 scf sf 2295 1845 m gs 1 -1 sc (...) col0 sh gr /Times-Italic ff 240.00 scf sf 966 1854 m gs 1 -1 sc (G) col0 sh gr /Times-Italic ff 150.00 scf sf 1104 1899 m gs 1 -1 sc (i,1) col0 sh gr /Symbol ff 240.00 scf sf 1035 0 m gs 1 -1 sc 350.0 rot (q) col0 sh gr /Times-Italic ff 150.00 scf sf 1170 45 m gs 1 -1 sc (k) col0 sh gr /Times-Italic ff 240.00 scf sf 405 -855 m gs 1 -1 sc (A) col0 sh gr /Times-Italic ff 150.00 scf sf 540 -810 m gs 1 -1 sc (k) col0 sh gr /Times-Italic ff 240.00 scf sf -855 -428 m gs 1 -1 sc 350.0 rot (G) col0 sh gr /Times-Italic ff 135.00 scf sf -675 -383 m gs 1 -1 sc (0) col0 sh gr /Times-Italic ff 240.00 scf sf 0 135 m gs 1 -1 sc (K) col0 sh gr F2psBegin10setmiterlimit0.062990.06299scF2psEnd rs %%EndDocument @endspecial 523 1793 a Fr(Fig.)15 b(1.)i Ft(The)h(graphical)h(mo)r (del)f(represen)n(tation)g(of)h(the)e(haplot)n(yp)r(e)g(mo)r(del)h (with)g(a)g(Diric)n(hlet)g(pro-)523 1884 y(cess)j(prior.)g(Circles)h (represen)n(t)e(the)g(state)h(v)l(ariables,)g(o)n(v)l(als)g(represen)n (t)f(the)g(parameter)g(v)l(ariables,)523 1975 y(and)30 b(diamonds)f(represen)n(t)h(\014xed)e(parameters.)j(The)f(dashed)f(b)r (o)n(xes)h(denote)g(sets)g(of)h(v)l(ariables)523 2066 y(corresp)r(onding)e(to)f(the)g(same)f(ancestral)j(template,)d(haplot)n (yp)r(e,)h(and)g(genot)n(yp)r(e,)g(resp)r(ectiv)n(ely)-6 b(.)523 2158 y(The)33 b(solid)g(b)r(o)n(xes)g(corresp)r(onds)g(to)g (i.i.d.)h(replicates)f(of)h(a)e(set)h(of)h(v)l(ariables,)f(eac)n(h)g (asso)r(ciated)523 2249 y(with)j(a)g(particular)g(individual)g(\()p Fg(I)41 b Ft(copies\),)c(or)f(ancestral)h(template)e(\(an)g(un)n(b)r (ounded)f(n)n(um-)523 2340 y(b)r(er)f(of)h(copies\),)h(resp)r(ectiv)n (ely)-6 b(.)33 b(Arro)n(ws)h(b)r(et)n(w)n(een)g(v)l(ariables)g(or)g(b)r (o)n(xes)f(denote)g(dep)r(endencies)523 2432 y(b)r(et)n(w)n(een)26 b(v)l(ariables)g(or)g(sets)g(of)h(v)l(ariables.)523 2624 y Fx(to)32 b(the)h(equiv)-5 b(alence)32 b(classes)e(of)j(the)f(Diric)n (hlet)h(pro)r(cess.)e(The)h(base)g(measure)f Fm(G)h Fx(of)h(the)523 2723 y(Diric)n(hlet)38 b(pro)r(cess)f(is)h(a)f(join)n(t)h(measure)f(on) h(ancestral)f(haplot)n(yp)r(es)g Fm(A)h Fx(and)g(m)n(utation)523 2823 y(parameters)25 b Fm(\022)r Fx(,)i(where)g(the)g(latter)f (captures)g(the)h(probabilit)n(y)f(that)h(an)g(allele)f(at)h(a)f(lo)r (cus)523 2922 y(is)36 b(iden)n(tical)g(to)f(the)i(ancestor)d(at)i(this) g(lo)r(cus.)g(W)-7 b(e)36 b(let)h Fm(G)p Fx(\()p Fm(A;)14 b(\022)r Fx(\))38 b(=)e Fm(p)p Fx(\()p Fm(A)p Fx(\))p Fm(p)p Fx(\()p Fm(\022)r Fx(\),)i(and)d(w)n(e)523 3022 y(assume)40 b(that)g Fm(p)p Fx(\()p Fm(A)p Fx(\))h(is)g(a)f(uniform)g (distribution)g(o)n(v)n(er)f(all)h(p)r(ossible)g(haplot)n(yp)r(es.)g(W) -7 b(e)523 3122 y(let)36 b Fm(p)p Fx(\()p Fm(\022)r Fx(\))g(b)r(e)f(a)g (b)r(eta)h(distribution)f Fm(B)t(eta)p Fx(\()p Fm(\013)1951 3134 y Fw(h)1994 3122 y Fm(;)14 b(\014)2078 3134 y Fw(h)2121 3122 y Fx(\),)36 b(and)f(w)n(e)g(c)n(ho)r(ose)f(a)g(small)h(v)-5 b(alue)36 b(for)523 3221 y Fm(\014)570 3233 y Fw(h)613 3221 y Fm(=)p Fx(\()p Fm(\013)740 3233 y Fw(h)801 3221 y Fx(+)18 b Fm(\014)931 3233 y Fw(h)974 3221 y Fx(\),)28 b(corresp)r(onding)e(to)i(a)f(prior)f(exp)r(ectation)i(of)f(a)g(lo)n(w) g(m)n(utation)h(rate.)648 3321 y(Giv)n(en)c Fm(C)944 3333 y Fw(i)967 3341 y Fh(t)1025 3321 y Fx(and)h(a)g(set)g(of)g (ancestors,)e(w)n(e)i(de\014ne)h(the)f(conditional)f(probabilit)n(y)h (of)g(the)523 3421 y(corresp)r(onding)h(haplot)n(yp)r(e)h(instance)g Fm(h)c Fx(:=)g([)p Fm(h)2018 3433 y Fv(1)2055 3421 y Fm(;)14 b(:)g(:)g(:)f(;)h(h)2287 3433 y Fw(J)2334 3421 y Fx(])27 b(to)h(b)r(e:)921 3592 y Fm(p)p Fx(\()p Fm(H)1064 3604 y Fw(i)1087 3612 y Fh(t)1143 3592 y Fx(=)22 b Fm(h)p Fn(j)p Fm(C)1360 3604 y Fw(i)1383 3612 y Fh(t)1439 3592 y Fx(=)g Fm(k)s(;)14 b Fi(A)23 b Fx(=)g Fi(a)p Fm(;)14 b Ff(\022)s Fx(\))23 b(=)g Fm(p)p Fx(\()p Fm(H)2211 3604 y Fw(i)2234 3612 y Fh(t)2289 3592 y Fx(=)g Fm(h)p Fn(j)p Fm(A)2510 3604 y Fw(k)2574 3592 y Fx(=)g Fm(a;)14 b(\022)2782 3604 y Fw(k)2845 3592 y Fx(=)23 b Fm(\022)r Fx(\))1980 3733 y(=)2068 3654 y Fl(Y)2106 3831 y Fw(j)2188 3733 y Fm(p)p Fx(\()p Fm(h)2310 3745 y Fw(j)2345 3733 y Fn(j)p Fm(a)2412 3745 y Fw(j)2447 3733 y Fm(;)14 b(\022)r Fx(\))p Fm(;)719 b Fx(\(4\))523 3992 y(where)18 b Fm(p)p Fx(\()p Fm(h)876 4004 y Fw(j)911 3992 y Fn(j)p Fm(a)978 4004 y Fw(j)1013 3992 y Fm(;)c(\022)r Fx(\))19 b(is)g(the)g(probabilit)n(y)e (of)i(ha)n(ving)e(allele)i Fm(h)2362 4004 y Fw(j)2415 3992 y Fx(at)g(lo)r(cus)f Fm(j)24 b Fx(giv)n(en)18 b(its)g(ancestor.) 523 4092 y(Eq.)30 b(\(4\))g(assumes)g(that)h(eac)n(h)e(lo)r(cus)h(is)h (m)n(utated)f(indep)r(enden)n(tly)h(with)g(the)g(same)f(error)523 4191 y(rate.)40 b(F)-7 b(or)40 b(haplot)n(yp)r(es,)g Fm(H)1415 4203 y Fw(i)1438 4211 y Fh(t)1466 4203 y Fw(;j)1561 4191 y Fx(tak)n(es)g(v)-5 b(alues)40 b(from)g(a)g(set)h Fm(B)k Fx(of)40 b(alleles.)g(W)-7 b(e)41 b(use)g(the)523 4291 y(follo)n(wing)27 b Fo(single-lo)l(cus)j(mutation)f(mo)l(del)9 b Fx(:)1239 4505 y Fm(p)p Fx(\()p Fm(h)1361 4517 y Fw(j)1396 4505 y Fn(j)p Fm(a)1463 4517 y Fw(j)1497 4505 y Fm(;)14 b(\022)r Fx(\))24 b(=)f Fm(\022)1760 4471 y Fv(1\()p Fw(h)1858 4479 y Fh(j)1889 4471 y Fv(=)p Fw(a)1976 4479 y Fh(j)2007 4471 y Fv(\))2037 4413 y Fl(\020)2132 4449 y Fx(1)18 b Fn(\000)g Fm(\022)p 2096 4486 257 4 v 2096 4562 a Fn(j)p Fm(B)t Fn(j)h(\000)f Fx(1)2363 4413 y Fl(\021)2412 4431 y Fv(1\()p Fw(h)2510 4439 y Fh(j)2541 4431 y Fj(6)p Fv(=)p Fw(a)2628 4439 y Fh(j)2659 4431 y Fv(\))3299 4505 y Fx(\(5\))523 4725 y(where)27 b(1\()p Fn(\001)p Fx(\))h(is)f(the)h (indicator)f(function.)648 4825 y(The)35 b(join)n(t)g(conditional)g (distribution)h(of)f(haplot)n(yp)r(e)g(instances)g Fi(h)h Fx(=)f Fn(f)p Fm(h)3063 4837 y Fw(i)3086 4845 y Fh(t)3189 4825 y Fx(:)72 b Fm(t)36 b Fn(2)523 4924 y(f)p Fx(0)p Fm(;)14 b Fx(1)p Fn(g)p Fm(;)g(i)21 b Fn(2)i(f)p Fx(1)p Fm(;)14 b Fx(2)p Fm(;)g(:)g(:)g(:)e(;)i(I)7 b Fn(gg)22 b Fx(and)g(parameter)f(instances)h Ff(\022)k Fx(=)c Fn(f)p Fm(\022)2528 4936 y Fv(1)2565 4924 y Fm(;)14 b(:)g(:)g(:)g(;)g(\022) 2789 4936 y Fw(K)2853 4924 y Fn(g)p Fx(,)22 b(giv)n(en)g(the)h(an-)p eop %%Page: 7 7 7 6 bop 3367 232 a Ft(7)523 448 y Fx(cestor)17 b(indicator)h Fi(c)h Fx(of)f(haplot)n(yp)r(e)g(instances)g(and)g(the)h(set)f(of)h (ancestors)d Fi(a)24 b Fx(=)e Fn(f)p Fm(a)3051 460 y Fv(1)3088 448 y Fm(;)14 b(:)g(:)g(:)g(;)g(a)3317 460 y Fw(K)3380 448 y Fn(g)p Fx(,)523 548 y(can)27 b(b)r(e)h(written)g (explicitly)g(as:)1006 779 y Fm(p)p Fx(\()p Fi(h)p Fm(;)14 b Ff(\022)r Fn(j)p Fi(c)p Fm(;)g Fi(a)p Fx(\))25 b Fn(/)1512 700 y Fl(Y)1546 879 y Fw(k)1632 779 y Fm(\022)1673 742 y Fw(m)1732 751 y Fh(k)1768 742 y Fv(+)p Fw(\013)1862 751 y Fh(h)1901 742 y Fj(\000)p Fv(1)1671 804 y Fw(k)1990 687 y Fl(\020)2066 723 y Fx(1)18 b Fn(\000)g Fm(\022)2248 735 y Fw(k)p 2049 760 257 4 v 2049 836 a Fn(j)p Fm(B)t Fn(j)h(\000)f Fx(1)2316 687 y Fl(\021)2365 704 y Fw(m)2424 679 y Fe(0)2424 721 y Fh(k)2465 712 y Fl(\002)2499 779 y Fx(1)g Fn(\000)g Fm(\022)2681 791 y Fw(k)2722 712 y Fl(\003)2756 729 y Fw(\014)2794 738 y Fh(h)2833 729 y Fj(\000)p Fv(1)3299 779 y Fx(\(6\))523 1042 y(where)34 b Fm(m)843 1054 y Fw(k)918 1042 y Fx(=)1017 979 y Fl(P)1104 1067 y Fw(j)1153 979 y Fl(P)1241 1067 y Fw(i)1282 979 y Fl(P)1370 1067 y Fw(t)1413 1042 y Fx(1\()p Fm(h)1535 1054 y Fw(i)1558 1062 y Fh(t)1585 1054 y Fw(;j)1674 1042 y Fx(=)g Fm(a)1817 1054 y Fw(k)q(;j)1908 1042 y Fx(\)1\()p Fm(c)2050 1054 y Fw(i)2073 1062 y Fh(t)2140 1042 y Fx(=)g Fm(k)s Fx(\))g(is)g(the)h(n)n(um)n(b)r(er)f(of)g(alleles)g(that)523 1141 y(w)n(ere)17 b(not)i(m)n(utated)f(with)h(resp)r(ect)f(to)h(the)f (ancestral)f(allele,)h(and)h Fm(m)2639 1111 y Fj(0)2639 1165 y Fw(k)2702 1141 y Fx(=)2790 1079 y Fl(P)2878 1166 y Fw(j)2927 1079 y Fl(P)3014 1166 y Fw(i)3056 1079 y Fl(P)3143 1166 y Fw(t)3186 1141 y Fx(1\()p Fm(h)3308 1153 y Fw(i)3331 1161 y Fh(t)3359 1153 y Fw(;j)3437 1141 y Fn(6)p Fx(=)523 1241 y Fm(a)567 1253 y Fw(k)q(;j)658 1241 y Fx(\)1\()p Fm(c)800 1253 y Fw(i)823 1261 y Fh(t)884 1241 y Fx(=)27 b Fm(k)s Fx(\))k(is)g(the)g(n)n(um)n(b)r(er)f(of)h(m)n (utated)g(alleles.)f(The)g(coun)n(t)h Fi(m)2811 1253 y Fw(k)2878 1241 y Fx(=)d Fn(f)p Fm(m)3086 1253 y Fw(k)3126 1241 y Fm(;)14 b(m)3236 1211 y Fj(0)3236 1264 y Fw(k)3277 1241 y Fn(g)30 b Fx(is)523 1341 y(a)36 b(su\016cien)n(t)h(statistic)g (for)f(the)h(parameter)e Fm(\022)2016 1353 y Fw(k)2093 1341 y Fx(and)i(the)g(coun)n(t)f Fi(m)h Fx(=)g Fn(f)p Fi(m)2996 1353 y Fw(k)3035 1341 y Fm(;)14 b Fi(m)3153 1310 y Fj(0)3153 1364 y Fw(k)3193 1341 y Fn(g)36 b Fx(is)g(a)523 1440 y(su\016cien)n(t)26 b(statistic)h(for)e(the)i(parameter)e Ff(\022)r Fx(.)h(The)g(marginal)f(conditional)h(distribution)g(of)523 1540 y(haplot)n(yp)r(e)h(instances)g(can)g(b)r(e)h(obtained)g(b)n(y)f (in)n(tegrating)f(out)i Fm(\022)i Fx(in)e(Eq.)f(\(6\):)824 1776 y Fm(p)p Fx(\()p Fi(h)p Fn(j)p Fi(c)p Fm(;)14 b Fi(a)p Fx(\))25 b(=)1244 1697 y Fl(Y)1278 1876 y Fw(k)1364 1776 y Fm(R)q Fx(\()p Fm(\013)1513 1788 y Fw(h)1556 1776 y Fm(;)14 b(\014)1640 1788 y Fw(h)1683 1776 y Fx(\))1725 1720 y Fm(\000)e Fx(\()p Fm(\013)1873 1732 y Fw(h)1934 1720 y Fx(+)18 b Fm(m)2090 1732 y Fw(k)2131 1720 y Fx(\))p Fm(\000)12 b Fx(\()p Fm(\014)2305 1732 y Fw(h)2367 1720 y Fx(+)18 b Fm(m)2523 1689 y Fj(0)2523 1743 y Fw(k)2563 1720 y Fx(\))p 1725 1757 871 4 v 1738 1833 a Fm(\000)12 b Fx(\()p Fm(\013)1886 1845 y Fw(h)1947 1833 y Fx(+)18 b Fm(\014)2077 1845 y Fw(h)2139 1833 y Fx(+)g Fm(m)2295 1845 y Fw(k)2354 1833 y Fx(+)g Fm(m)2510 1804 y Fj(0)2510 1858 y Fw(k)2551 1833 y Fx(\))2606 1684 y Fl(\020)2773 1720 y Fx(1)p 2665 1757 257 4 v 2665 1833 a Fn(j)p Fm(B)t Fn(j)h(\000)f Fx(1)2931 1684 y Fl(\021)2981 1701 y Fw(m)3040 1676 y Fe(0)3040 1717 y Fh(k)3080 1776 y Fm(;)196 b Fx(\(7\))523 2060 y(where)23 b Fm(\000)12 b Fx(\()p Fn(\001)p Fx(\))24 b(is)g(the)g Fo(gamma)h Fx(function,)f(and)g Fm(R)q Fx(\()p Fm(\013)2086 2072 y Fw(h)2129 2060 y Fm(;)14 b(\014)2213 2072 y Fw(h)2256 2060 y Fx(\))23 b(=)2434 2020 y Fw(\000)9 b Fv(\()p Fw(\013)2552 2029 y Fh(h)2591 2020 y Fv(+)p Fw(\014)2680 2029 y Fh(h)2718 2020 y Fv(\))p 2409 2041 361 4 v 2409 2088 a Fw(\000)g Fv(\()p Fw(\013)2527 2097 y Fh(h)2566 2088 y Fv(\))p Fw(\000)g Fv(\()p Fw(\014)2705 2097 y Fh(h)2743 2088 y Fv(\))2803 2060 y Fx(is)24 b(the)g(normaliza-) 523 2174 y(tion)j(constan)n(t)f(asso)r(ciated)f(with)j Fm(B)t(eta)p Fx(\()p Fm(\013)1875 2186 y Fw(h)1918 2174 y Fm(;)14 b(\014)2002 2186 y Fw(h)2045 2174 y Fx(\).)27 b(\(F)-7 b(or)26 b(simplicit)n(y)-7 b(,)27 b(w)n(e)f(use)h(the)g (abbrevi-)523 2273 y(ation)g Fm(R)798 2285 y Fw(h)869 2273 y Fx(for)g Fm(R)q Fx(\()p Fm(\013)1145 2285 y Fw(h)1188 2273 y Fm(;)14 b(\014)1272 2285 y Fw(h)1315 2273 y Fx(\))28 b(in)g(the)g(sequel\).)648 2373 y(W)-7 b(e)26 b(no)n(w)f(in)n(tro)r (duce)g(a)g Fo(noisy)k(observation)h(mo)l(del)35 b Fx(for)25 b(the)h(genot)n(yp)r(es.)f(W)-7 b(e)26 b(let)g Fm(G)3289 2385 y Fw(i)3340 2373 y Fx(=)523 2473 y([)p Fm(G)611 2485 y Fw(i;)p Fv(1)692 2473 y Fm(;)14 b(:)g(:)g(:)f(;)h(G)941 2485 y Fw(i;J)1031 2473 y Fx(])27 b(denote)g(the)g Fo(joint)j(genotyp)l (e)e Fx(of)e(individual)h Fm(i)g Fx(at)g(lo)r(ci)f([1)p Fm(;)14 b(:)g(:)g(:)g(;)g(J)8 b Fx(],)27 b(where)523 2572 y(eac)n(h)21 b Fm(G)769 2584 y Fw(j;i)866 2572 y Fx(denotes)g(the)i Fo(genotyp)l(e)f Fx(at)g(lo)r(cus)g Fm(j)5 b Fx(.)22 b(W)-7 b(e)22 b(assume)f(that)h(the)g(observ)n(ed)f (genot)n(yp)r(e)523 2672 y(at)35 b(a)f(lo)r(cus)g(is)h(determined)g(b)n (y)f(the)h(paternal)f(and)h(maternal)f(alleles)g(of)g(this)h(lo)r(cus)g (as)523 2772 y(follo)n(ws:)565 2985 y Fm(p)p Fx(\()p Fm(g)679 2997 y Fw(i;j)756 2985 y Fn(j)p Fm(h)827 2997 y Fw(i)850 3005 y Fk(0)883 2997 y Fw(;j)938 2985 y Fm(;)14 b(h)1023 2997 y Fw(i)1046 3005 y Fk(1)1079 2997 y Fw(;j)1133 2985 y Fm(;)g(\015)5 b Fx(\))23 b(=)g Fm(\015)1409 2951 y Fv(1\()p Fw(h)1507 2959 y Fh(i;j)1578 2951 y Fv(=)p Fw(g)1661 2959 y Fh(i;j)1734 2951 y Fv(\))1764 2985 y Fx([)p Fm(\026)1837 2997 y Fv(1)1874 2985 y Fx(\(1)14 b Fn(\000)f Fm(\015)5 b Fx(\)])2143 2951 y Fv(1\()p Fw(h)2241 2959 y Fh(i;j)2325 2899 y Fk(1)2314 2951 y Fj(6)p Fv(=)o Fw(g)2396 2959 y Fh(i;j)2469 2951 y Fv(\))2499 2985 y Fx([)p Fm(\026)2572 2997 y Fv(2)2609 