(original) (raw)
%!PS-Adobe-2.0 %%Creator: dvips(k) 5.78 Copyright 1998 Radical Eye Software (www.radicaleye.com) %%Title: last_inex.dvi %%Pages: 12 %%PageOrder: Ascend %%BoundingBox: 0 0 612 792 %%EndComments %DVIPSCommandLine: dvips -o last_inex.ps last_inex %DVIPSParameters: dpi=600, compressed %DVIPSSource: TeX output 1999.12.07:1515 %%BeginProcSet: texc.pro %! /TeXDict 300 dict def TeXDict begin /N{def}def /B{bind def}N /S{exch}N /X{S N}B /TR{translate}N /isls false N /vsize 11 72 mul N /hsize 8.5 72 mul N /landplus90{false}def /@rigin{isls{[0 landplus90{1 -1}{-1 1} ifelse 0 0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize mul 0}ifelse TR}if Resolution VResolution vsize -72 div 1 add mul TR[matrix currentmatrix{dup dup round sub abs 0.00001 lt{round}if} forall round exch round exch]setmatrix}N /@landscape{/isls true N}B /@manualfeed{statusdict /manualfeed true put}B /@copies{/#copies X}B /FMat[1 0 0 -1 0 0]N /FBB[0 0 0 0]N /nn 0 N /IE 0 N /ctr 0 N /df-tail{ /nn 8 dict N nn begin /FontType 3 N /FontMatrix fntrx N /FontBBox FBB N string /base X array /BitMaps X /BuildChar{CharBuilder}N /Encoding IE N end dup{/foo setfont}2 array copy cvx N load 0 nn put /ctr 0 N[}B /df{ /sf 1 N /fntrx FMat N df-tail}B /dfs{div /sf X /fntrx[sf 0 0 sf neg 0 0] N df-tail}B /E{pop nn dup definefont setfont}B /ch-width{ch-data dup length 5 sub get}B /ch-height{ch-data dup length 4 sub get}B /ch-xoff{ 128 ch-data dup length 3 sub get sub}B /ch-yoff{ch-data dup length 2 sub get 127 sub}B /ch-dx{ch-data dup length 1 sub get}B /ch-image{ch-data dup type /stringtype ne{ctr get /ctr ctr 1 add N}if}B /id 0 N /rw 0 N /rc 0 N /gp 0 N /cp 0 N /G 0 N /sf 0 N /CharBuilder{save 3 1 roll S dup /base get 2 index get S /BitMaps get S get /ch-data X pop /ctr 0 N ch-dx 0 ch-xoff ch-yoff ch-height sub ch-xoff ch-width add ch-yoff setcachedevice ch-width ch-height true[1 0 0 -1 -.1 ch-xoff sub ch-yoff .1 sub]/id ch-image N /rw ch-width 7 add 8 idiv string N /rc 0 N /gp 0 N /cp 0 N{rc 0 ne{rc 1 sub /rc X rw}{G}ifelse}imagemask restore}B /G{{id gp get /gp gp 1 add N dup 18 mod S 18 idiv pl S get exec}loop}B /adv{cp add /cp X}B /chg{rw cp id gp 4 index getinterval putinterval dup gp add /gp X adv}B /nd{/cp 0 N rw exit}B /lsh{rw cp 2 copy get dup 0 eq{pop 1}{ dup 255 eq{pop 254}{dup dup add 255 and S 1 and or}ifelse}ifelse put 1 adv}B /rsh{rw cp 2 copy get dup 0 eq{pop 128}{dup 255 eq{pop 127}{dup 2 idiv S 128 and or}ifelse}ifelse put 1 adv}B /clr{rw cp 2 index string putinterval adv}B /set{rw cp fillstr 0 4 index getinterval putinterval adv}B /fillstr 18 string 0 1 17{2 copy 255 put pop}for N /pl[{adv 1 chg} {adv 1 chg nd}{1 add chg}{1 add chg nd}{adv lsh}{adv lsh nd}{adv rsh}{ adv rsh nd}{1 add adv}{/rc X nd}{1 add set}{1 add clr}{adv 