(original) (raw)

%!PS-Adobe-2.0 /PNshowpage /showpage load def /showpage { } def %%Creator: dvipsk 5.58f Copyright 1986, 1994 Radical Eye Software %%Title: slides-all.dvi %%Pages: 49 %%PageOrder: Ascend %%BoundingBox: 0 0 612 792 %%DocumentFonts: Helvetica-Bold Helvetica Helvetica-Oblique %%+ Helvetica-BoldOblique %%EndComments %DVIPSCommandLine: dvips slides-all.dvi -o slides-all.ps %DVIPSParameters: dpi=300, compressed, comments removed %DVIPSSource: TeX output 2000.04.06:1720 %%BeginProcSet: texc.pro /TeXDict 250 dict def TeXDict begin /N{def}def /B{bind def}N /S{exch}N /X{S N}B /TR{translate}N /isls false N /vsize 11 72 mul N /hsize 8.5 72 mul N /landplus90{false}def /@rigin{isls{[0 landplus90{1 -1}{-1 1} ifelse 0 0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize mul 0}ifelse TR}if Resolution VResolution vsize -72 div 1 add mul TR matrix currentmatrix dup dup 4 get round 4 exch put dup dup 5 get round 5 exch put setmatrix}N /@landscape{/isls true N}B /@manualfeed{ statusdict /manualfeed true put}B /@copies{/#copies X}B /FMat[1 0 0 -1 0 0]N /FBB[0 0 0 0]N /nn 0 N /IE 0 N /ctr 0 N /df-tail{/nn 8 dict N nn begin /FontType 3 N /FontMatrix fntrx N /FontBBox FBB N string /base X array /BitMaps X /BuildChar{CharBuilder}N /Encoding IE N end dup{/foo setfont}2 array copy cvx N load 0 nn put /ctr 0 N[}B /df{/sf 1 N /fntrx FMat N df-tail}B /dfs{div /sf X /fntrx[sf 0 0 sf neg 0 0]N df-tail}B /E{ pop nn dup definefont setfont}B /ch-width{ch-data dup length 5 sub get} B /ch-height{ch-data dup length 4 sub get}B /ch-xoff{128 ch-data dup length 3 sub get sub}B /ch-yoff{ch-data dup length 2 sub get 127 sub}B /ch-dx{ch-data dup length 1 sub get}B /ch-image{ch-data dup type /stringtype ne{ctr get /ctr ctr 1 add N}if}B /id 0 N /rw 0 N /rc 0 N /gp 0 N /cp 0 N /G 0 N /sf 0 N /CharBuilder{save 3 1 roll S dup /base get 2 index get S /BitMaps get S get /ch-data X pop /ctr 0 N ch-dx 0 ch-xoff ch-yoff ch-height sub ch-xoff ch-width add ch-yoff setcachedevice ch-width ch-height true[1 0 0 -1 -.1 ch-xoff sub ch-yoff .1 add]/id ch-image N /rw ch-width 7 add 8 idiv string N /rc 0 N /gp 0 N /cp 0 N{ rc 0 ne{rc 1 sub /rc X rw}{G}ifelse}imagemask restore}B /G{{id gp get /gp gp 1 add N dup 18 mod S 18 idiv pl S get exec}loop}B /adv{cp add /cp X}B /chg{rw cp id gp 4 index getinterval putinterval dup gp add /gp X adv}B /nd{/cp 0 N rw exit}B /lsh{rw cp 2 copy get dup 0 eq{pop 1}{dup 255 eq{pop 254}{dup dup add 255 and S 1 and or}ifelse}ifelse put 1 adv} B /rsh{rw cp 2 copy get dup 0 eq{pop 128}{dup 255 eq{pop 127}{dup 2 idiv S 128 and or}ifelse}ifelse put 1 adv}B /clr{rw cp 2 index string putinterval adv}B /set{rw cp fillstr 0 4 index getinterval putinterval adv}B /fillstr 18 string 0 1 17{2 copy 255 put pop}for N /pl[{adv 1 chg} {adv 1 chg nd}{1 add chg}{1 add chg nd}{adv lsh}{adv lsh nd}{adv rsh}{ adv rsh nd}{1 add adv}{/rc X nd}{1 add set}{1 add clr}{adv 2 chg}{adv 2 chg nd}{pop nd}]dup{bind pop}forall N /D{/cc X dup type /stringtype ne{] }if nn /base get cc ctr put nn /BitMaps get S ctr S sf 1 ne{dup dup length 1 sub dup 2 index S get sf div put}if put /ctr ctr 1 add N}B /I{ cc 1 add D}B /bop{userdict /bop-hook known{bop-hook}if /SI save N @rigin 0 0 moveto /V matrix currentmatrix dup 1 get dup mul exch 0 get dup mul add .99 lt{/QV}{/RV}ifelse load def pop pop}N /eop{SI restore showpage userdict /eop-hook known{eop-hook}if}N /@start{userdict /start-hook known{start-hook}if pop /VResolution X /Resolution X 1000 div /DVImag X /IE 256 array N 0 1 255{IE S 1 string dup 0 3 index put cvn put}for 65781.76 div /vsize X 65781.76 div /hsize X}N /p{show}N /RMat[1 0 0 -1 0 0]N /BDot 260 string N /rulex 0 N /ruley 0 N /v{/ruley X /rulex X V}B /V {}B /RV statusdict begin /product where{pop product dup length 7 ge{0 7 getinterval dup(Display)eq exch 0 4 getinterval(NeXT)eq or}{pop false} ifelse}{false}ifelse end{{gsave TR -.1 -.1 TR 1 1 scale rulex ruley false RMat{BDot}imagemask grestore}}{{gsave TR -.1 -.1 TR rulex ruley scale 1 1 false RMat{BDot}imagemask grestore}}ifelse B /QV{gsave transform round exch round exch itransform moveto rulex 0 rlineto 0 ruley neg rlineto rulex neg 0 rlineto fill grestore}B /a{moveto}B /delta 0 N /tail{dup /delta X 0 rmoveto}B /M{S p delta add tail}B /b{S p tail} B /c{-4 M}B /d{-3 M}B /e{-2 M}B /f{-1 M}B /g{0 M}B /h{1 M}B /i{2 M}B /j{ 3 M}B /k{4 M}B /w{0 rmoveto}B /l{p -4 w}B /m{p -3 w}B /n{p -2 w}B /o{p -1 w}B /q{p 1 w}B /r{p 2 w}B /s{p 3 w}B /t{p 4 w}B /x{0 S rmoveto}B /y{ 3 2 roll p a}B /bos{/SS save N}B /eos{SS restore}B end %%EndProcSet %%BeginFont: Helvetica-Bold % @psencodingfile{ % author = "S. Rahtz, P. MacKay, Alan Jeffrey, B. Horn, K. Berry", % version = "0.6", % date = "14 April 1995", % filename = "8r.enc", % email = "kb@cs.umb.edu", % address = "135 Center Hill Rd. // Plymouth, MA 02360", % codetable = "ISO/ASCII", % checksum = "xx", % docstring = "Encoding for TrueType or Type 1 fonts to be used with TeX." % } % % Idea is to have all the characters normally included in Type 1 fonts % available for typesetting. This is effectively the characters in Adobe % Standard Encoding + ISO Latin 1 + extra characters from Lucida. % % Character code assignments were made as follows: % % (1) the Windows ANSI characters are almost all in their Windows ANSI % positions, because some Windows users cannot easily reencode the % fonts, and it makes no difference on other systems. The only Windows % ANSI characters not available are those that make no sense for % typesetting -- rubout (127 decimal), nobreakspace (160), softhyphen % (173). quotesingle and grave are moved just because it's such an % irritation not having them in TeX positions. % % (2) Remaining characters are assigned arbitrarily to the lower part % of the range, avoiding 0, 10 and 13 in case we meet dumb software. % % (3) Y&Y Lucida Bright includes some extra text characters; in the % hopes that other PostScript fonts, perhaps created for public % consumption, will include them, they are included starting at 0x12. % % (4) Remaining positions left undefined are for use in (hopefully) % upward-compatible revisions, if someday more characters are generally % available. % % (5) hyphen appears twice for compatibility with both ASCII and Windows. % /TeXBase1Encoding [ % 0x00 (encoded characters from Adobe Standard not in Windows 3.1) /.notdef /dotaccent /fi /fl /fraction /hungarumlaut /Lslash /lslash /ogonek /ring /.notdef /breve /minus /.notdef % These are the only two remaining unencoded characters, so may as % well include them. /Zcaron /zcaron % 0x10 /caron /dotlessi % (unusual TeX characters available in, e.g., Lucida Bright) /dotlessj /ff /ffi /ffl /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef % very contentious; it's so painful not having quoteleft and quoteright % at 96 and 145 that we move the things normally found there down to here. /grave /quotesingle % 0x20 (ASCII begins) /space /exclam /quotedbl /numbersign /dollar /percent /ampersand /quoteright /parenleft /parenright /asterisk /plus /comma /hyphen /period /slash % 0x30 /zero /one /two /three /four /five /six /seven /eight /nine /colon /semicolon /less /equal /greater /question % 0x40 /at /A /B /C /D /E /F /G /H /I /J /K /L /M /N /O % 0x50 /P /Q /R /S /T /U /V /W /X /Y /Z /bracketleft /backslash /bracketright /asciicircum /underscore % 0x60 /quoteleft /a /b /c /d /e /f /g /h /i /j /k /l /m /n /o % 0x70 /p /q /r /s /t /u /v /w /x /y /z /braceleft /bar /braceright /asciitilde /.notdef % rubout; ASCII ends % 0x80 /.notdef /.notdef /quotesinglbase /florin /quotedblbase /ellipsis /dagger /daggerdbl /circumflex /perthousand /Scaron /guilsinglleft /OE /.notdef /.notdef /.notdef % 0x90 /.notdef /.notdef /.notdef /quotedblleft /quotedblright /bullet /endash /emdash /tilde /trademark /scaron /guilsinglright /oe /.notdef /.notdef /Ydieresis % 0xA0 /.notdef % nobreakspace /exclamdown /cent /sterling /currency /yen /brokenbar /section /dieresis /copyright /ordfeminine /guillemotleft /logicalnot /hyphen % Y&Y (also at 45); Windows' softhyphen /registered /macron % 0xD0 /degree /plusminus /twosuperior /threesuperior /acute /mu /paragraph /periodcentered /cedilla /onesuperior /ordmasculine /guillemotright /onequarter /onehalf /threequarters /questiondown % 0xC0 /Agrave /Aacute /Acircumflex /Atilde /Adieresis /Aring /AE /Ccedilla /Egrave /Eacute /Ecircumflex /Edieresis /Igrave /Iacute /Icircumflex /Idieresis % 0xD0 /Eth /Ntilde /Ograve /Oacute /Ocircumflex /Otilde /Odieresis /multiply /Oslash /Ugrave /Uacute /Ucircumflex /Udieresis /Yacute /Thorn /germandbls % 0xE0 /agrave /aacute /acircumflex /atilde /adieresis /aring /ae /ccedilla /egrave /eacute /ecircumflex /edieresis /igrave /iacute /icircumflex /idieresis % 0xF0 /eth /ntilde /ograve /oacute /ocircumflex /otilde /odieresis /divide /oslash /ugrave /uacute /ucircumflex /udieresis /yacute /thorn /ydieresis ] def %%EndFont %%BeginProcSet: texps.pro TeXDict begin /rf{findfont dup length 1 add dict begin{1 index /FID ne 2 index /UniqueID ne and{def}{pop pop}ifelse}forall[1 index 0 6 -1 roll exec 0 exch 5 -1 roll VResolution Resolution div mul neg 0 0]/Metrics exch def dict begin Encoding{exch dup type /integertype ne{pop pop 1 sub dup 0 le{pop}{[}ifelse}{FontMatrix 0 get div Metrics 0 get div def} ifelse}forall Metrics /Metrics currentdict end def[2 index currentdict end definefont 3 -1 roll makefont /setfont load]cvx def}def /ObliqueSlant{dup sin S cos div neg}B /SlantFont{4 index mul add}def /ExtendFont{3 -1 roll mul exch}def /ReEncodeFont{/Encoding exch def}def end %%EndProcSet %%BeginProcSet: special.pro TeXDict begin /SDict 200 dict N SDict begin /@SpecialDefaults{/hs 612 N /vs 792 N /ho 0 N /vo 0 N /hsc 1 N /vsc 1 N /ang 0 N /CLIP 0 N /rwiSeen false N /rhiSeen false N /letter{}N /note{}N /a4{}N /legal{}N}B /@scaleunit 100 N /@hscale{@scaleunit div /hsc X}B /@vscale{@scaleunit div /vsc X}B /@hsize{/hs X /CLIP 1 N}B /@vsize{/vs X /CLIP 1 N}B /@clip{ /CLIP 2 N}B /@hoffset{/ho X}B /@voffset{/vo X}B /@angle{/ang X}B /@rwi{ 10 div /rwi X /rwiSeen true N}B /@rhi{10 div /rhi X /rhiSeen true N}B /@llx{/llx X}B /@lly{/lly X}B /@urx{/urx X}B /@ury{/ury X}B /magscale true def end /@MacSetUp{userdict /md known{userdict /md get type /dicttype eq{userdict begin md length 10 add md maxlength ge{/md md dup length 20 add dict copy def}if end md begin /letter{}N /note{}N /legal{} N /od{txpose 1 0 mtx defaultmatrix dtransform S atan/pa X newpath clippath mark{transform{itransform moveto}}{transform{itransform lineto} }{6 -2 roll transform 6 -2 roll transform 6 -2 roll transform{ itransform 6 2 roll itransform 6 2 roll itransform 6 2 roll curveto}}{{ closepath}}pathforall newpath counttomark array astore /gc xdf pop ct 39 0 put 10 fz 0 fs 2 F/|______Courier fnt invertflag{PaintBlack}if}N /txpose{pxs pys scale ppr aload pop por{noflips{pop S neg S TR pop 1 -1 scale}if xflip yflip and{pop S neg S TR 180 rotate 1 -1 scale ppr 3 get ppr 1 get neg sub neg ppr 2 get ppr 0 get neg sub neg TR}if xflip yflip not and{pop S neg S TR pop 180 rotate ppr 3 get ppr 1 get neg sub neg 0 TR}if yflip xflip not and{ppr 1 get neg ppr 0 get neg TR}if}{noflips{TR pop pop 270 rotate 1 -1 scale}if xflip yflip and{TR pop pop 90 rotate 1 -1 scale ppr 3 get ppr 1 get neg sub neg ppr 2 get ppr 0 get neg sub neg TR}if xflip yflip not and{TR pop pop 90 rotate ppr 3 get ppr 1 get neg sub neg 0 TR}if yflip xflip not and{TR pop pop 270 rotate ppr 2 get ppr 0 get neg sub neg 0 S TR}if}ifelse scaleby96{ppr aload pop 4 -1 roll add 2 div 3 1 roll add 2 div 2 copy TR .96 dup scale neg S neg S TR}if}N /cp {pop pop showpage pm restore}N end}if}if}N /normalscale{Resolution 72 div VResolution 72 div neg scale magscale{DVImag dup scale}if 0 setgray} N /psfts{S 65781.76 div N}N /startTexFig{/psf$SavedState save N userdict maxlength dict begin /magscale true def normalscale currentpoint TR /psf$ury psfts /psf$urx psfts /psf$lly psfts /psf$llx psfts /psf$y psfts /psf$x psfts currentpoint /psf$cy X /psf$cx X /psf$sx psf$x psf$urx psf$llx sub div N /psf$sy psf$y psf$ury psf$lly sub div N psf$sx psf$sy scale psf$cx psf$sx div psf$llx sub psf$cy psf$sy div psf$ury sub TR /setpagedevice{pop}N statusdict begin /letter{}N /lettertray{}N /legal{} N /legaltray{}N /a4{}N /a4tray{}N /b4{}N /b4tray{}N /b5{}N /b5tray{}N /showpage{}N /erasepage{}N /copypage{}N end /letter{}N /lettertray{}N /legal{}N /legaltray{}N /a4{}N /a4tray{}N /b4{}N /b4tray{}N /b5{}N /b5tray{}N /showpage{}N /erasepage{}N /copypage{}N /p 3 def @MacSetUp}N /doclip{psf$llx psf$lly psf$urx psf$ury currentpoint 6 2 roll newpath 4 copy 4 2 roll moveto 6 -1 roll S lineto S lineto S lineto closepath clip newpath moveto}N /endTexFig{end psf$SavedState restore}N /@beginspecial{ SDict begin /SpecialSave save N gsave normalscale currentpoint TR @SpecialDefaults count /ocount X /dcount countdictstack N}N /@setspecial {CLIP 1 eq{newpath 0 0 moveto hs 0 rlineto 0 vs rlineto hs neg 0 rlineto closepath clip}if ho vo TR hsc vsc scale ang rotate rwiSeen{rwi urx llx sub div rhiSeen{rhi ury lly sub div}{dup}ifelse scale llx neg lly neg TR }{rhiSeen{rhi ury lly sub div dup scale llx neg lly neg TR}if}ifelse CLIP 2 eq{newpath llx lly moveto urx lly lineto urx ury lineto llx ury lineto closepath clip}if /setpagedevice{pop}N statusdict begin /letter{} N /lettertray{}N /legal{}N /legaltray{}N /a4{}N /a4tray{}N /b4{}N /b4tray{}N /b5{}N /b5tray{}N /showpage{}N /erasepage{}N /copypage{}N end /letter{}N /lettertray{}N /legal{}N /legaltray{}N /a4{}N /a4tray{}N /b4{ }N /b4tray{}N /b5{}N /b5tray{}N /showpage{}N /erasepage{}N /copypage{}N newpath}N /@endspecial{count ocount sub{pop}repeat countdictstack dcount sub{end}repeat grestore SpecialSave restore end}N /@defspecial{SDict begin}N /@fedspecial{end}B /li{lineto}B /rl{rlineto}B /rc{rcurveto}B /np {/SaveX currentpoint /SaveY X N 1 setlinecap newpath}N /st{stroke SaveX SaveY moveto}N /fil{fill SaveX SaveY moveto}N /ellipse{/endangle X /startangle X /yrad X /xrad X /savematrix matrix currentmatrix N TR xrad yrad scale 0 0 1 startangle endangle arc savematrix setmatrix}N end %%EndProcSet %%BeginProcSet: color.pro TeXDict begin /setcmykcolor where{pop}{/setcmykcolor{dup 10 eq{pop setrgbcolor}{1 sub 4 1 roll 3{3 index add neg dup 0 lt{pop 0}if 3 1 roll }repeat setrgbcolor pop}ifelse}B}ifelse /TeXcolorcmyk{setcmykcolor}def /TeXcolorrgb{setrgbcolor}def /TeXcolorgrey{setgray}def /TeXcolorgray{ setgray}def /TeXcolorhsb{sethsbcolor}def /currentcmykcolor where{pop}{ /currentcmykcolor{currentrgbcolor 10}B}ifelse /DC{exch dup userdict exch known{pop pop}{X}ifelse}B /GreenYellow{0.15 0 0.69 0 setcmykcolor}DC /Yellow{0 0 1 0 setcmykcolor}DC /Goldenrod{0 0.10 0.84 0 setcmykcolor} DC /Dandelion{0 0.29 0.84 0 setcmykcolor}DC /Apricot{0 0.32 0.52 0 setcmykcolor}DC /Peach{0 0.50 0.70 0 setcmykcolor}DC /Melon{0 0.46 0.50 0 setcmykcolor}DC /YellowOrange{0 0.42 1 0 setcmykcolor}DC /Orange{0 0.61 0.87 0 setcmykcolor}DC /BurntOrange{0 0.51 1 0 setcmykcolor}DC /Bittersweet{0 0.75 1 0.24 setcmykcolor}DC /RedOrange{0 0.77 0.87 0 setcmykcolor}DC /Mahogany{0 0.85 0.87 0.35 setcmykcolor}DC /Maroon{0 0.87 0.68 0.32 setcmykcolor}DC /BrickRed{0 0.89 0.94 0.28 setcmykcolor} DC /Red{0 1 1 0 setcmykcolor}DC /OrangeRed{0 1 0.50 0 setcmykcolor}DC /RubineRed{0 1 0.13 0 setcmykcolor}DC /WildStrawberry{0 0.96 0.39 0 setcmykcolor}DC /Salmon{0 0.53 0.38 0 setcmykcolor}DC /CarnationPink{0 0.63 0 0 setcmykcolor}DC /Magenta{0 1 0 0 setcmykcolor}DC /VioletRed{0 0.81 0 0 setcmykcolor}DC /Rhodamine{0 0.82 0 0 setcmykcolor}DC /Mulberry {0.34 0.90 0 0.02 setcmykcolor}DC /RedViolet{0.07 0.90 0 0.34 setcmykcolor}DC /Fuchsia{0.47 0.91 0 0.08 setcmykcolor}DC /Lavender{0 0.48 0 0 setcmykcolor}DC /Thistle{0.12 0.59 0 0 setcmykcolor}DC /Orchid{ 0.32 0.64 0 0 setcmykcolor}DC /DarkOrchid{0.40 0.80 0.20 0 setcmykcolor} DC /Purple{0.45 0.86 0 0 setcmykcolor}DC /Plum{0.50 1 0 0 setcmykcolor} DC /Violet{0.79 0.88 0 0 setcmykcolor}DC /RoyalPurple{0.75 0.90 0 0 setcmykcolor}DC /BlueViolet{0.86 0.91 0 0.04 setcmykcolor}DC /Periwinkle {0.57 0.55 0 0 setcmykcolor}DC /CadetBlue{0.62 0.57 0.23 0 setcmykcolor} DC /CornflowerBlue{0.65 0.13 0 0 setcmykcolor}DC /MidnightBlue{0.98 0.13 0 0.43 setcmykcolor}DC /NavyBlue{0.94 0.54 0 0 setcmykcolor}DC /RoyalBlue{1 0.50 0 0 setcmykcolor}DC /Blue{1 1 0 0 setcmykcolor}DC /Cerulean{0.94 0.11 0 0 setcmykcolor}DC /Cyan{1 0 0 0 setcmykcolor}DC /ProcessBlue{0.96 0 0 0 setcmykcolor}DC /SkyBlue{0.62 0 0.12 0 setcmykcolor}DC /Turquoise{0.85 0 0.20 0 setcmykcolor}DC /TealBlue{0.86 0 0.34 0.02 setcmykcolor}DC /Aquamarine{0.82 0 0.30 0 setcmykcolor}DC /BlueGreen{0.85 0 0.33 0 setcmykcolor}DC /Emerald{1 0 0.50 0 setcmykcolor}DC /JungleGreen{0.99 0 0.52 0 setcmykcolor}DC /SeaGreen{ 0.69 0 0.50 0 setcmykcolor}DC /Green{1 0 1 0 setcmykcolor}DC /ForestGreen{0.91 0 0.88 0.12 setcmykcolor}DC /PineGreen{0.92 0 0.59 0.25 setcmykcolor}DC /LimeGreen{0.50 0 1 0 setcmykcolor}DC /YellowGreen{ 0.44 0 0.74 0 setcmykcolor}DC /SpringGreen{0.26 0 0.76 0 setcmykcolor} DC /OliveGreen{0.64 0 0.95 0.40 setcmykcolor}DC /RawSienna{0 0.72 1 0.45 setcmykcolor}DC /Sepia{0 0.83 1 0.70 setcmykcolor}DC /Brown{0 0.81 1 0.60 setcmykcolor}DC /Tan{0.14 0.42 0.56 0 setcmykcolor}DC /Gray{0 0 0 0.50 setcmykcolor}DC /Black{0 0 0 1 setcmykcolor}DC /White{0 0 0 0 setcmykcolor}DC end %%EndProcSet TeXDict begin 40258431 52099146 1000 300 300 (slides-all.dvi) @start /Fa 1 49 df<14F8EB01FCEB03FEEB07FFA45B14FEA2EB1FFCA214F8133F14F0 A3EB7FE0A214C013FF1480A214005AA25B12035BA2485AA35B120F5BA2485AA25BA2123F 90C7FCA2127EA2127C12FC5A1278121018337DB61D>48 D E /Fb 134[66 2[66 1[40 1[46 2[73 73 106 33 66 1[33 3[66 73 2[66 9[112 13[33 4[86 68[{TeXBase1Encoding ReEncodeFont}16 119.416684 /Helvetica-BoldOblique rf /Fc 1 108 df<1378EA07FC5BEA0078A35B A4485AA4485A140FEC3F80EC70C0380780C3EB8187EB830701841380390F18030049C7FC 13E05BEA1FFCEA1E7FEB0F801307486C7E15C0A30078EB8180A2ECC30014C638F001FC38 6000781A287DA720>107 D E /Fd 1 49 df<13F0EA01F8A4EA03F0A213E01207A213C0 A2EA0F80A313005A121EA2123E123CA35AA21270A212F05A0D1D7E9F11>48 D E /Fe 2 49 df<130C131EA50040148000F0EB03C038F81C0738FE0C1F007FEB3F8039 1FCCFE003807EDF83800FFC0013FC7FCA2EBFFC03807EDF8381FCCFE397F0C3F8000FEEB 1FC038F81C0738F01E030040EB008000001400A5130C1A1E7B9F25>3 D<133C137E13FFA4EA01FEA213FC1203A213F8A2EA07F0A313E0120F13C0A3EA1F80A213 005AA2123EA25AA21278A212F85A127010237EA514>48 D E /Ff 10 58 df48 DI<913803FFE0023F13FF91B612E0010715FC4915FF013F824916 E090B87E489026F8007F7F4801C001077F4890C87F4848ED3FFF49150FD81FF06F138000 3F7013C04981484817E0834848167F90CAFC6C18F07E001E173F120E1206CBFC187FA319 E0A218FF19C0A24D13805F19005F4D5A4D5A60173F4D5A4D5A040313804C90C7FC4C5A4C 5A4C5AEEFFE04B5B4B5B4B48C8FCED1FFCED3FF04B5A4A485A4A90C9FC4A5A4A5AEC1FF0 EC7FE04A5A495B4948CAFCEB0FFC495A495AEB7FC0495A000390CBFCEA07FC48B912C048 18E0007F18F0A46C18E06C18C03C507ACF4A>II<4CB4FC04077F845E5E5EA2167E16FE4B5AA2 4B5A15074B5AA24B5A153F4B5A5E15FF4A5B4A5AA24A5A4A5A141F5D4A5A4A5A14FF5D49 90C7FC5B495A495A5C131F495A495A5C13FF485B4890C8FC5B1207485A485A5B123F485A 485A90B912FE851A80A46C19006C60CA01C0C7FCB2715A71C8FC414F7CCE4A>I<90B812 F848834883A4606091CBFCB3A3ED7FFC0207B512C0023F14F091B612FC17FF18C084DBC0 077F02FCC77F02E0EC3FFC02806E7E91C8120F496F7E6C486F13806C488190C914C08319 E0A3187F19F0A9F0FFE0A2120C001C4C13C0123E007F4C138001C05D486C4B13006D4B5A D87FFC153F6CB4EDFFFC000F01E001035B6C01FE013F5B6C90B75A6C17806C6C93C7FC01 1F15FC010715F0010115C0D9003F49C8FC020313C03C507ACE4A>II<003FB912E04818F0BA12F8A46C18F06C 18E0CA000113C04D13804D13004D5A4D5A4D5A4D5A4D5A604C5B4C90C7FC5E4C5A4C5A5F 163F4C5A5F16FF4B5B5F5D4B90C8FCA24B5AA24B5AA24B5AA24B5AA24B5AA25E5CA24A5B A34A90C9FCA34A5AA44A5AA54A5AA74A5AAB6E5A6E5A3D507ACE4A>II< EDFFE0020F13FE027F6D7E49B612E0010715F849814915FF017F8290B5D8001F7F4801F0 13034801C001007F48496E7E91C86C7E4848151F48486F7E491507484882170348488283 A24848178083A319C0A619E0A26C7E5FA2123F6D5D6C6C5D5F6C6CED1F7F6D153F6C6C15 7E6C01C0EB01FC6C6DEB07F86C01FEEB3FF06DB612E06D03C013C06DED00FF6D14FC0103 14F0010014C0DA1FFCC7138091C85AA21900A25F60170760170F4D5AA24D5A4D5A17FF4C 5BD801C04A5B486C020F90C7FC6D4A5AD807FEECFFFC9026FFC0075B4890B65A5F000316 806C4BC8FC6C6C5C011F14E0010314809026007FF8C9FC3B5179CF4A>I E /Fg 2 104 df<15FC140FEC3F80EC7E0014F8495A495A1307A2495AB3A9495AA249C7 FC137E5BEA03F8EA7FE048C8FCEA7FE0EA03F8C67E137E7F6D7EA26D7EB3A96D7EA21303 6D7E6D7E147EEC3F80EC0FFC14001E577AC02B>102 D<127CEAFFC0EA07F0EA01F8EA00 7C7F7F80A26D7EB3A96D7EA26D7E6D7E6D7E147FEC1FF8EC03FCEC1FF8EC7F0014FC495A 495A495AA2495AB3A9495AA291C7FC133E5B485AEA07F0EAFFC0007CC8FC1E577AC02B> I E /Fh 6 112 df<167816F81503ED0FF0ED1FC0ED3F80ED7E005D4A5A4A5A14074A5A 5D141F4A5AA24AC7FCA214FEA4495AB3B3B3A9495AA35C1307A25C130F5C131F5C49C8FC 137E137C13FC485AEA03E0485AEA1F8048C9FC127C12F0A2127C123F6C7EEA07C06C7EEA 01F86C7E137C137E7F6D7E80130F80130780A2130380A36D7EB3B3B3A96D7EA4147FA26E 7EA26E7E140F816E7E14036E7E6E7E157EED3F80ED1FC0ED0FF0ED03F81500167825D676 823A>40 D<12F07E12FEEA7F80EA1FC06C7EEA03F06C7E6C7E137E137F6D7E131F806D7E A26D7EA26D7EA46D7EB3B3B3A96D7EA3147E147FA28081141F81140F6E7E6E7E1401816E 7E153E81ED0FC0ED07E0ED01F8ED0078A2ED01F0ED07E0ED0FC0ED1F00153E15FC4A5A5D 14034A5A4A5A141F5D143F92C7FC5CA2147E14FEA3495AB3B3B3A9495AA4495AA2495AA2 495A5C133F49C8FC137E5B485A485AEA0FE0485AEA7F8000FEC9FC12F85A25D676823A> I<007FB912F8BA7EA26CC912076C6C9238003FFE001F17076D16016C6CEE007F6C6C171F 856C6CEF07806C6C1703000018016D18C0017F17006D7E1A606D6C17006D7E1307806D7E 6D7EA26D7E147F6E7EA26E7E6E7EA26E7E6E7E6E7EA26E7E157E157C153815785D5D4A5A 4A5A14074ACBFC140E5C5C14785C5C495A495A0107186049CB12C0130E49170149188049 170301F0170749EF0F0048485F4848177F48CB12FE481703000E171F48933807FFFC003F B9FC5ABA5A7E43487C7F4C>80 D<007FBC12FCBD7EA3D87FF8CA0001806C6CEF0003001F DF001F13806D19036C6C070013C06C6D193F6C1B0F6EF107E06C6D19036C6DF100F01D70 6D6C1A386D7E6D6C1A181D0C6D7E6D6D19066D1B00816D7F6D7F147F816E7E6E7EA26E7E 6E7F6E7FA26E7F6E7F6F7EA26F7E6F7E150F826F7F6F7F81836F7F707EA2707E161F705A 5F705A16034C5A4C5A4CCCFC161E5E5E16F84B5A4B5A4B5A5E4BCDFC5D153E5D5D4A5A5D 4A5A14074A5A4ACEFC023E1A06023C1A0C5C4A1A1C01011B1849481A3849481A7049481A F091CD1201011EF207E0491A0F017CF23FC0491AFF484819034848071F1380494EB5FC48 4895B6FC48BD12005A48635ABDFC6C635F647C7F68>88 D<151E157EEC01FEEC07F8EC0F E0EC1F80EC7F00147C5C495A13035CA2495AB3B3A2495AA2131F91C7FC133E5BA2485AEA 03E0485AEA1F80007EC8FC12F8A2127EEA1F80EA07C06C7EEA01F8EA007CA27F7F80130F A26D7EB3B3A26D7EA28013016D7E147C147FEC1F80EC0FE0EC07F8EC01FEEC007E151E1F 80788230>110 D<12F012FCB4FCEA3FC0EA0FE0EA03F0EA01FCEA007C7F7F80130FA26D 7EB3B3A26D7EA28013016D7E147CA2143FEC0F80EC07C0EC03F0EC00FE153EA215FEEC03 F0EC07C0EC0F80EC3F00147CA25C495A13035CA2495AB3B3A2495AA2131F91C7FC133E5B EA01FCEA03F0EA0FE0EA3FC0B4C8FC12FC12F01F80788230>I E /Fi 12 121 df<123C127EB4FCA21380A2127F123D1201A3EA0300A31206A25AA25A5A12 2009157A8714>59 D<161816381678167C16FC1501A21503A21506150C82ED187E153815 30156015E015C0913801807F82EC03001406A25C141C021814805C0270131F14605C91B6 FC5B49C7121F17C00106140F130E130C5B133813304915E0A249140712011203D80FE014 0FD8FFF849B5FCA230307DAF37>65 D<011FB67E17F0903A007E0001FCEE007E834AEC1F 80A218C0170F495AA2171FA249481580173FEF7F00177E49485CEE03F84C5AEE1FC04948 48B4C7FC91B512FCEEFF809139C0000FC04948EB07F0707E16018349C8FCA4137E1601A2 5F4914034C5A5F160F48484A5A047FC7FC16FE0003EC07F8B712E093C8FC322F7CAE37> II<011FB67E17F0903A007E0003FCEE007E171F4AEC0F80EF07C018E0170349 4815F0170118F8A2495AA318FC495AA218F8A2495A1703A3494815F01707A218E049C812 0F18C0171F1880017EED3F00A2177E5F495D4C5A4C5AEE0FC048484A5A047EC7FC4B5A00 03EC0FF0B7128003FCC8FC362F7CAE3C>I<011FB6FC17E0903A007E0003F8EE00FE173F 5CEF1F80A218C0495AA44948EC3F80A218005F4948147E5F4C5A4C5A4948EB0FC0047FC7 FC91B512FC16C0D91F80C9FCA449CAFCA4137EA45BA4485AA31203B512E0A2322F7CAE2E >80 D97 D105 D<133EEA07FF5BEA003EA35BA45BA4485AA4484813F0EC07FCEC0F0CEC181E3907C0 303EEC607E14C09038C1807C390F870038018E1300139813F0485A13FCEBFF80EB0FC038 3E03E06D7EA21504007C140CA3151812F815301300EC78E048EB3FC00060EB0F001F307B AF26>107 D<3903E003F0390FF00FFC391C783C1E39183C700F26303EC01380EB3F8000 601300A2EAC07E137CA2120049EB1F00A3153E485AA25D16024848140615F8A2160C3907 C001F0020013181630ED70E049EB3FC06CC7EA1F00271E7E9D2C>110 D115 D<013F133E9039FFC0FF803A01C1 E1C1C03A0300F301E00006EBF60348EB7C075A02FC13C0489038F8038092C7FCA2C7FC49 5AA4495AA31680903807C0011238127C007EEC0300D8FC0F13065D397819E018397070F0 70393FE07FE0390F801F80231E7E9D29>120 D E /Fj 134[41 41 60 41 46 23 41 28 1[46 46 46 69 18 2[18 46 46 23 46 46 41 1[46 18[60 7[50 55 10[23 13[23 40[41 3[{ TeXBase1Encoding ReEncodeFont}27 82.945821 /Helvetica-Oblique rf /Fk 1 53 df<186018F0A3170118E0A3170318C01707EF0F8018005F177E5FEE03F8 4C5AEE3FC0EEFF80DB07FEC7FCEDFFFC021F13E0003FB612804802FCC8FCB612806C14FC 6CECFF80C7001F13E0020013FCED07FE923800FF80EE3FC0EE07F0707EEE00FC177ED87F FC151FB500E0806C01FC15806CD9FF80EB07C0D8000701E013039026003FF814E0DA07FC 1301EC00FFED3F80DB0FC013F0923807E000ED01F06F7E047C13607013008282831607A2 831603A3831601705A344079B243>52 D E /Fl 2 91 df<007FB612F0B8FC6C16E02701 C00F0013F82600E01CEB38FCEE1C1E83706C7E717E1701706C7EA21870A860A293380E01 C017034D5ADC1C1FC7FCEE7CFE923803FFF8021FB512E094C8FC16DC91381C381E160E6F 7EA26F6C7EA26F6C7EEE81E0ED0380923801C070A26F6C7E173CEE701C83EE380FEE3C07 93381C0380040E7F1701706C7E8493380380788448486C6D6C7E007FB500FC90B512C0B6 7F6C823A3B7EBA37>82 D<0007B8FC5AA23B0E0FF001C00E90263F00035B017C148001F0 49485AD80FE0157849010E13704848011E5B90C7121C001E4A485A1603001C02705B4CC7 FC15E00201130EC713C04A485A163C91380700384A5B140E4A5B150102385B4B5A1470DA F007C8FC14E0903801C00E151E903803801C01075B1400010E5B15F0494914604A4814E0 13389038780380017015014948C7FC4A15C02601C00E140300035B0180150748485A0278 140F000E0170141F4A143D481679263C01C014F1D83803913803E380007049EB0FC349C7 EA7F03B9FCA3333B7DBA3F>90 D E /Fm 28 121 df<141C143EA4ECFFE0010F13FE013F EBFF804914E048B612F84890383E3FFED807F81303D80FE01300D81FC0143E0180140CD8 3F001400A2123E127EA4127FA21380EA3FC013E0EA1FF8EBFFBE6C13FE6CEBFFC06C14F8 6C14FE6C6C7F6D14C0010714E0010014F0023F13F8EC3E3FED0FFCED03FE15011500167F A2163FA6167E12400070157C00F815FC00FEEC01F8D8FF80EB07F001E0EB0FE0D83FFEEB 7FC06CB6128000071500C614FC013F13F001011380D9003EC7FCA4141C28457BBE34>36 DI40 D<12F07E127C123F6C7E6C7E6C7E6C7E6C7E12007F137E7FA2EB1F8014C0130F14E01307 14F0130314F8A2130114FCA3130014FEA4147E147FAE147E14FEA414FC1301A314F81303 A214F0130714E0130F14C0131F1480EB3F00A2137E5B5B1201485A485A485A485A48C7FC 127C5A5A185079BE28>I<16F04B7EB3AC007FBA12C0BB12E0A46C19C0C8D801F8C9FCB3 AC6F5A43447AB850>43 D48 D<14E0497E1307130F133FEA3FFFB5FCA313C7EA0007B3B3A5007FB6FCA2B712806C1500 A2213876B734>I<903801FFC0010F13FC017F13FF90B612C048814848C67FD807F0EB1F F8D80FC0EB07FC4848EB01FE48C87E82007E1680163F4816C0127C12380018151F1208C9 FC163FA21780A2167F17005E5E4B5A4B5A4B5A4B5A4B5A4B5A4BC7FC15FEEC03FCEC07F0 4A5A4A5A027FC8FC14FE495AEB03F0495AEB1FC0495A017EC9FC5B485A485AEA0FC048B7 12804816C05AA26C16802A387CB734>III<0007B612FC825AA25E01E0C9FCAFEC7FE09038E3FFFC90B6FC16C0829138801F F09039FC0007F8496D7E01E06D7E6C486D7E4980C91380A2163F17C0A8EE7F8012100030 160000785D00FE4A5A6C5DD87FC0EB07F8D81FF0EB1FF0D80FFEEBFFE06CB65A00015D6C 6C49C7FC011F13F8010113802A387CB634>II<007FB712C0B812E0A36C16C0C9EA7F80EEFF004B5A4B5A4B5A4B5A4B5A5E 153F4B5A4BC7FC5D14014A5A5D14074A5AA24A5AA24A5AA24A5AA34AC8FCA2495AA31303 5CA313075CA5130F5CA96D5A2B387CB634>III<127F12FFA71200 B3A912FFA7127F082B76AA1D>I<007FBA12C0BB12E0A4003F19C0CEFCAE003FBA12C0BB 12E0A46C19C0431A7AA350>61 D91 D93 D97 D102 D<027F137C903903FFC0FE010F13F001 3F13F84913FC9038FFE03C48EB000ED803FC130748481303485A484813015B003F14005B 127F90C8FCA312FEA86C14017EA27F003F14037F6C6C13076C6C13066D130ED807FE131C 3903FFC0786CEBFFF86C6C13F06D13C0010F1380903801FE0090C8FCA316FCA215010008 EC03F8001EEC07F0D81FC0EB0FE001FEEB7FC090B612806C15006C5CC66C13F8010313C0 27397CAB34>I<127E12FFA6127E1200A7123E127FB3B3A5123E083A7AB916>105 D<127C12FEB3B3B3127C073979B816>108 DII< EC7FC0903803FFF8010F13FE013F6D7E49809039FFC07FE03A01FE000FF0D803F8EB03F8 48486D7E48486D7E49147E001F157F4980003F168090C8121F4816C0A2007E150FA200FE 16E0A9007FED1FC0A46C6CEC3F80A26C6CEC7F00A26C6C14FE6C6C495A6D1303D803FEEB 0FF83A01FFC07FF06C6CB512C06D5C010F49C7FC010313F89038007FC02B2E7CAC34>I< 007C153E00FE157E007F15FE6C6C495A6C6C495A6C6C5C15076C6C495A6C6C495A6C6C49 5A6C6C49C7FC017F137E6D6C5A90381F81F8EB0FC3903807E7F0ECFFE06D5B6D5B6D90C8 FC147E147F4A7E5B497F903807E7E090380FC3F0ECC1F890381F80FC90383F007E017E13 7F496D7E00016E7E4848130F48486D7E496D7E484880001F6E7E48486D7E48C8127F00FE ED3F8048151F48150F292B7EAA2E>120 D E /Fn 6 55 df<1306130F133F13FF123F5A B5FCEA7F9FEA201F1200B3AF003FB512C04814E0A215C01B2E78AD2B>49 DIII<000FB512FC48 80A35D90C9FCABEB07FC90383FFF8090B512E0819038FC03F89038E000FC0180137E90C7 7E000E80C81380A2ED0FC0A7ED1F8012100030143F007C150000FE147E397F8001FC393F F00FF86CB55A00075C6C5CC691C7FCEB1FF0222E7CAC2B>II E /Fo 31 123 df11 DI<1406EC7FFC91B5 1280D901C713C049C6FC153F0106EB1F800107EB070092C7FCA280A26D7E80A26D7E806D 7EA2147E147F6E7E8149B47EEB07EF90380F8FF0EB3E07017C7FEBF803EA01F048486C7E EA07C0A2EA0F80001F130090C7FC5AA2127EA3485CA21401A25DA24813035DA2007C495A 5D140F003C91C7FC6C131E000E131C6C5B3803C0F06CB45AD8003FC8FC223C7CBA27>14 DI<133F14E0EB07F06D7E6D7EA26D7EA2 147E147FA26E7EA2141F81A26E7EA2140781A26E7EA2140181A2140081157E157FA25D4A 7F5C9138079FC0EC0F1FEC1E0F023C7F14784A6C7E1301903803E003D907C07FEB0F8049 486C7E133E49130001FC80485A4848147E4848147F4848804848158048C8FC007EED1FC0 12FE007CED0FE0003815072B3A7CB833>21 D<023FB512F049B612F81307011F15F04915 E090267F80FEC7FC9038FC003F48487F4848804848130F485A4980121F48C7FCA2127EA3 484A5AA393C7FC5D5A157EA2157C5D4A5A007C5C4A5A003C495A6C49C8FC6C133E3807C0 F83803FFE0C66CC9FC2D257CA332>27 D<121C123E127FEAFF80A3EA7F00123E121C0909 798818>58 D<121C127E127FEAFF80A213C0127FA2121C1200A4EA0180A3EA0300A31206 5AA25A5A12200A19798818>I<183018F81703170FEF3FE0EFFF80933803FE00EE0FF8EE 3FE0EEFF80DB03FEC7FCED0FF8ED3FE0EDFF80DA03FEC8FCEC0FF8EC3FE0ECFF80D903FE C9FCEB0FF8EB3FE0EBFF80D803FECAFCEA0FF8EA3FE0EA7F8000FECBFCA2EA7F80EA3FE0 EA0FF8EA03FEC66C7EEB3FE0EB0FF8EB03FE903800FF80EC3FE0EC0FF8EC03FE913800FF 80ED3FE0ED0FF8ED03FE923800FF80EE3FE0EE0FF8EE03FE933800FF80EF3FE0EF0FF817 0317001830353679AF44>I<1503ED0780A2150F1600A25D151E153E153CA2157C1578A2 15F85D14015DA214035DA214075DA2140F92C7FC5C141EA2143E143CA2147C1478A214F8 5C13015CA213035CA213075C130F91C8FCA25B131EA2133E133CA2137C137813F85BA212 015BA212035BA212075B120F90C9FCA25A121EA2123E123C127C1278A212F85AA2126021 537BBD2C>I<124012F812FE6C7EEA3FE0EA0FF8EA03FEC66C7EEB3FE0EB0FF8EB03FE90 3800FF80EC3FE0EC0FF8EC03FE913800FF80ED3FE0ED0FF8ED03FE923800FF80EE3FE0EE 0FF8EE03FE933800FF80EF3FE0EF0FF0EF03F8A2EF0FF0EF3FE0EFFF80933803FE00EE0F F8EE3FE0EEFF80DB03FEC7FCED0FF8ED3FE0EDFF80DA03FEC8FCEC0FF8EC3FE0ECFF80D9 03FEC9FCEB0FF8EB3FE0EBFF80D803FECAFCEA0FF8EA7FE0EAFF8048CBFC12F812603536 79AF44>I67 D<0103B812F84917FC7F90260007F0C7EA1FF8180318004A5A1978A34A4815 70A44A5A1738A34AC74813601900A217F002FE5C1601160F91B6FC495DA29138FC000F16 0749486D5AA4494849C712C01801A20406EB0380494890C7FCF00700A2180E495A60183C A249485D18F84D5A170349C8EA0FE0173F49913803FFC0007F90B7FCB95A7E3E387CB740 >69 D<0103B512FE5B6D5C90260007F8C8FC5DA24A5AA44A5AA44A5AA44AC9FCA414FEA4 495AA4495AA44948154018E0A2EF01C0495AA2EF0380A24948140718005FA24948141E17 3E177E5F49C71203EE0FF849147F007F90B6FCB85A7E33387CB73C>76 D<0103B77E4916F06D16FC903B0007F00003FF9438007F80F03FC04A48EC1FE0180F19F0 18074A5AA44A48140FA319E04AC8121F19C0183F198002FEED7F0018FE4D5AEF07F04948 EC1FE0EFFF8091B648C7FC17F0D903F8CAFCA4495AA4495AA4495AA4495AA449CBFCA25B 007F13FEB6FC6C5B3C387CB738>80 D83 D<003FB56C90B512E0485D6C91C714C02600 7F8091380FF80091C8EA03E06013FE60A348484BC7FCA44848150EA448485DA448485DA4 48485DA448485DA448C8485AA400FE4B5AA34CC8FCA2160E5E127E5E5E6C5D6C4A5A6DEB 07806C6C49C9FC6C6C137E3903FC03F8C6B512E0013F1380D907FCCAFC3B397AB73B>85 D<267FFFFC913807FFFCB55D6C496E13F8000190C9138049EE7E0018781870000017F060 4D5A17036D5E4DC7FC6D5D170E5F173C6E14385F013F15F05F4C5A16035F6E49C8FC011F 5C160E5E163C16386E5B130F5E4B5AA24B5A6E48C9FCA20107130E5DA25D6E5AA201035B ECF9C0A2ECFB8002FFCAFCA26D5AA25C5CA25C6D5A3E397BB733>I<147E903803FF8090 390FC1C38090391F00E7C0013C137F49133F13F8484814804848131F1207485AED3F0048 5AA2123F90C7127E5AA300FE5CA448495A160EA3913803F01CA2007C13071618020F1338 6C131B001E013113706C13E1260783C013E03A03FF807FC03A00FC001F0027267CA42F> 97 D<133FEA0FFF5A5BEA007EA35BA4485AA4485AA4485A147E9038E3FF809038E783C0 390FCE01E09038D800F001F013F849137C485AA249137EA248C7FCA4007E14FEA448EB01 FCA315F814034814F0A2EC07E0A2EC0FC015800078EB1F00007C133E003C133C5C6C485A 380F07E03803FF80D800FCC7FC1F3A7CB826>II103 DI107 D110 D<90390F8003F090393FE01FFC903970F03C1E9039E0F8700F9238C007 802701C0FD8013C09139FF0003E0495A12034A14F0A2380701F8A3120049481307A44948 EB0FE0A317C04948131F1780A2EE3F00495A167E167C6E5B013F495A5E6E485A9138700F 8090267E383FC7FCEC1FFCEC07E091C9FC5BA4485AA4485AA3387FFFC0B5FC6C5B2C3582 A42C>112 D115 D<017C160E48B4021C131F26038780013EEB3F80D80607147E000C6DED7FC0001C173F00 186D151F00384B130F38300FC0007017071980484848485A1803A226003F0015074B4814 00A2137EA201FE4948130E5BA2604848495AA260A2183018701860031F14E000004C5A6D 013F5C017C902673E003C7FC6D01E11306903A1F81C0F81C903A07FF807FF8903A01FE00 0FE03A267DA43F>119 DI<137C48B4141C26038780133ED80607147E000E7F121C1218003815FCEA300F1270A2 3AE01F8001F8A338003F00ED03F0A2137EA249EB07E0A44848EB0FC0A4ED1F80A3153F16 0000005C5D90387C01BF90383E077EEB0FFEEB03F890C7FC5DA20007495AEA0F80D81FC0 5B003F495A140701805B49485A003E49C7FC0018133E001C13F8380F03F03807FFC0C648 C8FC27367DA42B>II E /Fp 28 113 df<007FB812F0B912F8A26C17F03504799644>0 D<121C123E127FEAFF80 A3EA7F00123E121C0909799918>I<0060150300F0ED07806C150F007CED1F006C153E6C 5D6C6C5C6C6C495A6C6C495A6C6C495A6C6C495A017C49C7FC6D133E6D5B6D6C5A903807 C1F0903803E3E0903801F7C06DB45A6EC8FC143EA2147F4A7E903801F7C0903803E3E090 3807C1F090380F80F890381F007C013E7F497F496D7E48486D7E48486D7E48486D7E4848 6D7E48C8127C003E81488148ED0F804815070060ED0300292A73A944>II<913801FFC0021F13FC027F 13FF903A01FE1C3FC0D907E0EB03F0D91F80EB00FCD93E00143E0178150F496F7E48486F 7E48486F7E49150048C71570481778000E17384883A24883A34883A348EF0380A4BAFCA3 00E0C7001CC71203A50070EF0700A36C170EA36C5FA26C5F000F17786C17706C6C5E6D15 016C6C4B5A6C6C4B5A01784BC7FC013E153ED91F8014FCD907E0EB03F0D901FEEB3FC0D9 007FB5C8FC021F13FC020113C0393A7BB144>8 D15 D<183018F81703EF0FF0EF3FE0EFFF80933803FE00EE0FF8 EE3FE0EEFF80DB03FEC7FCED0FF8ED3FE0EDFF80DA03FEC8FCEC0FF8EC3FE0ECFF80D903 FEC9FCEB0FF8EB3FE0EBFF80D803FECAFCEA0FF8EA7FE0EAFF8048CBFC7EEA7FC0EA1FF0 