2985 y Fx(\(1)14 b Fn(\000)g Fm(\015)5 b Fx(\)])2879 2951 y Fv(1\()p Fw(h)2977 2959 y Fh(i;j)3060 2899 y Fk(2)3049 2951 y Fj(6)p Fv(=)p Fw(g)3132 2959 y Fh(i;j)3204 2951 y Fv(\))3234 2985 y Fm(;)42 b Fx(\(8\))523 3177 y(where)32 b Fm(h)816 3189 y Fw(i;j)926 3177 y Fd(,)e Fm(h)1070 3189 y Fw(i)1093 3197 y Fk(0)1126 3189 y Fw(;j)1202 3177 y Fn(\010)22 b Fm(h)1337 3189 y Fw(i)1360 3197 y Fk(1)1392 3189 y Fw(;j)1480 3177 y Fx(denotes)32 b(the)h(unordered)f(pair)g(of)h(t)n(w)n (o)f(actual)g(SNP)g(allele)523 3318 y(instances)38 b(at)g(lo)r(cus)f Fm(j)5 b Fx(;)39 b(\\)1382 3244 y Fk(1)1365 3318 y Fn(6)p Fx(=)o(")e(denotes)h(set)g(di\013erence)g(b)n(y)g(exactly)g(one)f (elemen)n(t)h(\(i.e.,)523 3457 y(the)28 b(observ)n(ed)e(genot)n(yp)r(e) g(is)i(heterozygous,)d(while)j(the)g(true)f(one)g(is)h(homozygous\);)d (\\)3317 3382 y Fk(2)3299 3457 y Fn(6)p Fx(=)o(")523 3556 y(denotes)35 b(set)g(di\013erence)g(of)g(b)r(oth)g(elemen)n(ts)g (\(i.e.,)g(the)h(observ)n(ed)d(and)i(true)g(genot)n(yp)r(es)523 3656 y(are)e(di\013eren)n(t)h(and)g(b)r(oth)h(are)e(homozygous\);)g (and)h Fm(\026)2267 3668 y Fv(1)2338 3656 y Fx(and)g Fm(\026)2556 3668 y Fv(2)2628 3656 y Fx(are)f(appropriately)f(de-)523 3756 y(\014ned)h(normalizing)d(constan)n(ts.)i(W)-7 b(e)32 b(place)g(a)g(b)r(eta)g(prior)g Fm(B)t(eta)p Fx(\()p Fm(\013)2686 3768 y Fw(g)2724 3756 y Fm(;)14 b(\014)2808 3768 y Fw(g)2847 3756 y Fx(\))32 b(on)g Fm(\015)5 b Fx(.)32 b(Assum-)523 3855 y(ing)c(indep)r(enden)n(t)h(and)g(iden)n(tical)f (error)e(mo)r(dels)j(for)f(eac)n(h)f(lo)r(cus,)h(the)h(join)n(t)g (conditional)523 3955 y(probabilit)n(y)g(of)g(the)h(en)n(tire)f(genot)n (yp)r(e)g(observ)-5 b(ation)28 b Fi(g)f Fx(=)f Fn(f)p Fm(g)2472 3967 y Fw(i)2554 3955 y Fx(:)56 b Fm(i)26 b Fn(2)h(f)p Fx(1)p Fm(;)14 b Fx(2)p Fm(;)g(:)g(:)g(:)e(;)i(I)7 b Fn(gg)28 b Fx(and)523 4054 y(parameter)e Fm(\015)5 b Fx(,)27 b(giv)n(en)g(all)h(haplot)n(yp)r(e)f(instances)g(is:)1129 4250 y Fm(p)p Fx(\()p Fi(g)q Fm(;)14 b(\015)5 b Fn(j)p Fi(h)p Fx(\))23 b(=)1556 4171 y Fl(Y)1597 4348 y Fw(i)1676 4250 y Fm(p)p Fx(\()p Fm(g)1790 4262 y Fw(i)1817 4250 y Fm(;)14 b(\015)5 b Fn(j)p Fm(h)1973 4262 y Fw(i)1996 4270 y Fk(0)2033 4250 y Fm(;)14 b(h)2118 4262 y Fw(i)2141 4270 y Fk(1)2177 4250 y Fx(\))1468 4488 y(=)23 b Fm(\015)1604 4453 y Fw(\013)1647 4461 y Fh(g)1682 4453 y Fv(+)p Fw(u)p Fj(\000)p Fv(1)1861 4420 y Fl(\002)1895 4488 y Fx(1)18 b Fn(\000)g Fm(\015)2086 4420 y Fl(\003)2121 4437 y Fw(\014)2159 4445 y Fh(g)2193 4437 y Fv(+)p Fw(u)2283 4412 y Fe(0)2306 4437 y Fv(+)p Fw(u)2396 4412 y Fe(00)2437 4437 y Fj(\000)p Fv(1)2526 4488 y Fm(\026)2576 4453 y Fw(u)2615 4428 y Fe(0)2576 4508 y Fv(1)2642 4488 y Fm(\026)2692 4453 y Fw(u)2731 4428 y Fe(00)2692 4508 y Fv(2)2776 4488 y Fm(;)500 b Fx(\(9\))523 4671 y(where)27 b(the)g(su\016cien)n(t)h(statistics)f Fi(u)c Fx(=)g Fn(f)p Fm(u;)14 b(u)1940 4641 y Fj(0)1961 4671 y Fm(;)g(u)2046 4641 y Fj(00)2088 4671 y Fn(g)27 b Fx(are)f(computed)i(as)f Fm(u)22 b Fx(=)2938 4609 y Fl(P)3025 4696 y Fw(i;j)3117 4671 y Fx(1\()p Fm(h)3239 4683 y Fw(i;j)3340 4671 y Fx(=)523 4825 y Fm(g)563 4837 y Fw(i;j)641 4825 y Fx(\),)34 b Fm(u)778 4795 y Fj(0)835 4825 y Fx(=)934 4762 y Fl(P)1022 4850 y Fw(i;j)1114 4825 y Fx(1\()p Fm(h)1236 4837 y Fw(i;j)1366 4750 y Fk(1)1347 4825 y Fn(6)p Fx(=)g Fm(g)1486 4837 y Fw(i;j)1564 4825 y Fx(\),)g(and)h Fm(u)1870 4795 y Fj(00)1946 4825 y Fx(=)2044 4762 y Fl(P)2132 4850 y Fw(i;j)2224 4825 y Fx(1\()p Fm(h)2346 4837 y Fw(j;i)2472 4750 y Fk(2)2454 4825 y Fn(6)p Fx(=)f Fm(g)2593 4837 y Fw(j;i)2667 4825 y Fx(\),)h(resp)r(ectiv)n(ely)-7 b(.)33 b(Note)523 4924 y(that)i Fm(u)22 b Fx(+)h Fm(u)916 4894 y Fj(0)962 4924 y Fx(+)f Fm(u)1097 4894 y Fj(00)1173 4924 y Fx(=)34 b Fm(I)7 b(J)h Fx(.)35 b(T)-7 b(o)34 b(re\015ect)g(an)g (assumption)g(that)h(the)f(observ)-5 b(ational)33 b(error)p eop %%Page: 8 8 8 7 bop 523 232 a Ft(8)523 448 y Fx(rate)25 b(is)h(lo)n(w)g(w)n(e)f (set)h Fm(\014)1218 460 y Fw(g)1257 448 y Fm(=)p Fx(\()p Fm(\013)1384 460 y Fw(g)1438 448 y Fx(+)15 b Fm(\014)1565 460 y Fw(g)1603 448 y Fx(\))27 b(to)f(a)f(small)h(constan)n(t)f (\(0.001\).)g(Again,)h(the)g(marginal)523 548 y(conditional)h (distribution)h(of)f Fi(g)i Fx(is)e(computed)h(b)n(y)g(in)n(tegrating)e (out)h Fm(\015)5 b Fx(.)648 648 y(Ha)n(ving)39 b(describ)r(ed)i(our)f (Ba)n(y)n(esian)e(haplot)n(yp)r(e)j(mo)r(del,)g(the)g(problem)f(of)h (phasing)523 747 y(individual)c(haplot)n(yp)r(es)g(and)f(estimating)h (the)h(size)e(and)h(con\014guration)f(of)h(the)g(laten)n(t)523 847 y(ancestral)26 b(p)r(o)r(ol)h(can)g(b)r(e)h(solv)n(ed)e(via)h(p)r (osterior)f(inference)h(giv)n(en)g(the)g(genot)n(yp)r(e)g(data.)g(In) 523 946 y(the)f(App)r(endix,)g(w)n(e)f(describ)r(e)g(a)g(Mark)n(o)n(v)e (c)n(hain)h(Mon)n(te)h(Carlo)f(\(MCMC\))i(algorithm)f(for)523 1046 y(this)j(purp)r(ose.)523 1295 y Fp(3)112 b(Exp)s(erimen)m(tal)36 b(Results)523 1478 y Fx(W)-7 b(e)27 b(v)-5 b(alidated)27 b(our)f(algorithm)g(b)n(y)h(applying)f(it)h(to)g(sim)n(ulated)g(and)g (real)e(data)i(and)g(com-)523 1578 y(pared)f(its)g(p)r(erformance)f(to) h(that)h(of)f(the)h(state-of-the-art)e(PHASE)h(algorithm)f([21)o(])h (and)523 1677 y(other)34 b(curren)n(t)f(algorithms.)g(W)-7 b(e)34 b(rep)r(ort)g(on)f(the)i(results)f(of)g(b)r(oth)g(v)-5 b(arian)n(ts)33 b(of)h(our)g(al-)523 1777 y(gorithm:)e(The)g(Gibbs)h (sampler,)f(denoted)g(DP\(Gibbs\),)h(and)g(the)g(Metrop)r(olis-Hasting) 523 1877 y(sampler,)g(denoted)h(DP\(MH\).)g(Throughout)f(the)h(exp)r (erimen)n(ts,)f(w)n(e)g(set)h(the)g(h)n(yp)r(erpa-)523 1976 y(rameter)27 b Fm(\034)38 b Fx(in)28 b(the)h(Diric)n(hlet)f(pro)r (cess)f(to)h(b)r(e)h(roughly)d(1\045)i(of)g(the)h(p)r(opulation)f (size,)g(i.e.,)523 2076 y(for)33 b(a)g(data)f(set)i(of)f(100)f (individuals,)h Fm(\034)42 b Fx(=)32 b(1.)h(W)-7 b(e)34 b(used)f(a)g(burn-in)g(of)h(2000)d(iterations)523 2175 y(\(or)i(4000)f(for)h(datasets)f(with)i(more)f(than)h(50)f (individuals\),)g(and)h(used)f(the)h(next)g(6000)523 2275 y(iterations)27 b(for)g(estimation.)523 2508 y Fi(3.1)95 b(Sim)m(ulated)30 b(data)523 2657 y Fx(In)22 b(our)f(\014rst)g(set)g (of)h(exp)r(erimen)n(ts)f(w)n(e)g(applied)h(our)f(metho)r(d)h(to)f(sim) n(ulated)g(data)h(from)f([21)o(,)523 2757 y(\\short)41 b(sequence)g(data"].)g(This)g(data)h(con)n(tains)f(sets)g(of)h(2)p Fm(n)f Fx(haplot)n(yp)r(es,)g(randomly)523 2857 y(paired)24 b(to)g(form)g Fm(n)g Fx(genot)n(yp)r(es,)g(under)g(an)g (in\014nite-sites)g(mo)r(del)h(with)g(parameters)e Fm(\021)j Fx(=)c(4)523 2956 y(and)42 b Fm(R)47 b Fx(=)f(4)41 b(determining)h(the) g(m)n(utation)f(and)h(recom)n(bination)e(rates,)h(resp)r(ectiv)n(ely) 523 3056 y(\(see)27 b([21)o(])h(for)e(additional)h(details\).)h(W)-7 b(e)27 b(used)g(the)h(\014rst)f(40)f(datasets)h(for)g(eac)n(h)f(com)n (bina-)523 3155 y(tion)33 b(of)g(individuals)f(and)h(sites,)f(where)h (the)g(n)n(um)n(b)r(er)f(of)h(individuals)g(ranged)e(b)r(et)n(w)n(een) 523 3255 y(10)c(and)g(50,)g(and)g(the)h(n)n(um)n(b)r(er)g(of)f(sites)h (ranged)e(b)r(et)n(w)n(een)i(5)f(and)g(30.)p 957 3314 1967 4 v 955 3380 4 67 v 1451 3380 V 1601 3360 a Fv(DP\(MH\))p 2002 3380 V 311 w(PHASE)p 2554 3380 V 202 w(EM)p 2738 3380 V 51 w(Clark)p 2922 3380 V 957 3383 1967 4 v 955 3450 4 67 v 968 3430 a(#individuals)p 1451 3450 V 123 w Fw(er)r(r)1559 3438 y Fh(s)p 1635 3450 V 1648 3430 a Fw(er)r(r)1743 3438 y Fh(i)p 1818 3450 V 1832 3430 a Fw(d)1867 3438 y Fh(s)p 2002 3450 V 2016 3430 a Fw(er)r(r)2111 3438 y Fh(s)p 2186 3450 V 2199 3430 a Fw(er)r(r)2294 3438 y Fh(i)p 2370 3450 V 2383 3430 a Fw(d)2418 3438 y Fh(s)p 2554 3450 V 2567 3430 a Fw(er)r(r)2662 3438 y Fh(i)p 2738 3450 V 2751 3430 a Fw(er)r(r)2846 3438 y Fh(i)p 2922 3450 V 957 3453 1967 4 v 957 3470 V 955 3536 4 67 v 968 3516 a Fv(10)p 1451 3536 V 430 w(0.060)p 1635 3536 V 33 w(0.216)p 1818 3536 V 33 w(0.051)p 2002 3536 V 33 w(0.046)p 2186 3536 V 32 w(0.182)p 2370 3536 V 33 w(0.054)p 2554 3536 V 33 w(0.424)p 2738 3536 V 33 w(0.398)p 2922 3536 V 957 3539 1967 4 v 955 3606 4 67 v 968 3586 a(20)p 1451 3606 V 430 w(0.039)p 1635 3606 V 33 w(0.152)p 1818 3606 V 33 w(0.039)p 2002 3606 V 33 w(0.029)p 2186 3606 V 32 w(0.136)p 2370 3606 V 33 w(0.046)p 2554 3606 V 33 w(0.296)p 2738 3606 V 33 w(0.397)p 2922 3606 V 957 3609 1967 4 v 955 3676 4 67 v 968 3656 a(30)p 1451 3676 V 430 w(0.036)p 1635 3676 V 33 w(0.121)p 1818 3676 V 33 w(0.038)p 2002 3676 V 33 w(0.024)p 2186 3676 V 32 w(0.101)p 2370 3676 V 33 w(0.027)p 2554 3676 V 33 w(0.231)p 2738 3676 V 33 w(0.356)p 2922 3676 V 957 3679 1967 4 v 955 3745 4 67 v 968 3725 a(40)p 1451 3745 V 430 w(0.030)p 1635 3745 V 33 w(0.094)p 1818 3745 V 33 w(0.029)p 2002 3745 V 33 w(0.019)p 2186 3745 V 32 w(0.071)p 2370 3745 V 33 w(0.026)p 2554 3745 V 33 w(0.195)p 2738 3745 V 33 w(0.355)p 2922 3745 V 957 3749 1967 4 v 955 3815 4 67 v 968 3795 a(50)p 1451 3815 V 430 w(0.028)p 1635 3815 V 33 w(0.082)p 1818 3815 V 33 w(0.024)p 2002 3815 V 33 w(0.019)p 2186 3815 V 32 w(0.072)p 2370 3815 V 33 w(0.025)p 2554 3815 V 33 w(0.167)p 2738 3815 V 33 w(0.343)p 2922 3815 V 957 3818 1967 4 v 1087 3879 a Fr(T)-7 b(able)29 b(1.)c Fv(P)n(erformance)20 b(results)i(on)g(sim)n(ulated)f (data)h(from)f([21].)648 4028 y Fx(T)-7 b(o)32 b(ev)-5 b(aluate)33 b(the)h(p)r(erformance)e(of)h(the)h(algorithms)d(w)n(e)i (used)g(the)h(follo)n(wing)e(error)523 4127 y(measures:)22 b Fm(er)r(r)1013 4139 y Fw(s)1050 4127 y Fx(,)h(the)h(ratio)f(of)g (incorrectly)g(phased)g(SNP)g(sites)h(o)n(v)n(er)d(all)j(non-trivial)e (het-)523 4227 y(erozygous)31 b(SNPs)h(\(excluding)h(individuals)g (with)h(a)f(single)f(heterozygous)f(SNP\);)i Fm(er)r(r)3353 4239 y Fw(i)3382 4227 y Fx(,)523 4327 y(the)26 b(the)g(ratio)f(of)g (incorrectly)g(phased)g(individuals)g(o)n(v)n(er)f(all)h(non-trivial)g (heterogeneous)523 4426 y(individuals;)31 b(and)g Fm(d)1180 4438 y Fw(s)1216 4426 y Fx(,)g(the)g Fo(switch)j(distanc)l(e)p Fx(,)d(whic)n(h)g(is)g(the)h(n)n(um)n(b)r(er)e(of)h(phase)g(\015ips)g (re-)523 4526 y(quired)40 b(to)g(correct)e(the)j(predicted)f(haplot)n (yp)r(es)f(o)n(v)n(er)f(all)i(non-trivial)f(heterogeneous)523 4625 y(SNPs.)22 b(The)h(results)f(are)f(summarized)h(in)h(T)-7 b(able)22 b(1.)g(Ov)n(erall,)f(w)n(e)h(p)r(erform)g(sligh)n(tly)g(w)n (orse)523 4725 y(than)33 b(PHASE)f(on)h(the)g(\014rst)g(t)n(w)n(o)f (measures,)f(and)i(sligh)n(tly)f(b)r(etter)h(on)g(the)g(switc)n(h)f (dis-)523 4825 y(tance)27 b(measure)f(\(whic)n(h)h(uses)g(100,000)d (sampling)j(steps\),)g(and)g(are)f(signi\014can)n(tly)h(b)r(etter)523 4924 y(than)h(EM)f(and)g(Clark.)p eop %%Page: 9 9 9 8 bop 3367 232 a Ft(9)523 448 y Fi(3.2)95 b(Real)31 b(data)523 645 y Fx(W)-7 b(e)20 b(also)f(applied)h(our)f(algorithm)g (to)h(t)n(w)n(o)f(real)g(datasets)g(and)h(compared)f(its)h(p)r (erformance)523 745 y(to)28 b(that)f(of)h(PHASE)f([21)o(])h(and)g (other)f(algorithms.)648 851 y(The)35 b(\014rst)g(dataset)g(con)n (tains)g(the)g(genot)n(yp)r(es)g(of)g(129)f(individuals)i(o)n(v)n(er)d (103)h(p)r(oly-)523 951 y(morphic)f(sites)h([4].)g(In)g(addition)g(it)g (con)n(tains)f(the)h(genot)n(yp)r(es)f(of)h(the)g(paren)n(ts)f(of)h (eac)n(h)523 1050 y(individual,)i(whic)n(h)h(allo)n(ws)d(the)j (inference)f(of)g(a)g(large)f(p)r(ortion)g(of)i(the)f(haplot)n(yp)r(es) g(as)523 1150 y(in)h([6].)g(The)h(p)r(erformance)e(results)g(are)h (summarized)f(in)h(T)-7 b(able)37 b(2.)g(F)-7 b(rom)37 b(T)-7 b(able)37 b(2,)g(it)523 1249 y(is)f(apparen)n(t)e(that)i(the)h (Metrop)r(olis-Hasting)d(sampling)h(algorithm)f(signi\014can)n(tly)h (out-)523 1349 y(p)r(erforms)29 b(the)i(Gibbs)f(sampler,)f(and)h(is)g (to)g(b)r(e)h(preferred)e(giv)n(en)g(the)h(relativ)n(ely)f(limited)523 1449 y(n)n(um)n(b)r(er)i(of)h(sampling)e(steps)i(\()p Fn(\030)d Fx(6000\).)h(The)h(o)n(v)n(erall)f(p)r(erformance)g(is)h (comparable)f(to)523 1548 y(that)e(of)f(PHASE)h(and)f(b)r(etter)h(than) g(b)r(oth)g(HAP)g([13)o(,)g(6)o(])g(and)f(HAPLOTYPER)g([17)o(].)p 533 1703 2862 4 v 531 1769 4 67 v 815 1769 V 994 1769 V 1011 1769 V 1123 1749 a Fv(DP\(Gibbs\))p 1548 1769 V 1564 1769 V 267 w(DP\(MH\))p 2102 1769 V 2118 1769 V 314 w(PHASE)p 2656 1769 V 2673 1769 V 207 w(HAP)p 2885 1769 V 2901 1769 V 63 w(HAPLOTYPER)p 3393 1769 V 533 1773 2862 4 v 531 1839 4 67 v 545 