2 chg}{adv 2 chg nd}{pop nd}]dup{bind pop}forall N /D{/cc X dup type /stringtype ne{] }if nn /base get cc ctr put nn /BitMaps get S ctr S sf 1 ne{dup dup length 1 sub dup 2 index S get sf div put}if put /ctr ctr 1 add N}B /I{ cc 1 add D}B /bop{userdict /bop-hook known{bop-hook}if /SI save N @rigin 0 0 moveto /V matrix currentmatrix dup 1 get dup mul exch 0 get dup mul add .99 lt{/QV}{/RV}ifelse load def pop pop}N /eop{SI restore userdict /eop-hook known{eop-hook}if showpage}N /@start{userdict /start-hook known{start-hook}if pop /VResolution X /Resolution X 1000 div /DVImag X /IE 256 array N 2 string 0 1 255{IE S dup 360 add 36 4 index cvrs cvn put}for pop 65781.76 div /vsize X 65781.76 div /hsize X}N /p{show}N /RMat[1 0 0 -1 0 0]N /BDot 260 string N /rulex 0 N /ruley 0 N /v{/ruley X /rulex X V}B /V{}B /RV statusdict begin /product where{pop false[ (Display)(NeXT)(LaserWriter 16/600)]{dup length product length le{dup length product exch 0 exch getinterval eq{pop true exit}if}{pop}ifelse} forall}{false}ifelse end{{gsave TR -.1 .1 TR 1 1 scale rulex ruley false RMat{BDot}imagemask grestore}}{{gsave TR -.1 .1 TR rulex ruley scale 1 1 false RMat{BDot}imagemask grestore}}ifelse B /QV{gsave newpath transform round exch round exch itransform moveto rulex 0 rlineto 0 ruley neg rlineto rulex neg 0 rlineto fill grestore}B /a{moveto}B /delta 0 N /tail {dup /delta X 0 rmoveto}B /M{S p delta add tail}B /b{S p tail}B /c{-4 M} B /d{-3 M}B /e{-2 M}B /f{-1 M}B /g{0 M}B /h{1 M}B /i{2 M}B /j{3 M}B /k{ 4 M}B /w{0 rmoveto}B /l{p -4 w}B /m{p -3 w}B /n{p -2 w}B /o{p -1 w}B /q{ p 1 w}B /r{p 2 w}B /s{p 3 w}B /t{p 4 w}B /x{0 S rmoveto}B /y{3 2 roll p a}B /bos{/SS save N}B /eos{SS restore}B end %%EndProcSet TeXDict begin 40258431 52099146 1000 600 600 (last_inex.dvi) @start %DVIPSBitmapFont: Fa cmsl12 12 10 /Fa 10 117 df67 D97 DII<143C14FEEB01FFA25BA3EB01FE14 FCEB00781400ADEB03F8EA01FFA3EA000F130714F0A5130F14E0A5131F14C0A5133F1480 A5137F1400A55B5BA31201487EB512F8A318437DC21C>105 D<902703F801FEEC3FC0D8 01FF903B0FFFC001FFF848913B3E07F007C0FE923B7003F80E007FD8001FD9E001497F90 2607FBC0D9FC781480DAF70014E002F6010049131F02FE14FD4AECFF804A4990C7123F13 0F4A5CA24A5CA3011F0203157F4A4A1500A5013F02075D4A4A5CA5017F020F140191C749 5CA549021F1403494B5CA30001033F1407486C4A6C497EB5D8FC1FB50083B512F0A34C2C 7DAB52>109 D<903903F801FED801FF90380FFF804891383E0FE092387007F03A000FF9 E003902607FB8013F8ECF70002F6130114FE5C4A1303130F5CA25CA21607131F4A14F0A4 160F133F4A14E0A4161F137F91C713C0A4163F5B491580A30001157F486CECFFC0B5D8FC 3F13FFA3302C7DAB36>II<903903F007E0D801FFEB3FF848EC787CEDE1FC39000FF1C1903807F383ECE70314EE91 38EC01F89138FC00E04A1300130F5CA35CA2131F5CA5133F5CA5137F91C8FCA55B5BA312 01487EB6FCA25C262C7DAB26>114 D<14C0A313015CA21303A21307A249C7FCA25B5B5B 