EA07FCEA01FF38007FC0EB1FF0EB07FCEB01FF9038007FC0EC1FF0EC07FCEC01FF913800 7FC0ED1FF0ED07FCED01FF9238007FC0EE1FF0EE07FCEE01FF9338007FC0EF1FF0EF07F8 1701EF00701800AE007FB812F0B912F8A26C17F0354779B644>20 D<126012F812FEEA7F80EA3FE0EA0FF8EA03FEC66C7EEB3FE0EB0FF8EB03FE903800FF80 EC3FE0EC0FF8EC03FE913800FF80ED3FE0ED0FF8ED03FE923800FF80EE3FE0EE0FF8EE03 FE933800FF80EF3FE0EF0FF817031707EF1FF0EF7FC0933801FF00EE07FCEE1FF0EE7FC0 4B48C7FCED07FCED1FF0ED7FC04A48C8FCEC07FCEC1FF0EC7FC04948C9FCEB07FCEB1FF0 EB7FC04848CAFCEA07FCEA1FF0EA7FC048CBFC12FC1270CCFCAE007FB812F0B912F8A26C 17F0354779B644>I25 D<18301878A418F818F0A2170118E01703EF07C018 80170FEF1F00173E17FC4C5AEE07F0EE1FE0EEFF80030390C7FCED3FFC913807FFF00107 B51280007FB548C8FCB612E0816C14FFD8000314E0D9000313F89138001FFE923801FF80 9238003FC0EE0FF0EE03F8EE00FC177E171FEF0F80EF07C0170318E0170118F01700A218 F81878A41830353579AE44>30 D<126012F0A47E1278A2127C123C123E7E7E7F6C7E6C7E EA01F86C7E137FEB3FC0EB0FF8EB07FE903801FFE06D6CB4FC020F13FF0203ECFFF0DA00 3F14F85D0207B612F0023F49C7FCDAFFFEC8FC010313C0D90FFCC9FCEB1FE0EB7F8001FE CAFCEA01F8485AEA07C0485A48CBFC121E123E123C127C1278A212F85AA41260353579AE 44>I<19C04E7EA4727EA2851978197C193C85191F85737E737E737EF100F81A7C1A3F00 7FBB12E0BC12F8A26C1AE0CDEA3F001A7C62F101E04F5A4F5A4FC7FC61191E61197C1978 19F861A24E5AA4725A4D2C7BAA58>33 D<17034D7E717EA2717EA2717E1878A284848472 7E007FB97EBA7E856C18FCCC123E737EF107E0F103F8F100FEF27FC0F21FF8A2F27FC0F2 FE00F103F8F107E0F11F80073EC7FC007FB912FCBA12F0616C60CBEA07804EC8FC181E60 60A2604D5AA24D5AA24D5A71C9FC4D307BAC58>41 D<03C014064A6C140FA24A486E7EA2 4A486E7EA24AC86C7E021E6F7EA24A16784A8202F8163E49B9FC49844984498449CAEA01 F0013E717E01FC187ED803F0F01F80D80FE0F00FE0D83FC0F007F8B4CCEA01FEA2D83FC0 F007F8D80FE0F00FE0D803F0F01F80D800FCF07E00013E18F86D4D5A6DB95A6D606D606D 95C7FCD900F8C9123E0278163C6E5E6E5EA26E4B5A6E6C4A5AA26E6C4A5AA26E6C4AC8FC A26E4814064F307CAC58>44 D<0203B512E0023F14F091B6FC010315E04948C8FCEB1FE0 EB3F80017EC9FC5BEA01F0485A485A5B120F48CAFC121E123E123C127C1278A312F85AA2 B812E017F0A217E000F0CAFCA27E1278A3127C123C123E121E121F6C7E12077F6C7E6C7E EA00FC137E6D7EEB1FE0EB07FE6DB612E0010015F0143F020314E02C3679AF3B>50 D<17C0EE01E0160317C016071780160F17005E161E163E5E167816F85E15015E15035E15 074B5A93C7FC5D151E153E153C157C157815F84A5A5D14035D14075D140F4AC8FC141E14 3E143C147C147814F85C1301495A5C13075C130F91C9FC5B131E133E5B137813F85B1201 5B12035B1207485A90CAFC5A121E123E123C127C127812F85A12602B4A74B900>54 D<0060160600F0160FA26C161F0078161E007C163E003C163CA2003E167C001E1678001F 16F86C16F0A26D1401000716E06D1403000316C06D14070001168090B7FCA26C1600A201 78C7121EA2017C143E013C143C013E147C011E1478A2011F14F86D5CEC800101075CA2EC C00301035CECE00701015CA2ECF00F010091C7FC6E5AEC781EEC7C3EEC3C3CA2EC3E7CEC 1E78EC1FF86E5AA36E5AA26E5AA26E5A303A80B831>56 D<007FB612F8B712FCA27EC912 3CB3A4001FB612FC5A5A7EC9123CB3A5007FB612FCB7FCA26C15F826397BB831>I<181C 187C18FC1701A217031707A2170FA2171F171D173D1739177917F117E104017F17C11603 1780160717005E161E161C163C163816785E4C7F15014B5A844B5A4BC7FCA2151E5D037C 81037BB6FC92B7FC5CA25CDA0780C7123F020F8292C8FC141E0010013E151F0030498200 785B387C01F0D8FF07707ED9FFE017204AEEF8E04AED07FF6C90C914804918006C48EE03 FCD81FF0EE01F0D807C093C8FC433E7EBA46>65 D76 D83 D<0060160600F0160FB3B16C161F0078161E007C163E003C163C003E167C6C16F8D80FC0 EC03F0D807F0EC0FE0D803FEEC7FC03B01FFE007FF806C6CB5EAFE00011F14F8010314C0 9026003FFCC7FC30327BB03B>91 D<157EEC07FEEC1FC0EC7F0014FC495A495AA2495AB3 A8495AA2495A49C7FC137E485AEA7FF0EAFF80EA7FF0EA01FCEA007E7F6D7E6D7EA26D7E B3A86D7EA26D7E6D7E147FEC1FC0EC07FEEC007E1F537ABD2C>102 D<127EEAFFE0EA07F8EA00FE133F6D7E6D7EA26D7EB3A86D7EA26D7E1300147EEC3F80EC 0FFCEC01FEEC0FFCEC3F80EC7E0014F81301495AA2495AB3A8495AA2495A49C7FC13FEEA 07F8EAFFE0007EC8FC1F537ABD2C>I<146014F0A2130114E0130314C0A213071480130F 14005B131EA2133E133C137C1378A213F85B12015BA212035B12075BA2120F90C7FC5A12 1E123E123CA2127C127812F85AA27E1278127C123CA2123E121E121F7E7F1207A27F1203 7F1201A27F12007F1378A2137C133C133E131EA2131F7F1480130714C01303A214E01301 14F01300A21460145278BD22>I<126012F0A27E1278127C123CA2123E121E121F7E7F12 07A27F12037F1201A27F12007F1378A2137C133C133E131EA2131F7F1480130714C01303 A214E0130114F01300A2130114E0130314C0A213071480130F14005B131EA2133E133C13 7C1378A213F85B12015BA212035B12075BA2120F90C7FC5A121E123E123CA2127C127812 F85AA2126014527BBD22>I<126012F0B3B3B3B3A91260045376BD18>I<1A301A781AF81A F019011AE019031AC019071A80190F1A0061191E193E193C197C197819F8611801611803 61180761180F96C7FC60183E183C187C187818F8601701601703601707600170150F01F0 93C8FC00035E486C151E001F163ED839FC153C0061167CD8C0FE1578000016F8017F5D16 016D6C5C16036D6C495A5F6D6C130F94C9FC6D6C5B161E6D6C133E163C6D6C137C16786D 6C13F85EEC7F015E1583023F5B158791381FC78015CFDA0FEFCAFC15FF6E5AA26E5AA26E 5AA26E5A5D45537A8349>112 D E /Fq 139[16 29 19 2[32 32 4[13 3[32 3[32 16[38 22[32 32 32 32 32 32 32 32 32 32 2[19 45[{TeXBase1Encoding ReEncodeFont}20 57.583362 /Helvetica rf /Fr 105[46 28[46 1[64 46 50 28 46 32 1[50 50 50 73 23 46 23 23 50 50 1[46 50 46 50 46 9[78 1[60 50 55 60 1[55 64 60 1[50 2[23 3[55 60 60 1[60 6[28 58[{ TeXBase1Encoding ReEncodeFont}38 82.945821 /Helvetica-Bold rf /Fs 104[83 2[28 28 24[41 41 41 60 41 46 23 41 28 46 46 46 46 69 18 41 18 18 46 46 23 46 46 41 46 46 7[55 1[78 55 60 50 55 60 1[55 64 60 69 46 55 1[23 60 64 50 55 60 60 55 55 1[46 1[48 1[23 23 1[46 2[46 46 46 46 46 46 23 23 28 23 2[28 28 18 55 1[46 2[23 29[41 41 2[{ TeXBase1Encoding ReEncodeFont}74 82.945821 /Helvetica rf /Ft 134[55 4[33 55 39 1[61 61 61 88 28 2[28 61 2[55 61 55 1[55 12[61 4[77 10[72 68[{TeXBase1Encoding ReEncodeFont}18 99.541667 /Helvetica-Bold rf /Fu 141[40 2[66 111[{ TeXBase1Encoding ReEncodeFont}2 119.416684 /Helvetica rf /Fv 107[59 59 24[59 66 66 93 66 73 40 66 46 73 73 73 73 106 33 66 1[33 73 73 40 66 73 66 73 66 9[112 79 86 73 79 86 1[79 93 86 99 73 2[33 1[93 73 79 86 86 86 86 1[73 4[40 4[66 5[33 33 12[40 30[73 2[{TeXBase1Encoding ReEncodeFont} 53 119.416684 /Helvetica-Bold rf end % COPYRIGHT NOTICE % Copyright (c) 1994 Carnegie Mellon University % All Rights Reserved. % % See for use and distribution information. % % % HISTORY % Log:psnup.pro,vLog: psnup.pro,v Log:psnup.pro,v % Revision 1.1.2.1 1995/11/01 13:33:33 moore % Created from Transcript 4.0 sources % [1995/10/31 15:23:42 moore] % % EndLogEndLogEndLog % Psnup prolog % Copyright (c) 1990,1992 Adobe Systems Incorporated. All Rights Reserved. % GOVERNMENT END USERS: See Notice file in TranScript library directory % -- probably /usr/lib/ps/Notice % RCS: Header:/afs/cs.cmu.edu/misc/transcript/rcs/lib/psnup.pro,v1.1.2.11995/11/0113:33:33mooreExpHeader: /afs/cs.cmu.edu/misc/transcript/rcs/lib/psnup.pro,v 1.1.2.1 1995/11/01 13:33:33 moore Exp Header:/afs/cs.cmu.edu/misc/transcript/rcs/lib/psnup.pro,v1.1.2.11995/11/0113:33:33mooreExp /PNSP { % scalefactor PNSP /PN save def dup scale } bind def /PNEP { PN restore PNshowpage } bind def /PNBOX { % width height PNBOX gsave 1 setlinewidth exch /width exch def 0 0 moveto width 0 rlineto 0 exch rlineto 0 width sub 0 rlineto closepath stroke grestore } bind def /PNLS { % scalefactor -width PNLS /PN save def 90 rotate 0 exch translate dup scale } bind def %%EndProlog %%BeginSetup %%Feature: *Resolution 300dpi TeXDict begin %%IncludeFeature: *PageSize Letter %%EndSetup %%Page: ? 1 0.4718 PNSP /PNP save def 31.7922 839.3143 translate 0 0 bop Black Black BrickRed 37 197 a Fv(Wh)n(y)33 b(do)g(we)g(use)g (this)f(\223Competitive)336 397 y(Ratio\224)h(thing)f(an)n(ywa)n(ys?)p Black 922 596 a Fu(or)p BrickRed 446 737 a Ft(Decision)26 b(Theories)g(and)733 936 y(Optimality)p Black 570 1278 a Fs(Class)d(Presentation)g(f)n(or)139 1477 y(15-854:)28 b(Appro)n(ximation)23 b(and)f(Online)i(Algor)q(ithms)p BrickRed Black RoyalBlue 413 2201 a Fr(P)n(atric)n(k)f(Rile)o(y)p Black 22 w Fs(and)p RoyalBlue 23 w Fr(Ell)o(y)g(Winner)p Black 742 2359 a Fs(Apr)q(il)h(5,)f(2000)p RoyalBlue Black Black 934 2553 a Fq(0)466 b(15-854)15 b(Presentation)p Black eop PNP restore /PNP save def 648.5610 839.3143 translate 0 1 bop Black Black BrickRed Black BrickRed 272 125 a Fv(Wh)n(y)32 b(Competitive)g(Ratio?)p Black Black 2 211 1947 2 v 2 213 V 2 215 V Black 2 862 a Fs(The)18 b(questions)i(y)n(ou)f (should)g(ha)n(v)n(e)f(been)h(asking,)h(b)n(ut)f(prob-)2 978 y(ab)n(ly)k(w)o(eren't:)p Black 74 1157 a Fp(\017)p Black 41 w Fs(Wh)n(y)36 b(do)f(w)o(e)g(use)h(the)f(competitiv)n(e)h(r)o (atio)g(to)f(sa)n(y)h(an)159 1273 y(algor)q(ithm)23 b(is)p RoyalBlue 24 w(good)p Black 23 w(or)p RoyalBlue 22 w(bad)p Black(?)p Black 74 1452 a Fp(\017)p Black 41 w Fs(What)32 b(if)g(I)g(ha)n(v)n(e)h(a)f(g)o(r)q(udge)f(against)i(the)f(competitiv)n (e)159 1568 y(r)o(atio?)d(Could)22 b(I)h(reasonab)n(ly)p RoyalBlue 24 w(use)g(something)g(else)p Black(?)p Black 74 1746 a Fp(\017)p Black 41 w Fs(W)n(e)17 b(alw)o(a)n(ys)h(consider)f (the)h(w)o(orst)f(case)h(adv)n(ersar)r(y)-8 b(.)26 b(What)159 1863 y(if)40 b(I)g(kno)o(w)g(the)f(adv)n(ersar)r(y)p RoyalBlue 40 w(probab)n(ly)p Black 40 w(w)o(on't)h(be)g(that)159 1979 y(bad?)p Black 934 2553 a Fq(1)466 b(15-854)15 b(Presentation)p Black eop PNP restore /PNP save def 31.7922 42.5454 translate 0 2 bop Black Black BrickRed Black BrickRed 754 125 a Fv(Outline)p Black Black 2 188 1947 2 v 2 190 V 2 192 V Black Black 74 710 a Fp(\017)p Black RoyalBlue 41 w Fs(Basic)24 b(De\002nitions)p Black Black 74 889 a Fp(\017)p Black 41 w Fs(Str)q(ict)g(Uncer)s(tainty)p Black 196 1036 a Fr(\226)p Black 42 w Fs(Other)e(optimality)i(cr)q(iter)q(ia)p Black 196 1183 a Fr(\226)p Black 42 w Fs(\223Bad\224)e(e)n(xamples)p Black 196 1331 a Fr(\226)p Black 42 w Fs(Axiomatic)i(char)o(acter)q (ization)g(of)e(cr)q(iter)q(ia)p Black 74 1509 a Fp(\017)p Black 41 w Fs(Pure)h(Risk)p Black 196 1657 a Fr(\226)p Black 42 w Fs(Absolute)g(Utility)h(Functions)p Black 196 1804 a Fr(\226)p Black 42 w Fs(P)l(ersonalization)g(and)e(Utility)i (Theor)r(y)p Black 196 1951 a Fr(\226)p Black 42 w Fs(Other)e (Approaches)p Black 74 2130 a Fp(\017)p Black 41 w Fs(Conclusion)p Black 934 2553 a Fq(2)466 b(15-854)15 b(Presentation)p Black eop PNP restore /PNP save def 648.5610 42.5454 translate 0 3 bop Black Black BrickRed Black BrickRed 26 125 a Fv(Simple)33 b(Decision)g(Theoretic)g(Model)p Black Black 2 211 1947 2 v 2 213 V 2 215 V Black Plum 1077 636 a Fp(S)p Black OliveGreen 543 736 a Fo(s)584 753 y Fn(1)p Black OliveGreen 890 736 a Fo(s)931 753 y Fn(2)p Black OliveGreen 1238 736 a Fo(s)1279 753 y Fn(3)p Black OliveGreen 1585 736 a Fo(s)1626 753 y Fn(4)p Black 412 767 1390 3 v Plum 43 885 a Fp(A)p Black RoyalBlue 276 835 a Fo(a)323 852 y Fn(1)p Black 409 864 3 100 v 533 835 a Fm(70)p 757 864 V 243 w(80)p 1104 864 V 244 w(90)p 1452 864 V 269 w(1)p 1799 864 V 412 867 1390 3 v RoyalBlue 276 935 a Fo(a)323 952 y Fn(2)p Black 409 964 3 100 v 559 935 a Fm(1)p 757 964 V 295 w(1)p 1104 964 V 295 w(1)p 1452 964 V 191 w(10)p Fo(;)14 b Fm(000)p 1799 964 V 412 967 1390 3 v Black 74 1307 a Fp(\017)p Black 41 w Fs(One-shot)23 b(prob)n(lem)p Black 74 1486 a Fp(\017)p Black 41 w Fs(Set)p Plum 23 w Fp(A)p Black 23 w Fs(of)g(actions)h(\(assume)f(\002nite)g(f)n (or)f(simplicity\))p Black 74 1664 a Fp(\017)p Black 41 w Fs(Set)p Plum 23 w Fp(S)p Black 30 w Fs(of)g(states)i(\(assume)f (\002nite)g(f)n(or)f(simplicity\))p Black 74 1843 a Fp(\017)p Black 41 w Fs(Cost)h(function)p Plum 24 w Fo(C)p Black 29 w Fm(:)h Fp(A)c(\002)g(S)31 b(!)24 b Fl(R)p Black 74 2021 a Fp(\017)p Black RoyalBlue 41 w Fs(W)n(e)p Black 23 w(choose)f(an)p RoyalBlue 23 w(action)p Black(,)p OliveGreen 23 w(nature)p Black 23 w(chooses)g(a)p OliveGreen 23 w(state)p Black Black 74 2200 a Fp(\017)p Black 41 w Fs(W)n(e)p RoyalBlue 22 w(pa)n(y)p Black 22 w(the)f(amount)g (speci\002ed)i(b)n(y)f(the)f(cost)h(function)p Black 934 2553 a Fq(3)466 b(15-854)15 b(Presentation)p Black eop PNP restore PNEP %%Page: ? 2 0.4718 PNSP /PNP save def 31.7922 839.3143 translate 0 4 bop Black Black BrickRed Black BrickRed 367 125 a Fv(Pref)o(erence)34 b(Relations)p Black Black 2 187 1947 2 v 2 189 V 2 191 V Black 2 572 a Fs(In)25 b(order)g(to)g(be)h(as)f (gener)o(al)h(as)g(possib)n(le)o(,)h(w)o(e'll)g(talk)f(about)2 689 y(a)p RoyalBlue 22 w(pref)n(erence)c(relation)h Fk(4)p Black OliveGreen 2 846 a Fo(a)h Fk(4)g Fo(b)p Black 22 w Fs(means)f(that)g Fo(a)g Fs(is)g(pref)n(erred)e(to)i Fo(b)p Fs(.)2 1004 y Fj(Notice)28 b(the)f(similar)q(ity)j(to)e Fp(\024)p Fj(,)h(re\003ecting)f(that)g(smaller)g(cost)2 1120 y(is)23 b(usually)h(pref)n(erred)2 1461 y Fs(Impor)s(tant)e (notes:)p Black 74 1639 a Fp(\017)p Black 41 w Fk(4)h Fs(m)o(ust)g(be)p RoyalBlue 23 w(Complete)p Black 23 w(and)p RoyalBlue 23 w(T)-10 b(r)o(ansitiv)n(e)p Black Black 74 1818 a Fp(\017)p Black OliveGreen 41 w Fo(a)48 b Fp(\036)g Fo(b)p Black Fs(:)54 b(denotes)36 b Fo(a)f Fs(is)p RoyalBlue 37 w(str)q(ictly)j(pref)n(erred)p Black 33 w(to)e Fo(b)g Fs(\(i.e)o(.)159 1934 y Fo(b)24 b Fp(6)p Fk(4)h Fo(a)p Fs(\))p Black 74 2112 a Fp(\017)p Black OliveGreen 41 w Fo(a)g Fp(\031)g Fo(b)p Black Fs(:)k(denotes)23 b Fo(a)g Fs(is)p RoyalBlue 24 w(indiff)n(erent)p Black 22 w(to)h Fo(b)e Fs(\(i.e)o(.)29 b Fo(a)c Fk(4)g Fo(b)e Fs(and)159 2229 y Fo(b)h Fk(4)h Fo(a)p Fs(\))p Black 934 2553 a Fq(4)466 b(15-854)15 b(Presentation)p Black eop PNP restore /PNP save def 648.5610 839.3143 translate 0 5 bop Black Black BrickRed Black BrickRed 232 125 a Fv(Cer)r(tainty)33 b(and)g(Uncer)r(tainty)p Black Black 2 211 1947 2 v 2 213 V 2 215 V Black 2 415 a Fs(Se)n(v)n(er)o(al)20 b(cases)i(based)f(on)g(the)f(amount)h(of)f(inf)n(or)r(mation)h(w)o(e)2 531 y(ha)n(v)n(e:)p Black 74 709 a Fp(\017)p Black RoyalBlue 41 w Fs(Under)k(Cer)s(tainty)p Black(:)35 b(W)n(e)26 b(kno)o(w)f(what)h(state)g(nature)g(will)159 826 y(pic)n(k.)k(Classic) 24 b(optimization.)p OliveGreen 159 962 a(Not)f(what)f(w)o(e'll)i(do)f (here)o(.)p Black Black 74 1141 a Fp(\017)p Black RoyalBlue 41 w Fs(Under)f(Uncer)s(tainty)p Black(:)p Black 196 1288 a Fr(\226)p Black Plum 42 w Fs(Str)q(ict)c(Uncer)s(tainty)p Black(:)26 b(W)n(e)17 b(ha)n(v)n(e)h Fj(no)h Fs(inf)n(or)r(mation)e (about)284 1404 y(lik)n(elihood)25 b(of)d(the)h(states)h(of)f(nature)p OliveGreen 284 1531 a(W)n(e'll)g(do)g(this)h(\002rst)p Black Black 196 1678 a Fr(\226)p Black Plum 42 w Fs(Pure)29 b(Risk)p Black(:)41 b(Probabilities)30 b(of)f(the)g(v)n(ar)q(ious)h (states)284 1794 y(are)22 b(kno)o(wn)p OliveGreen 284 1921 a(W)n(e'll)h(do)g(this)h(second)p Black Black 196 2068 a Fr(\226)p Black Plum 42 w Fs(P)m(ar)s(tial)h(Inf)n(or)r(mation)p Black(:)32 b(Some)n(where)24 b(in)h(the)g(middle)284 2184 y(of)e(the)g(pre)n(vious)f(tw)o(o)m(.)28 b(Most)23 b(real-w)o(or)q(ld)f(cases)o(.)p OliveGreen 284 2311 a(This)34 b(is)g(really)g(hard,)h(so)f(w)o(e)f(w)o(on't)g(talk)h(about) f(it)284 2427 y(m)o(uch)p Black Black 934 2553 a Fq(5)466 b(15-854)15 b(Presentation)p Black eop PNP restore /PNP save def 31.7922 42.5454 translate 0 6 bop Black Black BrickRed Black BrickRed 492 125 a Fv(Pr)n(ogress)34 b(Repor)r(t)p Black Black 2 211 1947 2 v 2 213 V 2 215 V Black Black 74 722 a Fp(\017)p Black 41 w Fs(Basic)24 b(De\002nitions)p Black 74 900 a Fp(\017)p Black RoyalBlue 41 w Fs(Str)q(ict)g(Uncer)s(tainty)p Black Black 196 1048 a Fr(\226)p Black 42 w Fs(Other)e(optimality)i(cr) q(iter)q(ia)p Black 196 1195 a Fr(\226)p Black 42 w Fs(\223Bad\224)e(e) n(xamples)p Black 196 1342 a Fr(\226)p Black 42 w Fs(Axiomatic)i(char)o (acter)q(ization)g(of)e(cr)q(iter)q(ia)p Black 74 1521 a Fp(\017)p Black 41 w Fs(Pure)h(Risk)p Black 196 1668 a Fr(\226)p Black 42 w Fs(Absolute)g(Utility)h(Functions)p Black 196 1815 a Fr(\226)p Black 42 w Fs(P)l(ersonalization)g(and)e (Utility)i(Theor)r(y)p Black 196 1963 a Fr(\226)p Black 42 w Fs(Other)e(Approaches)p Black 74 2141 a Fp(\017)p Black 41 w Fs(Conclusion)p Black 934 2553 a Fq(6)466 b(15-854)15 b(Presentation)p Black eop PNP restore /PNP save def 648.5610 42.5454 translate 0 7 bop Black Black BrickRed Black BrickRed 503 125 a Fv(V)-7 b(alue)33 b(Functions)p Black Black 2 187 1947 2 v 2 189 V 2 191 V Black 2 598 a Fs(And)23 b(y)n(ou)g(thought)g(w)o(e) f(w)o(ere)h(done)f(with)h(de\002nitions!)2 963 y(A)p Plum 34 w(V)-6 b(alue)35 b(Function)g Fo(V)p Black 54 w Fs(is)g(just)g(a)g(con)n(v)n(enient)g(w)o(a)n(y)f(to)g(e)n(x-)2 1079 y(press)23 b(a)p RoyalBlue 22 w(pref)n(erence)f(relation)p Black Black 74 1257 a Fp(\017)p Black Plum 41 w Fo(V)p Black 43 w Fs(assigns)i(a)f(real)g(n)o(umber)f(to)h(each)g(action)p Black 74 1436 a Fp(\017)p Black 41 w Fs(Pref)n(erred)p RoyalBlue 159 1573 a Fo(a)h Fk(4)h Fo(b)p Black 22 w Fs(if)f(and)e(only)i(if)p Plum 23 w Fo(V)c Fm(\()p Fo(a)p Fm(\))k Fp(\024)h Fo(V)19 b Fm(\()p Fo(b)p Fm(\))p Black Black 74 1751 a Fp(\017)p Black 41 w Fs(Str)q(ictly)24 b(Pref)n(erred)p RoyalBlue 159 1888 a Fo(a)g Fp(\036)h Fo(b)p Black 23 w Fs(if)e(and)g(only)g(if)p Plum 23 w Fo(V)d Fm(\()p Fo(a)p Fm(\))k Fo(<)h(V)20 b Fm(\()p Fo(b)p Fm(\))p Black Black 74 2067 a Fp(\017)p Black 41 w Fs(Indiff)n(erent)p RoyalBlue 159 2204 a Fo(a)k Fp(\031)h Fo(b)p Black 23 w Fs(if)e(and)g(only)g(if)p Plum 23 w Fo(V)d Fm(\()p Fo(a)p Fm(\))k(=)h Fo(V)20 b Fm(\()p Fo(b)p Fm(\))p Black Black 934 2553 a Fq(7)466 b(15-854)15 b(Presentation)p Black eop PNP restore PNEP %%Page: ? 