1819 a(blo)r(c)n(k)21 b(id.)p 815 1839 V 33 w(length)p 994 1839 V 1010 1839 V 14 w Fw(er)r(r)1119 1827 y Fh(s)p 1190 1839 V 1203 1819 a Fw(er)r(r)1298 1827 y Fh(i)p 1369 1839 V 1382 1819 a Fw(d)1417 1827 y Fh(s)p 1548 1839 V 1564 1839 V 1578 1819 a Fw(er)r(r)1673 1827 y Fh(s)p 1744 1839 V 1757 1819 a Fw(er)r(r)1852 1827 y Fh(i)p 1923 1839 V 1936 1819 a Fw(d)1971 1827 y Fh(s)p 2102 1839 V 2118 1839 V 2132 1819 a Fw(er)r(r)2227 1827 y Fh(s)p 2298 1839 V 2311 1819 a Fw(er)r(r)2406 1827 y Fh(i)p 2477 1839 V 2490 1819 a Fw(d)2525 1827 y Fh(s)p 2656 1839 V 2673 1839 V 2686 1819 a Fw(er)r(r)2781 1827 y Fh(s)p 2885 1839 V 2901 1839 V 2915 1819 a Fw(er)r(r)3010 1827 y Fh(s)p 3393 1839 V 533 1842 2862 4 v 533 1859 V 531 1925 4 67 v 545 1905 a Fv(1)p 815 1925 V 250 w(14)p 994 1925 V 1010 1925 V 130 w(0.223)p 1190 1925 V 28 w(0.485)p 1369 1925 V 28 w(0.229)p 1548 1925 V 1564 1925 V 45 w(0)p 1744 1925 V 146 w(0)p 1923 1925 V 146 w(0)p 2102 1925 V 2118 1925 V 163 w(0.003)p 2298 1925 V 28 w(0.030)p 2477 1925 V 28 w(0.003)p 2656 1925 V 2673 1925 V 45 w(0.007)p 2885 1925 V 2901 1925 V 78 w(0.039)p 3393 1925 V 533 1929 2862 4 v 531 1995 4 67 v 545 1975 a(2)p 815 1995 V 250 w(5)p 994 1995 V 1010 1995 V 163 w(0)p 1190 1995 V 146 w(0)p 1369 1995 V 146 w(0)p 1548 1995 V 1564 1995 V 163 w(0.007)p 1744 1995 V 28 w(0.026)p 1923 1995 V 28 w(0.007)p 2102 1995 V 2118 1995 V 45 w(0.007)p 2298 1995 V 28 w(0.026)p 2477 1995 V 28 w(0.007)p 2656 1995 V 2673 1995 V 45 w(0.036)p 2885 1995 V 2901 1995 V 78 w(0.065)p 3393 1995 V 533 1998 2862 4 v 531 2065 4 67 v 545 2045 a(3)p 815 2065 V 250 w(5)p 994 2065 V 1010 2065 V 163 w(0)p 1190 2065 V 146 w(0)p 1369 2065 V 146 w(0)p 1548 2065 V 1564 2065 V 163 w(0)p 1744 2065 V 146 w(0)p 1923 2065 V 146 w(0)p 2102 2065 V 2118 2065 V 163 w(0)p 2298 2065 V 146 w(0)p 2477 2065 V 146 w(0)p 2656 2065 V 2673 2065 V 163 w(0)p 2885 2065 V 2901 2065 V 196 w(0.008)p 3393 2065 V 533 2068 2862 4 v 531 2135 4 67 v 545 2115 a(4)p 815 2135 V 250 w(11)p 994 2135 V 1010 2135 V 130 w(0.143)p 1190 2135 V 28 w(0.262)p 1369 2135 V 28 w(0.128)p 1548 2135 V 1564 2135 V 45 w(0)p 1744 2135 V 146 w(0)p 1923 2135 V 146 w(0)p 2102 2135 V 2118 2135 V 163 w(0)p 2298 2135 V 146 w(0)p 2477 2135 V 146 w(0)p 2656 2135 V 2673 2135 V 163 w(0.015)p 2885 2135 V 2901 2135 V 78 w(-)p 3393 2135 V 533 2138 2862 4 v 531 2204 4 67 v 545 2184 a(5)p 815 2204 V 250 w(9)p 994 2204 V 1010 2204 V 163 w(0.020)p 1190 2204 V 28 w(0.066)p 1369 2204 V 28 w(0.020)p 1548 2204 V 1564 2204 V 45 w(0.011)p 1744 2204 V 28 w(0.033)p 1923 2204 V 28 w(0.011)p 2102 2204 V 2118 2204 V 45 w(0.011)p 2298 2204 V 28 w(0.033)p 2477 2204 V 28 w(0.011)p 2656 2204 V 2673 2204 V 45 w(0.027)p 2885 2204 V 2901 2204 V 78 w(0.151)p 3393 2204 V 533 2208 2862 4 v 531 2274 4 67 v 545 2254 a(6)p 815 2274 V 250 w(27)p 994 2274 V 1010 2274 V 130 w(0.071)p 1190 2274 V 28 w(0.191)p 1369 2274 V 28 w(0.074)p 1548 2274 V 1564 2274 V 45 w(0.005)p 1744 2274 V 28 w(0.043)p 1923 2274 V 28 w(0.005)p 2102 2274 V 2118 2274 V 45 w(0)p 2298 2274 V 146 w(0)p 2477 2274 V 146 w(0)p 2656 2274 V 2673 2274 V 163 w(0.018)p 2885 2274 V 2901 2274 V 78 w(0.041)p 3393 2274 V 533 2277 2862 4 v 531 2344 4 67 v 545 2324 a(7)p 815 2344 V 250 w(7)p 994 2344 V 1010 2344 V 163 w(0.005)p 1190 2344 V 28 w(0.018)p 1369 2344 V 28 w(0.005)p 1548 2344 V 1564 2344 V 45 w(0.005)p 1744 2344 V 28 w(0.018)p 1923 2344 V 28 w(0.005)p 2102 2344 V 2118 2344 V 45 w(0.005)p 2298 2344 V 28 w(0.018)p 2477 2344 V 28 w(0.005)p 2656 2344 V 2673 2344 V 45 w(0.068)p 2885 2344 V 2901 2344 V 78 w(0.214)p 3393 2344 V 533 2347 2862 4 v 531 2414 4 67 v 545 2394 a(8)p 815 2414 V 250 w(4)p 994 2414 V 1010 2414 V 163 w(0)p 1190 2414 V 146 w(0)p 1369 2414 V 146 w(0)p 1548 2414 V 1564 2414 V 163 w(0)p 1744 2414 V 146 w(0)p 1923 2414 V 146 w(0)p 2102 2414 V 2118 2414 V 163 w(0)p 2298 2414 V 146 w(0)p 2477 2414 V 146 w(0)p 2656 2414 V 2673 2414 V 163 w(0)p 2885 2414 V 2901 2414 V 196 w(0.252)p 3393 2414 V 533 2417 2862 4 v 531 2483 4 67 v 545 2463 a(9)p 815 2483 V 250 w(5)p 994 2483 V 1010 2483 V 163 w(0.029)p 1190 2483 V 28 w(0.097)p 1369 2483 V 28 w(0.029)p 1548 2483 V 1564 2483 V 45 w(0.012)p 1744 2483 V 28 w(0.032)p 1923 2483 V 28 w(0.012)p 2102 2483 V 2118 2483 V 45 w(0.012)p 2298 2483 V 28 w(0.032)p 2477 2483 V 28 w(0.012)p 2656 2483 V 2673 2483 V 45 w(0.057)p 2885 2483 V 2901 2483 V 78 w(0.152)p 3393 2483 V 533 2487 2862 4 v 531 2553 4 67 v 545 2533 a(10)p 815 2553 V 217 w(4)p 994 2553 V 1010 2553 V 163 w(0.007)p 1190 2553 V 28 w(0.025)p 1369 2553 V 28 w(0.007)p 1548 2553 V 1564 2553 V 45 w(0.007)p 1744 2553 V 28 w(0.025)p 1923 2553 V 28 w(0.007)p 2102 2553 V 2118 2553 V 45 w(0.008)p 2298 2553 V 28 w(0.025)p 2477 2553 V 28 w(0.008)p 2656 2553 V 2673 2553 V 45 w(0.042)p 2885 2553 V 2901 2553 V 78 w(0.056)p 3393 2553 V 533 2556 2862 4 v 531 2623 4 67 v 545 2603 a(11)p 815 2623 V 217 w(7)p 994 2623 V 1010 2623 V 163 w(0.010)p 1190 2623 V 28 w(0.034)p 1369 2623 V 28 w(0.005)p 1548 2623 V 1564 2623 V 45 w(0.005)p 1744 2623 V 28 w(0.017)p 1923 2623 V 28 w(0.005)p 2102 2623 V 2118 2623 V 45 w(0.011)p 2298 2623 V 28 w(0.034)p 2477 2623 V 28 w(0.011)p 2656 2623 V 2673 2623 V 45 w(0.033)p 2885 2623 V 2901 2623 V 78 w(0.093)p 3393 2623 V 533 2626 2862 4 v 531 2692 4 67 v 545 2673 a(12)p 815 2692 V 217 w(5)p 994 2692 V 1010 2692 V 163 w(0.010)p 1190 2692 V 28 w(0.037)p 1369 2692 V 28 w(0.020)p 1548 2692 V 1564 2692 V 45 w(0)p 1744 2692 V 146 w(0)p 1923 2692 V 146 w(0)p 2102 2692 V 2118 2692 V 163 w(0)p 2298 2692 V 146 w(0)p 2477 2692 V 146 w(0)p 2656 2692 V 2673 2692 V 163 w(0)p 2885 2692 V 2901 2692 V 196 w(0.077)p 3393 2692 V 533 2696 2862 4 v 523 2795 a Fr(T)-7 b(able)29 b(2.)d Ft(P)n(erformance)h(results)g (on)f(the)g(data)g(of)h(Daly)f(et)g(al.)h([4)q(],)g(using)f(the)g(blo)r (c)n(k)g(structure)523 2887 y(pro)n(vided)20 b(b)n(y)g([13)r(].)h(The)h (results)f(of)h(HAP)f(and)f(HAPLOTYPER)h(are)g(adapted)g(from)g([13)q (].)h(Since)523 2978 y(the)30 b(error)h(rate)g(in)f([13)q(])h(uses)f (the)g(n)n(um)n(b)r(er)f(of)i(b)r(oth)f(heterozygous)h(and)f(missing)g (sites)h(as)g(the)523 3069 y(denominator,)25 b(whereas)h(w)n(e)f(used)g (only)g(the)f(non-trivial)h(heterozygous)h(ones,)g(w)n(e)f(rescaled)h (the)523 3161 y(error)g(rates)h(of)f(the)f(t)n(w)n(o)h(latter)h(metho)r (ds)d(to)i(b)r(e)g(comparable)g(to)g(ours.)648 3350 y Fx(It)k(is)g(imp)r(ortan)n(t)g(to)g(emphasize)f(that)i(our)e(metho)r (ds)h(also)f(pro)n(vide)g(a)h(p)r(osteriori)f(es-)523 3449 y(timates)i(of)f(the)h(ancestral)e(p)r(o)r(ol)h(of)h(haplot)n(yp)r (e)f(templates)g(and)g(their)h(frequencies.)f(W)-7 b(e)523 3549 y(omit)34 b(a)f(listing)g(of)g(these)h(haplot)n(yp)r(es,)f(but)h (pro)n(vide)e(an)h(illustrativ)n(e)g(summary)f(of)i(the)523 3648 y(ev)n(olution)27 b(of)g(these)h(estimates)f(during)g(sampling)g (\(Figure)h(2\).)523 4481 y @beginspecial 73 @llx 416 @lly 285 @urx 583 @ury 1037 @rwi @setspecial %%BeginDocument: figures/c0a.eps %!PS-Adobe-2.0 EPSF-1.2 %%Creator: MATLAB, The Mathworks, Inc. %%Title: /.automount/coeus.EECS.Berkeley.EDU/vol/vol0/eecs/epxing/matlab/haplo/daly/block_exp/sec1_new/exp4/c0a.eps %%CreationDate: 09/17/2003 23:31:18 %%DocumentNeededFonts: Helvetica %%DocumentProcessColors: Cyan Magenta Yellow Black %%Extensions: CMYK %%Pages: 1 %%BoundingBox: 73 416 285 583 %%EndComments %%BeginProlog % MathWorks dictionary /MathWorks 160 dict begin % definition operators /bdef {bind def} bind def /ldef {load def} bind def /xdef {exch def} bdef /xstore {exch store} bdef % operator abbreviations /c /clip ldef /cc /concat ldef /cp /closepath ldef /gr /grestore ldef /gs /gsave ldef /mt /moveto ldef /np /newpath ldef /cm /currentmatrix ldef /sm /setmatrix ldef /rm /rmoveto ldef /rl /rlineto ldef /s /show ldef /sc {setcmykcolor} bdef /sr /setrgbcolor ldef /sg /setgray ldef /w /setlinewidth ldef /j /setlinejoin ldef /cap /setlinecap ldef /rc {rectclip} bdef /rf {rectfill} bdef % page state control /pgsv () def /bpage {/pgsv save def} bdef /epage {pgsv restore} bdef /bplot /gsave ldef /eplot {stroke grestore} bdef % orientation switch /portraitMode 0 def /landscapeMode 1 def /rotateMode 2 def % coordinate system mappings /dpi2point 0 def % font control /FontSize 0 def /FMS {/FontSize xstore findfont [FontSize 0 0 FontSize neg 0 0] makefont setfont} bdef /reencode {exch dup where {pop load} {pop StandardEncoding} ifelse exch dup 3 1 roll findfont dup length dict begin { 1 index /FID ne {def}{pop pop} ifelse } forall /Encoding exch def currentdict end definefont pop} bdef /isroman {findfont /CharStrings get /Agrave known} bdef /FMSR {3 1 roll 1 index dup isroman {reencode} {pop pop} ifelse exch FMS} bdef /csm {1 dpi2point div -1 dpi2point div scale neg translate dup landscapeMode eq {pop -90 rotate} {rotateMode eq {90 rotate} if} ifelse} bdef % line types: solid, dotted, dashed, dotdash /SO { [] 0 setdash } bdef /DO { [.5 dpi2point mul 4 dpi2point mul] 0 setdash } bdef /DA { [6 dpi2point mul] 0 setdash } bdef /DD { [.5 dpi2point mul 4 dpi2point mul 6 dpi2point mul 4 dpi2point mul] 0 setdash } bdef % macros for lines and objects /L {lineto stroke} bdef /MP {3 1 roll moveto 1 sub {rlineto} repeat} bdef /AP {{rlineto} repeat} bdef /PDlw -1 def /W {/PDlw currentlinewidth def setlinewidth} def /PP {closepath eofill} bdef /DP {closepath stroke} bdef /MR {4 -2 roll moveto dup 0 exch rlineto exch 0 rlineto neg 0 exch rlineto closepath} bdef /FR {MR stroke} bdef /PR {MR fill} bdef /L1i {{currentfile picstr readhexstring pop} image} bdef /tMatrix matrix def /MakeOval {newpath tMatrix currentmatrix pop translate scale 0 0 1 0 360 arc tMatrix setmatrix} bdef /FO {MakeOval stroke} bdef /PO {MakeOval fill} bdef /PD {currentlinewidth 2 div 0 360 arc fill PDlw -1 eq not {PDlw w /PDlw -1 def} if} def /FA {newpath tMatrix currentmatrix pop translate scale 0 0 1 5 -2 roll arc tMatrix setmatrix stroke} bdef /PA {newpath tMatrix currentmatrix pop translate 0 0 moveto scale 0 0 1 5 -2 roll arc closepath tMatrix setmatrix fill} bdef /FAn {newpath tMatrix currentmatrix pop translate scale 0 0 1 5 -2 roll arcn tMatrix setmatrix stroke} bdef /PAn {newpath tMatrix currentmatrix pop translate 0 0 moveto scale 0 0 1 5 -2 roll arcn closepath tMatrix setmatrix fill} bdef /vradius 0 def /hradius 0 def /lry 0 def /lrx 0 def /uly 0 def /ulx 0 def /rad 0 def /MRR {/vradius xdef /hradius xdef /lry xdef /lrx xdef /uly xdef /ulx xdef newpath tMatrix currentmatrix pop ulx hradius add uly vradius add translate hradius vradius scale 0 0 1 180 270 arc tMatrix setmatrix lrx hradius sub uly vradius add translate hradius vradius scale 0 0 1 270 360 arc tMatrix setmatrix lrx hradius sub lry vradius sub translate hradius vradius scale 0 0 1 0 90 arc tMatrix setmatrix ulx hradius add lry vradius sub translate hradius vradius scale 0 0 1 90 180 arc tMatrix setmatrix closepath} bdef /FRR {MRR stroke } bdef /PRR {MRR fill } bdef /MlrRR {/lry xdef /lrx xdef /uly xdef /ulx xdef /rad lry uly sub 2 div def newpath tMatrix currentmatrix pop ulx rad add uly rad add translate rad rad scale 0 0 1 90 270 arc tMatrix setmatrix lrx rad sub lry rad sub translate rad rad scale 0 0 1 270 90 arc tMatrix setmatrix closepath} bdef /FlrRR {MlrRR stroke } bdef /PlrRR {MlrRR fill } bdef /MtbRR {/lry xdef /lrx xdef /uly xdef /ulx xdef /rad lrx ulx sub 2 div def newpath tMatrix currentmatrix pop ulx rad add uly rad add translate rad rad scale 0 0 1 180 360 arc tMatrix setmatrix lrx rad sub lry rad sub translate rad rad scale 0 0 1 0 180 arc tMatrix setmatrix closepath} bdef /FtbRR {MtbRR stroke } bdef /PtbRR {MtbRR fill } bdef /stri 6 array def /dtri 6 array def /smat 6 array def /dmat 6 array def /tmat1 6 array def /tmat2 6 array def /dif 3 array def /asub {/ind2 exch def /ind1 exch def dup dup ind1 get exch ind2 get sub exch } bdef /tri_to_matrix { 2 0 asub 3 1 asub 4 0 asub 5 1 asub dup 0 get exch 1 get 7 -1 roll astore } bdef /compute_transform { dmat dtri tri_to_matrix tmat1 invertmatrix smat stri tri_to_matrix tmat2 concatmatrix } bdef /ds {stri astore pop} bdef /dt {dtri astore pop} bdef /db {2 copy /cols xdef /rows xdef mul dup 3 mul string currentfile exch readhexstring pop dup 0 3 index getinterval /rbmap xdef dup 2 index dup getinterval /gbmap xdef 1 index dup 2 mul exch getinterval /bbmap xdef pop pop}bdef /it {gs np dtri aload pop moveto lineto lineto cp c cols rows 8 compute_transform rbmap gbmap bbmap true 3 colorimage gr}bdef /il {newpath moveto lineto stroke}bdef currentdict end def %%EndProlog %%BeginSetup MathWorks begin 0 cap end %%EndSetup %%Page: 1 1 %%BeginPageSetup %%PageBoundingBox: 73 416 285 583 MathWorks begin bpage %%EndPageSetup %%BeginObject: obj1 bplot /dpi2point 12 def portraitMode 0216 7344 csm 664 340 2547 2005 MR c np 92 dict begin %Colortable dictionary /c0 { 0 0 0 sr} bdef /c1 { 1 1 1 sr} bdef /c2 { 1 0 0 sr} bdef /c3 { 0 1 0 sr} bdef /c4 { 0 0 1 sr} bdef /c5 { 1 1 0 sr} bdef /c6 { 1 0 1 sr} bdef /c7 { 0 1 1 sr} bdef c0 1 j 1 sg 0 0 6918 5185 PR 6 w 0 1784 2262 0 0 -1784 899 2172 4 MP PP -2262 0 0 1784 2262 0 0 -1784 899 2172 5 MP stroke 4 w DO SO 6 w 0 sg 899 2172 mt 3161 2172 L 899 388 mt 3161 388 L 899 2172 mt 899 388 L 3161 2172 mt 3161 388 L 899 2172 mt 3161 2172 L 899 2172 mt 899 388 L 1104 2172 mt 1104 2149 L 1104 389 mt 1104 411 L %%IncludeResource: font Helvetica /Helvetica /ISOLatin1Encoding 120 FMSR 1071 2317 mt (1) s 1310 2172 mt 1310 2149 L 1310 389 mt 1310 411 L 1277 2317 mt (2) s 1515 2172 mt 1515 2149 L 1515 389 mt 1515 411 L 1482 2317 mt (3) s 1721 2172 mt 1721 2149 L 1721 389 mt 1721 411 L 1688 2317 mt (4) s 1927 2172 mt 1927 2149 L 1927 389 mt 1927 411 L 1894 2317 mt (5) s 2132 2172 mt 2132 2149 L 2132 389 mt 2132 411 L 2099 2317 mt (6) s 2338 2172 mt 2338 2149 L 2338 389 mt 2338 411 L 2305 2317 mt (7) s 2544 2172 mt 2544 2149 L 2544 389 mt 2544 411 L 2511 2317 mt (8) s 2749 2172 mt 2749 2149 L 2749 389 mt 2749 411 L 2716 2317 mt (9) s 2955 2172 mt 2955 2149 L 2955 389 mt 2955 411 L 2889 2317 mt (10) s 899 2172 mt 921 2172 L 3161 2172 mt 3138 2172 L 798 2216 mt (0) s 899 1676 mt 921 1676 L 3161 1676 mt 3138 1676 L 731 1720 mt (50) s 899 1181 mt 921 1181 L 3161 1181 mt 3138 1181 L 664 1225 mt (100) s 899 686 mt 921 686 L 3161 686 mt 3138 686 L 664 730 mt (150) s 899 2172 mt 3161 2172 L 899 388 mt 3161 388 L 899 2172 mt 899 388 L 3161 2172 mt 3161 388 L gs 899 389 2263 1784 MR c np /c8 { 0.000000 0.000000 0.562500 sr} bdef c8 0 1114 164 0 0 -1114 1022 2172 4 MP PP 0 sg -164 0 0 1114 164 0 0 -1114 1022 2172 5 MP stroke c8 0 425 164 0 0 -425 1228 2172 4 MP PP 0 sg -164 0 0 425 164 0 0 -425 1228 2172 5 MP stroke c8 0 238 165 0 0 -238 1433 2172 4 MP PP 0 sg -165 0 0 238 165 0 0 -238 1433 2172 5 MP stroke c8 0 157 164 0 0 -157 1639 2172 4 MP PP 0 sg -164 0 0 157 164 0 0 -157 1639 2172 5 MP stroke c8 0 113 165 0 0 -113 1844 2172 4 MP PP 0 sg -165 0 0 113 165 0 0 -113 1844 2172 5 MP stroke c8 0 86 165 0 0 -86 2050 2172 4 MP PP 0 sg -165 0 0 86 165 0 0 -86 2050 2172 5 MP stroke c8 0 66 164 0 0 -66 2256 2172 4 MP PP 0 sg -164 0 0 66 164 0 0 -66 2256 2172 5 MP stroke c8 0 53 165 0 0 -53 2461 2172 4 MP PP 0 sg -165 0 0 53 165 0 0 -53 2461 2172 5 MP stroke c8 0 43 164 0 0 -43 2667 2172 4 MP PP 0 sg -164 0 0 43 164 0 0 -43 2667 2172 5 MP stroke c8 0 36 164 0 0 -36 2873 2172 4 MP PP 0 sg -164 0 0 36 164 0 0 -36 2873 2172 5 MP stroke 0 783 1104 667 2 MP stroke 37 0 1086 667 2 MP stroke 37 0 1086 1450 2 MP stroke 0 369 1310 1562 2 MP stroke 37 0 1291 1562 2 MP stroke 37 0 1291 1931 2 MP stroke 0 215 1515 1826 2 MP stroke 37 0 1497 1826 2 MP stroke 37 0 1497 2041 2 MP stroke 0 136 1721 1947 2 MP stroke 37 0 1703 1947 2 MP stroke 37 0 1703 2083 2 MP stroke 0 95 1927 2011 2 MP stroke 37 0 1908 2011 2 MP stroke 37 0 1908 2106 2 MP stroke 0 71 2132 2051 2 MP stroke 37 0 2114 2051 2 MP stroke 37 0 2114 2122 2 MP stroke 0 56 2338 2078 2 MP stroke 37 0 2319 2078 2 MP stroke 37 0 2319 2134 2 MP stroke 0 45 2544 2097 2 MP stroke 37 0 2525 2097 2 MP stroke 37 0 2525 2142 2 MP stroke 0 36 2749 2111 2 MP stroke 37 0 2731 2111 2 MP stroke 37 0 2731 2147 2 MP stroke 0 31 2955 2121 2 MP stroke 37 0 2936 2121 2 MP stroke 37 0 2936 2152 2 MP stroke gr 24 W 1104 1058 PD 24 W 1310 1747 PD 24 W 1515 1934 PD 24 W 1721 2015 PD 24 W 1927 2059 PD 24 W 2132 2086 PD 24 W 2338 2106 PD 24 W 2544 2119 PD 24 W 2749 2129 PD 24 W 2955 2136 PD gs 899 389 2263 1784 MR c np gr %%IncludeResource: font Helvetica /Helvetica /ISOLatin1Encoding 96 FMSR 2503 787 mt ( 112.3680) s 2556 897 mt ( 42.8975) s 2556 1007 mt ( 24.0215) s 2556 1117 mt ( 15.8180) s 2556 1227 mt ( 11.4060) s 2583 1337 mt ( 8.5905) s 2583 1447 mt ( 6.6175) s 2583 1557 mt ( 5.2755) s 2583 1667 mt ( 4.2945) s 2583 1777 mt ( 3.5750) s end eplot %%EndObject epage end showpage %%Trailer %%EOF %%EndDocument @endspecial 1009 w @beginspecial 73 @llx 416 @lly 285 @urx 583 @ury 1037 @rwi @setspecial %%BeginDocument: figures/c1a.eps %!PS-Adobe-2.0 EPSF-1.2 %%Creator: MATLAB, The Mathworks, Inc. %%Title: /.automount/coeus.EECS.Berkeley.EDU/vol/vol0/eecs/epxing/matlab/haplo/daly/block_exp/sec1_new/exp4/c1a.eps %%CreationDate: 09/17/2003 23:27:52 %%DocumentNeededFonts: Helvetica %%DocumentProcessColors: Cyan Magenta Yellow Black %%Extensions: CMYK %%Pages: 1 %%BoundingBox: 73 416 285 583 %%EndComments %%BeginProlog % MathWorks dictionary /MathWorks 160 dict begin % definition operators /bdef {bind def} bind def /ldef {load def} bind def /xdef {exch def} bdef /xstore {exch store} bdef % operator abbreviations /c /clip ldef /cc /concat ldef /cp /closepath ldef /gr /grestore ldef /gs /gsave ldef /mt /moveto ldef /np /newpath ldef /cm /currentmatrix ldef /sm /setmatrix ldef /rm /rmoveto ldef /rl /rlineto ldef /s /show ldef /sc {setcmykcolor} bdef /sr /setrgbcolor ldef /sg /setgray ldef /w /setlinewidth ldef /j /setlinejoin ldef /cap /setlinecap ldef /rc {rectclip} bdef /rf {rectfill} bdef % page state control /pgsv () def /bpage {/pgsv save def} bdef /epage {pgsv restore} bdef /bplot /gsave ldef /eplot {stroke grestore} bdef % orientation switch /portraitMode 0 def /landscapeMode 1 def /rotateMode 2 def % coordinate system mappings /dpi2point 0 def % font control /FontSize 0 def /FMS {/FontSize xstore findfont [FontSize 0 0 FontSize neg 0 0] makefont setfont} bdef /reencode {exch dup where {pop load} {pop StandardEncoding} ifelse exch dup 3 1 roll findfont dup length dict begin { 1 index /FID ne {def}{pop pop} ifelse } forall /Encoding exch def currentdict end definefont pop} bdef /isroman {findfont /CharStrings get /Agrave known} bdef /FMSR {3 1 roll 1 index dup isroman {reencode} {pop pop} ifelse exch FMS} bdef /csm {1 dpi2point div -1 dpi2point div scale neg translate dup landscapeMode eq {pop -90 rotate} {rotateMode eq {90 rotate} if} ifelse} bdef % line types: solid, dotted, dashed, dotdash /SO { [] 0 setdash } bdef /DO { [.5 dpi2point mul 4 dpi2point mul] 0 setdash } bdef /DA { [6 dpi2point mul] 0 setdash } bdef /DD { [.5 dpi2point mul 4 dpi2point mul 6 dpi2point mul 4 dpi2point mul] 0 setdash } bdef % macros for lines and objects /L {lineto stroke} bdef /MP {3 1 roll moveto 1 sub {rlineto} repeat} bdef /AP {{rlineto} repeat} bdef /PDlw -1 def /W {/PDlw currentlinewidth def setlinewidth} def /PP {closepath eofill} bdef /DP {closepath stroke} bdef /MR {4 -2 roll moveto dup 0 exch rlineto exch 0 rlineto neg 0 exch rlineto closepath} bdef /FR {MR stroke} bdef /PR {MR fill} bdef /L1i {{currentfile picstr readhexstring pop} image} bdef /tMatrix matrix def /MakeOval {newpath tMatrix currentmatrix pop translate scale 0 0 1 0 360 arc tMatrix setmatrix} bdef /FO {MakeOval stroke} bdef /PO {MakeOval fill} bdef /PD {currentlinewidth 2 div 0 360 arc fill PDlw -1 eq not {PDlw w /PDlw -1 def} if} def /FA {newpath tMatrix currentmatrix pop translate scale 0 0 1 5 -2 roll arc tMatrix setmatrix stroke} bdef /PA {newpath tMatrix currentmatrix pop translate 0 0 moveto scale 0 0 1 5 -2 roll arc closepath tMatrix setmatrix fill} bdef /FAn {newpath tMatrix currentmatrix pop translate scale 0 0 1 5 -2 roll arcn tMatrix setmatrix stroke} bdef /PAn {newpath tMatrix currentmatrix pop translate 0 0 moveto scale 0 0 1 5 -2 roll arcn closepath tMatrix setmatrix fill} bdef /vradius 0 def /hradius 0 def /lry 0 def /lrx 0 def /uly 0 def /ulx 0 def /rad 0 def /MRR {/vradius xdef /hradius xdef /lry xdef /lrx xdef /uly xdef /ulx xdef newpath tMatrix currentmatrix pop ulx hradius add uly vradius add translate hradius vradius scale 0 0 1 180 270 arc tMatrix setmatrix lrx hradius sub uly vradius add translate hradius vradius scale 0 0 1 270 360 arc tMatrix setmatrix lrx hradius sub lry vradius sub translate hradius vradius scale 0 0 1 0 90 arc tMatrix setmatrix ulx hradius add lry vradius sub translate hradius vradius scale 0 0 1 90 180 arc tMatrix setmatrix closepath} bdef /FRR {MRR stroke } bdef /PRR {MRR fill } bdef /MlrRR {/lry xdef /lrx xdef /uly xdef /ulx xdef /rad lry uly sub 2 div def newpath tMatrix currentmatrix pop ulx rad add uly rad add translate rad rad scale 0 0 1 90 270 arc tMatrix setmatrix lrx rad sub lry rad sub translate rad rad scale 0 0 1 270 90 arc tMatrix setmatrix closepath} bdef /FlrRR {MlrRR stroke } bdef /PlrRR {MlrRR fill } bdef /MtbRR {/lry xdef /lrx xdef /uly xdef /ulx xdef /rad lrx ulx sub 2 div def newpath tMatrix currentmatrix pop ulx rad add uly rad add translate rad rad scale 0 0 1 180 360 arc tMatrix setmatrix lrx rad sub lry rad sub translate rad rad scale 0 0 1 0 180 arc tMatrix setmatrix closepath} bdef /FtbRR {MtbRR stroke } bdef /PtbRR {MtbRR fill } bdef /stri 6 array def /dtri 6 array def /smat 6 array def /dmat 6 array def /tmat1 6 array def /tmat2 6 array def /dif 3 array def /asub {/ind2 exch def /ind1 exch def dup dup ind1 get exch ind2 get sub exch } bdef /tri_to_matrix { 2 0 asub 3 1 asub 4 0 asub 5 1 asub dup 0 get exch 1 get 7 -1 roll astore } bdef /compute_transform { dmat dtri tri_to_matrix tmat1 invertmatrix smat stri tri_to_matrix tmat2 concatmatrix } bdef /ds {stri astore pop} bdef /dt {dtri astore pop} bdef /db {2 copy /cols xdef /rows xdef mul dup 3 mul string currentfile exch readhexstring pop dup 0 3 index getinterval /rbmap xdef dup 2 index dup getinterval /gbmap xdef 1 index dup 2 mul exch getinterval /bbmap xdef pop pop}bdef /it {gs np dtri aload pop moveto lineto lineto cp c cols rows 8 compute_transform rbmap gbmap bbmap true 3 colorimage gr}bdef /il {newpath moveto lineto stroke}bdef currentdict end def %%EndProlog %%BeginSetup MathWorks begin 0 cap end %%EndSetup %%Page: 1 1 %%BeginPageSetup %%PageBoundingBox: 73 416 285 583 MathWorks begin bpage %%EndPageSetup %%BeginObject: obj1 bplot /dpi2point 12 def portraitMode 0216 7344 csm 664 340 2547 2005 MR c np 92 dict begin %Colortable dictionary /c0 { 0 0 0 sr} bdef /c1 { 1 1 1 sr} bdef /c2 { 1 0 0 sr} bdef /c3 { 0 1 0 sr} bdef /c4 { 0 0 1 sr} bdef /c5 { 1 1 0 sr} bdef /c6 { 1 0 1 sr} bdef /c7 { 0 1 1 sr} bdef c0 1 j 1 sg 0 0 6918 5185 PR 6 w 0 1784 2262 0 0 -1784 899 2172 4 MP PP -2262 0 0 1784 2262 0 0 -1784 899 2172 5 MP stroke 4 w DO SO 6 w 0 sg 899 2172 mt 3161 2172 L 899 388 mt 3161 388 L 899 2172 mt 899 388 L 3161 2172 mt 3161 388 L 899 2172 mt 3161 2172 L 899 2172 mt 899 388 L 1104 2172 mt 1104 2149 L 1104 389 mt 1104 411 L %%IncludeResource: font Helvetica /Helvetica /ISOLatin1Encoding 120 FMSR 1071 2317 mt (1) s 1310 2172 mt 1310 2149 L 1310 389 mt 1310 411 L 1277 2317 mt (2) s 1515 2172 mt 1515 2149 L 1515 389 mt 1515 411 L 1482 2317 mt (3) s 1721 2172 mt 1721 2149 L 1721 389 mt 1721 411 L 1688 2317 mt (4) s 1927 2172 mt 1927 2149 L 1927 389 mt 1927 411 L 1894 2317 mt (5) s 2132 2172 mt 2132 2149 L 2132 389 mt 2132 411 L 2099 2317 mt (6) s 2338 2172 mt 2338 2149 L 2338 389 mt 2338 411 L 2305 2317 mt (7) s 2544 2172 mt 2544 2149 L 2544 389 mt 2544 411 L 2511 2317 mt (8) s 2749 2172 mt 2749 2149 L 2749 389 mt 2749 411 L 2716 2317 mt (9) s 2955 2172 mt 2955 2149 L 2955 389 mt 2955 411 L 2889 2317 mt (10) s 899 2172 mt 921 2172 L 3161 2172 mt 3138 2172 L 798 2216 mt (0) s 899 1676 mt 921 1676 L 3161 1676 mt 3138 1676 L 731 1720 mt (50) s 899 1181 mt 921 1181 L 3161 1181 mt 3138 1181 L 664 1225 mt (100) s 899 686 mt 921 686 L 3161 