5B485A1203001FB512F0B6FCA2C648C7FC12015BA512035BA512075BA5120F5BA215C0A3 001FEB018013C0A414031500A25C1406000F130E6D5A00075B6C6C5AC6B45AEB3F801C3E 77BC26>116 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fb cmsy6 6 1 /Fb 1 51 df<903807FFF0133F5BD801FCC7FCEA03E0485A48C8FC121E121C123C5A1270 A212F05AA2B612F0A300E0C8FCA27E1270A212787E121C121E7E6C7EEA03E0EA01FC6CB5 12F0133F13071C237A9D2A>50 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fc cmmi6 6 7 /Fc 7 115 df<001FB612FCA29039003E007C003C151C00385B12300070151812605C5A A3C648481300A4495AA4495AA4495AA449C8FCA35B381FFFFE5C26227DA124>84 D<131FEBFF8C3801E0DE3803807E3807007C48133C121E123E003C5B127CA3485BA21540 1560903801E0C012781303393807E180391C1CF300380FF87F3807E03C1B177E9522>97 DI<1338137CA2137813701300A7EA0780EA1FC0EA38E01230EA60F0EAC1E0 A3EA03C0A3EA0780A2EA0F0013041306EA1E0CA21318121CEA1E70EA0FE0EA07800F237D A116>105 D<13F8EA0FF0A21200A2485AA4485AA43807801E147FEB81C3EB8387380F06 0F495A1318EB700E4848C7FCA213FCEA1E7EEA3C0F80EB0781158039780F0300A21402EB 070600F0138CEB03F8386000F019247CA221>107 D<000F13FC381FC3FF3931C7078038 61EC0301F813C0EAC1F0A213E03903C00780A3EC0F00EA0780A2EC1E041506D80F00130C 143C15181538001EEB1C70EC1FE0000CEB07801F177D9526>110 D<380F01F0381FC7F83831CE1CEA61F8EBF03C00C1137C13E014383803C000A4485AA448 C7FCA4121EA2120C16177D951D>114 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fd cmbx12 12 40 /Fd 40 121 df12 D46 D49 DII<163FA25E5E5D5DA25D5D5D5D A25D92B5FCEC01F7EC03E7140715C7EC0F87EC1F07143E147E147C14F8EB01F0EB03E013 0714C0EB0F80EB1F00133E5BA25B485A485A485A120F5B48C7FC123E5A12FCB91280A5C8 000F90C7FCAC027FB61280A531417DC038>I<0007150301E0143F01FFEB07FF91B6FC5E 5E5E5E5E16804BC7FC5D15E092C8FC01C0C9FCAAEC3FF001C1B5FC01C714C001DF14F090 39FFE03FFC9138000FFE01FC6D7E01F06D13804915C0497F6C4815E0C8FC6F13F0A317F8 A4EA0F80EA3FE0487E12FF7FA317F05B5D6C4815E05B007EC74813C0123E003F4A1380D8 1FC0491300D80FF0495AD807FEEBFFFC6CB612F0C65D013F1480010F01FCC7FC010113C0 2D427BC038>I<4AB47E021F13F0027F13FC49B6FC01079038807F8090390FFC001FD93F F014C04948137F4948EBFFE048495A5A1400485A120FA248486D13C0EE7F80EE1E00003F 92C7FCA25B127FA2EC07FC91381FFF8000FF017F13E091B512F89039F9F01FFC9039FBC0 07FE9039FF8003FF17804A6C13C05B6F13E0A24915F0A317F85BA4127FA5123FA217F07F 121FA2000F4A13E0A26C6C15C06D4913806C018014006C6D485A6C9038E01FFC6DB55A01 1F5C010714C0010191C7FC9038003FF02D427BC038>I58 D65 D67 DII76 DI80 D82 D<003FBA12E0A59026FE000FEB8003D87FE09338003FF049 171F90C71607A2007E1803007C1801A300781800A400F819F8481978A5C81700B3B3A201 07B8FCA545437CC24E>84 D<903801FFE0011F13FE017F6D7E48B612E03A03FE007FF848 48EB1FFC6D6D7E486C6D7EA26F7FA36F7F6C5A6C5AEA00F090C7FCA40203B5FC91B6FC13 07013F13F19038FFFC01000313E0000F1380381FFE00485A5B127F5B12FF5BA35DA26D5B 