3 0.4718 PNSP /PNP save def 31.7922 839.3143 translate 0 8 bop Black Black BrickRed Black BrickRed 4 125 a Fv(Some)32 b(Candidate)g(Decision)h(Criteria)p Black Black 2 188 1947 2 v 2 190 V 2 192 V Black Black 74 383 a Fp(\017)p Black RoyalBlue 41 w Fs(Competitiv)n(e)g(Ratio)p Black(:)49 b(Minimiz)o(e)33 b(m)o(ultiplicativ)n(e)i(times)159 486 y(w)o(orse)23 b(than)g(OPT)-10 b(.)488 676 y Fo(V)19 b Fm(\()p Fo(a)p Fm(\))25 b(=)f(max)885 719 y Fi(s)1004 551 y Fh(\()1175 619 y Fo(C)6 b Fm(\()p Fo(a;)14 b(s)p Fm(\))p 1067 657 491 3 v 1067 738 a(min)1222 748 y Fi(x)1280 738 y Fo(C)6 b Fm(\()p Fo(x;)15 b(s)p Fm(\))1562 551 y Fh(\))p Black 74 884 a Fp(\017)p Black RoyalBlue 41 w Fs(Minimax)24 b(Cost)p Black(:)k(Minimiz)o(e)c(w)o(orst-case)e(cost.) 658 1039 y Fo(V)e Fm(\()p Fo(a)p Fm(\))k(=)h(max)1055 1082 y Fi(s)1175 1039 y Fo(C)6 b Fm(\()p Fo(a;)14 b(s)p Fm(\))p Black 74 1194 a Fp(\017)p Black RoyalBlue 41 w Fs(Minimax)21 b(Reg)o(ret)p Black(:)27 b(Minimiz)o(e)21 b(additiv)n(e)g(amount)f(w)o(orse)159 1297 y(than)j(OPT)-10 b(.)333 1452 y Fo(V)20 b Fm(\()p Fo(a)p Fm(\))k(=)h(max)730 1495 y Fi(s)849 1370 y Fh(n)897 1452 y Fo(C)6 b Fm(\()p Fo(a;)14 b(s)p Fm(\))20 b Fp(\000)g Fm(min)1336 1495 y Fi(x)1449 1452 y Fo(C)6 b Fm(\()p Fo(x;)15 b(s)p Fm(\))1727 1370 y Fh(o)p Black 74 1607 a Fp(\017)p Black RoyalBlue 41 w Fs(P)l(essimism/Optimism)39 b(Inde)n(x)p Black(:)56 b(Balance)37 b(w)o(orst)g(and)159 1710 y(best)23 b(cases)o(.)29 b(Choose)23 b Fo(\013)i Fp(2)f Fm([0)p Fo(;)15 b Fm(1])186 1865 y Fo(V)k Fm(\()p Fo(a)p Fm(\))25 b(=)f Fo(\013)15 b Fm(max)654 1908 y Fi(s)773 1865 y Fo(C)6 b Fm(\()p Fo(a;)14 b(s)p Fm(\))19 b(+)h(\(1)g Fp(\000)f Fo(\013)p Fm(\))d(min)1538 1908 y Fi(s)1647 1865 y Fo(C)6 b Fm(\()p Fo(a;)14 b(s)p Fm(\))p Black 74 2020 a Fp(\017)p Black RoyalBlue 41 w Fs(Pr)q(inciple)25 b(of)f(Insuf\002cient)h(Reason)p Black(:)30 b(Assume)24 b(unif)n(or)r(m)159 2123 y(probability)g(distr)q (ib)n(ution.)689 2321 y Fo(V)c Fm(\()p Fo(a)p Fm(\))k(=)1016 2250 y Fh(X)1051 2401 y Fi(s)1139 2264 y Fo(C)6 b Fm(\()p Fo(a;)14 b(s)p Fm(\))p 1139 2302 276 3 v 1222 2383 a Fp(jS)6 b(j)p Black 934 2553 a Fq(8)466 b(15-854)15 b(Presentation)p Black eop PNP restore /PNP save def 648.5610 839.3143 translate 0 9 bop Black Black BrickRed Black BrickRed 360 125 a Fv(Minimax)33 b(Cost)f(is)h(bad!)p Black Black 2 188 1947 2 v 2 190 V 2 192 V Black OliveGreen 507 732 a Fo(s)548 749 y Fn(1)p Black OliveGreen 908 732 a Fo(s)949 749 y Fn(2)p Black OliveGreen 1308 732 a Fo(s)1349 749 y Fn(3)p Black OliveGreen 1708 732 a Fo(s)1749 749 y Fn(4)p Black 350 763 1602 3 v RoyalBlue 214 835 a Fo(a)261 852 y Fn(1)p Black 347 864 3 104 v 523 835 a Fm(1)p 748 864 V 348 w(1)p 1148 864 V 349 w(1)p 1549 864 V 217 w(10)1697 806 y Fn(6)1758 835 y Fm(+)18 b(1)p 1949 864 V 350 867 1602 3 v 43 939 a Fp(!)p RoyalBlue 83 w Fo(a)261 956 y Fn(2)p Black 347 968 3 104 v 474 939 a Fm(10)578 910 y Fn(6)p 748 968 V 875 939 a Fm(10)979 910 y Fn(6)p 1148 968 V 1275 939 a Fm(10)1379 910 y Fn(6)p 1549 968 V 1676 939 a Fm(10)1780 910 y Fn(6)p 1949 968 V 350 971 1602 3 v Black 74 1429 a Fp(\017)p Black 41 w Fs(Minimax)24 b(Cost)f(chooses)p RoyalBlue 23 w Fo(a)1060 1446 y Fn(2)p Black Black 74 1607 a Fp(\017)p Black 41 w Fs(Ho)o(w)o(e)n(v)n(er)l(,)p RoyalBlue 38 w Fo(a)584 1624 y Fn(1)p Black 664 1607 a Fs(is)p Plum 37 w(m)o(uch)p Black 36 w(better)35 b(in)h(most)g(cases) h(and)159 1724 y(only)24 b(slightly)g(w)o(orse)f(in)g(one)g(case)p Black 74 1902 a Fp(\017)p Black 41 w Fs(W)n(e'll)h(ha)n(v)n(e)f(lots)h (of)f(reg)o(ret)f(if)h(w)o(e)g(use)g(this!)p Black 74 2081 a Fp(\017)p Black 41 w Fs(Minimax)h(Reg)o(ret)e(and)h(Competitiv)n (e)g(Ratio)g(do)g(better)p Black 934 2553 a Fq(9)466 b(15-854)15 b(Presentation)p Black eop PNP restore /PNP save def 31.7922 42.5454 translate 0 10 bop Black Black BrickRed Black BrickRed 303 125 a Fv(Minimax)33 b(Regret)g(is)h(bad!)p Black Black 2 211 1947 2 v 2 213 V 2 215 V Black OliveGreen 488 771 a Fo(s)529 788 y Fn(1)p Black OliveGreen 851 771 a Fo(s)892 788 y Fn(2)p Black OliveGreen 1214 771 a Fo(s)1255 788 y Fn(3)p Black OliveGreen 1577 771 a Fo(s)1618 788 y Fn(4)p Black 350 803 1452 3 v RoyalBlue 214 871 a Fo(a)261 888 y Fn(1)p Black 347 900 3 100 v 504 871 a Fm(1)p 710 900 V 311 w(1)p 1073 900 V 311 w(1)p 1436 900 V 198 w(11)p Fo(;)14 b Fm(000)p 1799 900 V 350 902 1452 3 v 43 971 a Fp(!)p RoyalBlue 83 w Fo(a)261 988 y Fn(2)p Black 347 1000 3 100 v 407 971 a Fm(1)p Fo(;)h Fm(000)p 710 1000 V 116 w(1)p Fo(;)g Fm(000)p 1073 1000 V 116 w(1)p Fo(;)g Fm(000)p 1436 1000 V 100 w(10)p Fo(;)f Fm(000)p 1799 1000 V 350 1002 1452 3 v Black 74 1476 a Fp(\017)p Black 41 w Fs(Minimax)24 b(Reg)o(ret)e(chooses)p RoyalBlue 24 w Fo(a)1138 1493 y Fn(2)p Black Black 74 1654 a Fp(\017)p Black 41 w Fs(Ho)o(w)o(e)n(v)n(er)l(,)p RoyalBlue 28 w Fo(a)574 1671 y Fn(1)p Black 647 1654 a Fs(pa)n(ys)29 b(almost)f(nothing)h(in)f(three)g(states)159 1770 y(and)23 b(in)g(the)g(other)l(,)f(increases)i(cost)f(b)n(y)h(only)g Fm(10\045)p Fs(.)p Black 74 1949 a Fp(\017)p Black 41 w Fs(Diminishing)e(Marginal)f(Utility:)29 b Fm($10)20 b Fs(matters)g(more)h(to)159 2065 y(a)i(pauper)f(than)h(to)g(Bill)h (Gates)p Black 902 2553 a Fq(10)466 b(15-854)15 b(Presentation)p Black eop PNP restore /PNP save def 648.5610 42.5454 translate 0 11 bop Black Black BrickRed Black BrickRed 138 125 a Fv(P)l(essimism/Optimism)33 b(Inde)n(x)g(is)829 241 y(bad!)p Black Black 2 303 1947 2 v 2 305 V 2 307 V Black Black 74 580 a Fp(\017)p Black 41 w Fs(First,)24 b(there')l(s)f(the)g (question)g(of)g(ho)o(w)f(to)h(choose)g Fo(\013)p Black 74 758 a Fp(\017)p Black 41 w Fs(But)g(there)g(is)g(a)g(more)f(ser)q (ious)i(prob)n(lem)p Fo(:)15 b(:)g(:)p OliveGreen 337 969 a(s)378 986 y Fn(1)p Black OliveGreen 740 969 a Fo(s)781 986 y Fn(2)p Black OliveGreen 1150 969 a Fo(s)1191 986 y Fn(3)p Black Plum 1566 969 a Fo(V)p Black 179 1001 1223 3 v RoyalBlue 43 1069 a(a)90 1086 y Fn(1)p Black 176 1098 3 100 v 353 1069 a Fm(1)p 579 1098 V 351 w(0)p 981 1098 V 350 w(1)p 1384 1098 V 1399 1098 V 318 w(1)p Fo(=)p Fm(2)p 179 1100 1223 3 v RoyalBlue 43 1168 a Fo(a)90 1185 y Fn(2)p Black 176 1198 3 100 v 353 1168 a Fm(0)p 579 1198 V 351 w(1)p 981 1198 V 350 w(1)p 1384 1198 V 1399 1198 V 318 w(1)p Fo(=)p Fm(2)p 179 1200 1223 3 v RoyalBlue 67 1277 a Fo(z)p Black 176 1309 3 112 v 357 1243 a Fn(1)p 357 1258 44 3 v 357 1309 a(2)p 579 1309 3 112 v 760 1243 a(1)p 760 1258 44 3 v 760 1309 a(2)p 981 1309 3 112 v 1158 1277 a Fm(1)p 1384 1309 V 1399 1309 V 318 w(3)p Fo(=)p Fm(4)p 179 1312 1223 3 v 2 1491 a Fs(Let)22 b Fo(\013)j Fm(=)330 1457 y Fn(1)p 330 1471 44 3 v 330 1523 a(2)378 1491 y Fs(.)p Black 74 1669 a Fp(\017)p Black 41 w Fs(actions)p RoyalBlue 24 w Fo(a)491 1686 y Fn(1)p Black 559 1669 a Fs(and)p RoyalBlue 23 w Fo(a)767 1686 y Fn(2)p Black 834 1669 a Fs(are)e(both)f(optimal)p Black 74 1848 a Fp(\017)p Black 41 w Fs(action)p RoyalBlue 26 w Fo(z)p Black 29 w Fs(is)k(just)f(a)h(probability)f(mixture)g(of)p RoyalBlue 26 w Fo(a)1624 1864 y Fn(1)p Black 1694 1848 a Fs(and)p RoyalBlue 25 w Fo(a)1904 1864 y Fn(2)p Black 159 1964 a Fo(z)j Fm(:=)c(\(1)p Fo(=)p Fm(2\))p Fo(a)636 1981 y Fn(1)700 1964 y Fm(+)c(\(1)p Fo(=)p Fm(2\))p Fo(a)1075 1981 y Fn(2)p Black 74 2142 a Fp(\017)p Black 41 w Fs(A)32 b(probability)h(mixture)e(will)i(e)n(v)n(entually)f(choose)h(1)f(of)159 2258 y(the)h(optimal)f(actions)o(,)k(so)d(ho)o(w)e(could)i(it)g(be)g (subopti-)159 2375 y(mal?)p Black 902 2553 a Fq(11)466 b(15-854)15 b(Presentation)p Black eop PNP restore PNEP %%Page: ? 4 0.4718 PNSP /PNP save def 31.7922 839.3143 translate 0 12 bop Black Black BrickRed Black BrickRed 20 125 a Fv(Principle)33 b(of)g(Insuf\002cient)e(Reason)i(is)829 241 y(bad!)p Black Black 2 303 1947 2 v 2 305 V 2 307 V Black Black 74 569 a Fp(\017)p Black 41 w Fs(Extremely)24 b(v)n(ague:)k(What)23 b(are)f(the)h(basic)h(e)n(v)n(ents?)p Black 74 748 a Fp(\017)p Black 41 w Fs(Is)g(one)e(par)s(tition)i (better)e(than)h(another?)2 969 y(An)g(e)n(xample:)p Black 74 1147 a Fp(\017)p Black 41 w Fs(Y)-12 b(ou)25 b(ha)n(v)n(e)f(an)f(ur)r(n)h(with)f(tw)o(o)h(balls)o(,)h(both)e(of)h (which)g(are)159 1263 y(either)p RoyalBlue 23 w(b)n(lue)p Black 23 w(or)p Plum 23 w(pur)r(ple)p Black Black 74 1442 a Fp(\017)p Black 41 w Fs(What)f(is)h(the)f(probability)h(of)f(dr) o(a)n(wing)g(tw)o(o)g(balls)h(of)f(dif-)159 1558 y(f)n(erent)f(colors?) p Black 74 1737 a Fp(\017)p Black 41 w Fs(One)h(par)s(tition)h(of)f (the)f(outcome)h(space:)159 1874 y Fg(f)p RoyalBlue Fs(b)n(lue)p Black(,)p RoyalBlue(b)n(lue)p Black Fg(g)h(f)p RoyalBlue Fs(b)n(lue)p Black(,)p Plum(pur)r(ple)p Black Fg(g)g(f)p Plum Fs(pur)r(ple)p Black(,)p Plum(pur)r(ple)p Black Fg(g)p Black 74 2052 a Fp(\017)p Black 41 w Fs(Another)f(par)s(tition)g (of)g(the)g(outcome)f(space:)159 2189 y Fp(h)p RoyalBlue Fs(b)n(lue)p Black(,)p RoyalBlue 24 w(b)n(lue)p Black Fp(i)c(h)p RoyalBlue Fs(b)n(lue)p Black(,)p Plum 24 w(pur)r(ple)p Black Fp(i)g(h)p Plum Fs(pur)r(ple)p Black(,)p RoyalBlue 23 w(b)n(lue)p Black Fp(i)g(h)p Plum Fs(pur)r(ple)p Black(,)p Plum 23 w(pur)r(ple)p Black Fp(i)p Black 74 2368 a(\017)p Black 41 w Fs(Which)24 b(one)f(is)g(better/r)q(ight?)p Black 902 2553 a Fq(12)466 b(15-854)15 b(Presentation)p Black eop PNP restore /PNP save def 648.5610 839.3143 translate 0 13 bop Black Black BrickRed Black BrickRed 241 125 a Fv(Competitive)32 b(Ratio)g(is)h(bad!)p Black Black 2 211 1947 2 v 2 213 V 2 215 V Black Black 74 755 a Fp(\017)p Black 41 w Fs(Can't)23 b(handle)p RoyalBlue 23 w(z)o(ero)p Black 23 w(or)p RoyalBlue 22 w(negativ)n(e)p Black 23 w(costs!)p OliveGreen 526 1234 a Fo(s)567 1251 y Fn(1)p Black OliveGreen 964 1234 a Fo(s)1005 1251 y Fn(2)p Black OliveGreen 1402 1234 a Fo(s)1443 1251 y Fn(3)p Black OliveGreen 1840 1234 a Fo(s)1881 1251 y Fn(4)p Black 350 1266 1752 3 v 43 1334 a Fp(!)p RoyalBlue 83 w Fo(a)261 1351 y Fn(1)p Black 347 1363 3 100 v 516 1334 a Fm(70)p 785 1363 V 334 w(80)p 1223 1363 V 334 w(90)p 1661 1363 V 209 w(1)p Fo(=)p Fm(10)p Fo(;)14 b Fm(000)p 2099 1363 V 350 1365 1752 3 v RoyalBlue 214 1433 a Fo(a)261 1450 y Fn(2)p Black 347 1462 3 100 v 542 1433 a Fm(1)p 785 1462 V 386 w(1)p 1223 1462 V 386 w(1)p 1661 1462 V 386 w(1)p 2099 1462 V 350 1465 1752 3 v Black 74 1913 a Fp(\017)p Black 41 w Fs(Competitiv)n(e)23 b(r)o(atio)g(choose)p RoyalBlue 24 w Fo(a)1136 1930 y Fn(1)p Black Black 74 2092 a Fp(\017)p Black 41 w Fs(Is)h(that)e(what)h(y)n(ou)g(w)o(ould)g (tak)n(e?)p Black 902 2553 a Fq(13)466 b(15-854)15 b(Presentation)p Black eop PNP restore /PNP save def 31.7922 42.5454 translate 0 14 bop Black Black BrickRed Black BrickRed 281 125 a Fv(Ar)n(gh!)40 b(Ever)q(ything)33 b(is)g(bad!)396 241 y(Should)f(we)h(give)g(up?)p Black Black 2 328 1947 2 v 2 330 V 2 332 V Black Black 74 981 a Fp(\017)p Black RoyalBlue 41 w Fs(Nothing)23 b(is)h(perf)n(ect!)p Black 27 w(W)n(elcome)f(to)g(the)g(real)f(w)o(or)q(ld.)p Black 74 1160 a Fp(\017)p Black 41 w Fs(Can)17 b(w)o(e)h(sa)n(y)f(that)h (some)f(of)h(these)f(are)p RoyalBlue 17 w(better)g(or)g(w)o(orse)p Black 159 1276 a(than)23 b(others?)p Black 74 1455 a Fp(\017)p Black 41 w Fs(Ho)o(w)e(can)i(w)o(e)p RoyalBlue 22 w(systematically)p Black 24 w(compare)e(decision)i(cr)q(i-)159 1571 y(ter)q(ia?)p Black 74 1749 a Fp(\017)p Black 41 w Fs(One)36 b(possibility)i(is)e(to)g(giv)n(e)p OliveGreen 36 w(axioms)p Black 36 w(which)p OliveGreen 36 w(char)o(ac-)159 1866 y(ter)q(iz)o(e)p Black 32 w(each)d(of)f(the)g(cr)q(iter)q(ia.)56 b(Depending)31 b(on)h(which)159 1982 y(axioms)o(,)24 b(y)n(ou)f(lik)n(e)o(,)h(y)n(ou)g(can)f(choose)g(y)n(our)g(cr)q(iter)q (ion.)p Black 902 2553 a Fq(14)466 b(15-854)15 b(Presentation)p Black eop PNP restore /PNP save def 648.5610 42.5454 translate 0 15 bop Black Black BrickRed Black BrickRed 168 125 a Fv(Generaliz)q(ed)33 b(Decision)g(Model)p Black Black 2 188 1947 2 v 2 190 V 2 192 V Black 2 439 a Fs(This)19 b(slide)h(could)f(be)g(\002lled)h(with)f(lots)g(of)g(symbols)g(and)g (other)2 555 y(stuff)k(y)n(ou)g(w)o(ould)g(ha)n(v)n(e)h(to)f(stare)f (at)h(f)n(or)f(a)h(while)o(.)2 712 y(Instead,)g(I'll)h(just)f(sa)n(y)g (this:)p Black 74 891 a Fp(\017)p Black 41 w Fs(Consider)k(the)p RoyalBlue 27 w(algor)q(ithmic)g(decision)h(prob)n(lem)p Black Plum 27 w Fo(P)p Black 43 w Fm(:=)159 1007 y(\()p Plum Fp(A)p Black 1 w Fo(;)p Plum 15 w Fp(S)p Black 6 w Fo(;)p Plum 15 w(C)p Black 5 w Fm(\))p Black 74 1186 a Fp(\017)p Black Plum 41 w(A)p Black 23 w Fs(is)c(a)f(non-empty)f(set) i(of)p RoyalBlue 22 w(algor)q(ithms)p Black 159 1323 a(There)29 b(could)f(be)h(in\002nitely)h(man)o(y)-8 b(.)44 b(The)n(y)29 b(can)g(be)f(on-)159 1439 y(line)c(or)e(of\003ine)o(.)p Black 74 1617 a Fp(\017)p Black Plum 41 w(S)p Black 44 w Fs(is)38 b(a)f(non-empty)g(set)g(of)h(\002nite)f(\(b)n(ut)g (unbounded\))159 1734 y(length)p RoyalBlue 23 w(request)23 b(sequences)p Black 159 1871 a(There)g(could)h(be)e(in\002nitely)j(man) o(y)-8 b(.)p Black 74 2049 a Fp(\017)p Black Plum 41 w Fo(C)p Black 30 w Fm(:)24 b Fp(A)c(\002)g(S)30 b(!)25 b Fl(R)159 2186 y Fs(This)f(is)g(the)p RoyalBlue 23 w(cost)f(function)p Black Black 74 2365 a Fp(\017)p Black 41 w Fs(Still)h(compare)f(to)g (OPT)-10 b(,)24 b(which)f(ma)n(y)f(not)h(be)g(in)g Fp(A)p Fs(.)p Black 902 2553 a Fq(15)466 b(15-854)15 b(Presentation)p Black eop PNP restore PNEP %%Page: ? 5 0.4718 PNSP /PNP save def 31.7922 839.3143 translate 0 16 bop Black Black BrickRed Black BrickRed 382 125 a Fv(Ax)33 b Ff(0)p Fv(:)41 b(Completeness)p Black Black 2 211 1947 2 v 2 213 V 2 215 V Black 2 849 a Fs(There)22 b(is)i(a)f(pref)n(erence)e(relation)p OliveGreen 23 w Fk(4)1168 867 y Fi(P)p Black 1250 849 a Fs(on)i(the)g(algor)q(ithms)o (.)p 2 1303 V 2 1840 a(Pref)n(erence)e(relation)p OliveGreen 23 w Fk(4)787 1858 y Fi(P)p Black 869 1840 a Fs(o)o(v)n(er)p Plum 22 w Fp(A)p Black Fs(.)2 1997 y(Must)i(be)p RoyalBlue 22 w(complete)p Black 24 w(and)p RoyalBlue 23 w(tr)o(ansitiv)n(e)p Black Black 902 2553 a Fq(16)466 b(15-854)15 b(Presentation)p Black eop PNP restore /PNP save def 648.5610 839.3143 translate 0 17 bop Black Black BrickRed Black BrickRed 197 125 a Fv(Ax)33 b Ff(1)p Fv(:)41 b(Algorithmic)32 b(Labeling)p Black Black 2 211 1947 2 v 2 213 V 2 215 V Black 2 779 a Fs(It)22 b(doesn't)i(matter)e(what)h(y)n(ou)g(call)h(the)f(algor)q (ithms)o(.)p 2 1164 V OliveGreen 2 1630 a Fk(4)69 1648 y Fi(P)p Black 150 1630 a Fs(is)h(in)n(v)n(ar)q(iant)g(under)e(algor)q (ithm)h(labeling)2 1788 y(Let)f Fo(P)207 1758 y Fe(0)254 1788 y Fm(=)i(\()p Fp(A)468 1758 y Fe(0)491 1788 y Fo(;)15 b Fp(S)6 b Fo(;)15 b(C)697 1758 y Fe(0)718 1788 y Fm(\))p Fs(.)2 1945 y(If)22 b(there)h(e)n(xists)g(an)g(isomor)r(phism)h Fo(h)g Fm(:)g Fp(A)h(!)f(A)1527 1916 y Fe(0)1549 1945 y Fs(,)f(then)2 2061 y Fo(a)h Fk(4)140 2080 y Fi(P)223 2061 y Fo(b)e Fs(if)h(and)g(only)h(if)f Fo(h)p Fm(\()p Fo(a)p Fm(\))h Fk(4)1016 2085 y Fi(P)1072 2065 y Fd(0)1118 2061 y Fo(h)p Fm(\()p Fo(b)p Fm(\))p Black 902 2553 a Fq(17)466 b(15-854)15 b(Presentation)p Black eop PNP restore /PNP save def 31.7922 42.5454 translate 0 18 bop Black Black BrickRed Black BrickRed 147 125 a Fv(Ax)33 b Ff(2)p Fv(:)41 b(Request)32 b(Seq.)41 b(Labeling)p Black Black 2 211 1947 2 v 2 213 V 2 215 V Black 2 671 a Fs(It)19 b(doesn't)i(matter)e(what)g(y)n(ou)h(call)h(the)f(request)f (sequences)o(.)p Black 74 850 a Fp(\017)p Black 41 w Fs(This)37 b(is)g(a)f(little)h(str)o(ange)f(because)g(the)g(request)g (se-)159 966 y(quences)c(could)f(ha)n(v)n(e)g(diff)n(erent)f(lengths)o (,)j(b)n(ut)e(this)h(is)159 1082 y(hard)23 b(to)g(argue)f(against.)p 2 1380 V OliveGreen 2 1738 a Fk(4)69 1756 y Fi(P)p Black 150 1738 a Fs(is)i(in)n(v)n(ar)q(iant)g(under)e(request)g(sequence)i (labeling)2 1895 y(Let)e Fo(P)207 1866 y Fe(0)254 1895 y Fm(=)i(\()p Fp(A)p Fo(;)16 b Fp(S)567 1866 y Fe(0)589 1895 y Fo(;)f(C)697 1866 y Fe(0)718 1895 y Fm(\))p Fs(.)2 2053 y(If)22 b(there)h(e)n(xists)g(an)g(isomor)r(phism)h Fo(g)j Fm(:)d Fp(S)31 b(!)24 b(S)1499 2024 y Fe(0)1521 2053 y Fs(,)f(then)2 2169 y Fo(a)h Fk(4)140 2188 y Fi(P)223 2169 y Fo(b)e Fs(if)h(and)g(only)h(if)f Fo(g)s Fm(\()p Fo(a)p Fm(\))h Fk(4)1010 2192 y Fi(P)1066 2173 y Fd(0)1112 2169 y Fo(g)s Fm(\()p Fo(b)p Fm(\))p Black 902 2553 a Fq(18)466 b(15-854)15 b(Presentation)p Black eop PNP restore /PNP save def 648.5610 42.5454 translate 0 19 bop Black Black BrickRed Black BrickRed 291 125 a Fv(Ax)34 b Ff(3)p Fv(:)40 b(W)l(eak)34 b(Domination)p Black Black 2 187 1947 2 v 2 189 V 2 191 V Black 2 771 a Fs(If)p OliveGreen 22 w Fo(a)p Black 23 w Fs(is)24 b(alw)o(a)n(ys)f(at)f(least)i(as)f(cheap)g(as)p OliveGreen 23 w Fo(b)p Black Fs(,)g(then)p OliveGreen 23 w Fo(a)h Fk(4)1658 790 y Fi(P)1741 771 y Fo(b)p Black Black 74 950 a Fp(\017)p Black 41 w Fs(An)o(y)f(r)o(ational)h(decision)g(cr)q (iter)q(ion)f(should)g(satisfy)h(this)p 2 1370 V 2 1852 a Fo(a)e Fs(w)o(eakly)i(dominates)f Fo(b)g Fp(\))p Fo(a)g Fk(4)1036 1871 y Fi(P)1119 1852 y Fo(b)p Black 74 2030 a Fp(\017)p Black 41 w Fo(a)17 b Fs(w)o(eakly)i(dominates)e Fo(b)g Fs(iff)h Fp(8)p Fo(s)24 b Fp(2)g(S)6 b Fo(;)15 b(C)6 b Fm(\()p Fo(a;)14 b(s)p Fm(\))25 b Fp(\024)f Fo(C)6 b Fm(\()p Fo(b;)14 b(s)p Fm(\))p Black 902 2553 a Fq(19)466 b(15-854)15 b(Presentation)p Black eop PNP restore PNEP %%Page: ? 