686 mt 3138 686 L 664 730 mt (150) s 899 2172 mt 3161 2172 L 899 388 mt 3161 388 L 899 2172 mt 899 388 L 3161 2172 mt 3161 388 L gs 899 389 2263 1784 MR c np /c8 { 0.000000 0.000000 0.562500 sr} bdef c8 0 1546 164 0 0 -1546 1022 2172 4 MP PP 0 sg -164 0 0 1546 164 0 0 -1546 1022 2172 5 MP stroke c8 0 606 164 0 0 -606 1228 2172 4 MP PP 0 sg -164 0 0 606 164 0 0 -606 1228 2172 5 MP stroke c8 0 335 165 0 0 -335 1433 2172 4 MP PP 0 sg -165 0 0 335 165 0 0 -335 1433 2172 5 MP stroke c8 0 49 164 0 0 -49 1639 2172 4 MP PP 0 sg -164 0 0 49 164 0 0 -49 1639 2172 5 MP stroke c8 0 21 165 0 0 -21 1844 2172 4 MP PP 0 sg -165 0 0 21 165 0 0 -21 1844 2172 5 MP stroke c8 0 2 165 0 0 -2 2050 2172 4 MP PP 0 sg -165 0 0 2 165 0 0 -2 2050 2172 5 MP stroke c8 0 1 164 0 0 -1 2256 2172 4 MP PP 0 sg -164 0 0 1 164 0 0 -1 2256 2172 5 MP stroke c8 0 1 165 0 0 -1 2461 2172 4 MP PP 0 sg -165 0 0 1 165 0 0 -1 2461 2172 5 MP stroke c8 0 0 164 0 0 0 2667 2172 4 MP PP 0 sg -164 0 0 0 164 0 0 0 2667 2172 5 MP stroke c8 0 0 164 0 0 0 2873 2172 4 MP PP 0 sg -164 0 0 0 164 0 0 0 2873 2172 5 MP stroke 0 461 1104 396 2 MP stroke 37 0 1086 396 2 MP stroke 37 0 1086 857 2 MP stroke 0 456 1310 1338 2 MP stroke 37 0 1291 1338 2 MP stroke 37 0 1291 1794 2 MP stroke 0 29 1515 1823 2 MP stroke 37 0 1497 1823 2 MP stroke 37 0 1497 1852 2 MP stroke 0 7 1721 2119 2 MP stroke 37 0 1703 2119 2 MP stroke 37 0 1703 2126 2 MP stroke 0 5 1927 2149 2 MP stroke 37 0 1908 2149 2 MP stroke 37 0 1908 2154 2 MP stroke 0 7 2132 2166 2 MP stroke 37 0 2114 2166 2 MP stroke 0 4 2338 2169 2 MP stroke 37 0 2319 2169 2 MP stroke 0 2 2544 2170 2 MP stroke 37 0 2525 2170 2 MP stroke 37 0 2525 2172 2 MP stroke 2749 2172 PD 37 0 2731 2172 2 MP stroke 37 0 2731 2172 2 MP stroke 2955 2172 PD 37 0 2936 2172 2 MP stroke 37 0 2936 2172 2 MP stroke gr 24 W 1104 626 PD 24 W 1310 1566 PD 24 W 1515 1837 PD 24 W 1721 2123 PD 24 W 1927 2151 PD 24 W 2132 2170 PD 24 W 2338 2171 PD 24 W 2544 2171 PD 24 W 2749 2172 PD 24 W 2955 2172 PD gs 899 389 2263 1784 MR c np c8 0 1546 164 0 0 -1546 1022 2172 4 MP PP 0 sg -164 0 0 1546 164 0 0 -1546 1022 2172 5 MP stroke c8 0 606 164 0 0 -606 1228 2172 4 MP PP 0 sg -164 0 0 606 164 0 0 -606 1228 2172 5 MP stroke c8 0 335 165 0 0 -335 1433 2172 4 MP PP 0 sg -165 0 0 335 165 0 0 -335 1433 2172 5 MP stroke c8 0 49 164 0 0 -49 1639 2172 4 MP PP 0 sg -164 0 0 49 164 0 0 -49 1639 2172 5 MP stroke c8 0 21 165 0 0 -21 1844 2172 4 MP PP 0 sg -165 0 0 21 165 0 0 -21 1844 2172 5 MP stroke c8 0 2 165 0 0 -2 2050 2172 4 MP PP 0 sg -165 0 0 2 165 0 0 -2 2050 2172 5 MP stroke c8 0 1 164 0 0 -1 2256 2172 4 MP PP 0 sg -164 0 0 1 164 0 0 -1 2256 2172 5 MP stroke c8 0 1 165 0 0 -1 2461 2172 4 MP PP 0 sg -165 0 0 1 165 0 0 -1 2461 2172 5 MP stroke c8 0 0 164 0 0 0 2667 2172 4 MP PP 0 sg -164 0 0 0 164 0 0 0 2667 2172 5 MP stroke c8 0 0 164 0 0 0 2873 2172 4 MP PP 0 sg -164 0 0 0 164 0 0 0 2873 2172 5 MP stroke 0 461 1104 396 2 MP stroke 37 0 1086 396 2 MP stroke 37 0 1086 857 2 MP stroke 0 456 1310 1338 2 MP stroke 37 0 1291 1338 2 MP stroke 37 0 1291 1794 2 MP stroke 0 29 1515 1823 2 MP stroke 37 0 1497 1823 2 MP stroke 37 0 1497 1852 2 MP stroke 0 7 1721 2119 2 MP stroke 37 0 1703 2119 2 MP stroke 37 0 1703 2126 2 MP stroke 0 5 1927 2149 2 MP stroke 37 0 1908 2149 2 MP stroke 37 0 1908 2154 2 MP stroke 0 7 2132 2166 2 MP stroke 37 0 2114 2166 2 MP stroke 0 4 2338 2169 2 MP stroke 37 0 2319 2169 2 MP stroke 0 2 2544 2170 2 MP stroke 37 0 2525 2170 2 MP stroke 37 0 2525 2172 2 MP stroke 2749 2172 PD 37 0 2731 2172 2 MP stroke 37 0 2731 2172 2 MP stroke 2955 2172 PD 37 0 2936 2172 2 MP stroke 37 0 2936 2172 2 MP stroke gr 24 W 1104 626 PD 24 W 1310 1566 PD 24 W 1515 1837 PD 24 W 1721 2123 PD 24 W 1927 2151 PD 24 W 2132 2170 PD 24 W 2338 2171 PD 24 W 2544 2171 PD 24 W 2749 2172 PD 24 W 2955 2172 PD gs 899 389 2263 1784 MR c np gr %%IncludeResource: font Helvetica /Helvetica /ISOLatin1Encoding 96 FMSR 2516 733 mt ( 155.9960) s 2543 843 mt ( 61.1640) s 2543 953 mt ( 33.7340) s 2570 1063 mt ( 4.9460) s 2570 1173 mt ( 2.0220) s 2570 1283 mt ( 0.1100) s 2570 1393 mt ( 0.0220) s 2570 1503 mt ( 0.0060) s 2678 1613 mt ( 0) s 2626 1723 mt ( 0) s end eplot %%EndObject epage end showpage %%Trailer %%EOF %%EndDocument @endspecial 1008 w @beginspecial 73 @llx 416 @lly 285 @urx 583 @ury 1037 @rwi @setspecial %%BeginDocument: figures/c2a.eps %!PS-Adobe-2.0 EPSF-1.2 %%Creator: MATLAB, The Mathworks, Inc. %%Title: /.automount/coeus.EECS.Berkeley.EDU/vol/vol0/eecs/epxing/matlab/haplo/daly/block_exp/sec1_new/exp4/c2a.eps %%CreationDate: 09/17/2003 23:24:16 %%DocumentNeededFonts: Helvetica %%DocumentProcessColors: Cyan Magenta Yellow Black %%Extensions: CMYK %%Pages: 1 %%BoundingBox: 73 416 285 583 %%EndComments %%BeginProlog % MathWorks dictionary /MathWorks 160 dict begin % definition operators /bdef {bind def} bind def /ldef {load def} bind def /xdef {exch def} bdef /xstore {exch store} bdef % operator abbreviations /c /clip ldef /cc /concat ldef /cp /closepath ldef /gr /grestore ldef /gs /gsave ldef /mt /moveto ldef /np /newpath ldef /cm /currentmatrix ldef /sm /setmatrix ldef /rm /rmoveto ldef /rl /rlineto ldef /s /show ldef /sc {setcmykcolor} bdef /sr /setrgbcolor ldef /sg /setgray ldef /w /setlinewidth ldef /j /setlinejoin ldef /cap /setlinecap ldef /rc {rectclip} bdef /rf {rectfill} bdef % page state control /pgsv () def /bpage {/pgsv save def} bdef /epage {pgsv restore} bdef /bplot /gsave ldef /eplot {stroke grestore} bdef % orientation switch /portraitMode 0 def /landscapeMode 1 def /rotateMode 2 def % coordinate system mappings /dpi2point 0 def % font control /FontSize 0 def /FMS {/FontSize xstore findfont [FontSize 0 0 FontSize neg 0 0] makefont setfont} bdef /reencode {exch dup where {pop load} {pop StandardEncoding} ifelse exch dup 3 1 roll findfont dup length dict begin { 1 index /FID ne {def}{pop pop} ifelse } forall /Encoding exch def currentdict end definefont pop} bdef /isroman {findfont /CharStrings get /Agrave known} bdef /FMSR {3 1 roll 1 index dup isroman {reencode} {pop pop} ifelse exch FMS} bdef /csm {1 dpi2point div -1 dpi2point div scale neg translate dup landscapeMode eq {pop -90 rotate} {rotateMode eq {90 rotate} if} ifelse} bdef % line types: solid, dotted, dashed, dotdash /SO { [] 0 setdash } bdef /DO { [.5 dpi2point mul 4 dpi2point mul] 0 setdash } bdef /DA { [6 dpi2point mul] 0 setdash } bdef /DD { [.5 dpi2point mul 4 dpi2point mul 6 dpi2point mul 4 dpi2point mul] 0 setdash } bdef % macros for lines and objects /L {lineto stroke} bdef /MP {3 1 roll moveto 1 sub {rlineto} repeat} bdef /AP {{rlineto} repeat} bdef /PDlw -1 def /W {/PDlw currentlinewidth def setlinewidth} def /PP {closepath eofill} bdef /DP {closepath stroke} bdef /MR {4 -2 roll moveto dup 0 exch rlineto exch 0 rlineto neg 0 exch rlineto closepath} bdef /FR {MR stroke} bdef /PR {MR fill} bdef /L1i {{currentfile picstr readhexstring pop} image} bdef /tMatrix matrix def /MakeOval {newpath tMatrix currentmatrix pop translate scale 0 0 1 0 360 arc tMatrix setmatrix} bdef /FO {MakeOval stroke} bdef /PO {MakeOval fill} bdef /PD {currentlinewidth 2 div 0 360 arc fill PDlw -1 eq not {PDlw w /PDlw -1 def} if} def /FA {newpath tMatrix currentmatrix pop translate scale 0 0 1 5 -2 roll arc tMatrix setmatrix stroke} bdef /PA {newpath tMatrix currentmatrix pop translate 0 0 moveto scale 0 0 1 5 -2 roll arc closepath tMatrix setmatrix fill} bdef /FAn {newpath tMatrix currentmatrix pop translate scale 0 0 1 5 -2 roll arcn tMatrix setmatrix stroke} bdef /PAn {newpath tMatrix currentmatrix pop translate 0 0 moveto scale 0 0 1 5 -2 roll arcn closepath tMatrix setmatrix fill} bdef /vradius 0 def /hradius 0 def /lry 0 def /lrx 0 def /uly 0 def /ulx 0 def /rad 0 def /MRR {/vradius xdef /hradius xdef /lry xdef /lrx xdef /uly xdef /ulx xdef newpath tMatrix currentmatrix pop ulx hradius add uly vradius add translate hradius vradius scale 0 0 1 180 270 arc tMatrix setmatrix lrx hradius sub uly vradius add translate hradius vradius scale 0 0 1 270 360 arc tMatrix setmatrix lrx hradius sub lry vradius sub translate hradius vradius scale 0 0 1 0 90 arc tMatrix setmatrix ulx hradius add lry vradius sub translate hradius vradius scale 0 0 1 90 180 arc tMatrix setmatrix closepath} bdef /FRR {MRR stroke } bdef /PRR {MRR fill } bdef /MlrRR {/lry xdef /lrx xdef /uly xdef /ulx xdef /rad lry uly sub 2 div def newpath tMatrix currentmatrix pop ulx rad add uly rad add translate rad rad scale 0 0 1 90 270 arc tMatrix setmatrix lrx rad sub lry rad sub translate rad rad scale 0 0 1 270 90 arc tMatrix setmatrix closepath} bdef /FlrRR {MlrRR stroke } bdef /PlrRR {MlrRR fill } bdef /MtbRR {/lry xdef /lrx xdef /uly xdef /ulx xdef /rad lrx ulx sub 2 div def newpath tMatrix currentmatrix pop ulx rad add uly rad add translate rad rad scale 0 0 1 180 360 arc tMatrix setmatrix lrx rad sub lry rad sub translate rad rad scale 0 0 1 0 180 arc tMatrix setmatrix closepath} bdef /FtbRR {MtbRR stroke } bdef /PtbRR {MtbRR fill } bdef /stri 6 array def /dtri 6 array def /smat 6 array def /dmat 6 array def /tmat1 6 array def /tmat2 6 array def /dif 3 array def /asub {/ind2 exch def /ind1 exch def dup dup ind1 get exch ind2 get sub exch } bdef /tri_to_matrix { 2 0 asub 3 1 asub 4 0 asub 5 1 asub dup 0 get exch 1 get 7 -1 roll astore } bdef /compute_transform { dmat dtri tri_to_matrix tmat1 invertmatrix smat stri tri_to_matrix tmat2 concatmatrix } bdef /ds {stri astore pop} bdef /dt {dtri astore pop} bdef /db {2 copy /cols xdef /rows xdef mul dup 3 mul string currentfile exch readhexstring pop dup 0 3 index getinterval /rbmap xdef dup 2 index dup getinterval /gbmap xdef 1 index dup 2 mul exch getinterval /bbmap xdef pop pop}bdef /it {gs np dtri aload pop moveto lineto lineto cp c cols rows 8 compute_transform rbmap gbmap bbmap true 3 colorimage gr}bdef /il {newpath moveto lineto stroke}bdef currentdict end def %%EndProlog %%BeginSetup MathWorks begin 0 cap end %%EndSetup %%Page: 1 1 %%BeginPageSetup %%PageBoundingBox: 73 416 285 583 MathWorks begin bpage %%EndPageSetup %%BeginObject: obj1 bplot /dpi2point 12 def portraitMode 0216 7344 csm 664 340 2547 2005 MR c np 92 dict begin %Colortable dictionary /c0 { 0 0 0 sr} bdef /c1 { 1 1 1 sr} bdef /c2 { 1 0 0 sr} bdef /c3 { 0 1 0 sr} bdef /c4 { 0 0 1 sr} bdef /c5 { 1 1 0 sr} bdef /c6 { 1 0 1 sr} bdef /c7 { 0 1 1 sr} bdef c0 1 j 1 sg 0 0 6918 5185 PR 6 w 0 1784 2262 0 0 -1784 899 2172 4 MP PP -2262 0 0 1784 2262 0 0 -1784 899 2172 5 MP stroke 4 w DO SO 6 w 0 sg 899 2172 mt 3161 2172 L 899 388 mt 3161 388 L 899 2172 mt 899 388 L 3161 2172 mt 3161 388 L 899 2172 mt 3161 2172 L 899 2172 mt 899 388 L 1104 2172 mt 1104 2149 L 1104 389 mt 1104 411 L %%IncludeResource: font Helvetica /Helvetica /ISOLatin1Encoding 120 FMSR 1071 2317 mt (1) s 1310 2172 mt 1310 2149 L 1310 389 mt 1310 411 L 1277 2317 mt (2) s 1515 2172 mt 1515 2149 L 1515 389 mt 1515 411 L 1482 2317 mt (3) s 1721 2172 mt 1721 2149 L 1721 389 mt 1721 411 L 1688 2317 mt (4) s 1927 2172 mt 1927 2149 L 1927 389 mt 1927 411 L 1894 2317 mt (5) s 2132 2172 mt 2132 2149 L 2132 389 mt 2132 411 L 2099 2317 mt (6) s 2338 2172 mt 2338 2149 L 2338 389 mt 2338 411 L 2305 2317 mt (7) s 2544 2172 mt 2544 2149 L 2544 389 mt 2544 411 L 2511 2317 mt (8) s 2749 2172 mt 2749 2149 L 2749 389 mt 2749 411 L 2716 2317 mt (9) s 2955 2172 mt 2955 2149 L 2955 389 mt 2955 411 L 2889 2317 mt (10) s 899 2172 mt 921 2172 L 3161 2172 mt 3138 2172 L 798 2216 mt (0) s 899 1676 mt 921 1676 L 3161 1676 mt 3138 1676 L 731 1720 mt (50) s 899 1181 mt 921 1181 L 3161 1181 mt 3138 1181 L 664 1225 mt (100) s 899 686 mt 921 686 L 3161 686 mt 3138 686 L 664 730 mt (150) s 899 2172 mt 3161 2172 L 899 388 mt 3161 388 L 899 2172 mt 899 388 L 3161 2172 mt 3161 388 L gs 899 389 2263 1784 MR c np /c8 { 0.000000 0.000000 0.562500 sr} bdef c8 0 1535 164 0 0 -1535 1022 2172 4 MP PP 0 sg -164 0 0 1535 164 0 0 -1535 1022 2172 5 MP stroke c8 0 623 164 0 0 -623 1228 2172 4 MP PP 0 sg -164 0 0 623 164 0 0 -623 1228 2172 5 MP stroke c8 0 330 165 0 0 -330 1433 2172 4 MP PP 