6C6C5B4B13F0D83FFE013EEBFFC03A1FFF80FC7F0007EBFFF86CECE01FC66CEB8007D90F FCC9FC322F7DAD36>97 DIIII< EDFF80020F13E0027F13F049B512F849EB8FFC90390FFE0FFE90381FFC1F14F8133FEB7F F0A2ED0FFCEBFFE0ED03F0ED00C01600ABB612F8A5C601E0C7FCB3B0007FEBFFE0A52746 7DC522>III<137C48B4FC4813804813C0A24813E0A56C13C0A26C13806C1300EA007C 90C7FCAAEB7FC0EA7FFFA512037EB3AFB6FCA518467CC520>I107 DI<90277F8007FEEC0FFCB590263FFFC090387FFF8092B5 D8F001B512E002816E4880913D87F01FFC0FE03FF8913D8FC00FFE1F801FFC0003D99F00 9026FF3E007F6C019E6D013C130F02BC5D02F86D496D7EA24A5D4A5DA34A5DB3A7B60081 B60003B512FEA5572D7CAC5E>I<90397F8007FEB590383FFF8092B512E0028114F89139 87F03FFC91388F801F000390399F000FFE6C139E14BC02F86D7E5CA25CA35CB3A7B60083 B512FEA5372D7CAC3E>II< 90397FC00FF8B590B57E02C314E002CF14F89139DFC03FFC9139FF001FFE000301FCEB07 FF6C496D13804A15C04A6D13E05C7013F0A2EF7FF8A4EF3FFCACEF7FF8A318F017FFA24C 13E06E15C06E5B6E4913806E4913006E495A9139DFC07FFC02CFB512F002C314C002C091 C7FCED1FF092C9FCADB67EA536407DAC3E>I<90387F807FB53881FFE0028313F0028F13 F8ED8FFC91389F1FFE000313BE6C13BC14F8A214F0ED0FFC9138E007F8ED01E092C7FCA3 5CB3A5B612E0A5272D7DAC2E>114 D<90391FFC038090B51287000314FF120F381FF003 383FC00049133F48C7121F127E00FE140FA215077EA27F01E090C7FC13FE387FFFF014FF 6C14C015F06C14FC6C800003806C15806C7E010F14C0EB003F020313E0140000F0143FA2 6C141F150FA27EA26C15C06C141FA26DEB3F8001E0EB7F009038F803FE90B55A00FC5CD8 F03F13E026E007FEC7FC232F7CAD2C>IIIIII E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fe cmr6 6 5 /Fe 5 112 df<1438B2B712FEA3C70038C7FCB227277C9F2F>43 D50 D<3801F83F3907FEFF80381E07E3391C03 8300383801C000787FA500385B6C485AEA1E07D83FFEC7FCEA31F80030C8FC1238A2383F FF806C13F06C7F487F3838007E48130E48130F80A36C5B0070130E003C133C001F13F838 07FFE0C690C7FC19227D951E>103 D<120FB4FCA2121F7EB3ABEAFFF0A20C237DA212> 108 D<137E3803FFC0380781E0380F00F0001E137848133CA248131EA200F8131FA70078 131E007C133E003C133C003E137C6C13F8380F81F03803FFC0C6130018187D961E>111 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Ff cmti12 12 45 /Ff 45 123 df<4CB414FC040F9039C003FF80933B3F81F00783C0933B7C00781F01E04C 9038F83F03923C01F001FC3E07F003030103EB7E0F922607E007EB7C1F19FCDB0FC001F8 14E0943A03F0F80FC0DD01E1EB0780031FD9000190C7FC5E180361153F93C7FCA2180761 5D157EA2180F6115FE91B912F0A3DA00FCC7D81F80C7FC1401A25D183F96C8FCA214035D A260187E14075DA218FE60140F5DA2170160141F5DA2170360143F92C7FCA21707605C14 7EA2170F6014FE5CA24D5AA2495A95C9FC5F5C0103153E177E001CEBE038007F02FE137C 26FF07E114FC02C15C4C5AEB0F8100FE903901FC03E0D8F81F9038F007C03B701E00E00F 80D8783CD9F83ECAFCD81FF0EB3FF8D807C0EB0FE04C5A83C53C>11 DI14 D<167016E0ED01C0ED0380ED0700150E153C5D15F85D4A5A4A5A4A5A140F4AC7FC141E14 3E5C147814F8495A5C1303495AA2495AA249C8FCA25B133E137E137CA25BA212015BA212 035BA212075BA2120FA25BA2121FA290C9FCA25AA2123EA3127EA2127CA65AAB1278A612 