6 0.4718 PNSP /PNP save def 31.7922 839.3143 translate 0 20 bop Black Black BrickRed Black BrickRed 252 125 a Fv(Ax)33 b Ff(4)p Fv(:)41 b(Unif)n(orm)31 b(Contin)o(uity)p Black Black 2 211 1947 2 v 2 213 V 2 215 V Black 2 508 a Fs(T)-10 b(ak)n(e)18 b(a)g(sequence)g(of)f(algor)q(ithmic)h(decision) h(prob)n(lems)e Fp(f)p Plum Fo(P)1911 527 y Fi(k)p Black 1953 508 a Fp(g)2 624 y Fs(whose)31 b(\(cost)g(functions\))h(con)n(v)n (erge)f(\(unif)n(or)r(mly\))g(to)p Plum 31 w Fo(P)p Black 51 w Fm(=)2 741 y(\()p Plum Fp(A)p Black Fo(;)p Plum 15 w Fp(S)p Black 6 w Fo(;)p Plum 15 w(C)p Black 6 w Fm(\))2 898 y Fs(If)p OliveGreen 22 w Fo(a)25 b Fk(4)209 917 y Fi(P)255 933 y Fc(k)317 898 y Fo(b)p Black 22 w Fs(f)n(or)d(all)i Fo(k)r Fs(,)f(then)p OliveGreen 22 w Fo(a)h Fk(4)1015 917 y Fi(P)1098 898 y Fo(b)p Black Black 74 1077 a Fp(\017)p Black 41 w Fs(Note)19 b(that)f(cost)i (functions)f(are)f(only)i(par)s(t)e(of)h(sequence)159 1193 y(that)k(changes)p Black 74 1371 a Fp(\017)p Black 41 w Fs(W)n(e)i(need)h(this)g(technical)h(point)e(of)h(\223unif)n(or)r (m\224)e(con)n(v)n(er-)159 1488 y(gence)k(because)h(otherwise)e(it')l (s)i(not)f(consistent)h(with)159 1604 y(the)23 b(Competitiv)n(e)g (Ratio)p 2 1736 V 2 1932 a(Let)35 b Fp(f)p Fo(P)252 1952 y Fi(k)340 1932 y Fm(=)47 b(\()p Fp(A)p Fo(;)15 b Fp(S)6 b Fo(;)15 b(C)777 1952 y Fi(k)819 1932 y Fm(\))p Fp(g)36 b Fs(be)f(a)g(sequence)h(of)f(decision)2 2049 y(prob)n(lems)22 b(such)h(that)f Fp(f)p Fo(P)819 2068 y Fi(k)861 2049 y Fp(g)g Fs(unif)n(or)r(mly)h(con)n(v)n(erges)f(to)h Fo(P)36 b Fm(=)2 2165 y(\()p Fp(A)p Fo(;)15 b Fp(S)6 b Fo(;)15 b(C)6 b Fm(\))p Fs(.)2 2322 y(If)22 b Fo(a)j Fk(4)209 2341 y Fi(P)255 2357 y Fc(k)317 2322 y Fo(b)d Fs(f)n(or)g(all)i Fo(k)r Fs(,)f(then)f Fo(a)i Fk(4)1015 2341 y Fi(P)1098 2322 y Fo(b)p Black 902 2553 a Fq(20)466 b(15-854)15 b(Presentation)p Black eop PNP restore /PNP save def 648.5610 839.3143 translate 0 21 bop Black Black BrickRed Black BrickRed 114 125 a Fv(Ax)33 b Ff(5)p Fv(:)41 b(Independence)32 b(of)g Fb(W)l(eakl)n(y)289 241 y(Dominated)42 b Fv(Alternatives)p Black Black 2 303 1947 2 v 2 305 V 2 307 V Black 2 662 a Fs(If)24 b(w)o(e)h(add)g(an)g(algor)q(ithm)g(which)p RoyalBlue 25 w(does)g(not)g(perf)n(or)r(m)e(better)2 778 y(than)34 b(the)g(pre)n(vious)g(best)g(at)g(an)o(y)g(single)h (point)p Black(,)j(then)c(the)2 894 y(r)o(anking)23 b(of)g(the)f(or)q (iginal)i(algor)q(ithms)f(is)h(unchanged.)p Black 74 1073 a Fp(\017)p Black 41 w Fs(Wh)n(y)f(this)h(bit)f(about)g(not)f (perf)n(or)r(ming)g(better?)p Black 74 1251 a Fp(\017)p Black 41 w Fs(Because)d(it')l(s)g(not)g(consistent)g(with)f(Competitiv) n(e)h(Ratio)159 1368 y(otherwise!)p 2 1547 V 2 1811 a(Let)35 b Fo(P)220 1781 y Fe(0)288 1811 y Fm(=)47 b(\()p Fp(A)29 b([)e Fo(E)5 b(;)15 b Fp(S)6 b Fo(;)16 b(C)6 b Fm(\))35 b Fs(be)g(an)o(y)g(algor)q(ithmic)h(e)n(xten-)2 1927 y(sion)c(of)g Fo(P)51 b Fm(=)41 b(\()p Fp(A)p Fo(;)15 b Fp(S)6 b Fo(;)15 b(C)6 b Fm(\))32 b Fs(such)g(that)f Fp(8)p Fo(a)40 b Fp(2)f(A)p Fs(,)34 b Fp(8)p Fo(s)40 b Fp(2)f(S)6 b Fs(,)2 2043 y Fo(C)71 2014 y Fe(0)92 2043 y Fm(\()p Fo(a;)15 b(s)p Fm(\))41 b(=)h Fo(C)6 b Fm(\()p Fo(a;)14 b(s)p Fm(\))32 b Fs(and)g Fp(8)p Fo(b)41 b Fp(2)g Fo(E)5 b Fs(,)35 b Fp(8)p Fo(s)41 b Fp(2)f(S)6 b Fs(,)36 b Fp(9)p Fo(a)k Fp(2)h(A)2 2159 y Fs(such)27 b(that)f Fo(C)6 b Fm(\()p Fo(a;)15 b(s)p Fm(\))30 b Fp(\024)i Fo(C)6 b Fm(\()p Fo(b;)14 b(s)p Fm(\))p Fs(.)39 b(Then)28 b Fk(4)1384 2182 y Fi(P)1440 2163 y Fd(0)1487 2159 y Fs(is)g(equiv)n(alent)2 2275 y(to)22 b Fk(4)160 2294 y Fi(P)242 2275 y Fs(o)o(v)n(er)g Fp(A)p Fs(.)p Black 902 2553 a Fq(21)466 b(15-854)15 b(Presentation)p Black eop PNP restore /PNP save def 31.7922 42.5454 translate 0 22 bop Black Black BrickRed Black BrickRed 406 125 a Fv(Illustrating)33 b(Axiom)f(5)p Black Black 2 211 1947 2 v 2 213 V 2 215 V Black Black Black 701 660 1025 3 v RoyalBlue 609 728 a Fo(a)p Black 698 757 3 100 v OliveGreen 274 w Fm(1)p Black 1210 757 V 460 w(3)p 1723 757 V 701 760 1025 3 v 267 828 a Fs(OPT)p Fp(!)p RoyalBlue 89 w Fo(b)p Black 698 857 3 100 v 279 w Fm(2)p 1210 857 V OliveGreen 460 w(1)p Black 1723 857 V 701 860 1025 3 v 701 959 V RoyalBlue 607 1027 a Fo(x)p Black 698 1056 3 100 v OliveGreen 274 w Fm(1)p Black 1210 1056 V OliveGreen 408 w(100)p Black 1723 1056 V 701 1059 1025 3 v Black 74 1187 a Fp(\017)p Black RoyalBlue 41 w Fo(x)p Black 24 w Fs(is)23 b(a)g(v)n(alid)h(addition)f(according)h(to)f(Axiom)g(5.)p Black Black 871 1581 855 3 v Plum 267 1649 a(ne)n(w)f(OPT)p Black Fp(!)p RoyalBlue 84 w Fo(a)p Black 868 1678 3 100 v Plum 230 w Fm(1)p Black 1295 1678 V 375 w(3)p 1723 1678 V 871 1680 855 3 v 439 1749 a Fs(OPT)p Fp(!)p RoyalBlue 89 w Fo(b)p Black 868 1778 3 100 v 234 w Fm(2)p 1295 1778 V OliveGreen 375 w(1)p Black 1723 1778 V 871 1780 855 3 v 871 1880 V RoyalBlue 780 1948 a Fo(y)p Black 868 1977 3 100 v Plum 186 w Fm(1)p Fo(=)p Fm(2)p Black 1295 1977 V OliveGreen 276 w(100)p Black 1723 1977 V 871 1979 855 3 v Black 74 2107 a Fp(\017)p Black RoyalBlue 41 w Fo(y)p Black 27 w Fs(is)h(a)p RoyalBlue 23 w(not)p Black 23 w(a)g(v)n(alid)h(addition)f(according)g(to)g(Axiom)h(5.)p Black 902 2553 a Fq(22)466 b(15-854)15 b(Presentation)p Black eop PNP restore /PNP save def 648.5610 42.5454 translate 0 23 bop Black Black BrickRed Black BrickRed 35 125 a Fv(Ax)33 b Ff(5)294 83 y Fa(0)325 125 y Fv(:)40 b(Independence)32 b(of)h Fb(Irrele)n(v)n(ant)618 241 y Fv(Alternatives)p Black Black 2 303 1947 2 v 2 305 V 2 307 V Black 2 508 a Fr(Not)22 b(Consistent)h(with)g(the)g(Competitive)g(Ratio)2 712 y Fs(If)f(w)o(e)h(add)g(an)f(algor)q(ithm)h(then)g(the)f(r)o (anking)h(of)g(the)g(or)q(iginal)2 828 y(algor)q(ithms)g(is)h (unchanged.)p Black 74 1006 a Fp(\017)p Black 41 w Fs(T)-10 b(o)41 b(some)f(people)o(,)45 b(this)c(seems)f(easier)g(to)h(suppor)s (t)159 1122 y(than)23 b(Axiom)h Fm(5)p Fs(.)p Black 74 1301 a Fp(\017)p Black 41 w Fs(What)f(about)g(the)g(man)f(in)i(the)f (restaur)o(ant?)p Black 74 1479 a Fp(\017)p Black 41 w Fs(Ho)o(w)o(e)n(v)n(er)l(,)29 b(if)h(w)o(e)f(require)g Fp(A)g Fs(to)g(be)p RoyalBlue 30 w(w)o(ell-represented)p Black 159 1596 a(at)24 b(e)n(v)n(er)r(y)f(point)h(\(i.e)o(.)29 b(f)n(or)23 b(e)n(v)n(er)r(y)g(state)h(of)f(nature)o(,)g(there)159 1712 y(e)n(xists)32 b(an)f(optimal)h(algor)q(ithm\),)h(Axiom)f Fm(5)f Fs(is)h(equiv)n(a-)159 1828 y(lent)23 b(to)g(Axiom)h Fm(5)712 1799 y Fe(0)733 1828 y Fs(.)p 2 1898 V 2 2053 a(Let)35 b Fo(P)220 2024 y Fe(0)288 2053 y Fm(=)47 b(\()p Fp(A)29 b([)e Fo(E)5 b(;)15 b Fp(S)6 b Fo(;)16 b(C)6 b Fm(\))35 b Fs(be)g(an)o(y)g(algor)q(ithmic)h(e)n(xten-)2 2169 y(sion)c(of)g Fo(P)51 b Fm(=)41 b(\()p Fp(A)p Fo(;)15 b Fp(S)6 b Fo(;)15 b(C)6 b Fm(\))32 b Fs(such)g(that)f Fp(8)p Fo(a)40 b Fp(2)f(A)p Fs(,)34 b Fp(8)p Fo(s)40 b Fp(2)f(S)6 b Fs(,)2 2285 y Fo(C)71 2256 y Fe(0)92 2285 y Fm(\()p Fo(a;)15 b(s)p Fm(\))42 b(=)h Fo(C)6 b Fm(\()p Fo(a;)14 b(s)p Fm(\))p Fs(.)59 b(Then)34 b Fk(4)1110 2308 y Fi(P)1166 2289 y Fd(0)1220 2285 y Fs(is)g(equiv)n(alent)g(to)f Fk(4)1890 2304 y Fi(P)2 2402 y Fs(o)o(v)n(er)22 b Fp(A)p Fs(.)p Black 902 2553 a Fq(23)466 b(15-854)15 b(Presentation)p Black eop PNP restore PNEP %%Page: ? 7 0.4718 PNSP /PNP save def 31.7922 839.3143 translate 0 24 bop Black Black BrickRed Black BrickRed 507 125 a Fv(Ax)34 b Ff(6)p Fv(:)40 b(Con)-5 b(ve)n(xity)p Black Black 2 211 1947 2 v 2 213 V 2 215 V Black 2 720 a Fs(An)o(y)p RoyalBlue 28 w(probability)28 b(mixture)p Black 28 w(of)g(indiff)n (erent)f(algor)q(ithms)h(is)p RoyalBlue 29 w(no)2 836 y(w)o(orse)22 b(than)p Black 23 w(the)h(or)q(iginal)g(algor)q(ithms)p Black 74 1015 a Fp(\017)p Black 41 w Fs(An)o(y)g(probability)f(mixture) h(will)f(e)n(v)n(entually)h(lead)f(to)h(one)159 1131 y(of)g(the)g(algor)q(ithms)o(,)g(so)g(ho)o(w)g(could)g(it)g(be)g(w)o (orse?)p 2 1478 V 2 1888 a(Let)j Fo(a)190 1905 y Fn(1)235 1888 y Fo(;)15 b(a)321 1905 y Fn(2)397 1888 y Fp(2)31 b(A)d Fs(with)e Fo(a)805 1905 y Fn(1)882 1888 y Fp(\031)31 b Fo(a)1028 1905 y Fn(2)1073 1888 y Fs(.)41 b(F)n(or)26 b(an)o(y)h Fo(p)32 b Fp(2)f Fm([0)p Fo(;)14 b Fm(1])p Fs(,)28 b(let)2 2004 y Fo(b)36 b Fm(=)h Fo(pa)284 2021 y Fn(1)353 2004 y Fm(+)25 b(\(1)g Fp(\000)f Fo(p)p Fm(\))p Fo(a)798 2021 y Fn(2)843 2004 y Fs(.)50 b(Use)30 b Fo(P)1161 1975 y Fe(0)1219 2004 y Fm(=)37 b(\()p Fp(A)25 b([)f(f)p Fo(b)p Fp(g)p Fo(;)15 b Fp(S)6 b Fo(;)15 b(C)6 b Fm(\))p Fs(.)2 2120 y(Then)23 b Fo(b)h Fk(4)342 2143 y Fi(P)398 2124 y Fd(0)443 2120 y Fo(a)490 2137 y Fn(1)558 2120 y Fs(and)f Fo(b)h Fk(4)848 2143 y Fi(P)904 2124 y Fd(0)949 2120 y Fo(a)996 2137 y Fn(2)p Black 902 2553 a Fq(24)466 b(15-854)15 b(Presentation)p Black eop PNP restore /PNP save def 648.5610 839.3143 translate 0 25 bop Black Black BrickRed Black BrickRed 432 125 a Fv(Ax)33 b Ff(7)p Fv(:)41 b(Redundanc)o(y)p Black Black 2 211 1947 2 v 2 213 V 2 215 V Black 2 590 a Fs(W)n(e)22 b(can)h(eliminate)h(redundant)e(states)h(of)g(nature)2 748 y Fj(in)g(other)f(w)o(ords)2 905 y Fs(Redundant)g(columns)h(can)h (be)e(remo)o(v)n(ed)p OliveGreen 217 1027 a Fo(s)258 1044 y Fn(1)p Black OliveGreen 385 1027 a Fo(s)426 1044 y Fn(2)p Black OliveGreen 554 1027 a Fo(s)595 1044 y Fn(3)p Black OliveGreen 723 1027 a Fo(s)764 1044 y Fn(4)p Black OliveGreen 892 1027 a Fo(s)933 1044 y Fn(5)p Black 175 1059 844 3 v RoyalBlue 85 1127 a Fo(a)p Black 173 1156 3 100 v 102 w(x)p 341 1156 V 111 w(w)p 510 1156 V 106 w(w)p 679 1156 V 106 w(w)p 848 1156 V 106 w(w)p 1016 1156 V 175 1158 844 3 v RoyalBlue 85 1226 a(a)p Black 173 1256 3 100 v 103 w(y)p 341 1256 V 127 w(z)p 510 1256 V 128 w(z)p 679 1256 V 127 w(z)p 848 1256 V 128 w(z)p 1016 1256 V 175 1258 844 3 v 1131 1127 a Fp(,)p OliveGreen 1490 1027 a Fo(s)1531 1044 y Fn(1)p Black OliveGreen 1686 1027 a Fo(s)1727 1044 y Fn(2)p Black 1434 1059 393 3 v RoyalBlue 1344 1127 a Fo(a)p Black 1432 1156 3 100 v 116 w(x)p 1628 1156 V 139 w(w)p 1825 1156 V 1434 1158 393 3 v RoyalBlue 1344 1226 a(a)p Black 1432 1256 3 100 v 117 w(y)p 1628 1256 V 155 w(z)p 1825 1256 V 1434 1258 393 3 v Black 74 1402 a Fp(\017)p Black 41 w Fs(Remember)g(w)o(e)h(are)f(in)p RoyalBlue 23 w(str)q(ict)i(uncer) s(tainty)p Black 2 1618 1947 2 v 2 1902 a(Let)j Fo(P)212 1873 y Fe(0)267 1902 y Fm(=)34 b(\()p Fp(A)491 1873 y Fe(0)513 1902 y Fo(;)15 b Fp(S)611 1873 y Fe(0)634 1902 y Fo(;)g(C)742 1873 y Fe(0)763 1902 y Fm(\))p Fs(,)29 b(where)e Fo(S)1166 1873 y Fe(0)1222 1902 y Fm(=)33 b Fo(S)28 b Fp(\000)c Fo(E)33 b Fs(and)27 b Fo(C)1839 1873 y Fe(0)1889 1902 y Fs(is)2 2018 y(identical)k(to)g Fo(C)36 b Fs(at)30 b(all)i Fo(a)37 b Fp(2)h(A)p Fo(;)15 b(s)37 b Fp(2)h(S)1271 1989 y Fe(0)1293 2018 y Fs(.)51 b(If)31 b(f)n(or)e(all)i Fo(s)38 b Fp(2)f Fo(E)5 b Fs(,)2 2134 y(there)34 b(e)n(xists)h(some)g Fo(s)746 2105 y Fe(0)812 2134 y Fp(2)45 b(S)975 2105 y Fe(0)1032 2134 y Fs(such)35 b(that)g(f)n(or)e(all)j Fo(a)45 b Fp(2)f(A)p Fs(,)2 2251 y Fo(C)71 2222 y Fe(0)92 2251 y Fm(\()p Fo(a;)15 b(s)259 2222 y Fe(0)280 2251 y Fm(\))25 b(=)g Fo(C)6 b Fm(\()p Fo(a;)14 b(s)p Fm(\))p Fs(,)23 b(then)f Fk(4)1021 2269 y Fi(P)1103 2251 y Fs(is)h(equiv)n(alent)h(to)f Fk(4)1742 2274 y Fi(P)1798 2254 y Fd(0)p Black 902 2553 a Fq(25)466 b(15-854)15 b(Presentation)p Black eop PNP restore /PNP save def 31.7922 42.5454 translate 0 26 bop Black Black BrickRed Black BrickRed 365 125 a Fv(Ax)34 b Ff(8)p Fv(:)40 b(Pr)n(opor)r(tionality)p Black Black 2 211 1947 2 v 2 213 V 2 215 V Black RoyalBlue 2 430 a Fs(Scaling)22 b(an)o(y)g(column)p Black 23 w(does)g(not)g(aff)n (ect)f(the)h(pref)n(erence)e(re-)2 546 y(lation.)p Black 74 725 a Fp(\017)p Black 41 w Fs(This)29 b(is)f(the)f(hardest)g(axiom)g (to)h(justify)-8 b(.)42 b(An)o(y)27 b(sugges-)159 841 y(tions?)p Black 74 1020 a Fp(\017)p Black 41 w Fs(If)22 b(w)o(e)g(assume)h(there)e(is)i(a)f(\002x)n(ed)g(unkno)o(wn)g (probability)159 1136 y(distr)q(ib)n(ution,)i(this)g(might)f(mak)n(e)g (some)g(sense)o(.)p Black 74 1314 a Fp(\017)p Black 41 w Fs(W)n(e)g(are)f(only)i(interested)e(in)i(relativ)n(e)f(perf)n(or)r (mance)o(...)p 2 1369 V 2 1489 a(Let)30 b Fo(P)51 b Fm(=)38 b(\()p Fp(A)p Fo(;)16 b Fp(S)6 b Fo(;)15 b(C)6 b Fm(\))31 b Fs(be)f(a)h(prob)n(lem)g Fo(\017)1322 1507 y Fi(P)1381 1489 y Fs(-bounded)f(a)n(w)o(a)n(y)2 1605 y(from)22 b(z)o(ero)h(\(i.e)o (.)30 b Fm(inf)653 1615 y Fi(a;s)763 1605 y Fo(C)6 b Fm(\()p Fo(a;)14 b(s)p Fm(\))25 b Fp(\025)g Fo(\017)1191 1624 y Fi(P)1276 1605 y Fo(>)g Fm(0)p Fs(\).)k(Let)24 b Fo(c)f Fs(be)g(an)o(y)2 1721 y(positiv)n(e)f(real)g(n)o(umber)l(,)f (and)g Fo(s)981 1692 y Fe(\003)1041 1721 y Fs(be)h(an)o(y)f(element)h (of)f Fp(S)6 b Fs(.)28 b(Set)2 1838 y Fo(P)70 1808 y Fe(0)116 1838 y Fm(=)c(\()p Fp(A)p Fo(;)16 b Fp(S)6 b Fo(;)15 b(C)537 1808 y Fe(0)558 1838 y Fm(\))24 b Fs(such)f(that)319 2054 y Fo(C)388 2019 y Fe(0)410 2054 y Fm(\()p Fo(a;)14 b(s)p Fm(\))25 b(=)745 1928 y Fh(\()836 2004 y Fo(c)20 b Fp(\001)g Fo(C)6 b Fm(\()p Fo(a;)14 b(s)p Fm(\))66 b Fs(if)24 b Fo(s)g Fm(=)g Fo(s)1554 1975 y Fe(\003)836 2103 y Fo(C)6 b Fm(\()p Fo(a;)15 b(s)p Fm(\))167 b Fs(o)m(.w)-5 b(.)2 2299 y(Then)17 b(if)h Fo(P)334 2270 y Fe(0)374 2299 y Fs(is)g Fo(\017)486 2318 y Fi(P)545 2299 y Fs(-bounded)f(a)n(w)o (a)n(y)g(from)f(z)o(ero)m(,)i Fk(4)1564 2322 y Fi(P)1620 2303 y Fd(0)1659 2299 y Fs(is)g(equiv-)2 2415 y(alent)23 b(to)g Fk(4)363 2434 y Fi(P)421 2415 y Fs(.)p Black 902 2553 a Fq(26)466 b(15-854)15 b(Presentation)p Black eop PNP restore /PNP save def 648.5610 42.5454 translate 0 27 bop Black Black BrickRed Black BrickRed 508 125 a Fv(Illustrating)32 b(Ax)h Ff(8)p Black Black 2 211 1947 2 v 2 213 V 2 215 V Black OliveGreen 358 622 a Fo(s)399 639 y Fn(1)p Black OliveGreen 801 622 a Fo(s)842 639 y Fn(2)p Black OliveGreen 1244 622 a Fo(s)1285 639 y Fn(3)p Black OliveGreen 1687 622 a Fo(s)1728 639 y Fn(4)p Black 179 654 1773 3 v RoyalBlue 43 722 a Fo(a)90 739 y Fn(1)p Black 176 751 3 100 v 348 722 a Fm(70)p 620 751 V 339 w(80)p 1063 751 V 339 w(90)p 1506 751 V 365 w(1)p 1949 751 V 179 753 1773 3 v RoyalBlue 43 821 a Fo(a)90 838 y Fn(2)p Black 176 850 3 100 v 373 821 a Fm(1)p 620 850 V 392 w(1)p 1063 850 V 391 w(1)p 1506 850 V 268 w(10)p Fo(;)14 b Fm(000)p 1949 850 V 179 853 1773 3 v OliveGreen 358 1167 a Fo(s)399 1184 y Fn(1)p Black OliveGreen 801 1167 a Fo(s)842 1184 y Fn(2)p Black OliveGreen 1244 1167 a Fo(s)1285 1184 y Fn(3)p Black OliveGreen 1687 1167 a Fo(s)1728 1184 y Fn(4)p Black 179 1199 V RoyalBlue 43 1267 a Fo(a)90 1284 y Fn(1)p Black 176 1296 3 100 v 348 1267 a Fm(70)p 620 1296 V 339 w(80)p 1063 1296 V 339 w(90)p 1506 1296 V 212 w(1)p Fo(=)p Fm(10)p Fo(;)g Fm(000)p 1949 1296 V 179 1298 1773 3 v RoyalBlue 43 1366 a Fo(a)90 1383 y Fn(2)p Black 176 1395 3 100 v 373 1366 a Fm(1)p 620 1395 V 392 w(1)p 1063 1395 V 391 w(1)p 1506 1395 V 391 w(1)p 1949 1395 V 179 1398 1773 3 v Black 74 1919 a Fp(\017)p Black 41 w Fs(Axiom)35 b(8)f(sa)n(ys)g(that)g(these)g(tw)o(o)f(decision)i(prob)n(lems)159 2035 y(are)23 b(essentially)h(the)f(same)o(.)p Black 74 2213 a Fp(\017)p Black 41 w Fs(Do)g(y)n(ou)g(ag)o(ree?)p Black 902 2553 a Fq(27)466 b(15-854)15 b(Presentation)p Black eop PNP restore PNEP %%Page: ? 