0 sg -165 0 0 330 165 0 0 -330 1433 2172 5 MP stroke c8 0 50 164 0 0 -50 1639 2172 4 MP PP 0 sg -164 0 0 50 164 0 0 -50 1639 2172 5 MP stroke c8 0 20 165 0 0 -20 1844 2172 4 MP PP 0 sg -165 0 0 20 165 0 0 -20 1844 2172 5 MP stroke c8 0 1 165 0 0 -1 2050 2172 4 MP PP 0 sg -165 0 0 1 165 0 0 -1 2050 2172 5 MP stroke c8 0 0 164 0 0 0 2256 2172 4 MP PP 0 sg -164 0 0 0 164 0 0 0 2256 2172 5 MP stroke c8 0 0 165 0 0 0 2461 2172 4 MP PP 0 sg -165 0 0 0 165 0 0 0 2461 2172 5 MP stroke c8 0 0 164 0 0 0 2667 2172 4 MP PP 0 sg -164 0 0 0 164 0 0 0 2667 2172 5 MP stroke c8 0 0 164 0 0 0 2873 2172 4 MP PP 0 sg -164 0 0 0 164 0 0 0 2873 2172 5 MP stroke 0 419 1104 428 2 MP stroke 37 0 1086 428 2 MP stroke 37 0 1086 847 2 MP stroke 0 393 1310 1352 2 MP stroke 37 0 1291 1352 2 MP stroke 37 0 1291 1745 2 MP stroke 0 66 1515 1809 2 MP stroke 37 0 1497 1809 2 MP stroke 37 0 1497 1875 2 MP stroke 0 3 1721 2121 2 MP stroke 37 0 1703 2121 2 MP stroke 37 0 1703 2124 2 MP stroke 1927 2152 PD 37 0 1908 2152 2 MP stroke 37 0 1908 2152 2 MP stroke 0 4 2132 2169 2 MP stroke 37 0 2114 2169 2 MP stroke 2338 2172 PD 37 0 2319 2172 2 MP stroke 37 0 2319 2172 2 MP stroke 2544 2172 PD 37 0 2525 2172 2 MP stroke 37 0 2525 2172 2 MP stroke 2749 2172 PD 37 0 2731 2172 2 MP stroke 37 0 2731 2172 2 MP stroke 2955 2172 PD 37 0 2936 2172 2 MP stroke 37 0 2936 2172 2 MP stroke gr 24 W 1104 637 PD 24 W 1310 1549 PD 24 W 1515 1842 PD 24 W 1721 2122 PD 24 W 1927 2152 PD 24 W 2132 2171 PD 24 W 2338 2172 PD 24 W 2544 2172 PD 24 W 2749 2172 PD 24 W 2955 2172 PD gs 899 389 2263 1784 MR c np gr %%IncludeResource: font Helvetica /Helvetica /ISOLatin1Encoding 96 FMSR 2517 787 mt ( 154.8800) s 2570 897 mt ( 62.8620) s 2570 1007 mt ( 33.2480) s 2597 1117 mt ( 4.9700) s 2597 1227 mt ( 2.0000) s 2597 1337 mt ( 0.0400) s 2705 1447 mt ( 0) s 2705 1557 mt ( 0) s 2705 1667 mt ( 0) s 2705 1777 mt ( 0) s end eplot %%EndObject epage end showpage %%Trailer %%EOF %%EndDocument @endspecial 935 4572 a Ft(\(a\))880 b(\(b\))h(\(c\))523 4703 y Fr(Fig.)15 b(2.)24 b Ft(The)h(top)g(ten)f(ancestral)i(templates) e(during)h(Metrop)r(olis-Hasting)i(sampling)d(for)i(blo)r(c)n(k)523 4794 y(1)31 b(of)g(the)f(data)g(of)i(Daly)e(et)g(al.)h([4)q(].)g(\(The) f(n)n(um)n(b)r(ers)f(in)h(the)g(panels)h(are)g(the)f(p)r(osterior)h (means)523 4885 y(of)25 b(the)f(frequency)f(of)i(eac)n(h)f(template\).) g(\(a\))g(Immediately)e(after)j(burn-in)d(\(\014rst)i(2000)i (samples\).)523 4977 y(\(b\))f(3000)i(samples)f(after)g(burn-in.)f (\(c\))g(6000)j(samples)d(after)i(burn-in.)p eop %%Page: 10 10 10 9 bop 523 232 a Ft(10)648 448 y Fx(The)38 b(second)g(dataset)g(con)n (tains)g(genot)n(yp)r(e)g(data)g(from)g(four)g(p)r(opulations,)g(90)g (in-)523 548 y(dividuals)i(eac)n(h,)f(across)f(sev)n(eral)g(genomic)i (regions)e([10)o(].)j(W)-7 b(e)40 b(fo)r(cused)g(the)h(Y)-7 b(oruban)523 648 y(p)r(opulation)28 b(\(D\),)i(whic)n(h)e(con)n(tains)f (30)h(trios)f(of)i(genot)n(yp)r(es)e(\(allo)n(wing)g(us)i(to)f(infer)g (most)523 747 y(of)i(the)h(true)g(haplot)n(yp)r(es\))f(and)g(analyzed)f (the)i(genot)n(yp)r(es)f(of)g(28)f(individuals)i(o)n(v)n(er)d(four)523 847 y(medium-sized)33 b(regions)f(\(see)h(b)r(elo)n(w\).)g(The)g (results)f(are)g(summarized)h(in)g(T)-7 b(able)33 b(3.)g(All)523 946 y(metho)r(ds)28 b(yield)g(higher)e(error)g(rates)h(on)g(these)h (data,)f(compared)f(to)i(the)g(analysis)e(of)i(the)523 1046 y(data)h(of)g([4],)g(presumably)g(due)g(to)h(the)f(lo)n(w)g (sample)g(size.)g(In)h(this)f(setting,)h(o)n(v)n(er)d(all)i(but)523 1146 y(one)21 b(of)g(the)h(four)f(regions,)f(our)g(algorithm)g(outp)r (erformed)h(PHASE)g(for)g(all)g(three)g(t)n(yp)r(es)g(of)523 1245 y(error)k(measures.)g(A)i(preliminary)f(analysis)g(suggests)f (that)i(our)f(p)r(erformance)g(gain)g(ma)n(y)523 1345 y(b)r(e)38 b(due)g(to)f(the)h(bias)f(to)n(w)n(ard)f(parsimon)n(y)g (induced)i(b)n(y)f(the)h(Diric)n(hlet)g(pro)r(cess)e(prior.)523 1445 y(W)-7 b(e)28 b(found)h(that)f(the)g(n)n(um)n(b)r(er)g(of)g (template)g(haplot)n(yp)r(es)f(in)i(our)e(algorithm)g(is)h(t)n (ypically)523 1544 y(small,)37 b(whereas)g(in)h(PHASE,)g(the)g(haplot)n (yp)r(e)f(p)r(o)r(ol)h(can)f(b)r(e)h(v)n(ery)f(large)f(\(i.e.,)i (region)523 1644 y(7b)28 b(has)g(83)f(haplot)n(yp)r(es,)h(compared)f (to)i(10)e(templates)i(in)f(our)g(case)f(and)i(28)e(individuals)523 1743 y(o)n(v)n(erall\).)p 1117 1886 1646 4 v 1115 1952 4 67 v 1399 1952 V 1658 1952 V 1808 1932 a Fv(DP\(MH\))p 2210 1952 V 311 w(PHASE)p 2761 1952 V 1117 1955 1646 4 v 1115 2022 4 67 v 1129 2002 a(region)p 1399 2022 V 105 w(length)p 1658 2022 V 77 w Fw(er)r(r)1766 2010 y Fh(s)p 1842 2022 V 1855 2002 a Fw(er)r(r)1950 2010 y Fh(i)p 2026 2022 V 2039 2002 a Fw(d)2074 2010 y Fh(s)p 2210 2022 V 2223 2002 a Fw(er)r(r)2318 2010 y Fh(s)p 2393 2022 V 2407 2002 a Fw(er)r(r)2502 2010 y Fh(i)p 2577 2022 V 2591 2002 a Fw(d)2626 2010 y Fh(s)p 2761 2022 V 1117 2025 1646 4 v 1117 2042 V 1115 2108 4 67 v 1129 2088 a Fv(16a)p 1399 2108 V 184 w(13)p 1658 2108 V 193 w(0.185)p 1842 2108 V 33 w(0.480)p 2026 2108 V 33 w(0.141)p 2210 2108 V 33 w(0.174)p 2393 2108 V 33 w(0.440)p 2577 2108 V 33 w(0.130)p 2761 2108 V 1117 2111 1646 4 v 1115 2178 4 67 v 1129 2158 a(1b)p 1399 2178 V 213 w(16)p 1658 2178 V 193 w(0.100)p 1842 2178 V 33 w(0.250)p 2026 2178 V 33 w(0.160)p 2210 2178 V 33 w(0.200)p 2393 2178 V 33 w(0.450)p 2577 2178 V 33 w(0.180)p 2761 2178 V 1117 2181 1646 4 v 1115 2248 4 67 v 1129 2228 a(25a)p 1399 2248 V 184 w(14)p 1658 2248 V 193 w(0.135)p 1842 2248 V 33 w(0.353)p 2026 2248 V 33 w(0.115)p 2210 2248 V 33 w(0.212)p 2393 2248 V 33 w(0.588)p 2577 2248 V 33 w(0.212)p 2761 2248 V 1117 2251 1646 4 v 1115 2317 4 67 v 1129 2297 a(7b)p 1399 2317 V 213 w(13)p 1658 2317 V 193 w(0.105)p 1842 2317 V 33 w(0.278)p 2026 2317 V 33 w(0.066)p 2210 2317 V 33 w(0.145)p 2393 2317 V 33 w(0.444)p 2577 2317 V 33 w(0.092)p 2761 2317 V 1117 2321 1646 4 v 1253 2385 a Fr(T)-7 b(able)29 b(3.)c Ft(P)n(erformance)h(on)g (the)f(data)h(of)g([10)r(].)523 2614 y Fp(4)112 b(Conclusion)523 2813 y Fx(W)-7 b(e)30 b(ha)n(v)n(e)e(prop)r(osed)g(a)g(Ba)n(y)n(esian)g (approac)n(h)f(to)i(the)g(mo)r(deling)g(of)g(genot)n(yp)r(es)g(based)f (on)523 2912 y(a)37 b(Diric)n(hlet)h(pro)r(cess)f(prior.)g(W)-7 b(e)38 b(ha)n(v)n(e)f(sho)n(wn)g(that)h(the)g(Diric)n(hlet)g(pro)r (cess)e(pro)n(vides)523 3012 y(a)f(natural)g(represen)n(tation)f(of)i (uncertain)n(t)n(y)f(regarding)f(the)i(size)f(and)h(comp)r(osition)f (of)523 3112 y(the)41 b(p)r(o)r(ol)g(of)g(haplot)n(yp)r(es)f (underlying)h(a)f(p)r(opulation.)h(Using)g(Mark)n(o)n(v)e(c)n(hain)h (Mon)n(te)523 3211 y(Carlo)d(algorithms,)g(w)n(e)h(ha)n(v)n(e)f(sho)n (wn)g(that)h(this)h(mo)r(del)f(leads)g(to)g(e\013ectiv)n(e)g(inference) 523 3311 y(pro)r(cedures)23 b(for)g(inferring)g(the)i(ancestral)d(p)r (o)r(ol)i(and)g(for)g(haplot)n(yp)r(e)f(phasing)g(based)h(on)f(a)523 3411 y(set)30 b(of)g(genot)n(yp)r(es.)f(The)h(mo)r(del)g(accommo)r (dates)f(gro)n(wing)f(data)i(collections)f(and)h(noisy)523 3510 y(and/or)18 b(incomplete)i(observ)-5 b(ations.)19 b(The)h(approac)n(h)e(also)h(naturally)g(imp)r(oses)h(an)f(implicit)523 3610 y(bias)39 b(to)n(w)n(ard)e(small)i(ancestral)f(p)r(o)r(ols)g (during)h(inference,)g(reminiscen)n(t)g(of)g(parsimon)n(y)523 3709 y(metho)r(ds,)28 b(doing)f(so)g(in)h(a)f(w)n(ell-founded)g (statistical)g(framew)n(ork)f(that)i(p)r(ermits)g(errors.)648 3809 y(Our)d(fo)r(cus)i(here)f(has)g(b)r(een)h(on)g(adapting)f(the)h (tec)n(hnology)e(of)h(the)h(Diric)n(hlet)g(pro)r(cess)523 3909 y(in)37 b(the)h(setting)f(of)g(the)g(standard)g(haplot)n(yp)r(e)f (phasing)h(problem.)f(But)i(an)e(imp)r(ortan)n(t)523 4008 y(underlying)23 b(motiv)-5 b(ation)23 b(for)g(our)f(w)n(ork,)g (and)h(a)g(general)f(motiv)-5 b(ation)23 b(for)g(pursuing)g(prob-)523 4108 y(abilistic)j(approac)n(hes)f(to)h(genomic)g(inference)g (problems,)g(is)g(the)h(p)r(oten)n(tial)f(v)-5 b(alue)26 b(of)h(our)523 4208 y(mo)r(del)j(as)f(a)g(building)h(blo)r(c)n(k)f(for) g(more)g(expressiv)n(e)f(mo)r(dels.)h(In)h(particular,)e(as)h(in)60 b([11)o(])523 4307 y(and)38 b([15)o(],)h(the)g(graphical)e(mo)r(del)i (formalism)e(naturally)h(accommo)r(dates)f(v)-5 b(arious)38 b(ex-)523 4407 y(tensions,)33 b(suc)n(h)h(as)f(segmen)n(tation)g(of)h (c)n(hromosomes)d(in)n(to)j(haplot)n(yp)r(e)f(blo)r(c)n(ks)g(and)h(the) 523 4506 y(inclusion)c(of)g(p)r(edigree)f(relationships.)g(The)h(Diric) n(hlet)g(pro)r(cess)f(parameterization)f(also)523 4606 y(pro)n(vides)h(a)g(natural)g(upgrade)g(path)h(for)g(the)g (consideration)e(of)i(ric)n(her)f(mo)r(dels;)h(in)g(par-)523 4706 y(ticular,)k(it)i(is)e(p)r(ossible)h(to)g(incorp)r(orate)e(more)h (elab)r(orate)f(base)h(measures)g Fm(G)h Fx(in)n(to)g(the)523 4805 y(Diric)n(hlet)h(pro)r(cess)f(framew)n(ork|the)f (coalescence-based)g(distribution)i(of)g([21)o(])g(w)n(ould)523 4905 y(b)r(e)28 b(an)f(in)n(teresting)g(c)n(hoice.)p eop %%Page: 11 11 11 10 bop 1587 448 a Fy(Bibliograph)l(y)565 880 y Fx([1])41 b(C.)48 b(E.)g(An)n(toniak.)98 b(Mixtures)48 b(of)g(Diric)n(hlet)g(pro) r(cesses)f(with)i(applications)e(to)694 980 y(Ba)n(y)n(esian)23 b(nonparametric)i(problems.)33 b Fo(A)n(nnals)27 b(of)i(Statistics)p Fx(,)d(2:1152{1174,)21 b(1973.)565 1083 y([2])41 b(J.M.)27 b(Bernardo)f(and)h(A.F.M.)i(Smith.)37 b Fo(Bayesian)32 b(The)l(ory)p Fx(.)38 b(Wiley)-7 b(,)28 b(1994.)565 1186 y([3])41 b(A.)26 b(Clark)f(et)h(al.)33 b(Haplot)n(yp)r(e)26 b(structure)f(and)h(p)r(opulation)f(genetic)h(inferences)f(from)694 1286 y(n)n(ucleotide-sequence)31 b(v)-5 b(ariation)31 b(in)i(h)n(uman)g(lip)r(oprotein)f(lipase.)51 b Fo(A)n(m)33 b(J.)i(Human)694 1385 y(Genetics)p Fx(,)28 b(63:595{612,)23 b(1998.)565 1488 y([4])41 b(M.J.)24 b(Daly)g(et)g(al.)31 b(High-resolution)23 b(haplot)n(yp)r(e)g(structure)h(in)g(the)h(h)n (uman)f(genome.)694 1588 y Fo(Natur)l(e)29 b(Genetics)p Fx(,)f(29\(2\):229{232,)23 b(2001.)565 1691 y([5])41 b(M.D.)f(Escobar)d(and)j(M.)g(W)-7 b(est.)73 b(Ba)n(y)n(esian)37 b(densit)n(y)i(estimation)h(and)f(inference)694 1791 y(using)27 b(mixtures.)36 b Fo(J.)30 b(A)n(m.)g(Statist.)f(Asso)l(c.)p Fx(,)f(90:577{588,)c(2002.)565 1894 y([6])41 b(E.)21 b(Eskin,)g(E.)h(Halp)r(erin,)g(and)f(R.M.)i(Karp.)j(E\016cien)n(t)21 b(reconstruction)g(of)g(haplot)n(yp)r(e)694 1993 y(structure)31 b(via)g(p)r(erfect)g(ph)n(ylogen)n(y)-7 b(.)47 b Fo(Journal)33 b(of)i(Bioinformatics)h(and)d(Computa-)694 2093 y(tional)d(Biolo)l(gy)p Fx(,)g(1:1{20,)c(2003.)565 2196 y([7])41 b(L)35 b(Exco\016er)g(and)g(M) h(Slatkin.)61 b(Maxim)n(um-lik)n(eliho)r(o)r(d)35 b(estimation)g(of)h (molecular)694 2296 y(haplot)n(yp)r(e)27 b(frequencies)h(in)g(a)f (diploid)h(p)r(opulation.)38 b Fo(Mole)l(cular)31 b(Biolo)l(gy)i(and)d (Evo-)694 2395 y(lution)p Fx(,)d(12\(5\):921{7,)e(1995.)565 2498 y([8])41 b(J.)27 b(F)-7 b(elsenstein.)37 b Fo(Inferring)30 b(Phylo)l(genies)p Fx(.)39 b(Sinauer)27 b(Asso)r(ciates,)g(Inc.,)h (2003.)565 2602 y([9])41 b(T.)26 b(S.)h(F)-7 b(erguson.)34 b(A)27 b(Ba)n(y)n(esian)e(analysis)g(of)i(some)f(nonparametric)f (problems.)34 b Fo(A)n(n-)694 2701 y(nals)c(of)g(Statistics)p Fx(,)e(1:209{230,)c(1973.)523 2804 y([10])41 b(S.)22 b(B.)f(Gabriel)g(et)h(al.)27 b(The)22 b(structure)f(of)h(haplot)n(yp)r (e)f(blo)r(c)n(ks)g(in)h(the)g(h)n(uman)g(genome.)694 2904 y Fo(Scienc)l(e)p Fx(,)28 b(296:2225{2229,)22 b(2002.)523 3007 y([11])41 b(D.)20 b(Greenspan)f(and)h(D.)g(Geiger.)k(Mo)r (del-based)19 b(inference)g(of)h(haplot)n(yp)r(e)g(blo)r(c)n(k)f(v)-5 b(ari-)694 3107 y(ation.)28 b(In)23 b Fo(Pr)l(o)l(c)l(e)l(e)l(dings)j (of)h(the)e(7th)h(International)g(Confer)l(enc)l(e)g(on)f (Computational)694 3206 y(Mole)l(cular)31 b(Biolo)l(gy)h(\(RECOMB)e (2003\))p Fx(,)g(2003.)523 3309 y([12])41 b(D.)27 b(Gus\014eld.)36 b(Haplot)n(yping)26 b(as)g(p)r(erfect)h(ph)n(ylogen)n(y:)f(Conceptual)g (framew)n(ork)f(and)694 3409 y(e\016cien)n(t)33 b(solutions)g (\(extended)h(abstract\).)53 b(In)33 b Fo(Pr)l(o)l(c)l(e)l(e)l(dings)j (of)g(the)f(6th)h(Interna-)694 3509 y(tional)e(Confer)l(enc)l(e)g(on)f (Computational)i(Mole)l(cular)g(Biolo)l(gy)g(\(RECOMB)f(2002\))p Fx(,)694 3608 y(pages)26 b(166{175,)e(2002.)523 3711 y([13])41 b(E.)34 b(Halp)r(erin)g(and)g(E.)g(Eskin.)57 