7C123CA47EA2120E120FA27E6C7EA26C7EA26C7E1360246472CA28>40 D<1560A2157081A281151E150E150FA2811680A3ED03C0A516E0A21501A71503A91507A2 16C0A4150FA21680A2151FA21600A25DA2153EA2157EA2157C15FCA25D1401A25D14035D A214075D140F5DA24AC7FCA2143EA25C147814F8495AA2495A5C1307495A91C8FC131E13 3E5B13785B485A485A485A48C9FC121E5A5A12E05A23647FCA28>I<13F0EA03FC1207A2 EA0FFEA4EA07FCEA03CCEA000C131C1318A2133813301370136013E0EA01C013801203EA 0700120E5A5A5A5A5A0F1D7A891E>44 D<007FB5FCB6FCA214FEA21805789723>I<120F EA3FC0127FA212FFA31380EA7F00123C0A0A76891E>I<130FEB1FC0133FEB7FE013FFA2 14C0EB7F801400131E90C7FCB3A5120FEA3FC0127FA212FFA35B6CC7FC123C132B76AA1E >58 D65 D<91B712F818FF19C00201903980003FF06E90C7EA0FF84AED03FCF000FE 4B157FA2F13F800203EE1FC05DF10FE0A214074B16F01907A2140F5D1AF8A2141F5DA219 0F143F5D1AF0A2147F4B151FA302FF17E092C9123FA34918C04A167F1A80A2010317FF4A 1700A24E5A13074A4B5A611807010F5F4A4B5A181F61011F4C5A4A4BC7FC18FE4D5A013F 4B5A4A4A5A4D5A017FED3FC005FFC8FC4AEB03FE01FFEC1FF8B812E094C9FC16F845447A C34A>68 D<91B91280A30201902680000713006E90C8FC4A163FA24B81A30203160E5DA3 14074B151E191CA2140F5D17075F021F020E90C7FC5DA2171E023F141C4B133CA2177C02 7F5CED800392B5FCA291B65AED00071601A2496E5A5CA2160101035D5CA2160301075D4A 90CAFCA3130F5CA3131F5CA3133F5CA2137FA313FFB612E0A341447AC340>70 D<91B612F0A25F020101C0C7FC6E5B4A90C8FCA25DA314035DA314075DA3140F5DA3141F 5DA3143F5DA3147F5DA314FF92C9FCA35B5CA3010316104A1538A21878010716705C18F0 18E0010F15015C18C01703011F15074A1580170FA2013FED1F004A5C5F017F15FE16034A 130F01FFEC7FFCB8FCA25F35447AC33D>76 D<91B56C93387FFFC08298B5FC02014DEBC0 006E614A5FA203DF4C6CC7FC1A0E63912603CFE05D038F5F1A381A711407030FEEE1FCA2 F101C3020FEE0383020E60F107036F6C1507021E160E021C60191CF1380F143C02380470 5BA2F1E01F0278ED01C091267003F85EF003801A3F02F0ED070002E0030E5CA24E137F13 0102C04B91C8FC606201036D6C5B02805F4D5A943803800113070200DA07005BA2050E13 03495D010E606F6C5A1907011E5D011C4B5CA27048130F133C01384B5C017892C7FC191F 01F85C486C027E5DD807FE027C4A7EB500F00178013FB512C0A216705A447AC357>I<91 B56C49B512E0A28202009239000FFC00F107F0706E5A4A5F15DF705D1907EC03CFDB8FF8 92C7FCA203875D02077F0303150EA270141EEC0F01020E161C826F153C141E021C6E1338 167F1978023C800238013F1470A27113F00278131F02705E83040F130102F014F84A5E16 07EFFC0313014A01035C17FE1807010314014A02FF90C8FCA2705B0107168F91C8138E17 7F18DE5B010EED3FDC18FCA2011E151F011C5EA2170F133C01386F5A1378A201F8150348 6C5EEA07FEB500F01401A2604B447AC348>II83 D<48B912F85AA2913B0007FC001FF0D807F84A130701E0010F14 0349160148485C90C71500A2001E021F15E05E121C123C0038143F4C1301007818C01270 00F0147F485DA3C800FF91C7FC93C9FCA35C5DA314035DA314075DA3140F5DA3141F5DA3 143F5DA3147F5DA314FF92CAFCA35B5CA21303A21307497E007FB612C0A25E3D446FC346 >I87 D97 