8 0.4718 PNSP /PNP save def 31.7922 839.3143 translate 0 28 bop Black Black BrickRed Black BrickRed 287 125 a Fv(Ax)33 b Ff(8)546 83 y Fa(0)577 125 y Fv(:)41 b(Column)32 b(Linearity)p Black Black 2 211 1947 2 v 2 213 V 2 215 V Black 2 415 a Fr(Not)22 b(Consistent)h(with)g(the)g(Competitive)g (Ratio)p RoyalBlue 2 583 a Fs(Shifting)f(an)o(y)f(column)p Black 22 w(does)g(not)g(aff)n(ect)g(the)h(pref)n(erence)d(re-)2 699 y(lation.)p Black 74 877 a Fp(\017)p Black 41 w Fs(Imagine)35 b(someone)f(told)g(y)n(ou)h(the)n(y)g(w)o(ould)f(giv)n(e)h(y)n(ou)159 993 y Fm($10)29 b Fs(e)n(xtr)o(a)g(if)h(nature)f(happened)g(to)h(pic)n (k)h Fo(s)1601 1010 y Fn(3)1645 993 y Fs(.)49 b(W)n(ould)159 1110 y(that)23 b(change)g(y)n(our)g(pref)n(erences?)p Black 74 1288 a Fp(\017)p Black 41 w Fs(What)g(about)g Fm($1)p Fo(;)14 b Fm(000)p Fo(;)g Fm(000)p Fs(?)p Black 74 1467 a Fp(\017)p Black 41 w Fs(This)28 b(char)o(acter)q(iz)o(es)e (another)g(notion)g(of)g(relativ)n(e)h(per-)159 1583 y(f)n(or)r(mance)p 2 1616 V 2 1730 a(Let)i Fo(P)47 b Fm(=)36 b(\()p Fp(A)p Fo(;)16 b Fp(S)6 b Fo(;)15 b(C)6 b Fm(\))29 b Fs(be)g(an)g(algor)q(ithmic)h(decision)h(prob-)2 1846 y(lem.)d(Let)21 b Fo(c)g Fs(be)h(an)o(y)f(real)h(n)o(umber)l(,)f (and)g Fo(s)1328 1817 y Fe(\003)1388 1846 y Fs(be)g(an)o(y)h(element)2 1963 y(of)g Fp(S)6 b Fs(.)29 b(Set)23 b Fo(P)419 1934 y Fe(0)465 1963 y Fm(=)i(\()p Fp(A)p Fo(;)15 b Fp(S)6 b Fo(;)16 b(C)887 1934 y Fe(0)908 1963 y Fm(\))23 b Fs(such)h(that)291 2179 y Fo(C)360 2144 y Fe(0)382 2179 y Fm(\()p Fo(a;)14 b(s)p Fm(\))25 b(=)717 2053 y Fh(\()808 2129 y Fo(c)20 b Fm(+)g Fo(C)6 b Fm(\()p Fo(a;)14 b(s)p Fm(\))66 b Fs(if)23 b Fo(s)h Fm(=)h Fo(s)1582 2100 y Fe(\003)808 2229 y Fo(C)6 b Fm(\()p Fo(a;)15 b(s)p Fm(\))223 b Fs(o)m(.w)-5 b(.)2 2417 y(Then)23 b Fk(4)280 2440 y Fi(P)336 2420 y Fd(0)380 2417 y Fs(is)h(equiv)n(alent)f(to)g Fk(4)1019 2435 y Fi(P)1078 2417 y Fs(.)p Black 902 2553 a Fq(28)466 b(15-854)15 b(Presentation)p Black eop PNP restore /PNP save def 648.5610 839.3143 translate 0 29 bop Black Black BrickRed Black BrickRed 541 125 a Fv(Ax)33 b Ff(9)p Fv(:)41 b(Linearity)p Black Black 2 211 1947 2 v 2 213 V 2 215 V Black 2 415 a Fr(Not)22 b(Consistent)h(with)g(the)g(Competitive)g(Ratio)2 764 y Fs(If)g(w)o(e)g(apply)h(a)p RoyalBlue 23 w(positiv)n(e)h(linear)e(tr) o(ansf)n(or)r(mation)p Black 22 w(to)h(the)f(cost)2 881 y(function,)g(our)f(pref)n(erences)g(do)h(not)g(change)o(.)p Black 74 1059 a Fp(\017)p Black 41 w Fs(Kind)36 b(of)g(a)g(combination) g(of)g(Axioms)h Fm(8)e Fs(and)h Fm(8)1753 1030 y Fe(0)1774 1059 y Fs(,)j(e)n(x-)159 1175 y(cepts)34 b(the)f(tr)o(ansf)n(or)r (mation)g(is)h(applied)f(to)h(the)f Fj(entire)159 1292 y Fs(cost)24 b(function.)p Black 74 1470 a Fp(\017)p Black 41 w Fs(This)19 b(is)f(appealing.)27 b(Should)18 b(it)g(matter)f(if)g(temper)o(atures)159 1586 y(are)23 b(giv)n(en)g(in)g(F)l(ahrenheit)g(or)g(Celsius?)p 2 1818 V 2 2119 a(Let)d Fo(P)205 2089 y Fe(0)251 2119 y Fm(=)25 b(\()p Fp(A)p Fo(;)15 b Fp(S)6 b Fo(;)15 b(C)672 2089 y Fe(0)694 2119 y Fm(\))p Fs(,)21 b(where)e Fo(C)1092 2089 y Fe(0)1138 2119 y Fm(=)25 b Fo(\025C)16 b Fm(+)11 b Fo(\014)25 b Fs(with)c Fo(\025)j(>)h Fm(0)p Fs(.)2 2235 y(Then)e Fk(4)280 2258 y Fi(P)336 2238 y Fd(0)380 2235 y Fs(is)h(equiv)n(alent)f(to)g Fk(4)1019 2253 y Fi(P)1078 2235 y Fs(.)p Black 902 2553 a Fq(29)466 b(15-854)15 b(Presentation)p Black eop PNP restore /PNP save def 31.7922 42.5454 translate 0 30 bop Black Black 1948 2449 a gsave currentpoint currentpoint translate 90 neg rotate neg exch neg exch translate 1948 2449 a BrickRed Black BrickRed 2287 627 a Fv(Characterization)33 b(of)g(the)f(Criteria) p Black Black 1948 691 2450 2 v 1948 693 V 1948 695 V Black Black 2021 1047 a Fp(\017)p Black 41 w Fs(Let)23 b Fm(+)g Fs(denote)g(consistency)i(with)e(an)f(axiom)p Black 2021 1226 a Fp(\017)p Black 41 w Fs(Let)h Fp(\000)g Fs(denote)g(inconsistency)i(with)e(an)g(axiom)p Black 2021 1404 a Fp(\017)p Black 41 w Fs(Let)g Fp(\010)g Fs(denote)g(char)o (acter)q(ization)p 2681 1716 3 100 v 3352 1687 a(Axiom)1990 1787 y(Cr)q(iter)q(ion)p 2681 1816 V 429 w Fm(1)99 b(2)g(3)106 b(4)111 b(5)97 b(5)3558 1757 y Fe(0)3677 1787 y Fm(6)105 b(7)100 b(8)94 b(8)4184 1757 y Fe(0)4306 1787 y Fm(9)p 1948 1818 2466 3 v 1990 1889 a Fs(Competitiv)n(e)23 b(Ratio)p 2681 1918 3 100 v 85 w Fp(\010)84 b(\010)f(\010)89 b(\010)96 b(\010)c(\000)g(\010)d(\010)83 b(\010)90 b(\000)95 b(\000)1990 1988 y Fs(Minimax)23 b(Cost)p 2681 2017 V 235 w Fp(\010)84 b(\010)f(\010)89 b(\010)h Fm(+)c Fp(\010)92 b(\010)d(\010)83 b(\000)h Fm(+)f(+)1990 2088 y Fs(Minimax)23 b(Reg)o(ret)p 2681 2117 V 157 w Fp(\010)84 b(\010)f(\010)89 b(\010)96 b(\010)c(\000)g(\010)d(\010)83 b(\000)90 b(\010)f Fm(+)1990 2188 y Fs(P)l(ess-Opt)p 2681 2217 V 395 w Fp(\010)84 b(\010)f(\010)89 b(\010)h Fm(+)c Fp(\010)92 b(\000)d(\010)83 b(\000)90 b(\000)95 b(\010)1990 2287 y Fs(Insuff)n(.)28 b(Reason)p 2681 2316 V 199 w Fp(\010)84 b(\010)f(\010)g Fm(+)h(+)i Fp(\010)g Fm(+)d Fp(\000)g(\000)90 b(\010)f Fm(+)4398 2449 y currentpoint grestore moveto 4398 2449 a Black 902 2553 a Fq(30)466 b(15-854)15 b(Presentation)p Black eop PNP restore /PNP save def 648.5610 42.5454 translate 0 31 bop Black Black Black Black BrickRed Black BrickRed 697 125 a Fv(So)33 b(What!)p Black Black 2 188 1947 2 v 2 190 V 2 192 V Black 2 382 a Fs(This)25 b(is)f(the)g(point)g(where)f (I)h(tr)r(y)g(to)g(w)o(ak)n(e)g(up)g(those)g(who)f(f)n(ell)2 493 y(asleep)34 b(when)g(I)g(\002rst)g(said)h(\223Axiom\224)f(and)g (those)g(who)g(got)2 605 y(lost)23 b(a)g(long)g(time)g(ago)m(.)p Black 74 768 a Fp(\017)p Black 41 w Fs(W)n(e)17 b(ha)n(v)n(e)h(a)p RoyalBlue 18 w(se)n(v)n(er)o(al)f(possib)n(le)i(optimality)g(cr)q(iter) q(ia)p Black 18 w(\(other)159 880 y(than)28 b(the)f(Competitiv)n(e)g (Ratio)h(on)f(which)h(w)o(e)f(f)n(ocus)g(in)159 992 y(this)d(course\))p Black 74 1155 a Fp(\017)p Black RoyalBlue 41 w Fs(None)f(of)g(them)f (is)i(perf)n(ect!)p Black 28 w(The)n(y)g(all)f(ha)n(v)n(e)h(bad)f (cases)159 1267 y(and)g(w)o(eaknesses!)p Black 74 1430 a Fp(\017)p Black 41 w Fs(When)29 b(y)n(ou)g(w)o(or)q(k)f(on)g(y)n(our) h(f)n(a)n(v)n(or)q(ite)f(application,)p RoyalBlue 31 w(y)n(ou)159 1542 y(need)23 b(to)g(pic)n(k)h(a)f(cr)q(iter)q(ion)p Black(.)p Black 74 1705 a Fp(\017)p Black 41 w Fs(One)41 b(f)n(air)q(ly)f(pr)q(incipled)h(w)o(a)n(y)e(to)i(pic)n(k)g(one)f(is)h (to)f(un-)159 1817 y(derstand)28 b(what)f(char)o(acter)q(iz)o(es)i(it;) i(what)c(axioms)i(y)n(ou)159 1929 y(ha)n(v)n(e)24 b(to)g(belie)n(v)n(e) g(will)g(be)g(tr)q(ue)f(if)h(y)n(ou)g(w)o(ant)f(to)h(use)g(this)159 2040 y(cr)q(iter)q(ion)p Black 74 2204 a Fp(\017)p Black 41 w Fs(While)18 b(amazingly)h(popular)l(,)p RoyalBlue 18 w(the)e(competitiv)n(e)i(r)o(atio)e(ma)n(y)159 2315 y(not)36 b(be)g(the)g(r)q(ight)g(thing)p Black 36 w(f)n(or)f(y)n(our)h (application!)69 b(Y)-12 b(ou)159 2427 y(need)23 b(to)g(be)g(ab)n(le)g (to)g(mak)n(e)h(this)f(choice!)p Black 902 2553 a Fq(31)466 b(15-854)15 b(Presentation)p Black eop PNP restore PNEP %%Page: ? 9 0.4718 PNSP /PNP save def 31.7922 839.3143 translate 0 32 bop Black Black BrickRed Black BrickRed 492 125 a Fv(Pr)n(ogress)34 b(Repor)r(t)p Black Black 2 211 1947 2 v 2 213 V 2 215 V Black Black 74 722 a Fp(\017)p Black 41 w Fs(Basic)24 b(De\002nitions)p Black 74 900 a Fp(\017)p Black 41 w Fs(Str)q(ict)g(Uncer)s(tainty)p Black 196 1048 a Fr(\226)p Black 42 w Fs(Other)e(optimality)i(cr)q(iter)q(ia)p Black 196 1195 a Fr(\226)p Black 42 w Fs(\223Bad\224)e(e)n(xamples)p Black 196 1342 a Fr(\226)p Black 42 w Fs(Axiomatic)i(char)o(acter)q (ization)g(of)e(cr)q(iter)q(ia)p Black 74 1521 a Fp(\017)p Black RoyalBlue 41 w Fs(Pure)h(Risk)p Black Black 196 1668 a Fr(\226)p Black 42 w Fs(Absolute)g(Utility)h(Functions)p Black 196 1815 a Fr(\226)p Black 42 w Fs(P)l(ersonalization)g(and)e (Utility)i(Theor)r(y)p Black 196 1963 a Fr(\226)p Black 42 w Fs(Other)e(Approaches)p Black 74 2141 a Fp(\017)p Black 41 w Fs(Conclusion)p Black 902 2553 a Fq(32)466 b(15-854)15 b(Presentation)p Black eop PNP restore /PNP save def 648.5610 839.3143 translate 0 33 bop Black Black BrickRed Black BrickRed 684 125 a Fv(Pure)34 b(Risk)p Black Black 2 187 1947 2 v 2 189 V 2 191 V Black 2 391 a Fr(Risk:)k Fs(Consequences)28 b(of)g(decisions)i(are)e(uncer)s(tain,)h(b)n(ut)2 507 y(quanti\002ab)n(le)23 b(with)g(a)g(probability)h(distr)q(ib)n(ution.)2 665 y(Assume:)p Black 74 844 a Fp(\017)p Black 41 w Fs(W)n(e)f(alw)o(a) n(ys)g(ha)n(v)n(e)g(a)g(full)g(probability)h(distr)q(ib)n(ution;)p Black 74 1022 a Fp(\017)p Black 41 w Fs(Our)34 b(distr)q(ib)n(ution)h (is)f(the)g(\223tr)q(ue\224)f(under)q(lying)h(distr)q(ib)n(u-)159 1138 y(tion.)2 1317 y(A)23 b(de\002nition)g(f)n(or)f(later)h(usage:)2 1433 y Fr(Lotter)q(y:)29 b Fs(An)o(y)24 b(probability)g(distr)q(ib)n (ution)h(o)o(v)n(er)f(a)f(set)h(of)g(out-)2 1549 y(comes)f(\(pr)q(iz)o (es\).)2 1707 y Fj(Note:)57 b Fs(W)n(e)36 b(will)h(no)o(w)f(be)g (talking)i(pr)q(imar)q(ily)f(about)f(gains)2 1823 y(r)o(ather)22 b(than)g(costs)o(.)p Black 902 2553 a Fq(33)466 b(15-854)15 b(Presentation)p Black eop PNP restore /PNP save def 31.7922 42.5454 translate 0 34 bop Black Black BrickRed Black BrickRed 338 125 a Fv(F)n(air)33 b(V)-7 b(alue)34 b(of)e(Lotteries)p Black Black 2 187 1947 2 v 2 189 V 2 191 V Black 2 391 a Fj(F)l(air)23 b(v)n(alue)i Fs(of)e(a)g(lotter)r(y?)2 507 y(P)m(ascal)g(&)g(F)n(er)r (mat:)28 b(e)n(xpected)23 b($)g(retur)r(n.)p OliveGreen 2 665 a(Is)g(e)n(xpected)g(retur)r(n)f(really)h(the)g(f)n(air)f(v)n (alue)h(of)g(a)g(lotter)r(y?)p Black 2 822 a(What)f(about)h(these)g(tw) o(o)g(lotter)q(ies?)43 1171 y @beginspecial 0 @llx 0 @lly 173 @urx 66 @ury 1868 @rwi @setspecial %%BeginDocument: elly/lottery1.eps /$F2psDict 200 dict def F2psDictbeginF2psDict begin F2psDictbeginF2psDict /mtrx matrix put /col-1 {0 setgray} bind def /col0 {0.000 0.000 0.000 srgb} bind def /col1 {0.000 0.000 1.000 srgb} bind def /col2 {0.000 1.000 0.000 srgb} bind def /col3 {0.000 1.000 1.000 srgb} bind def /col4 {1.000 0.000 0.000 srgb} bind def /col5 {1.000 0.000 1.000 srgb} bind def /col6 {1.000 1.000 0.000 srgb} bind def /col7 {1.000 1.000 1.000 srgb} bind def /col8 {0.000 0.000 0.560 srgb} bind def /col9 {0.000 0.000 0.690 srgb} bind def /col10 {0.000 0.000 0.820 srgb} bind def /col11 {0.530 0.810 1.000 srgb} bind def /col12 {0.000 0.560 0.000 srgb} bind def /col13 {0.000 0.690 0.000 srgb} bind def /col14 {0.000 0.820 0.000 srgb} bind def /col15 {0.000 0.560 0.560 srgb} bind def /col16 {0.000 0.690 0.690 srgb} bind def /col17 {0.000 0.820 0.820 srgb} bind def /col18 {0.560 0.000 0.000 srgb} bind def /col19 {0.690 0.000 0.000 srgb} bind def /col20 {0.820 0.000 0.000 srgb} bind def /col21 {0.560 0.000 0.560 srgb} bind def /col22 {0.690 0.000 0.690 srgb} bind def /col23 {0.820 0.000 0.820 srgb} bind def /col24 {0.500 0.190 0.000 srgb} bind def /col25 {0.630 0.250 0.000 srgb} bind def /col26 {0.750 0.380 0.000 srgb} bind def /col27 {1.000 0.500 0.500 srgb} bind def /col28 {1.000 0.630 0.630 srgb} bind def /col29 {1.000 0.750 0.750 srgb} bind def /col30 {1.000 0.880 0.880 srgb} bind def /col31 {1.000 0.840 0.000 srgb} bind def end save -107.0 266.0 translate 1 -1 scale /cp {closepath} bind def /ef {eofill} bind def /gr {grestore} bind def /gs {gsave} bind def /sa {save} bind def /rs {restore} bind def /l {lineto} bind def /m {moveto} bind def /rm {rmoveto} bind def /n {newpath} bind def /s {stroke} bind def /sh {show} bind def /slc {setlinecap} bind def /slj {setlinejoin} bind def /slw {setlinewidth} bind def /srgb {setrgbcolor} bind def /rot {rotate} bind def /sc {scale} bind def /sd {setdash} bind def /ff {findfont} bind def /sf {setfont} bind def /scf {scalefont} bind def /sw {stringwidth} bind def /tr {translate} bind def /tnt {dup dup currentrgbcolor 4 -2 roll dup 1 exch sub 3 -1 roll mul add 4 -2 roll dup 1 exch sub 3 -1 roll mul add 4 -2 roll dup 1 exch sub 3 -1 roll mul add srgb} bind def /shd {dup dup currentrgbcolor 4 -2 roll mul 4 -2 roll mul 4 -2 roll mul srgb} bind def /$F2psBegin {$F2psDict begin /$F2psEnteredState save def} def /$F2psEnd {$F2psEnteredState restore end} def F2psBegin10setmiterlimitn−10005425m−1000−1000l5655−1000l56555425lcpclip0.060000.06000scF2psBegin 10 setmiterlimit n -1000 5425 m -1000 -1000 l 5655 -1000 l 5655 5425 l cp clip 0.06000 0.06000 sc % Polyline 7.500 slw gs clippath 3424 3540 m 3547 3538 l 3439 3598 l 3622 3550 l 3607 3492 l cp clip n 2175 3900 m 3600 3525 l gs col0 s gr gr % arrowhead 15.000 slw n 3424 3540 m 3547 3538 l 3439 3598 l 3432 3569 l 3424 3540 l cp gs 0.00 setgray ef gr col0 s % Polyline 7.500 slw gs clippath 3439 4202 m 3547 4261 l 3424 4260 l 3607 4308 l 3622 4250 l cp clip n 2175 3900 m 3600 4275 l gs col0 s gr gr % arrowhead 15.000 slw n 3439 4202 m 3547 4261 l 3424 4260 l 3432 4231 l 3439 4202 l cp gs 0.00 setgray ef gr col0 s /Times-Roman ff 180.00 scf sf 1800 3975 m gs 1 -1 sc (F2psBegin10setmiterlimitn10005425m10001000l56551000l56555425lcpclip0.060000.06000sc1) col0 sh gr /Times-Roman ff 180.00 scf sf 3825 4425 m gs 1 -1 sc ($0) col0 sh gr /Times-Roman ff 180.00 scf sf 3825 3525 m gs 1 -1 sc ($1,000,000) col0 sh gr /Times-Roman ff 180.00 scf sf 2400 3525 m gs 1 -1 sc (1/2,000,000) col0 sh gr /Times-Roman ff 180.00 scf sf 2625 4350 m gs 1 -1 sc (o.w.) col0 sh gr F2psEndrsF2psEnd rs %%EndDocument @endspecial 862 w @beginspecial 0 @llx 0 @lly 93 @urx 10 @ury 1401 @rwi @setspecial %%BeginDocument: elly/lottery2.eps /F2psEndrsF2psDict 200 dict def F2psDictbeginF2psDict begin F2psDictbeginF2psDict /mtrx matrix put /col-1 {0 setgray} bind def /col0 {0.000 0.000 0.000 srgb} bind def /col1 {0.000 0.000 1.000 srgb} bind def /col2 {0.000 1.000 0.000 srgb} bind def /col3 {0.000 1.000 1.000 srgb} bind def /col4 {1.000 0.000 0.000 srgb} bind def /col5 {1.000 0.000 1.000 srgb} bind def /col6 {1.000 1.000 0.000 srgb} bind def /col7 {1.000 1.000 1.000 srgb} bind def /col8 {0.000 0.000 0.560 srgb} bind def /col9 {0.000 0.000 0.690 srgb} bind def /col10 {0.000 0.000 0.820 srgb} bind def /col11 {0.530 0.810 1.000 srgb} bind def /col12 {0.000 0.560 0.000 srgb} bind def /col13 {0.000 0.690 0.000 srgb} bind def /col14 {0.000 0.820 0.000 srgb} bind def /col15 {0.000 0.560 0.560 srgb} bind def /col16 {0.000 0.690 0.690 srgb} bind def /col17 {0.000 0.820 0.820 srgb} bind def /col18 {0.560 0.000 0.000 srgb} bind def /col19 {0.690 0.000 0.000 srgb} bind def /col20 {0.820 0.000 0.000 srgb} bind def /col21 {0.560 0.000 0.560 srgb} bind def /col22 {0.690 0.000 0.690 srgb} bind def /col23 {0.820 0.000 0.820 srgb} bind def /col24 {0.500 0.190 0.000 srgb} bind def /col25 {0.630 0.250 0.000 srgb} bind def /col26 {0.750 0.380 0.000 srgb} bind def /col27 {1.000 0.500 0.500 srgb} bind def /col28 {1.000 0.630 0.630 srgb} bind def /col29 {1.000 0.750 0.750 srgb} bind def /col30 {1.000 0.880 0.880 srgb} bind def /col31 {1.000 0.840 0.000 srgb} bind def end save -58.0 180.0 translate 1 -1 scale /cp {closepath} bind def /ef {eofill} bind def /gr {grestore} bind def /gs {gsave} bind def /sa {save} bind def /rs {restore} bind def /l {lineto} bind def /m {moveto} bind def /rm {rmoveto} bind def /n {newpath} bind def /s {stroke} bind def /sh {show} bind def /slc {setlinecap} bind def /slj {setlinejoin} bind def /slw {setlinewidth} bind def /srgb {setrgbcolor} bind def /rot {rotate} bind def /sc {scale} bind def /sd {setdash} bind def /ff {findfont} bind def /sf {setfont} bind def /scf {scalefont} bind def /sw {stringwidth} bind def /tr {translate} bind def /tnt {dup dup currentrgbcolor 4 -2 roll dup 1 exch sub 3 -1 roll mul add 4 -2 roll dup 1 exch sub 3 -1 roll mul add 4 -2 roll dup 1 exch sub 3 -1 roll mul add srgb} bind def /shd {dup dup currentrgbcolor 4 -2 roll mul 4 -2 roll mul 4 -2 roll mul srgb} bind def /$F2psBegin {$F2psDict begin /$F2psEnteredState save def} def /$F2psEnd {$F2psEnteredState restore end} def F2psBegin10setmiterlimitn−10004000m−1000−1000l3509−1000l35094000lcpclip0.060000.06000scF2psBegin 10 setmiterlimit n -1000 4000 m -1000 -1000 l 3509 -1000 l 3509 4000 l cp clip 0.06000 0.06000 sc % Polyline 7.500 slw gs clippath 2001 2895 m 2121 2925 l 2001 2955 l 2190 2955 l 2190 2895 l cp clip n 1275 2925 m 2175 2925 l gs col0 s gr gr % arrowhead 15.000 slw n 2001 2895 m 2121 2925 l 2001 2955 l 2001 2925 l 2001 2895 l cp gs 0.00 setgray ef gr col0 s /Times-Roman ff 180.00 scf sf 975 3000 m gs 1 -1 sc (F2psBegin10setmiterlimitn10004000m10001000l35091000l35094000lcpclip0.060000.06000sc1) col0 sh gr /Times-Roman ff 180.00 scf sf 2325 3000 m gs 1 -1 sc ($1) col0 sh gr F2psEndrsF2psEnd rs %%EndDocument @endspecial 270 1270 a(Lotter)r(y)h(1)440 b(Lotter)r(y)23 b(2)2 1409 y(And)g(these)g(tw)o(o?)43 1706 y @beginspecial 0 @llx 0 @lly 187 @urx 59 @ury 1868 @rwi @setspecial %%BeginDocument: elly/lottery3.eps /F2psEndrsF2psDict 200 dict def F2psDictbeginF2psDict begin F2psDictbeginF2psDict /mtrx matrix put /col-1 {0 setgray} bind def /col0 {0.000 0.000 0.000 srgb} bind def /col1 {0.000 0.000 1.000 srgb} bind def /col2 {0.000 1.000 0.000 srgb} bind def /col3 {0.000 1.000 1.000 srgb} bind def /col4 {1.000 0.000 0.000 srgb} bind def /col5 {1.000 0.000 1.000 srgb} bind def /col6 {1.000 1.000 0.000 srgb} bind def /col7 {1.000 1.000 1.000 srgb} bind def /col8 {0.000 0.000 0.560 srgb} bind def /col9 {0.000 0.000 0.690 srgb} bind def /col10 {0.000 0.000 0.820 srgb} bind def /col11 {0.530 0.810 1.000 srgb} bind def /col12 {0.000 0.560 0.000 srgb} bind def /col13 {0.000 0.690 0.000 srgb} bind def /col14 {0.000 0.820 0.000 srgb} bind def /col15 {0.000 0.560 0.560 srgb} bind def /col16 {0.000 0.690 0.690 srgb} bind def /col17 {0.000 0.820 0.820 srgb} bind def /col18 {0.560 0.000 0.000 srgb} bind def /col19 {0.690 0.000 0.000 srgb} bind def /col20 {0.820 0.000 0.000 srgb} bind def /col21 {0.560 0.000 0.560 srgb} bind def /col22 {0.690 0.000 0.690 srgb} bind def /col23 {0.820 0.000 0.820 srgb} bind def /col24 {0.500 0.190 0.000 srgb} bind def /col25 {0.630 0.250 0.000 srgb} bind def /col26 {0.750 0.380 0.000 srgb} bind def /col27 {1.000 0.500 0.500 srgb} bind def /col28 {1.000 0.630 0.630 srgb} bind def /col29 {1.000 0.750 0.750 srgb} bind def /col30 {1.000 0.880 0.880 srgb} bind def /col31 {1.000 0.840 0.000 srgb} bind def end save -53.0 104.0 translate 1 -1 scale /cp {closepath} bind def /ef {eofill} bind def /gr {grestore} bind def /gs {gsave} bind def /sa {save} bind def /rs {restore} bind def /l {lineto} bind def /m {moveto} bind def /rm {rmoveto} bind def /n {newpath} bind def /s {stroke} bind def /sh {show} bind def /slc {setlinecap} bind def /slj {setlinejoin} bind def /slw {setlinewidth} bind def /srgb {setrgbcolor} bind def /rot {rotate} bind def /sc {scale} bind def /sd {setdash} bind def /ff {findfont} bind def /sf {setfont} bind def /scf {scalefont} bind def /sw {stringwidth} bind def /tr {translate} bind def /tnt {dup dup currentrgbcolor 4 -2 roll dup 1 exch sub 3 -1 roll mul add 4 -2 roll dup 1 exch sub 3 -1 roll mul add 4 -2 roll dup 1 exch sub 3 -1 roll mul add srgb} bind def /shd {dup dup currentrgbcolor 4 -2 roll mul 4 -2 roll mul 4 -2 roll mul srgb} bind def /$F2psBegin {$F2psDict begin /$F2psEnteredState save def} def /$F2psEnd {$F2psEnteredState restore end} def F2psBegin10setmiterlimitn−10002725m−1000−1000l4998−1000l49982725lcpclip0.060000.06000scF2psBegin 10 setmiterlimit n -1000 2725 m -1000 -1000 l 4998 -1000 l 4998 2725 l cp clip 0.06000 0.06000 sc % Polyline 7.500 slw gs clippath 2824 913 m 2947 913 l 2838 971 l 3022 925 l 3007 867 l cp clip n 1800 1200 m 3000 900 l gs col0 s gr gr % arrowhead 15.000 slw n 2824 913 m 2947 913 l 2838 971 l 2831 942 l 2824 913 l cp gs 0.00 setgray ef gr col0 s % Polyline 7.500 slw gs clippath 2838 1429 m 2947 1486 l 2824 1487 l 3007 1533 l 3022 1475 l cp clip n 1800 1200 m 3000 1500 l gs col0 s gr gr % arrowhead 15.000 slw n 2838 1429 m 2947 1486 l 2824 1487 l 2831 1458 l 2838 1429 l cp gs 0.00 