b(Haplot)n(yp)r(e)34 b(reconstruction)f(from)h(genot)n(yp)r(e)f(data) 694 3811 y(using)27 b(imp)r(erfect)h(ph)n(ylogen)n(y)-7 b(.)35 b(TR,)28 b(CS)g(Dept.)h(Colum)n(bia)d(Univ)n(ersit)n(y)-7 b(,)27 b(2002.)523 3914 y([14])41 b(H.)30 b(Ish)n(w)n(aran)f(and)h(L.)g (F.)h(James.)44 b(Gibbs)31 b(sampling)f(metho)r(ds)g(for)g(stic)n (k-breaking)694 4014 y(priors.)35 b Fo(J.)30 b(A)n(m.)f(Statist.)h (Asso)l(c.)p Fx(,)e(90:161{173,)23 b(2001.)523 4117 y([15])41 b(S.)28 b(L.)h(Lauritzen)f(and)g(N.)h(A.)f(Sheehan.)40 b(Graphical)27 b(mo)r(dels)h(for)g(genetic)g(analysis.)694 4217 y(TR)f(R-02-2020,)e(Aalb)r(org)h(Univ)n(ersit)n(y)-7 b(,)27 b(2002.)523 4320 y([16])41 b(R.)27 b(M.)h(Neal.)37 b(Mark)n(o)n(v)25 b(c)n(hain)i(sampling)g(metho)r(ds)g(for)g(Diric)n (hlet)h(pro)r(cess)e(mixture)694 4419 y(mo)r(dels.)36 b Fo(J.)30 b(Computational)h(and)g(Gr)l(aphic)l(al)h(Statistics)p Fx(,)27 b(9\(2\):249{256,)d(2000.)523 4522 y([17])41 b(T.)22 b(Niu,)g(S.)h(Qin,)e(X.)i(Xu,)f(and)g(J.)g(Liu.)28 b(Ba)n(y)n(esian)20 b(haplot)n(yp)r(e)h(inference)h(for)f(m)n(ultiple) 694 4622 y(link)n(ed)32 b(single)f(n)n(ucleotide)h(p)r(olymorphisms.)49 b Fo(A)n(m.)34 b(J.)g(Hum.Genet.)p Fx(,)e(70:157{169,)694 4722 y(2002.)523 4825 y([18])41 b(N.)h(P)n(atil)g(et)g(al.)80 b(Blo)r(c)n(ks)41 b(of)h(limited)h(haplot)n(yp)r(e)f(div)n(ersit)n(y)f (rev)n(ealed)g(b)n(y)g(high-)694 4924 y(resolution)17 b(scanning)h(of)g(h)n(uman)h(c)n(hromosome)d(21.)21 b Fo(Scienc)l(e)p Fx(,)e(294:1719{1723,)13 b(2001.)p eop %%Page: 12 12 12 11 bop 523 232 a Ft(12)523 448 y Fx([19])41 b(N.)d(J.)f(Risc)n(h.)67 b(Searc)n(hing)37 b(for)g(genetic)h(determinan)n(ts)f(in)h(the)g(new)g (millennium.)694 548 y Fo(Natur)l(e)p Fx(,)27 b(405\(6788\):847{56,)22 b(2000.)523 641 y([20])41 b(R.)27 b(Sac)n(hidanandam)f(et)h(al.)35 b(A)28 b(map)e(of)h(h)n(uman)g(genome)f(sequence)h(v)-5 b(ariation)26 b(con-)694 741 y(taining)37 b(1.42)g(million)h(single)f (n)n(ucleotide)g(p)r(olymorphisms.)67 b Fo(Natur)l(e)p Fx(,)37 b(291:1298{)694 841 y(2302,)25 b(2001.)523 934 y([21])41 b(M.)24 b(Stephens,)h(N.)g(Smith,)h(and)e(P)-7 b(.)24 b(Donnelly)-7 b(.)32 b(A)25 b(new)g(statistical)f(metho)r(d)h (for)e(hap-)694 1034 y(lot)n(yp)r(e)31 b(reconstruction)e(from)i(p)r (opulation)g(data.)47 b Fo(A)n(meric)l(an)33 b(Journal)g(of)h(Human)694 1133 y(Genetics)p Fx(,)28 b(68:978{989,)23 b(2001.)523 1227 y([22])41 b(Bafna)22 b(V,)i(Halldorsson)d(BV,)j(Sc)n(h)n(w)n(artz) d(R,)j(Clark)e(A)n(G,)h(and)g(Istrail)g(S.)30 b(Haplot)n(yp)r(es)694 1326 y(and)f(informativ)n(e)h(snp)g(selection)f(algorithms:)g(Don't)h (blo)r(c)n(k)g(out)g(information.)43 b(In)694 1426 y Fo(Pr)l(o)l(c)l(e)l(e)l(dings)29 b(of)h(the)e(7th)h(International)g (Confer)l(enc)l(e)h(on)e(Computational)i(Mole)l(cu-)694 1526 y(lar)g(Biolo)l(gy)i(\(RECOMB)e(2003\))p Fx(,)g(pages)c(19{27,)g (2002.)523 1619 y([23])41 b(C.)25 b(V)-7 b(en)n(ter)26 b(et)g(al.)33 b(The)26 b(sequence)f(of)g(the)h(h)n(uman)g(genome.)33 b Fo(Scienc)l(e)p Fx(,)26 b(291:1304{51,)694 1719 y(2001.)523 2011 y Fp(App)s(endix)523 2203 y(A)112 b(Mark)m(o)m(v)38 b(c)m(hain)f(Mon)m(te)h(Carlo)e(for)i(Haplot)m(yp)s(e)f(Inference)523 2377 y Fx(In)26 b(this)h(section,)e(w)n(e)h(describ)r(e)g(a)f(Gibbs)h (sampling)g(algorithm)f(for)g(exploring)g(the)h(p)r(oste-)523 2477 y(rior)k(distribution)h(under)g(our)f(mo)r(del,)h(including)h(the) f(laten)n(t)g(ancestral)f(p)r(o)r(ol.)h(W)-7 b(e)31 b(also)523 2576 y(presen)n(t)40 b(a)g(Metrop)r(olis-Hastings)e(v)-5 b(arian)n(t)39 b(of)h(this)h(algorithm)e(that)i(app)r(ears)e(to)h(mix) 523 2676 y(b)r(etter)28 b(in)g(practice.)523 2900 y Fi(A.1)95 b(A)32 b(Gibbs)f(sampling)e(algorithm)523 3041 y Fx(The)36 b(Gibbs)h(sampler)e(dra)n(ws)g(samples)g(of)h(eac)n(h)g(random)f(v)-5 b(ariable)35 b(from)h(a)g(predictiv)n(e)523 3141 y(distribution)30 b(of)g(the)g(v)-5 b(ariable)29 b(to)h(b)r(e)h(sampled)e(giv)n(en)g (\(previously)g(sampled\))h(v)-5 b(alues)30 b(of)523 3241 y(all)d(the)h(remaining)e(v)-5 b(ariables)26 b(of)i(the)f(mo)r (del.)h(The)f(v)-5 b(ariables)26 b(needed)i(in)g(our)e(algorithm)523 3340 y(are:)19 b Fm(c)713 3352 y Fw(i)736 3360 y Fh(t)768 3340 y Fx(,)h(the)g(index)g(of)g(the)g(ancestral)e(template)i(of)g(a)f (haplot)n(yp)r(e)h(instance)f Fm(t)h Fx(of)g(individual)523 3440 y Fm(i)p Fx(;)29 b Fm(a)648 3452 y Fw(k)q(;j)739 3440 y Fx(,)h(the)g(allele)f(pattern)g(at)g(the)h Fm(j)5 b Fx(-th)29 b(lo)r(cus)g(of)g(the)h Fm(k)s Fx(-th)g(ancestral)e (template;)h Fm(h)3276 3452 y Fw(i)3299 3460 y Fh(t)3327 3452 y Fw(;j)3382 3440 y Fx(,)523 3539 y(the)c Fm(t)p Fx(-th)f(allele)f(of)h(the)h(SNP)f(at)g(the)g Fm(j)5 b Fx(-th)24 b(lo)r(cus)g(of)g(individual)h Fm(i)p Fx(;)e(and)h Fm(g)2815 3551 y Fw(i;j)2893 3539 y Fx(,)g(the)h(genot)n(yp)r(e)523 3639 y(at)31 b(lo)r(cus)g Fm(j)37 b Fx(of)31 b(individual)g Fm(i)g Fx(\(the)h(only)f(observ)n(ed)f(v)-5 b(ariables)30 b(in)h(the)h(mo)r(del\).)g(All)g(other)523 3739 y(v)-5 b(ariables)31 b(in)i(the)g(mo)r(del|)p Fm(\022)i Fx(and)d Fm(\015)5 b Fx(|are)32 b(in)n(tegrated)f(out.)i(The)f(Gibbs)h(sampler)f (th)n(us)523 3838 y(estimates)27 b(the)h(v)-5 b(alues)28 b(of)f Fm(c)1409 3850 y Fw(i)1432 3858 y Fh(t)1464 3838 y Fx(,)h Fm(a)1559 3850 y Fw(k)q(;j)1678 3838 y Fx(and)f Fm(h)1887 3850 y Fw(i)1910 3858 y Fh(t)1938 3850 y Fw(;j)1993 3838 y Fx(.)648 3938 y(Conceptually)-7 b(,)44 b(the)h(Gibbs)g(sampler)f (alternates)f(b)r(et)n(w)n(een)i(t)n(w)n(o)f(coupled)g(stages.)523 4038 y(First,)29 b(giv)n(en)f(the)h(curren)n(t)f(v)-5 b(alues)28 b(of)h(the)g(hidden)g(haplot)n(yp)r(es,)f(w)n(e)h(sample)f (the)h Fm(c)3187 4050 y Fw(i)3210 4058 y Fh(t)3271 4038 y Fx(and)523 4137 y(subsequen)n(tly)24 b Fm(a)1056 4149 y Fw(k)q(;j)1147 4137 y Fx(,)g(whic)n(h)g(are)f(asso)r(ciated)g(with)i (the)f(Diric)n(hlet)g(pro)r(cess)f(prior.)g(Second,)523 4237 y(giv)n(en)28 b(the)g(curren)n(t)g(state)g(of)h(the)f(ancestral)f (p)r(o)r(ol)i(and)f(the)h(ancestral)e(template)i(assign-)523 4336 y(men)n(t)34 b(for)g(eac)n(h)f(individual,)h(w)n(e)f(sample)h(the) g Fm(h)2094 4348 y Fw(j;i)2164 4356 y Fh(t)2230 4336 y Fx(v)-5 b(ariables)33 b(in)h(the)g(basic)f(haplot)n(yp)r(e)523 4436 y(mo)r(del.)648 4536 y(In)27 b(the)h(\014rst)g(stage,)e(the)i (predictiv)n(e)f(distribution)h(of)g Fm(c)2411 4548 y Fw(i)2434 4556 y Fh(t)2493 4536 y Fx(is:)531 4687 y Fm(p)p Fx(\()p Fm(c)641 4699 y Fw(i)664 4707 y Fh(t)719 4687 y Fx(=)23 b Fm(k)30 b Fn(j)p Fi(c)945 4702 y Fv([)p Fj(\000)p Fw(i)1039 4710 y Fh(t)1067 4702 y Fv(])1090 4687 y Fm(;)14 b Fi(h)p Fm(;)g Fi(a)p Fx(\))24 b Fn(/)f Fm(p)p Fx(\()p Fm(c)1517 4699 y Fw(i)1540 4707 y Fh(t)1595 4687 y Fx(=)g Fm(k)30 b Fn(j)p Fi(c)1821 4702 y Fv([)p Fj(\000)p Fw(i)1915 4710 y Fh(t)1944 4702 y Fv(])1966 4687 y Fx(\))p Fm(p)p Fx(\()p Fm(h)2120 4699 y Fw(i)2143 4707 y Fh(t)2176 4687 y Fn(j)p Fm(a)2243 4699 y Fw(k)2284 4687 y Fm(;)14 b Fi(c)p Fm(;)g Fi(h)2453 4702 y Fv([)p Fj(\000)p Fw(i)2547 4710 y Fh(t)2575 4702 y Fv(])2598 4687 y Fx(\))1319 4879 y(=)1407 4762 y Fl(\032)1491 4775 y Fw(n)1532 4786 y Fk([)p Fe(\000)p Fh(i)1616 4797 y(t)1643 4786 y Fk(])p Fh(;k)p 1491 4804 225 4 v 1496 4852 a Fw(n)p Fj(\000)p Fv(1+)p Fw(\034)1725 4823 y Fm(p)p Fx(\()p Fm(h)1847 4835 y Fw(i)1870 4843 y Fh(t)1902 4823 y Fn(j)p Fm(a)1969 4835 y Fw(k)2010 4823 y Fm(;)g Fi(m)2128 4838 y Fv([)p Fj(\000)p Fw(i)2222 4846 y Fh(t)2248 4838 y Fv(])p Fw(;k)2328 4823 y Fx(\))2394 4811 y Ft(if)26 b Fg(k)e Ft(=)d Fg(c)2642 4825 y Fq(i)2664 4808 y Fe(0)2664 4853 y Fh(t)2687 4841 y Fe(0)2744 4811 y Ft(for)26 b(some)g Fg(i)3080 4779 y Fc(0)3080 4829 y Fq(t)3104 4815 y Fe(0)3152 4811 y Fb(6)p Ft(=)21 b Fg(i)3259 4819 y Fq(t)1579 4898 y Fw(\034)p 1491 4912 215 4 v 1491 4959 a(n)p Fj(\000)p Fv(1+)p Fw(\034)1729 4868 y Fl(P)1817 4955 y Fw(a)1853 4939 y Fe(0)1893 4930 y Fm(p)p Fx(\()p Fm(h)2015 4942 y Fw(i)2038 4950 y Fh(t)2070 4930 y Fn(j)p Fm(a)2137 4900 y Fj(0)2160 4930 y Fx(\))p Fm(p)p Fx(\()p Fm(a)2310 4900 y Fj(0)2334 4930 y Fx(\))2394 4918 y Ft(if)26 b Fg(k)e Fb(6)p Ft(=)d Fg(c)2642 4932 y Fq(i)2664 4915 y Fe(0)2664 4960 y Fh(t)2687 4948 y Fe(0)2744 4918 y Ft(for)26 b(all)h Fg(i)2994 4886 y Fc(0)2994 4936 y Fq(t)3018 4922 y Fe(0)3066 4918 y Fb(6)p Ft(=)21 b Fg(i)3173 4926 y Fq(t)3350 4879 y Fm(;)-116 b Fx(\(10\))p eop %%Page: 13 13 13 12 bop 3328 232 a Ft(13)523 448 y Fx(where)31 b([)p Fn(\000)p Fm(i)884 460 y Fw(t)912 448 y Fx(])h(denotes)f(the)g(set)g (of)h(indices)f(excluding)g Fm(i)2329 460 y Fw(t)2358 448 y Fx(;)g Fm(n)2462 460 y Fk([)p Fe(\000)p Fh(i)2546 471 y(t)2573 460 y Fk(])p Fh(;k)2677 448 y Fx(represen)n(ts)e(the)j(n)n (um-)523 548 y(b)r(er)37 b(of)h Fm(c)819 562 y Fw(i)842 542 y Fe(0)842 589 y Fh(t)865 577 y Fe(0)934 548 y Fx(for)f Fm(i)1100 518 y Fj(0)1100 571 y Fw(t)1125 554 y Fe(0)1191 548 y Fn(6)p Fx(=)i Fm(i)1324 560 y Fw(t)1391 548 y Fx(that)f(are)e (equal)h(to)h Fm(k)s Fx(;)f Fm(n)h Fx(represen)n(ts)e(the)h(total)h(n)n (um)n(b)r(er)f(of)523 648 y(instances)30 b(sampled)h(so)f(far;)g(and)h Fi(m)1713 663 y Fv([)p Fj(\000)p Fw(i)1807 671 y Fh(t)1833 663 y Fv(])p Fw(;k)1943 648 y Fx(denote)g(the)g Fm(m)g Fx(su\016cien)n(t)g(statistics)f(asso)r(ci-)523 747 y(ated)h(with)g (all)f(haplot)n(yp)r(e)h(instances)f(originating)f(from)h(ancestor)g Fm(k)s Fx(,)g(except)h Fm(h)3134 759 y Fw(i)3157 767 y Fh(t)3189 747 y Fx(.)g(This)523 847 y(expression)f(is)i(simply)g(Ba)n (y)n(es)e(theorem)i(with)g Fm(p)p Fx(\()p Fm(h)2169 859 y Fw(i)2192 867 y Fh(t)2224 847 y Fn(j)p Fm(a)2291 859 y Fw(k)2332 847 y Fm(;)14 b Fi(c)p Fm(;)g Fi(h)2501 862 y Fv([)p Fj(\000)p Fw(i)2595 870 y Fh(t)2623 862 y Fv(])p Fw(;)2666 847 y Fx(\))32 b(pla)n(ying)f(the)h(role)f(of)523 946 y(the)d(lik)n(eliho)r(o)r(d)f(and)h Fm(p)p Fx(\()p Fm(c)1316 958 y Fw(i)1339 966 y Fh(t)1394 946 y Fx(=)22 b Fm(k)31 b Fn(j)p Fi(c)1620 961 y Fv([)p Fj(\000)p Fw(i)1714 969 y Fh(t)1742 961 y Fv(])1765 946 y Fx(\))d(pla)n(ying)e(the)i(role)f (of)g(the)h(prior.)f(The)g(lik)n(eliho)r(o)r(d)523 1046 y Fm(p)p Fx(\()p Fm(h)645 1058 y Fw(i)668 1066 y Fh(t)700 1046 y Fn(j)p Fm(a)767 1058 y Fw(k)808 1046 y Fm(;)14 b Fi(m)926 1061 y Fv([)p Fj(\000)p Fw(i)1020 1069 y Fh(t)1046 1061 y Fv(])p Fw(;k)1125 1046 y Fx(\))23 b(is)e(obtained)h(b)n(y)f(in)n (tegrating)f(o)n(v)n(er)g(the)j(parameter)d Fm(\022)2858 1058 y Fw(k)2899 1046 y Fx(,)i(as)f(in)h(Eq.)f(\(7\).)648 1153 y(The)28 b(conditional)f(probabilit)n(y)g(for)g(a)h(newly)g(prop)r (osed)f(equiv)-5 b(alence)27 b(class)g Fm(k)k Fx(that)d(is)523 1253 y(not)k(p)r(opulated)f(b)n(y)h(an)n(y)e(previous)h(samples)g (requires)f(a)h(summation)g(o)n(v)n(er)f(all)h(p)r(ossible)523 1352 y(ancestors:)f Fm(p)p Fx(\()p Fm(h)1033 1364 y Fw(i)1056 1372 y Fh(t)1088 1352 y Fx(\))h(=)1245 1290 y Fl(P)1333 1377 y Fw(a)1369 1361 y Fe(0)1410 1352 y Fm(p)p Fx(\()p Fm(h)1532 1364 y Fw(i)1555 1372 y Fh(t)1587 1352 y Fn(j)p Fm(a)1654 1322 y Fj(0)1677 1352 y Fx(\))p Fm(p)p Fx(\()p Fm(a)1827 1322 y Fj(0)1850 1352 y Fx(\).)i(Since)f(the)g(gamma)f (function)h(do)r(es)g(not)f(fac-)523 1452 y(torize)25 b(o)n(v)n(er)e(lo)r(ci,)i(computing)g(this)h(summation)f(tak)n(es)f (time)i(that)f(is)g(exp)r(onen)n(tial)g(in)h(the)523 1552 y(n)n(um)n(b)r(er)c(of)g(lo)r(ci.)g(T)-7 b(o)22 b(skirt)g(this)h(problem)e(w)n(e)h(endo)n(w)g(eac)n(h)f(lo)r(cus)h (with)h(its)g(o)n(wn)e(m)n(utation)523 1651 y(parameter)h Fm(\022)955 1663 y Fw(k)q(;j)1046 1651 y Fx(,)h(with)h(all)f (parameters)e(admitting)i(the)h(same)e(b)r(eta)i(prior)e Fm(B)t(eta)p Fx(\()p Fm(\013)3180 1663 y Fw(h)3223 1651 y Fm(;)14 b(\014)3307 1663 y Fw(h)3350 1651 y Fx(\).)523 1751 y(This)26 b(giv)n(es)e(rise)h(to)h(a)f(closed-form)g(form)n(ula)g (for)g(the)h(summation)f(and)h(also)f(for)g(the)h(nor-)523 1851 y(malization)j(constan)n(t)h(in)g(Eq.)g(\(10\).)g(It)g(is)g(also,) f(arguably)-7 b(,)29 b(a)g(more)h(accurate)f(re\015ection)523 1950 y(of)f(realit)n(y)-7 b(.)648 2057 y(No)n(w)40 b(w)n(e)g(need)h(to) g(sample)f(the)h(ancestor)f(template)h Fm(a)2498 2069 y Fw(k)2538 2057 y Fx(,)g(where)g Fm(k)i Fx(is)e(the)g(newly)523 2157 y(sampled)27 b(ancestor)f(index)h(for)f Fm(c)1559 2169 y Fw(i)1582 2177 y Fh(t)1615 2157 y Fx(.)h(When)g Fm(k)k Fx(is)c(not)g(equal)f(to)h(an)n(y)g(other)f(existing)h(index)523 2257 y Fm(c)559 