DIIIII<15FCEC03FF91390F83838091393E01CFC091387C00EF4A13FF 4948137F010315804948133F495A131F4A1400133F91C75A5B167E13FE16FE1201495CA2 15011203495CA21503A2495CA21507A25EA2150F151F5E0001143F157F6C6C13FF913801 DF8090387C039F90383E0F3FEB0FFCD903F090C7FC90C7FC5DA2157EA215FEA25DA2001C 495A127F48495A14074A5A485C023FC8FC00F8137E387C01F8381FFFE0000390C9FC2A40 7BAB2D>I<14FE137FA3EB01FC13001301A25CA21303A25CA21307A25CA2130FA25CA213 1FA25C157F90393F83FFC091388F81F091381E00F802387F4948137C5C4A137EA2495A91 C7FCA25B484814FE5E5BA2000314015E5BA2000714035E5B1507000F5DA249130F5E001F 1678031F1370491480A2003F023F13F0EE00E090C7FC160148023E13C01603007E1680EE 070000FEEC1E0FED1F1E48EC0FF80038EC03E02D467AC432>I<143C147E14FE1301A3EB 00FC14701400AE137C48B4FC3803C780380703C0000F13E0120E121C13071238A21278EA 700F14C0131F00F0138012E0EA003F1400A25B137EA213FE5B12015BA212035B141E0007 131C13E0A2000F133CEBC038A21478EB807014F014E0EB81C0EA0783EBC7803803FE00EA 00F8174378C11E>I<16F0ED03F8A21507A316F0ED01C092C7FCAEEC01F0EC07FCEC1E1E EC380F0270138014E0130114C0EB03800107131F1400A2130E153F131E011C140090C7FC 5DA2157EA215FEA25DA21401A25DA21403A25DA21407A25DA2140FA25DA2141FA25DA214 3FA292C7FCA25C147EA214FE001C5B127F48485A495AA248485A495AD8F81FC8FCEA707E EA3FF8EA0FC0255683C11E>I<14FE137FA3EB01FC13001301A25CA21303A25CA21307A2 5CA2130FA25CA2131FA25C167E013F49B4FC92380783C09138000E07ED3C1F491370ED60 3F017E13E0EC01C09026FE03801380913907000E00D9FC0E90C7FC5C00015B5C495AEBF9 C03803FB8001FFC9FCA214F03807F3FCEBF07F9038E01FC06E7E000F130781EBC003A200 1F150FA20180140EA2003F151E161C010013E0A2485DA2007E1578167000FE01015B15F1 489038007F800038021FC7FC2A467AC42D>II< D801F0D90FE0EB07F0D803FCD97FF8EB3FFC28071E01F03EEBF81F3E0E1F03C01F01E00F 80271E0F8700D983807F001C018E90390F870007003C019C148E003801B802DC8002F814 FC26781FF05C0070495CA24A5C00F0494948130FD8E03F6091C75B1200043F141F496001 7E92C7FCA24C143F01FE95C7FC49147E6104FE147E1201494A14FE610301EE0780000305 011400494A14F8A2030302035B0007F0F00E495C1A1E0307EDE01C000F193C494A153862 030F020113F0001FF0F1E0494A903800FF800007C7D80380023EC7FC492D78AB50>IIII<91381F800C9138 7FE01C903901F0703C903907C0387890390F801CF890381F001D013E130F017E14F05B48 481307A2484814E012075B000F140F16C0485AA2003F141F491480A3007F143F90C71300 A35D00FE147EA315FE5DA2007E1301A24A5A1407003E130FA26C495A143B380F80F33807 C3E73901FF87E038007E071300140F5DA3141F5DA3143F92C7FCA25CA25C017F13FEA25D 263F76AB2D>III< 1470EB01F8A313035CA313075CA3130F5CA3131F5CA2007FB512E0B6FC15C0D8003FC7FC A25B137EA313FE5BA312015BA312035BA312075BA3120F5BA2EC0780001F140013805C14 0E003F131EEB001C143C14385C6C13F0495A6C485AEB8780D807FEC7FCEA01F81B3F78BD 20>I<137C48B414072603C780EB1F80380703C0000F7F000E153F121C0107150012385E 1278D8700F147E5C011F14FE00F05B00E05DEA003FEC0001A2495C137E150313FE495CA2 