setgray ef gr col0 s /Times-Roman ff 180.00 scf sf 3075 975 m gs 1 -1 sc (F2psBegin10setmiterlimitn10002725m10001000l49981000l49982725lcpclip0.060000.06000sc12,000,000) col0 sh gr /Times-Roman ff 180.00 scf sf 2250 1725 m gs 1 -1 sc (3/4) col0 sh gr /Times-Roman ff 180.00 scf sf 3075 1575 m gs 1 -1 sc ($0) col0 sh gr /Times-Roman ff 180.00 scf sf 900 1275 m gs 1 -1 sc ($1,000,000) col0 sh gr /Times-Roman ff 180.00 scf sf 2250 900 m gs 1 -1 sc (1/4) col0 sh gr F2psEndrsF2psEnd rs %%EndDocument @endspecial 862 w @beginspecial 0 @llx 0 @lly 168 @urx 11 @ury 1401 @rwi @setspecial %%BeginDocument: elly/lottery4.eps /F2psEndrsF2psDict 200 dict def F2psDictbeginF2psDict begin F2psDictbeginF2psDict /mtrx matrix put /col-1 {0 setgray} bind def /col0 {0.000 0.000 0.000 srgb} bind def /col1 {0.000 0.000 1.000 srgb} bind def /col2 {0.000 1.000 0.000 srgb} bind def /col3 {0.000 1.000 1.000 srgb} bind def /col4 {1.000 0.000 0.000 srgb} bind def /col5 {1.000 0.000 1.000 srgb} bind def /col6 {1.000 1.000 0.000 srgb} bind def /col7 {1.000 1.000 1.000 srgb} bind def /col8 {0.000 0.000 0.560 srgb} bind def /col9 {0.000 0.000 0.690 srgb} bind def /col10 {0.000 0.000 0.820 srgb} bind def /col11 {0.530 0.810 1.000 srgb} bind def /col12 {0.000 0.560 0.000 srgb} bind def /col13 {0.000 0.690 0.000 srgb} bind def /col14 {0.000 0.820 0.000 srgb} bind def /col15 {0.000 0.560 0.560 srgb} bind def /col16 {0.000 0.690 0.690 srgb} bind def /col17 {0.000 0.820 0.820 srgb} bind def /col18 {0.560 0.000 0.000 srgb} bind def /col19 {0.690 0.000 0.000 srgb} bind def /col20 {0.820 0.000 0.000 srgb} bind def /col21 {0.560 0.000 0.560 srgb} bind def /col22 {0.690 0.000 0.690 srgb} bind def /col23 {0.820 0.000 0.820 srgb} bind def /col24 {0.500 0.190 0.000 srgb} bind def /col25 {0.630 0.250 0.000 srgb} bind def /col26 {0.750 0.380 0.000 srgb} bind def /col27 {1.000 0.500 0.500 srgb} bind def /col28 {1.000 0.630 0.630 srgb} bind def /col29 {1.000 0.750 0.750 srgb} bind def /col30 {1.000 0.880 0.880 srgb} bind def /col31 {1.000 0.840 0.000 srgb} bind def end save -22.0 180.0 translate 1 -1 scale /cp {closepath} bind def /ef {eofill} bind def /gr {grestore} bind def /gs {gsave} bind def /sa {save} bind def /rs {restore} bind def /l {lineto} bind def /m {moveto} bind def /rm {rmoveto} bind def /n {newpath} bind def /s {stroke} bind def /sh {show} bind def /slc {setlinecap} bind def /slj {setlinejoin} bind def /slw {setlinewidth} bind def /srgb {setrgbcolor} bind def /rot {rotate} bind def /sc {scale} bind def /sd {setdash} bind def /ff {findfont} bind def /sf {setfont} bind def /scf {scalefont} bind def /sw {stringwidth} bind def /tr {translate} bind def /tnt {dup dup currentrgbcolor 4 -2 roll dup 1 exch sub 3 -1 roll mul add 4 -2 roll dup 1 exch sub 3 -1 roll mul add 4 -2 roll dup 1 exch sub 3 -1 roll mul add srgb} bind def /shd {dup dup currentrgbcolor 4 -2 roll mul 4 -2 roll mul 4 -2 roll mul srgb} bind def /$F2psBegin {$F2psDict begin /$F2psEnteredState save def} def /$F2psEnd {$F2psEnteredState restore end} def F2psBegin10setmiterlimitn−10004000m−1000−1000l4155−1000l41554000lcpclip0.060000.06000scF2psBegin 10 setmiterlimit n -1000 4000 m -1000 -1000 l 4155 -1000 l 4155 4000 l cp clip 0.06000 0.06000 sc % Polyline 7.500 slw gs clippath 2001 2895 m 2121 2925 l 2001 2955 l 2190 2955 l 2190 2895 l cp clip n 1275 2925 m 2175 2925 l gs col0 s gr gr % arrowhead 15.000 slw n 2001 2895 m 2121 2925 l 2001 2955 l 2001 2925 l 2001 2895 l cp gs 0.00 setgray ef gr col0 s /Times-Roman ff 180.00 scf sf 2325 3000 m gs 1 -1 sc (F2psBegin10setmiterlimitn10004000m10001000l41551000l41554000lcpclip0.060000.06000sc1,500,000) col0 sh gr /Times-Roman ff 180.00 scf sf 375 3000 m gs 1 -1 sc ($1,000,000) col0 sh gr F2psEndrsF2psEnd rs %%EndDocument @endspecial 270 1805 a(Lotter)r(y)h(3)440 b(Lotter)r(y)23 b(4)2 1944 y(Which)g(w)o(ould)g(most)g(people)g(pic)n(k?)p Black 902 2553 a Fq(34)466 b(15-854)15 b(Presentation)p Black eop PNP restore /PNP save def 648.5610 42.5454 translate 0 35 bop Black Black BrickRed Black BrickRed 305 125 a Fv(St.)41 b(P)l(eter)n(sb)n(ur)n(g)34 b(P)l(arado)l(x)p Black Black 2 211 1947 2 v 2 213 V 2 215 V Black 2 416 a Fs(Casino)24 b(in)h(St.)32 b(P)l(etersb)n(urg)24 b(will)h(r)q(un)f (an)o(y)h(lotter)r(y)f(if)h(w)o(e)f(can)2 532 y(\002nd)f(an)g (\223appropr)q(iate\224)e(par)s(ticipation)j(pr)q(ice)o(.)2 690 y(What)e(about)h(this)h(one?)2 806 y(F)l(air)h(coin.)37 b(Gamb)n(ler)26 b(receiv)n(es)g(F2psEndrs)p Fm(2)1146 777 y Fi(n)1217 806 y Fs(if)g(the)f(\002rst)h(heads)g(oc-)2 922 y(curs)d(on)f(the)h Fo(n)p Fs(th)g(\003ip)m(.)2 1080 y(Expected)g(retur)r(n)f(is)i (in\002nite!)2 1258 y Fm(1)p Fo(=)p Fm(2)6 b Fp(\003)g Fm(1)g(+)g(1)p Fo(=)p Fm(4)g Fp(\003)g Fm(2)g(+)g(1)p Fo(=)p Fm(8)g Fp(\003)g Fm(4)g(+)g Fo(:::)25 b Fm(=)g(1)p Fo(=)p Fm(2)6 b(+)g(1)p Fo(=)p Fm(2)g(+)g(1)p Fo(=)p Fm(2)p Fo(:::)2 1458 y Fs(Cut)22 b(off)h(\003ips)h(at)f($1,000,000?)2 1574 y(Expected)g(retur)r(n)f(=)h($500,000!)p Black 902 2553 a Fq(35)466 b(15-854)15 b(Presentation)p Black eop PNP restore PNEP %%Page: ? 10 0.4718 PNSP /PNP save def 31.7922 839.3143 translate 0 36 bop Black Black BrickRed Black BrickRed 227 125 a Fv(Utility)32 b(Function)g(f)n(or)g(Mone)n(y)p Black Black 2 211 1947 2 v 2 213 V 2 215 V Black 2 418 a Fs(Ber)r(noulli:)c (V)-6 b(alue)22 b(of)f($x)h(is)h Fm(log)15 b Fo(x)p Fs(.)28 b(Should)22 b(pa)n(y)f($4)h(to)f(enter)2 534 y(St.)28 b(P)l(etersb)n(urg)22 b(lotter)r(y)-8 b(.)2 692 y(Cr)o(amer)r(:)36 b(V)-6 b(alue)27 b(of)h($x)f(is)869 633 y Fp(p)p 942 633 50 4 v 59 x Fo(x)q Fs(.)41 b(Should)28 b(pa)n(y)f($12)g(to)g(enter) 2 808 y(St.)h(P)l(etersb)n(urg)22 b(lotter)r(y)-8 b(.)2 966 y Fr(Underl)o(ying)24 b(Assumptions:)p Black 74 1145 a Fp(\017)p Black 41 w Fs(More)f(mone)n(y)g(is)g(better)r(;)p Black 74 1323 a Fp(\017)p Black 41 w Fs(Utility)32 b(of)f(gain)g (depends)g(on)g(the)g(amount)f(of)h(mone)n(y)159 1439 y(y)n(ou)24 b(already)f(ha)n(v)n(e;)p Black 74 1618 a Fp(\017)p Black 41 w Fs(V)-6 b(alue)24 b(of)f(gain)g(g)o(ro)o(ws)f(at)h (a)g(diminishing)h(r)o(ate)o(.)p Black 902 2553 a Fq(36)466 b(15-854)15 b(Presentation)p Black eop PNP restore /PNP save def 648.5610 839.3143 translate 0 37 bop Black Black BrickRed Black BrickRed 516 125 a Fv(P)l(arado)l(x)34 b(Fix)o(ed?)p Black Black 2 187 1947 2 v 2 189 V 2 191 V Black 2 391 a Fs(What)22 b(if)i(w)o(e)e(rearr) o(ange)g(the)h(pr)q(iz)o(es?)2 548 y(Utility)g(function)h Fo(U)9 b Fm(\()p Fo(x)p Fm(\))24 b Fs(lik)n(e)g(Ber)r(noulli')l(s)g(or) f(Cr)o(amer')l(s)o(.)2 665 y(Assume)g(that)g Fp(8)p Fo(n)h Fp(2)g Fl(Z)n Fo(;)12 b Fp(9)p Fo(x)888 675 y Fi(n)957 665 y Fs(such)24 b(that)f Fo(U)9 b Fm(\()p Fo(x)1473 675 y Fi(n)1520 665 y Fm(\))24 b(=)h(2)1741 635 y Fi(n)1787 665 y Fs(.)2 781 y(Modify)k(lotter)r(y)g(so)h(the)f(\002rst)g(head)g (in)g(the)g Fo(n)p Fs(th)g(tr)q(ial)g(gets)g(a)2 897 y(pr)q(iz)o(e)23 b(of)f Fo(x)344 907 y Fi(n)391 897 y Fs(.)2 1055 y(No)o(w)29 b(Ber)r(noulli)i(and)f(Cr)o(amer)e(w)o(ould)j (pa)n(y)p OliveGreen 30 w(w)o(a)n(y)e(too)h(m)o(uch)p Black 2 1171 a(to)22 b(par)s(ticipate)o(.)p Black 902 2553 a Fq(37)466 b(15-854)15 b(Presentation)p Black eop PNP restore /PNP save def 31.7922 42.5454 translate 0 38 bop Black Black BrickRed Black BrickRed 632 125 a Fv(What)32 b(No)n(w?)p Black Black 2 187 1947 2 v 2 189 V 2 191 V Black 2 390 a Fs(T)-10 b(w)o(o)23 b(possib)n(le)h(w)o(a)n (ys)f(out:)p Black 74 568 a Fp(\017)p Black 41 w Fs(Bounded)18 b(utility\227assume)g(there)f(is)h(a)g(maxim)o(um)g(pos-)159 685 y(sib)n(le)25 b(utility;)p Black 74 863 a Fp(\017)p Black 41 w Fs(Under)r(v)n(aluing\227small)20 b(probabilities)f(are)f (impossib)n(le)o(.)2 1042 y(Prob)n(lems)23 b(with)g(these:)p Black 74 1220 a Fp(\017)p Black 41 w Fs(Bounded)18 b(utility)g(remo)o (v)n(es)f(e)n(xpressiv)n(eness)i(\(e)o(.g.)26 b(can't)159 1336 y(distinguish)f(betw)o(een)d(ear)r(ning)h($1,000,000)f(and)159 1453 y($12,000,000\);)p Black 74 1631 a Fp(\017)p Black 41 w Fs(What)28 b(if)h(all)g(probabilities)g(are)f(small?)45 b(Can't)28 b(sa)n(y)g(e)n(v-)159 1747 y(er)r(ything)c(is)f(impossib)n (le!)p Black 902 2553 a Fq(38)466 b(15-854)15 b(Presentation)p Black eop PNP restore /PNP save def 648.5610 42.5454 translate 0 39 bop Black Black BrickRed Black BrickRed 521 125 a Fv(P)l(er)n(sonalization)p Black Black 2 187 1947 2 v 2 189 V 2 191 V Black 2 391 a Fs(Ber)r(noulli)23 b(and)g(Cr)o(amer)e (solutions)j(are)f(ad)g(hoc.)2 549 y(If)32 b(w)o(e')l(re)g(ad)g(hoc)o (,)j(w)o(e)d(should)h(be)p OliveGreen 33 w(appropr)q(iately)p Black 32 w(ad)f(hoc.)2 665 y(Diff)n(erent)21 b(people)i(could)h(ha)n(v) n(e)f(diff)n(erent)f(utility)j(functions)o(.)2 823 y Fr(Risk)j(A)m(ver)o(se:)39 b Fs(P)l(erson)29 b(not)f(willing)i(to)f(pa) n(y)g(e)n(xpected)f(re-)2 939 y(tur)r(n)22 b(of)h(lotter)r(y)-8 b(.)28 b(Utility)c(functions)g(are)e(str)q(ictly)j(conca)n(v)n(e)o(.)2 1097 y Fr(Risk)g(Neutral:)34 b Fs(P)l(erson)25 b(willing)i(to)f(pa)n(y) g(e)n(xactly)h(e)n(xpected)2 1213 y(retur)r(n.)g(Utility)d(functions)f (str)q(ictly)i(linear)l(.)2 1371 y Fr(Risk)33 b(Seeking:)50 b Fs(P)l(erson)33 b(willing)h(to)g(pa)n(y)f(more)g(than)g(e)n(x-)2 1487 y(pected)23 b(retur)r(n.)k(Utility)d(functions)g(str)q(ictly)g (con)n(v)n(e)n(x.)p Black 902 2553 a Fq(39)466 b(15-854)15 b(Presentation)p Black eop PNP restore PNEP %%Page: ? 11 0.4718 PNSP /PNP save def 31.7922 839.3143 translate 0 40 bop Black Black BrickRed Black BrickRed 578 125 a Fv(Utility)32 b(Theor)q(y)p Black Black 2 211 1947 2 v 2 213 V 2 215 V Black 2 414 a Fs(\(v)n(on)22 b(Neumann)g(and)h (Morganster)r(n\))2 572 y(If)h(an)g(individual)i(can)e(consistently)i (specify)g(pref)n(erencess)o(,)2 688 y(then)35 b(there)g(is)h(a)f (utility)i(function)f(that)f(represents)g(those)2 805 y(pref)n(erences)o(.)2 962 y(Assumptions:)p Black 74 1141 a Fp(\017)p Black 41 w Fs(Decision)26 b(mak)n(er)e(can)h (consistently)i(v)n(alue)e(an)o(y)g(set)g(of)159 1257 y(lotter)q(ies)o(.)p Black 74 1436 a Fp(\017)p Black 41 w Fs(Can)e(do)g(so)g(with)g(no)g(intr)o(ansitivities)o(.)2 1614 y(T)-10 b(oo)25 b(m)o(uch)f(to)h(ask)g(of)f(an)o(y)h(person,)f(b)n (ut)h(could)g(be)f(a)h(useful)2 1730 y(simpli\002cation.)p Black 902 2553 a Fq(40)466 b(15-854)15 b(Presentation)p Black eop PNP restore /PNP save def 648.5610 839.3143 translate 0 41 bop Black Black BrickRed Black BrickRed 274 125 a Fv(Axioms)32 b(of)h(Utility)f(Theor)q(y)p Black Black 2 211 1947 2 v 2 213 V 2 215 V Black 2 415 a Fr(Completeness:)c Fs(Decision)22 b(mak)n(er)g(has)g(a)g(pref)n(erence)e(re-)2 532 y(lation)j Fp(\037)g Fs(o)o(v)n(er)g(the)g(set)g(of)g(all)g(lotter) q(ies)o(.)2 689 y Fr(Independence:)46 b Fs(If)31 b(lotter)r(y)g(1)g Fp(\037)g Fs(lotter)r(y)g(2,)i(then)e(f)n(or)e(an)o(y)2 806 y(probability)23 b Fo(\013)i Fp(2)f Fm(\(0)p Fo(;)15 b Fm(1])22 b Fs(and)h(an)o(y)g(lotter)r(y)h(3,)223 984 y Fo(\013L)339 1001 y Fn(1)404 984 y Fm(+)c(\(1)f Fp(\000)h Fo(\013)p Fm(\))p Fo(L)859 1001 y Fn(3)929 984 y Fp(\037)k Fo(\013L)1137 1001 y Fn(2)1202 984 y Fm(+)c(\(1)f Fp(\000)h Fo(\013)p Fm(\))p Fo(L)1657 1001 y Fn(3)1702 984 y Fo(:)2 1183 y Fr(Contin)o(uity:)44 b Fs(If)31 b(lotter)r(y)h(1)e Fp(\037)i Fs(lotter)r(y)f(2)g Fp(\037)g Fs(lotter)r(y)h(3,)h(then)2 1300 y(there)22 b(are)g(probabilities)i Fo(\013;)15 b(\014)29 b Fp(2)24 b Fm(\(0)p Fo(;)15 b Fm(1\))23 b Fs(such)g(that)127 1478 y Fo(\013L)243 1495 y Fn(1)308 1478 y Fm(+)d(\(1)f Fp(\000)h Fo(\013)p Fm(\))p Fo(L)763 1495 y Fn(3)833 1478 y Fp(\037)k Fo(L)985 1495 y Fn(2)1055 1478 y Fp(\037)g Fo(\014)t(L)1260 1495 y Fn(1)1325 1478 y Fm(+)c(\(1)f Fp(\000)h Fo(\014)t Fm(\))p Fo(L)1777 1495 y Fn(3)2 1636 y Fj(Example:)43 b Fs(Sa)n(y)29 b(lotter)r(y)h(1)f(is)h(a)f(sure)g ($100,)i(lotter)r(y)e(2)h(is)f(a)2 1752 y(sure)35 b($10,)j(and)d (lotter)r(y)h(3)f(is)h(sure)f(death.)66 b(Is)35 b(contin)o(uity)2 1868 y(reasonab)n(le?)2 2026 y Fr(Theorem:)49 b Fs(Binar)r(y)34 b(relation)f Fp(\037)g Fs(satis\002es)h(abo)o(v)n(e)f(axioms)2 2142 y(iff)27 b Fp(9)p Fo(U)40 b Fm(:)31 b Fp(L)h(!)f Fl(R)j Fs(such)28 b(that)e Fo(L)31 b Fp(\037)h Fo(L)1218 2113 y Fe(0)1298 2142 y Fp(,)1444 2086 y Fh(P)1520 2162 y Fi(i)1561 2142 y Fo(p)1605 2159 y Fi(i)1632 2142 y Fo(U)9 b Fm(\()p Fo(z)1781 2159 y Fi(i)1809 2142 y Fm(\))31 b Fo(>)2 2202 y Fh(P)77 2278 y Fi(i)119 2258 y Fo(p)163 2276 y Fi(i)190 2229 y Fe(0)212 2258 y Fo(U)9 b Fm(\()p Fo(z)361 2276 y Fi(i)388 2258 y Fm(\))p Black 902 2553 a Fq(41)466 b(15-854)15 b(Presentation)p Black eop PNP restore /PNP save def 31.7922 42.5454 translate 0 42 bop Black Black BrickRed Black BrickRed 552 125 a Fv(Allais)34 b(P)l(arado)l(x)p Black Black 2 187 1947 2 v 2 189 V 2 191 V Black 2 391 a Fs(Choose)22 b(betw)o(een)h(lotter)q (ies)g(A)g(and)g(B:)43 1032 y @beginspecial 0 @llx 0 @lly 115 @urx 87 @ury 1868 @rwi @setspecial %%BeginDocument: elly/lotterya.eps /$F2psDict 200 dict def F2psDictbeginF2psDict begin F2psDictbeginF2psDict /mtrx matrix put /col-1 {0 setgray} bind def /col0 {0.000 0.000 0.000 srgb} bind def /col1 {0.000 0.000 1.000 srgb} bind def /col2 {0.000 1.000 0.000 srgb} bind def /col3 {0.000 1.000 1.000 srgb} bind def /col4 {1.000 0.000 0.000 srgb} bind def /col5 {1.000 0.000 1.000 srgb} bind def /col6 {1.000 1.000 0.000 srgb} bind def /col7 {1.000 1.000 1.000 srgb} bind def /col8 {0.000 0.000 0.560 srgb} bind def /col9 {0.000 0.000 0.690 srgb} bind def /col10 {0.000 0.000 0.820 srgb} bind def /col11 {0.530 0.810 1.000 srgb} bind def /col12 {0.000 0.560 0.000 srgb} bind def /col13 {0.000 0.690 0.000 srgb} bind def /col14 {0.000 0.820 0.000 srgb} bind def /col15 {0.000 0.560 0.560 srgb} bind def /col16 {0.000 0.690 0.690 srgb} bind def /col17 {0.000 0.820 0.820 srgb} bind def /col18 {0.560 0.000 0.000 srgb} bind def /col19 {0.690 0.000 0.000 srgb} bind def /col20 {0.820 0.000 0.000 srgb} bind def /col21 {0.560 0.000 0.560 srgb} bind def /col22 {0.690 0.000 0.690 srgb} bind def /col23 {0.820 0.000 0.820 srgb} bind def /col24 {0.500 0.190 0.000 srgb} bind def /col25 {0.630 0.250 0.000 srgb} bind def /col26 {0.750 0.380 0.000 srgb} bind def /col27 {1.000 0.500 0.500 srgb} bind def /col28 {1.000 0.630 0.630 srgb} bind def /col29 {1.000 0.750 0.750 srgb} bind def /col30 {1.000 0.880 0.880 srgb} bind def /col31 {1.000 0.840 0.000 srgb} bind def end save -75.0 212.0 translate 1 -1 scale /cp {closepath} bind def /ef {eofill} bind def /gr {grestore} bind def /gs {gsave} bind def /sa {save} bind def /rs {restore} bind def /l {lineto} bind def /m {moveto} bind def /rm {rmoveto} bind def /n {newpath} bind def /s {stroke} bind def /sh {show} bind def /slc {setlinecap} bind def /slj {setlinejoin} bind def /slw {setlinewidth} bind def /srgb {setrgbcolor} bind def /rot {rotate} bind def /sc {scale} bind def /sd {setdash} bind def /ff {findfont} bind def /sf {setfont} bind def /scf {scalefont} bind def /sw {stringwidth} bind def /tr {translate} bind def /tnt {dup dup currentrgbcolor 4 -2 roll dup 1 exch sub 3 -1 roll mul add 4 -2 roll dup 1 exch sub 3 -1 roll mul add 4 -2 roll dup 1 exch sub 3 -1 roll mul add srgb} bind def /shd {dup dup currentrgbcolor 4 -2 roll mul 4 -2 roll mul 4 -2 roll mul srgb} bind def /$F2psBegin {$F2psDict begin /$F2psEnteredState save def} def /$F2psEnd {$F2psEnteredState restore end} def F2psBegin10setmiterlimitn−10004525m−1000−1000l4161−1000l41614525lcpclip0.060000.06000scF2psBegin 10 setmiterlimit n -1000 4525 m -1000 -1000 l 4161 -1000 l 4161 4525 l cp clip 0.06000 0.06000 sc % Polyline 7.500 slw gs clippath 2226 2895 m 2346 2925 l 2226 2955 l 2415 2955 l 2415 2895 l cp clip n 1275 2925 m 2400 2925 l gs col0 s gr gr % arrowhead 15.000 slw n 2226 2895 m 2346 2925 l 2226 2955 l 2226 2925 l 2226 2895 l cp gs 0.00 setgray ef gr col0 s % Polyline 7.500 slw gs clippath 2232 2380 m 2352 2350 l 2261 2433 l 2427 2344 l 2399 2291 l cp clip n 1275 2925 m 2400 2325 l gs col0 s gr gr % arrowhead 15.000 slw n 2232 2380 m 2352 2350 l 2261 2433 l 2246 2407 l 2232 2380 l cp gs 0.00 setgray ef gr col0 s % Polyline 7.500 slw gs clippath 2255 3349 m 2351 3427 l 2230 3404 l 2401 3484 l 2426 3429 l cp clip n 1275 2925 m 2400 3450 l gs col0 s gr gr % arrowhead 15.000 slw n 2255 3349 m 2351 3427 l 2230 3404 l 2242 3376 l 2255 3349 l cp gs 0.00 setgray ef gr col0 s /Times-Roman ff 180.00 scf sf 2700 3000 m gs 1 -1 sc (F2psBegin10setmiterlimitn10004525m10001000l41611000l41614525lcpclip0.060000.06000sc2400) col0 sh gr /Times-Roman ff 180.00 scf sf 2550 2250 m gs 1 -1 sc ($2500) col0 sh gr /Times-Roman ff 180.00 scf sf 2550 3525 m gs 1 -1 sc ($0) col0 sh gr /Times-Roman ff 180.00 scf sf 1650 2550 m gs 1 -1 sc (.33) col0 sh gr /Times-Roman ff 180.00 scf sf 1875 2850 m gs 1 -1 sc (.66) col0 sh gr /Times-Roman ff 180.00 scf sf 1650 3450 m gs 1 -1 sc (.01) col0 sh gr F2psEndrsF2psEnd rs %%EndDocument @endspecial 862 w @beginspecial 0 @llx 0 @lly 93 @urx 10 @ury 1401 @rwi @setspecial %%BeginDocument: elly/lotteryb.eps /F2psEndrsF2psDict 200 dict def F2psDictbeginF2psDict begin F2psDictbeginF2psDict /mtrx matrix put /col-1 {0 setgray} bind def /col0 {0.000 0.000 0.000 srgb} bind def /col1 {0.000 0.000 1.000 srgb} bind def /col2 {0.000 1.000 0.000 srgb} bind def /col3 {0.000 1.000 1.000 srgb} bind def /col4 {1.000 0.000 0.000 srgb} bind def /col5 {1.000 0.000 1.000 srgb} bind def /col6 {1.000 1.000 0.000 srgb} bind def /col7 {1.000 1.000 1.000 srgb} bind def /col8 {0.000 0.000 0.560 srgb} bind def /col9 {0.000 0.000 0.690 srgb} bind def /col10 {0.000 0.000 0.820 srgb} bind def /col11 {0.530 0.810 1.000 srgb} bind def /col12 {0.000 0.560 0.000 srgb} bind def /col13 {0.000 0.690 0.000 srgb} bind def /col14 {0.000 0.820 0.000 srgb} bind def /col15 {0.000 0.560 0.560 srgb} bind def /col16 {0.000 0.690 0.690 srgb} bind def /col17 {0.000 0.820 0.820 srgb} bind def /col18 {0.560 0.000 0.000 srgb} bind def /col19 {0.690 0.000 0.000 srgb} bind def /col20 {0.820 0.000 0.000 srgb} bind def /col21 {0.560 0.000 0.560 srgb} bind def /col22 {0.690 0.000 0.690 srgb} bind def /col23 {0.820 0.000 0.820 srgb} bind def /col24 {0.500 0.190 0.000 srgb} bind def /col25 {0.630 0.250 0.000 srgb} bind def /col26 {0.750 0.380 0.000 srgb} bind def /col27 {1.000 0.500 0.500 srgb} bind def /col28 {1.000 0.630 0.630 srgb} bind def /col29 {1.000 0.750 0.750 srgb} bind def /col30 {1.000 0.880 0.880 srgb} bind def /col31 {1.000 0.840 0.000 srgb} bind def end save -75.0 180.0 translate 1 -1 scale /cp {closepath} bind def /ef {eofill} bind def /gr {grestore} bind def /gs {gsave} bind def /sa {save} bind def /rs {restore} bind def /l {lineto} bind def /m {moveto} bind def /rm {rmoveto} bind def /n {newpath} bind def /s {stroke} bind def /sh {show} bind def /slc {setlinecap} bind def /slj {setlinejoin} bind def /slw {setlinewidth} bind def /srgb {setrgbcolor} bind def /rot {rotate} bind def /sc {scale} bind def /sd {setdash} bind def /ff {findfont} bind def /sf {setfont} bind def /scf {scalefont} bind def /sw {stringwidth} bind def /tr {translate} bind def /tnt {dup dup currentrgbcolor 4 -2 roll dup 1 exch sub 3 -1 roll mul add 4 -2 roll dup 1 exch sub 3 -1 roll mul add 4 -2 roll dup 1 exch sub 3 -1 roll mul add srgb} bind def /shd {dup dup currentrgbcolor 4 -2 roll mul 4 -2 roll mul 4 -2 roll mul srgb} bind def /$F2psBegin {$F2psDict begin /$F2psEnteredState save def} def /$F2psEnd {$F2psEnteredState restore end} def F2psBegin10setmiterlimitn−10004000m−1000−1000l3786−1000l37864000lcpclip0.060000.06000scF2psBegin 10 setmiterlimit n -1000 4000 m -1000 -1000 l 3786 -1000 l 3786 4000 l cp clip 0.06000 0.06000 sc % Polyline 7.500 slw gs clippath 2001 2895 m 2121 2925 l 2001 2955 l 2190 2955 l 2190 2895 l cp clip n 1275 2925 m 2175 2925 l gs col0 s gr gr % arrowhead 15.000 slw n 2001 2895 m 2121 2925 l 2001 2955 l 2001 2925 l 2001 2895 l cp gs 0.00 setgray ef gr col0 s /Times-Roman ff 180.00 scf sf 2325 3000 m gs 1 -1 sc (F2psBegin10setmiterlimitn10004000m10001000l37861000l37864000lcpclip0.060000.06000sc2400) col0 sh gr F2psEndrsF2psEnd rs %%EndDocument @endspecial 266 1131 a(Lotter)r(y)g(A)431 b(Lotter)r(y)23 b(B)2 1271 y(Choose)f(betw)o(een)h(lotter)q(ies)g(C)g(and)g(D:)43 1756 y @beginspecial 0 @llx 0 @lly 106 @urx 59 @ury 1868 @rwi @setspecial %%BeginDocument: elly/lotteryc.eps /F2psEndrsF2psDict 200 dict def F2psDictbeginF2psDict begin F2psDictbeginF2psDict /mtrx matrix put /col-1 {0 setgray} bind def /col0 {0.000 0.000 0.000 srgb} bind def /col1 {0.000 0.000 1.000 srgb} bind def /col2 {0.000 1.000 0.000 srgb} bind def /col3 {0.000 1.000 1.000 srgb} bind def /col4 {1.000 0.000 0.000 srgb} bind def /col5 {1.000 0.000 1.000 srgb} bind def /col6 {1.000 1.000 0.000 srgb} bind def /col7 {1.000 1.000 1.000 srgb} bind def /col8 {0.000 0.000 0.560 srgb} bind def /col9 {0.000 0.000 0.690 srgb} bind def /col10 {0.000 0.000 0.820 srgb} bind def /col11 {0.530 0.810 1.000 srgb} bind def /col12 {0.000 0.560 0.000 srgb} bind def /col13 {0.000 0.690 0.000 srgb} bind def /col14 {0.000 0.820 0.000 srgb} bind def /col15 {0.000 0.560 0.560 srgb} bind def /col16 {0.000 0.690 0.690 srgb} bind def /col17 {0.000 0.820 0.820 srgb} bind def /col18 {0.560 0.000 0.000 srgb} bind def /col19 {0.690 0.000 0.000 srgb} bind def /col20 {0.820 0.000 0.000 srgb} bind def /col21 {0.560 0.000 0.560 srgb} bind def /col22 {0.690 0.000 0.690 srgb} bind def /col23 {0.820 0.000 0.820 srgb} bind def /col24 {0.500 0.190 0.000 srgb} bind def /col25 {0.630 0.250 0.000 srgb} bind def /col26 {0.750 0.380 0.000 srgb} bind def /col27 {1.000 0.500 0.500 srgb} bind def /col28 {1.000 0.630 0.630 srgb} bind def /col29 {1.000 0.750 0.750 srgb} bind def /col30 {1.000 0.880 0.880 srgb} bind def /col31 {1.000 0.840 0.000 srgb} bind def end save -107.0 104.0 translate 1 -1 scale /cp {closepath} bind def /ef {eofill} bind def /gr {grestore} bind def /gs {gsave} bind def /sa {save} bind def /rs {restore} bind def /l {lineto} bind def /m {moveto} bind def /rm {rmoveto} bind def /n {newpath} bind def /s {stroke} bind def /sh {show} bind def /slc {setlinecap} bind def /slj {setlinejoin} bind def /slw {setlinewidth} bind def /srgb {setrgbcolor} bind def /rot {rotate} bind def /sc {scale} bind def /sd {setdash} bind def /ff {findfont} bind def /sf {setfont} bind def /scf {scalefont} bind def /sw {stringwidth} bind def /tr {translate} bind def /tnt {dup dup currentrgbcolor 4 -2 roll dup 1 exch sub 3 -1 roll mul add 4 -2 roll dup 1 exch sub 3 -1 roll mul add 4 -2 roll dup 1 exch sub 3 -1 roll mul add srgb} bind def /shd {dup dup currentrgbcolor 4 -2 roll mul 4 -2 roll mul 4 -2 roll mul srgb} bind def /$F2psBegin {$F2psDict begin /$F2psEnteredState save def} def /$F2psEnd {$F2psEnteredState restore end} def F2psBegin10setmiterlimitn−10002725m−1000−1000l4536−1000l45362725lcpclip0.060000.06000scF2psBegin 10 setmiterlimit n -1000 2725 m -1000 -1000 l 4536 -1000 l 4536 2725 l cp clip 0.06000 0.06000 sc % Polyline 7.500 slw gs clippath 2824 913 m 2947 913 l 2838 971 l 3022 925 l 3007 867 l cp clip n 1800 1200 m 3000 900 l gs col0 s gr gr % arrowhead 15.000 slw n 2824 913 m 2947 913 l 2838 971 l 2831 942 l 2824 913 l cp gs 0.00 setgray ef gr col0 s % Polyline 7.500 slw gs clippath 2838 1429 m 2947 1486 l 2824 1487 l 3007 1533 l 3022 1475 l cp clip n 1800 1200 m 3000 1500 l gs col0 s gr gr % arrowhead 15.000 slw n 2838 1429 m 2947 1486 l 2824 1487 l 2831 1458 l 2838 1429 l cp gs 0.00 setgray ef gr col0 s /Times-Roman ff 180.00 scf sf 3075 1575 m gs 1 -1 sc (F2psBegin10setmiterlimitn10002725m10001000l45361000l45362725lcpclip0.060000.06000sc0) col0 sh gr /Times-Roman ff 180.00 scf sf 2250 900 m gs 1 -1 sc (.33) col0 sh gr /Times-Roman ff 180.00 scf sf 2250 1725 m gs 1 -1 sc (.67) col0 sh gr /Times-Roman ff 180.00 scf sf 3075 975 m gs 1 -1 sc ($2500) col0 sh gr F2psEndrsF2psEnd rs %%EndDocument @endspecial 862 w @beginspecial 0 @llx 0 @lly 106 @urx 59 @ury 1868 @rwi @setspecial %%BeginDocument: elly/lotteryd.eps /F2psEndrsF2psDict 200 dict def F2psDictbeginF2psDict begin F2psDictbeginF2psDict /mtrx matrix put /col-1 {0 setgray} bind def /col0 {0.000 0.000 0.000 srgb} bind def /col1 {0.000 0.000 1.000 srgb} bind def /col2 {0.000 1.000 0.000 srgb} bind def /col3 {0.000 1.000 1.000 srgb} bind def /col4 {1.000 0.000 0.000 srgb} bind def /col5 {1.000 0.000 1.000 srgb} bind def /col6 {1.000 1.000 0.000 srgb} bind def /col7 {1.000 1.000 1.000 srgb} bind def /col8 {0.000 0.000 0.560 srgb} bind def /col9 {0.000 0.000 0.690 srgb} bind def /col10 {0.000 0.000 0.820 srgb} bind def /col11 {0.530 0.810 1.000 srgb} bind def /col12 {0.000 0.560 0.000 srgb} bind def /col13 {0.000 0.690 0.000 srgb} bind def /col14 {0.000 0.820 0.000 srgb} bind def /col15 {0.000 0.560 0.560 srgb} bind def /col16 {0.000 0.690 0.690 srgb} bind def /col17 {0.000 0.820 0.820 srgb} bind def /col18 {0.560 0.000 0.000 srgb} bind def /col19 {0.690 0.000 0.000 srgb} bind def /col20 {0.820 0.000 0.000 srgb} bind def /col21 {0.560 0.000 0.560 srgb} bind def /col22 {0.690 0.000 0.690 srgb} bind def /col23 {0.820 0.000 0.820 srgb} bind def /col24 {0.500 0.190 0.000 srgb} bind def /col25 {0.630 0.250 0.000 srgb} bind def /col26 {0.750 0.380 0.000 srgb} bind def /col27 {1.000 0.500 0.500 srgb} bind def /col28 {1.000 0.630 0.630 srgb} bind def /col29 {1.000 0.750 0.750 srgb} bind def /col30 {1.000 0.880 0.880 srgb} bind def /col31 {1.000 0.840 0.000 srgb} bind def end save -107.0 104.0 translate 1 -1 scale /cp {closepath} bind def /ef {eofill} bind def /gr {grestore} bind def /gs {gsave} bind def /sa {save} bind def /rs {restore} bind def /l {lineto} bind def /m {moveto} bind def /rm {rmoveto} bind def /n {newpath} bind def /s {stroke} bind def /sh {show} bind def /slc {setlinecap} bind def /slj {setlinejoin} bind def /slw {setlinewidth} bind def /srgb {setrgbcolor} bind def /rot {rotate} bind def /sc {scale} bind def /sd {setdash} bind def /ff {findfont} bind def /sf {setfont} bind def /scf {scalefont} bind def /sw {stringwidth} bind def /tr {translate} bind def /tnt {dup dup currentrgbcolor 4 -2 roll dup 1 exch sub 3 -1 roll mul add 4 -2 roll dup 1 exch sub 3 -1 roll mul add 4 -2 roll dup 1 exch sub 3 -1 roll mul add srgb} bind def /shd {dup dup currentrgbcolor 4 -2 roll mul 4 -2 roll mul 4 -2 roll mul srgb} bind def /$F2psBegin {$F2psDict begin /$F2psEnteredState save def} def /$F2psEnd {$F2psEnteredState restore end} def F2psBegin10setmiterlimitn−10002725m−1000−1000l4536−1000l45362725lcpclip0.060000.06000scF2psBegin 10 setmiterlimit n -1000 2725 m -1000 -1000 l 4536 -1000 l 4536 2725 l cp clip 0.06000 0.06000 sc % Polyline 7.500 slw gs clippath 2824 913 m 2947 913 l 2838 971 l 3022 925 l 3007 867 l cp clip n 1800 1200 m 3000 900 l gs col0 s gr gr % arrowhead 15.000 slw n 2824 913 m 2947 913 l 2838 971 l 2831 942 l 2824 913 l cp gs 0.00 setgray ef gr col0 s % Polyline 7.500 slw gs clippath 2838 1429 m 2947 1486 l 2824 1487 l 3007 1533 l 3022 1475 l cp clip n 1800 1200 m 3000 1500 l gs col0 s gr gr % arrowhead 15.000 slw n 2838 1429 m 2947 1486 l 2824 1487 l 2831 1458 l 2838 1429 l cp gs 0.00 setgray ef gr col0 s /Times-Roman ff 180.00 scf sf 3075 1575 m gs 1 -1 sc (F2psBegin10setmiterlimitn10002725m10001000l45361000l45362725lcpclip0.060000.06000sc0) col0 sh gr /Times-Roman ff 180.00 scf sf 2250 900 m gs 1 -1 sc (.34) col0 sh gr /Times-Roman ff 180.00 scf sf 2250 1725 m gs 1 -1 sc (.66) col0 sh gr /Times-Roman ff 180.00 scf sf 3075 975 m gs 1 -1 sc ($2400) col0 sh gr F2psEndrsF2psEnd rs %%EndDocument @endspecial 264 1855 a(Lotter)r(y)g(C)523 b(Lotter)r(y)23 b(D)p Black 902 2553 a Fq(42)466 b(15-854)15 b(Presentation)p Black eop PNP restore /PNP save def 648.5610 42.5454 translate 0 43 bop Black Black BrickRed Black BrickRed 246 125 a Fv(Wh)n(y)33 b(Allais)g(Is)g(P)l(arado)l(xical)p Black Black 2 211 1947 2 v 2 213 V 2 215 V Black 2 415 a Fs(Most)20 b(people)g(pref)n(er)f(lotter)q(ies)i(B)f(and)g(C)n(.)g(This)h (violates)g(Ex-)2 531 y(pected)i(Utility)h(Theor)r(y)-8 b(.)2 689 y(Let)19 b Fo(U)30 b Fs(be)20 b(the)g(decision)h(mak)n(er')l (s)f(utility)h(function.)28 b(F)n(or)20 b(con-)2 805 y(v)n(enience)o(,)j(let)g Fo(U)9 b Fm(\(0\))25 b(=)f(0)p Fs(.)2 963 y(The)f(\002rst)g(pref)n(erence)f(\()p Fo(L)827 982 y Fi(B)911 963 y Fp(\037)i Fo(L)1063 982 y Fi(A)1120 963 y Fs(\))f(speci\002es:)196 1141 y Fo(U)9 b Fm(\(2400\))24 b Fo(>)h(:)p Fm(33)p Fo(U)9 b Fm(\(2500\))18 b(+)i Fo(:)p Fm(66)p Fo(U)9 b Fm(\(2400\))365 1341 y Fp(\))25 b Fo(:)p Fm(34)p Fo(U)9 b Fm(\(2400\))23 b Fo(>)h(:)p Fm(33)p Fo(U)9 b Fm(\(2500\))p Fo(:)2 1540 y Fs(But)23 b(the)f(second)i(pref)n (erence)d(\()p Fo(L)1079 1559 y Fi(C)1162 1540 y Fp(\037)k Fo(L)1315 1559 y Fi(D)1379 1540 y Fs(\))d(speci\002es:)2 1718 y Fo(:)p Fm(33)p Fo(U)9 b Fm(\(2500\))j(+)g Fo(:)p Fm(67)p Fo(U)d Fm(\(0\))23 b Fo(>)i(:)p Fm(34)p Fo(U)9 b Fm(\(2400\))j(+)g Fo(:)p Fm(66)p Fo(U)d Fm(\(0\))385 1918 y Fp(\))25 b Fo(:)p Fm(33)p Fo(U)9 b Fm(\(2500)23 b Fo(>)h(:)p Fm(34)p Fo(U)9 b Fm(\(2400\))p Fo(:)p Black 902 2553 a Fq(43)466 b(15-854)15 b(Presentation)p Black eop PNP restore PNEP %%Page: ? 12 0.4718 PNSP /PNP save def 31.7922 839.3143 translate 0 44 bop Black Black BrickRed Black BrickRed 213 125 a Fv(Other)33 b(Pr)n(ob)o(lems)f(with)g(Utility)760 241 y(Theor)q(y)p Black Black 2 327 1947 2 v 2 329 V 2 331 V Black 2 531 a Fs(It')l(s)j(dif\002cult)g(to)g(get)f(and)g(use)p OliveGreen 35 w(personal)p Black 34 w(utility)i(functions)o(.)2 647 y(Often)29 b(assume)h(utility)g(function)g(is)g(some)f (\223nice\224)g(conca)n(v)n(e)2 763 y(\(lik)n(e)23 b(log\))g(or)g (linear)l(.)2 921 y(Expected)32 b(Utility)i(Theor)r(y)e(widely)h (accepted)g(as)f(descr)q(ip-)2 1037 y(tiv)n(e)22 b(of)g(r)o(ational)h (choice)g(under)e(r)q(isk,)i(b)n(ut)f(peoples')h(choices)2 1153 y(often)f(violate)i(it.)2 1311 y(Another)c(violation:)28 b(Risk)22 b(a)n(v)n(erse)f(in)g(positiv)n(e)h(domain)f(tend)2 1427 y(to)35 b(be)g(r)q(isk)h(seek)n(ers)g(in)g(negativ)n(e)g(domain.) 66 b(E.g.,)38 b(pref)n(er)2 1544 y Fm(80\045)22 b Fs(r)q(isk)i(of)f (losing)g(F2psEndrs4000)g(to)g(sure)g(loss)h(of)e($3000.)p Black 902 2553 a Fq(44)466 b(15-854)15 b(Presentation)p Black eop PNP restore /PNP save def 648.5610 839.3143 translate 0 45 bop Black Black BrickRed Black BrickRed 226 125 a Fv(Other)33 b(Appr)n(oac)o(hes)f(to)g(Risk)p Black Black 2 211 1947 2 v 2 213 V 2 215 V Black 2 414 a Fs(Man)o(y)h(non-v)n (on)f(Neumann-Morganster)r(n)f(optimality)j(cr)q(i-)2 530 y(ter)q(ia.)2 688 y(One:)51 b(utility)36 b(function)f Fo(U)9 b Fm(\()p Fo(k)933 705 y Fn(1)978 688 y Fm(\()p Fo(L)p Fm(\))p Fo(;)15 b(k)1203 705 y Fn(2)1248 688 y Fm(\()p Fo(L)p Fm(\)\))34 b Fs(where)g Fo(k)1768 705 y Fi(i)1829 688 y Fs(are)2 804 y Fj(char)o(acter)q(istic)20 b(par)o(ameters)h Fs(of)f(the)f(under)q(lying)h(probability)2 920 y(distr)q(ib)n(ution)k(of)f Fo(L)p Fs(.)2 1078 y(Usually)-8 b(,)26 b Fo(k)359 1095 y Fn(1)404 1078 y Fm(\()p Fo(L)p Fm(\))f Fs(is)h(the)f(e)n(xpected)g(pa)n(y)n(off)g(and)g Fo(k)1607 1095 y Fn(2)1652 1078 y Fm(\()p Fo(L)p Fm(\))h Fs(is)f(a)2 1194 y(measure)d(of)h(r)q(isk.)2 1352 y(Most)39 b(common)g Fo(k)622 1369 y Fn(2)705 1352 y Fs(is)h(standard)f(de)n (viation.)76 b(Then)40 b(this)2 1468 y(method)17 b(is)h(called)p OliveGreen 18 w(the)g(Mean-V)-6 b(ar)q(iance)17 b(cr)q(iter)q(ion)p Black 18 w(and)g Fo(U)9 b Fm(\()p Fo(L)p Fm(\))25 b(=)2 1584 y Fr(E)p Fm(\()p Fo(L)p Fm(\))19 b Fp(\000)h Fo(\016)j Fp(\003)c Fo(\033)s Fm(\()p Fo(L)p Fm(\))p Fs(.)p Black 902 2553 a Fq(45)466 b(15-854)15 b(Presentation)p Black eop PNP restore /PNP save def 31.7922 42.5454 translate 0 46 bop Black Black BrickRed Black BrickRed 104 125 a Fv(Between)33 b(Uncer)r(tainty)g(and)f(Risk)p Black Black 2 211 1947 2 v 2 213 V 2 215 V Black 2 414 a Fs(Ho)o(w)22 b(can)h(w)o(e)g(use)g(par)s(tial)g(inf)n(or)r(mation?)2 572 y(Ba)n(y)n(esian)d(approach:)27 b(tr)r(y)20 b(to)g(tr)o(ansf)n(or)r (m)f(uncer)s(tainties)i(into)2 688 y(r)q(isks)j(\(probabilities\).)2 846 y Fr(Prior)f(Distrib)n(ution:)29 b Fs(Assigned)24 b(probability)g(model.)2 1004 y(When)17 b(ne)n(w)g(sample)h(is)g (obtained,)h(update)e(pr)q(ior)g(using)h(Ba)n(y)n(es')2 1120 y(r)q(ule)23 b(f)n(or)e(conditional)j(probabilities)o(.)2 1278 y Fr(P)m(osterior:)k Fs(The)23 b(result)g(of)g(such)h(an)f(update) o(.)p Black 902 2553 a Fq(46)466 b(15-854)15 b(Presentation)p Black eop PNP restore /PNP save def 648.5610 42.5454 translate 0 47 bop Black Black BrickRed Black BrickRed 466 125 a Fv(Assigning)32 b(a)h(Prior)p Black Black 2 211 1947 2 v 2 213 V 2 215 V Black 2 415 a Fs(W)n(e)17 b(don't)g(ha)n(v)n(e)h (complete)g(inf)n(or)r(mation.)26 b(Ho)o(w)16 b(do)i(w)o(e)f(come)2 531 y(up)27 b(with)g(a)g(pr)q(ior?)40 b(T)-10 b(w)o(o)27 b(main)g(schools)h(of)f(probability)h(the-)2 648 y(or)r(y:)2 805 y Fr(Objectivists:)47 b Fs(Sample)34 b(the)f(\223tr)q(ue\224)e (under)q(lying)j(distr)q(ib)n(u-)2 922 y(tion,)g(then)f(use)f(empir)q (ical)h(distr)q(ib)n(ution,)j(maxim)o(um)d(lik)n(eli-)2 1038 y(hood,)22 b(maxim)o(um)h(entrop)n(y)-8 b(,)22 b(...)29 b(to)23 b(reco)o(v)n(er)f(a)h(pr)q(ior)l(.)2 1196 y(If)39 b(no)g(samples)o(,)44 b(star)s(t)c(with)f(e)n(v)n(en)g(or)g(r)o(andom)g (probabil-)2 1312 y(ity)33 b(distr)q(ib)n(ution\227fur)s(ther)g (sampling)h(will)f(lead)h(to)f(con)n(v)n(er-)2 1428 y(gence)23 b(to)g(\223tr)q(ue\224)e(distr)q(ib)n(ution.)2 1586 y Fr(Subjectivists:)26 b Fs(Set)19 b(of)h(qualitativ)n(e)g(beliefs)g (based)g(on)g(per-)2 1702 y(sonal)27 b(e)n(xper)q(ience)f(and)h (consistent)g(with)g(a)g(cer)s(tain)g(set)g(of)2 1818 y(axioms)o(.)2 1976 y(P)l(ersonal)17 b(pref)n(erence)f(relation)i(o)o (v)n(er)e(set)i(of)g(probability)g(dis-)2 2092 y(tr)q(ib)n(utions)o(,) 23 b(probability)h(pr)q(ior)e(and)h(utility)h(function.)p Black 902 2553 a Fq(47)466 b(15-854)15 b(Presentation)p Black eop PNP restore PNEP %%Page: ? 13 0.4718 PNSP /PNP save def 31.7922 839.3143 translate 0 48 bop Black Black BrickRed Black BrickRed 474 125 a Fv(Deep)33 b(Conc)n(lusion)p Black Black 2 211 1947 2 v 2 213 V 2 215 V Black 2 414 a Fs(The)23 b(mor)o(al)g(of)g(the)f (stor)r(y:)p Black 74 593 a Fp(\017)p Black 41 w Fs(There)k(are)e(a)i (lot)f(of)h(w)o(a)n(ys)f(to)g(measure)g(the)g(quality)i(of)159 709 y(choices)f(in)f(str)q(ict)g(uncer)s(tainty)-8 b(,)25 b(pure)f(r)q(isk,)i(and)f(mix)n(ed)159 825 y(en)n(vironments)o(.)p Black 74 1004 a Fp(\017)p Black 41 w Fs(No)h(one)g(w)o(a)n(y)f(is)i (better)f(in)g(an)o(y)g(of)g(the)g(en)n(vironments)o(.)159 1120 y(Y)-12 b(ou)28 b(ha)n(v)n(e)h(to)e(mak)n(e)h(an)g(educated)f (choice)i(based)f(on)159 1236 y(the)23 b(char)o(acter)q(istics)i(of)d (the)h(cr)q(iter)q(ia.)p Black 74 1415 a Fp(\017)p Black 41 w Fs(Lif)n(e)g(is)h(tough!)p Black 902 2553 a Fq(48)466 b(15-854)15 b(Presentation)p Black eop PNP restore PNEP %%Trailer end userdict /end-hook known{end-hook}if