2271 y Fw(i)582 2251 y Fe(0)582 2298 y Fh(t)605 2286 y Fe(0)637 2257 y Fx(,)j(a)f(v)-5 b(alue)30 b(for)f Fm(a)1151 2269 y Fw(k)1222 2257 y Fx(needs)g(to)h(b)r(e)g(c)n (hosen)f(from)h Fm(p)p Fx(\()p Fm(A)p Fn(j)p Fm(h)2343 2269 y Fw(i)2366 2277 y Fh(t)2398 2257 y Fx(\),)g(the)h(p)r(osterior)d (distribution)523 2368 y(of)33 b Fm(A)h Fx(based)f(on)f(the)i(prior)e Fm(p)p Fx(\()p Fm(A)p Fx(\))i(and)f(the)h(single)f(dep)r(enden)n(t)g (haplot)n(yp)r(e)g Fm(h)3034 2380 y Fw(i)3057 2388 y Fh(t)3089 2368 y Fx(.)h(On)f(the)523 2468 y(other)g(hand,)g(if)h Fm(k)j Fx(is)c(an)g(equiv)-5 b(alence)33 b(class)g(p)r(opulated)h(b)n (y)f(previous)f(samples)h(of)g Fm(c)3304 2482 y Fw(i)3327 2462 y Fe(0)3327 2509 y Fh(t)3350 2497 y Fe(0)3382 2468 y Fx(,)523 2579 y(w)n(e)c(dra)n(w)g(a)g(new)g(v)-5 b(alue)30 b(of)f Fm(a)1455 2591 y Fw(k)1525 2579 y Fx(from)h Fm(p)p Fx(\()p Fm(A)p Fn(j)p Fm(h)1931 2591 y Fw(i)1954 2599 y Fh(t)1986 2579 y Fm(;)43 b Fx(s.t.)30 b Fm(c)2229 2591 y Fw(i)2252 2599 y Fh(t)2311 2579 y Fx(=)25 b Fm(k)s Fx(\).)30 b(If)g(after)f(a)g(new)h(sample)f(of)523 2679 y Fm(c)559 2691 y Fw(i)582 2699 y Fh(t)614 2679 y Fx(,)h(a)f(template)h (is)g(no)f(longer)g(asso)r(ciated)f(with)j(an)n(y)e(haplot)n(yp)r(e)g (instance,)g(w)n(e)h(remo)n(v)n(e)523 2779 y(this)j(template)g(from)f (the)h(p)r(o)r(ol.)f(The)h(predictiv)n(e)f(distribution)h(for)f(this)h (Gibbs)f(step)h(is)523 2878 y(therefore:)570 3162 y Fg(p)p Ft(\()p Fg(a)680 3171 y Fq(k)q(;j)764 3162 y Fb(j)p Fg(h)829 3170 y Fq(i)851 3178 y Fh(t)879 3170 y Fq(;j)956 3162 y Ft(s.t.)27 b Fg(c)1118 3170 y Fq(i)1140 3178 y Fh(t)1193 3162 y Ft(=)21 b Fg(k)r Ft(\))h Fb(/)570 3219 y Fa(8)570 3286 y(>)570 3308 y(>)570 3331 y(>)570 3353 y(<)570 3488 y(>)570 3510 y(>)570 3533 y(>)570 3555 y(:)649 3311 y Fg(p)p Ft(\()p Fg(h)762 3319 y Fq(i)784 3327 y Fh(t)812 3319 y Fq(;j)863 3311 y Fb(j)p Fg(a)925 3320 y Fq(k)q(;j)1011 3311 y Ft(\))f(=)1143 3251 y Fa(\000)1248 3276 y Fq(\013)1288 3288 y Fh(h)p 1188 3294 199 4 v 1188 3336 a Fq(\013)1228 3348 y Fh(h)1267 3336 y Fu(+)p Fq(\014)1349 3348 y Fh(h)1396 3251 y Fa(\001)1432 3268 y Fu(1\()p Fq(h)1522 3279 y Fh(i)1544 3290 y(t)1572 3279 y(;j)1622 3268 y Fu(=)p Fq(a)1703 3280 y Fh(k)q(;j)1784 3268 y Fu(\))1813 3251 y Fa(\000)2051 3276 y Fq(\014)2086 3288 y Fh(h)p 1858 3294 460 4 v 1858 3336 a Fu(\()p Fc(j)p Fq(B)r Fc(j\000)p Fu(1\)\()p Fq(\013)2134 3348 y Fh(h)2173 3336 y Fu(+)p Fq(\014)2255 3348 y Fh(h)2293 3336 y Fu(\))2327 3251 y Fa(\001)2362 3268 y Fu(1\()p Fq(h)2452 3279 y Fh(i)2474 3290 y(t)2502 3279 y(;j)2552 3268 y Fc(6)p Fu(=)p Fq(a)2633 3280 y Fh(k)q(;j)2715 3268 y Fu(\))2820 3265 y Ft(if)37 b Fg(k)i Ft(is)e(not)g(previ-)2820 3357 y(ously)18 b(instan)n(tiated) 649 3556 y Fg(p)p Ft(\()p Fg(h)762 3564 y Fq(i)784 3572 y Fh(t)812 3564 y Fq(;j)889 3556 y Ft(s.t.)26 b Fg(c)1050 3564 y Fq(i)1072 3572 y Fh(t)1126 3556 y Ft(=)21 b Fg(k)r Fb(j)p Fg(a)1311 3565 y Fq(k)q(;j)1396 3556 y Ft(\))h(=)1577 3507 y Fq(\000)8 b Fu(\()p Fq(\013)1686 3519 y Fh(h)1725 3507 y Fu(+)p Fq(m)1826 3519 y Fh(k)q(;j)1908 3507 y Fu(\))p Fq(\000)g Fu(\()p Fq(\014)2036 3519 y Fh(h)2074 3507 y Fu(+)p Fq(m)2175 3486 y Fe(0)2175 3524 y Fh(k)q(;j)2258 3507 y Fu(\))p 1539 3539 782 4 v 1539 3615 a Fq(\000)g Fu(\()p Fq(\013)1648 3627 y Fh(h)1686 3615 y Fu(+)p Fq(\014)1768 3627 y Fh(h)1806 3615 y Fu(+)p Fq(n)1891 3627 y Fh(k)1927 3615 y Fu(\))p Fc(\001)p Fu(\()p Fc(j)p Fq(B)r Fc(j\000)p Fu(1\))2182 3579 y Fh(m)2233 3565 y Fe(0)2233 3602 y Fh(k)q(;j)2820 3517 y Ft(if)37 b Fg(k)i Ft(is)e(previously)2820 3609 y(instan)n(tiated)3487 3439 y Fg(;)3407 3717 y Ft(\(11\))561 3910 y Fx(where)h Fm(m)885 3922 y Fw(k)q(;j)1015 3910 y Fx(\(resp)r(ectiv)n(ely)-7 b(,)38 b Fm(m)1600 3879 y Fj(0)1600 3933 y Fw(k)q(;j)1691 3910 y Fx(\))h(is)f(the)g(n)n(um)n(b) r(er)g(of)h(allelic)f(instances)f(originated)523 4009 y(from)26 b(ancestor)e Fm(k)29 b Fx(at)d(lo)r(cus)f Fm(j)31 b Fx(that)c(are)e(iden)n(tical)g(to)h(\(resp)r(ectiv)n(ely)-7 b(,)26 b(di\013eren)n(t)g(from\))g(the)523 4109 y(ancestor,)g(when)i (the)g(ancestor)e(has)h(the)h(pattern)g Fm(a)2193 4121 y Fw(k)q(;j)2284 4109 y Fx(.)648 4208 y(W)-7 b(e)27 b(no)n(w)g(pro)r (ceed)g(to)g(the)h(second)f(sampling)f(stage,)h(in)g(whic)n(h)h(w)n(e)f (sample)g(the)g(hap-)523 4299 y(lot)n(yp)r(es)38 b Fm(h)866 4311 y Fw(i)889 4319 y Fh(t)921 4299 y Fx(.)g(W)-7 b(e)39 b(sample)f(eac)n(h)f Fm(h)1669 4311 y Fw(i)1692 4319 y Fh(t)1720 4311 y Fw(;j)1775 4299 y Fx(,)h(for)g(all)g Fm(j;)14 b(i;)g(t)p Fx(,)38 b(sequen)n(tially)f(according)g(to)h(the) 523 4390 y(follo)n(wing)27 b(predictiv)n(e)g(distribution:)539 4575 y Fg(p)p Ft(\()p Fg(h)652 4583 y Fq(i)674 4591 y Fh(t)701 4583 y Fq(;j)753 4575 y Fb(j)p Fr(h)823 4587 y Fu([)p Fc(\000)p Fu(\()p Fq(i;j)s Fu(\)])1028 4575 y Fg(;)13 b(h)1106 4583 y Fq(i)1130 4590 y Fk(\026)1128 4598 y Fh(t)1156 4583 y Fq(;j)1207 4575 y Fg(;)g Fr(c)p Fg(;)h Fr(a)p Fg(;)f Fr(g)q Ft(\))22 b Fb(/)f Fg(p)p Ft(\()p Fg(g)1676 4583 y Fq(i)1701 4575 y Fb(j)p Fg(h)1766 4583 y Fq(i)1788 4591 y Fh(t)1816 4583 y Fq(;j)1868 4575 y Fg(;)13 b(h)1946 4583 y Fq(i)1970 4590 y Fk(\026)1968 4598 y Fh(t)1996 4583 y Fq(;j)2047 4575 y Fg(;)g Fr(u)2130 4587 y Fu([)p Fc(\000)p Fu(\()p Fq(i;j)s Fu(\)])2335 4575 y Ft(\))p Fg(p)p Ft(\()p Fg(h)2478 4583 y Fq(i)2500 4591 y Fh(t)2527 4583 y Fq(;j)2579 4575 y Fb(j)p Fg(a)2641 4584 y Fq(k)q(;j)2726 4575 y Fg(;)g Fr(m)2834 4587 y Fu([)p Fc(\000)p Fu(\()p Fq(i)2946 4595 y Fh(t)2973 4587 y Fq(;j)s Fu(\)])p Fq(;k)3119 4575 y Ft(\))562 4746 y(=)23 b Fg(R)703 4754 y Fq(g)749 4698 y Fg(\000)11 b Ft(\()p Fg(\013)886 4706 y Fq(g)939 4698 y Ft(+)17 b Fg(u)p Ft(\))p Fg(\000)11 b Ft(\()p Fg(\014)1221 4706 y Fq(g)1274 4698 y Ft(+)17 b(\()p Fg(u)1425 4666 y Fc(0)1464 4698 y Ft(+)g Fg(u)1585 4666 y Fc(00)1626 4698 y Ft(\)\))p 749 4729 937 4 v 938 4797 a Fg(\000)11 b Ft(\()p Fg(\013)1075 4805 y Fq(g)1128 4797 y Ft(+)17 b Fg(\014)1248 4805 y Fq(g)1301 4797 y Ft(+)g Fg(I)6 b(J)h Ft(\))1696 4746 y([)p Fg(\026)1763 4754 y Fu(1)1798 4746 y Ft(])1819 4710 y Fq(u)1856 4690 y Fe(0)1882 4746 y Ft([)p Fg(\026)1949 4754 y Fu(2)1985 4746 y Ft(])2006 4710 y Fq(u)2043 4690 y Fe(00)2105 4746 y Fb(\002)16 b Fg(R)2239 4755 y Fq(h)2368 4692 y Fg(\000)11 b Ft(\()p Fg(\013)2505 4701 y Fq(h)2562 4692 y Ft(+)17 b Fg(m)2707 4701 y Fq(j;k)2789 4692 y Ft(\))p Fg(\000)11 b Ft(\()p Fg(\014)2950 4701 y Fq(h)3007 4692 y Ft(+)17 b Fg(m)3152 4660 y Fc(0)3152 4707 y Fq(k)q(;j)3237 4692 y Ft(\))p 2290 4729 1056 4 v 2290 4816 a Fg(\000)11 b Ft(\()p Fg(\013)2427 4825 y Fq(h)2484 4816 y Ft(+)17 b Fg(\014)2604 4825 y Fq(h)2661 4816 y Ft(+)g Fg(n)2784 4825 y Fq(k)2822 4816 y Ft(\))g Fb(\001)h Ft(\()p Fb(j)p Fg(B)t Fb(j)f(\000)g Ft(1\))3204 4779 y Fq(m)3258 4762 y Fe(0)3258 4800 y Fh(k)q(;j)3355 4746 y Fg(;)3268 4924 y Ft(\(12\))p eop %%Page: 14 14 14 13 bop 523 232 a Ft(14)541 448 y Fx(where)18 b([)p Fn(\000)p Fx(\()p Fm(i)921 460 y Fw(t)950 448 y Fm(;)c(j)5 b Fx(\)])19 b(denotes)f(the)h(set)f(of)g(indices)h(excluding)f(\()p Fm(i)2417 460 y Fw(t)2446 448 y Fm(;)c(j)5 b Fx(\))18 b(and)h Fm(m)2798 460 y Fw(k)q(;j)2912 448 y Fx(=)k Fm(m)3073 463 y Fv([)p Fj(\000)p Fv(\()p Fw(i)3193 471 y Fh(t)3220 463 y Fw(;j)s Fv(\)])p Fw(;k)3376 448 y Fx(+)523 548 y(1\()p Fm(h)645 560 y Fw(i)668 568 y Fh(t)696 560 y Fw(;j)773 548 y Fx(=)g Fm(a)905 560 y Fw(k)q(;j)996 548 y Fx(\))h(\(and)g(similarly)f(for)g(the)h(other)f(su\016cien)n(t)h (statistics\).)g(Note)g(that)f(during)523 648 y(eac)n(h)g(sampling)g (step,)g(w)n(e)g(do)g(not)h(ha)n(v)n(e)e(to)h(recompute)g(the)h Fm(\000)12 b Fx(\()p Fn(\001)p Fx(\),)24 b(b)r(ecause)f(the)h (su\016cien)n(t)523 747 y(statistics)d(are)f(either)h(not)g(going)e(to) i(c)n(hange)f(\(e.g.,)h(when)g(the)g(newly)g(sampled)g Fm(h)3086 759 y Fw(i)3109 767 y Fh(t)3137 759 y Fw(;j)3213 747 y Fx(is)g(the)523 847 y(same)29 b(as)g(the)h(old)g(sample\),)g(or)e (only)i(going)e(to)i(c)n(hange)f(b)n(y)g(one)g(\(e.g.,)h(when)g(the)g (newly)523 946 y(sampled)k Fm(h)901 958 y Fw(i)924 966 y Fk(1)956 958 y Fw(;j)1045 946 y Fx(results)f(in)h(a)g(c)n(hange)e(of) i(the)g(allele\).)g(In)g(suc)n(h)f(cases)g(the)h(new)g(gamma)523 1046 y(function)28 b(can)f(b)r(e)h(easily)f(up)r(dated)h(from)g(the)g (old)f(one.)523 1295 y Fi(A.2)95 b(Metrop)s(olis-Hasting)29 b(sampling)g(algorithm)523 1461 y Fx(Note)24 b(that)g(for)g(a)f(long)h (list)g(of)g(lo)r(ci,)g(a)f(uniform)h Fm(p)p Fx(\()p Fm(A)p Fx(\))h(of)f(all)f(p)r(ossible)h(ancestral)f(template)523 1561 y(patterns)e(will)h(render)f(the)h(probabilit)n(y)e(of)i(sampling) f(a)g(new)h(ancestor)e(in\014nitesimal,)i(due)523 1660 y(to)i(the)h(small)g(v)-5 b(alue)24 b(of)g(the)h(smo)r(othed)g (marginal)e(lik)n(eliho)r(o)r(d)h(of)g(an)n(y)g(haplot)n(yp)r(e)g (pattern)523 1760 y Fm(h)571 1772 y Fw(i)594 1780 y Fh(t)626 1760 y Fx(,)k(as)f(computed)h(from)f(Eq.)g(\(10\).)g(This)h(could)f (result)g(in)h(slo)n(w)f(mixing.)648 1860 y(An)f(alternativ)n(e)f (sampling)g(strategy)g(is)h(to)g(use)g(a)f(partial)h(Gibbs)g(sampling)f (strategy)523 1959 y(with)f(the)g(follo)n(wing)e(Metrop)r(olis-Hasting) g(up)r(dates.)i(F)-7 b(or)22 b(the)i(prop)r(osal)e(distribution)i(for) 523 2059 y(the)k(equiv)-5 b(alence)27 b(class)g(of)g Fm(h)1441 2071 y Fw(i)1464 2079 y Fh(t)1524 2059 y Fx(w)n(e)g(use:)846 2316 y Fm(q)s Fx(\()p Fm(c)954 2282 y Fj(\003)954 2337 y Fw(i)977 2345 y Fh(t)1032 2316 y Fx(=)c Fm(k)s Fn(j)p Fm(c)1225 2331 y Fv([)p Fj(\000)p Fw(i)1319 2339 y Fh(t)1346 2331 y Fv(])1369 2316 y Fx(\))h(=)1512 2174 y Fl(\()1601 2208 y Fw(n)1642 2219 y Fk([)p Fe(\000)p Fh(i)1726 2230 y(t)1753 2219 y Fk(])p Fh(;k)p 1601 2237 225 4 v 1606 2285 a Fw(n)p Fj(\000)p Fv(1+)p Fw(\034)1918 2256 y Fx(:)111 b(if)56 b Fm(k)26 b Fx(=)c Fm(c)2348 2270 y Fw(i)2371 2251 y Fe(0)2371 2297 y Fh(t)2394 2285 y Fe(0)2454 2256 y Fx(for)27 b(some)g Fm(i)2818 2226 y Fj(0)2818 2279 y Fw(t)2843 2262 y Fe(0)2892 2256 y Fn(6)p Fx(=)c Fm(i)3009 2226 y Fw(t)1700 2334 y(\034)p 1611 2348 215 4 v 1611 2396 a(n)p Fj(\000)p Fv(1+)p Fw(\034)1918 2367 y Fx(:)111 b(if)56 b Fm(k)26 b Fn(6)p Fx(=)c Fm(c)2348 2381 y Fw(i)2371 2361 y Fe(0)2371 2408 y Fh(t)2394 2396 y Fe(0)2454 2367 y Fx(for)27 b(all)g Fm(i)2725 2337 y Fj(0)2725 2390 y Fw(t)2750 2373 y Fe(0)2799 2367 y Fn(6)p Fx(=)c Fm(i)2916 2379 y Fw(t)3049 2316 y Fm(:)185 b Fx(\(13\))523 2574 y(Then)29 b(w)n(e)f(sample)g Fm(a)1186 2586 y Fh(c)1213 2569 y Fe(\003)1213 2605 y Fh(i)1235 2616 y(t)1300 2574 y Fx(sequen)n(tially)g(according)e(to)j(Eq.)f(\(11\).)g(F)-7 b(or)28 b(target)g(distribution)523 2687 y Fm(p)p Fx(\()p Fm(c)633 2699 y Fw(i)656 2707 y Fh(t)711 2687 y Fx(=)23 b Fm(k)s Fn(j)p Fi(c)910 2702 y Fv([)p Fj(\000)p Fw(i)1004 2710 y Fh(t)1032 2702 y Fv(])1055 2687 y Fm(;)14 b Fi(h)p Fm(;)g Fi(a)p Fx(\),)20 b(the)g(prop)r(osal)d(factor)i(cancels)f(when)i (computing)f(the)h(acceptance)523 2787 y(probabilit)n(y)27 b Fm(\030)t Fx(,)g(lea)n(ving:)1273 3031 y Fm(\030)t Fx(\()p Fm(c)1381 2997 y Fj(\003)1381 3052 y Fw(i)1404 3060 y Fh(t)1436 3031 y Fm(;)14 b(c)1509 3043 y Fw(i)1532 3051 y Fh(t)1564 3031 y Fx(\))24 b(=)e(min)1860 2939 y Fl(h)1899 3031 y Fx(1)p Fm(;)1987 2956 y(p)p Fx(\()p Fm(h)2109 2968 y Fw(i)2132 2976 y Fh(t)2164 2956 y Fn(j)p Fm(a)2231 2968 y Fh(c)2258 2952 y Fe(\003)2258 2988 y Fh(i)2280 2999 y(t)2316 2956 y Fm(;)14 b Fi(h)2406 2971 y Fv([)p Fj(\000)p Fw(i)2500 2979 y Fh(t)2528 2971 y Fv(])2551 2956 y Fx(\))p 1987 3012 596 4 v 1987 3088 a Fm(p)p Fx(\()p Fm(h)2109 3100 y Fw(i)2132 3108 y Fh(t)2164 3088 y Fn(j)p Fm(a)2231 3100 y Fh(c)2258 3113 y(i)2280 3124 y(t)2316 3088 y Fm(;)g Fi(h)2406 3103 y Fv([)p Fj(\000)p Fw(i)2500 3111 y Fh(t)2528 3103 y Fv(])2551 3088 y Fx(\))2593 2939 y Fl(i)2632 3031 y Fm(:)602 b Fx(\(14\))648 3274 y(In)38 b(practice,)g(w)n(e)g(found)g(that)h(the)f(ab)r(o)n(v)n(e)f(mo) r(di\014cation)h(to)g(the)h(Gibbs)g(sampling)523 3374 y(algorithm)23 b(leads)g(to)g(substan)n(tial)h(impro)n(v)n(emen)n(t)e (of)i(e\016ciency)f(for)h(long)f(haplot)n(yp)r(e)g(lists,)523 3474 y(whereas)f(for)g(short)g(lists,)h(the)g(Gibbs)g(sampler)f (remains)g(b)r(etter)i(due)f(to)g(the)g(high)g(\(100\045\))523 3573 y(acceptance)k(rate.)p eop %%Trailer end userdict /end-hook known{end-hook}if %%EOF