15071201495CA2030F13380003167849ECC070A3031F13F0EE80E0153F00011581037F13 C06DEBEF8300000101148090397C03C787903A3E0F07C70090391FFE01FE903903F00078 2D2D78AB34>I<017C143848B414FC3A03C78001FE380703C0000F13E0120E001C140001 07147E1238163E1278D8700F141E5C131F00F049131C12E0EA003F91C7123C16385B137E 167801FE14705BA216F0000115E05B150116C0A24848EB0380A2ED0700A2150E12015D6D 5B000014786D5B90387C01E090383F0780D90FFFC7FCEB03F8272D78AB2D>I<017CEE03 8048B4020EEB0FC02603C780013FEB1FE0380703C0000E7F5E001C037E130F0107160712 3804FE130300785DEA700F4A1501011F130100F001804914C012E0EA003FDA000314034C 14805B137E0307140701FE1700495CA2030F5C0001170E495CA260A24848495A60A26012 01033F5C7F4B6C485A000002F713036D9039E7E0078090267E01C349C7FC903A1F0781F8 1E903A0FFF007FF8D901FCEB0FE03B2D78AB41>I<02F8133FD907FEEBFFE0903A0F0F83 C0F0903A1C07C780F890393803CF03017013EE01E0EBFC07120101C013F8000316F00180 EC01C000074AC7FC13001407485C120EC7FC140F5DA3141F5DA3143F92C8FCA34AEB03C0 1780147EA202FEEB0700121E003F5D267F81FC130E6E5BD8FF83143CD903BE5B26FE079E 5B3A7C0F1F01E03A3C1E0F83C0271FF803FFC7FC3907E000FC2D2D7CAB2D>I<137C48B4 14072603C780EB1F80380703C0000F7F000E153F001C1600130712385E0078157EEA700F 5C011F14FE00F0495B12E0EA003FEC00015E5B137E150301FE5C5BA2150700015D5BA215 0F00035D5BA2151F5EA2153F12014BC7FC6D5B00005BEB7C0390383E0F7EEB1FFEEB03F0 90C712FE5DA214015D121F397F8003F0A24A5A4848485A5D48131F00F049C8FC0070137E 007813F8383801F0381E07C06CB4C9FCEA01FC294078AB2F>I<027C130749B4130F49EB 800E010F141E49EBC03CEDE03890393F03F07890397C00FDF00178EB3FE00170EB03C001 F0148049130790C7EA0F00151E5D5D5D4A5A4A5A4A5A4AC7FC141E5C5C5C495A495A495A 49C8FC011E14F04914E05B491301485A4848EB03C0D807B0130701FEEB0F80390FCF801F 3A1F07E07F00393E03FFFED83C015B486C5B00705C00F0EB7FC048011FC7FC282D7BAB28 >I E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fg cmsy10 12 28 /Fg 28 113 df<007FB912E0BA12F0A26C18E03C04789A4D>0 D<121FEA3F80EA7FC0EA FFE0A5EA7FC0EA3F80EA1F000B0B789E1C>I<0060160600F8160F6C161F007E163F6C16 7E6C6C15FC6C6CEC01F86C6CEC03F06C6CEC07E06C6CEC0FC06C6CEC1F80017EEC3F006D 147E6D6C5B6D6C485A6D6C485A6D6C485A6D6C485A6D6C485ADA7E3FC7FCEC3F7E6E5A6E 5A6E5AA24A7E4A7EEC3F7EEC7E3F4A6C7E49486C7E49486C7E49486C7E49486C7E49486C 7E49C7127E017E8049EC1F804848EC0FC04848EC07E04848EC03F04848EC01F84848EC00 FC48C9127E007E163F48161F48160F00601606303072B04D>I<16C04B7EB3AC007FBA12 80BB12C0A26C1980C8D801E0C9FCB3A9007FBA1280BB12C0A26C198042427BC14D>6 D<007FBA1280BB12C0A26C1980C8D801E0C9FCB3A9007FBA1280BB12C0A26C1980C8D801 E0C9FCB3AC6F5A42427BB14D>I<037FB612E00207B712F0143F91B812E0010301C0C9FC D907FCCAFCEB0FE0EB3F8049CBFC13FC485A485A485A5B485A121F90CCFC123EA2123C12 7CA2127812F8A25AA87EA21278127CA2123C123EA27E7F120F6C7E7F6C7E6C7E6C7E137E 6D7EEB1FE0EB07FC6DB47E010090B712E0023F16F01407020016E092CAFCB0001FB912E0 4818F0A26C18E03C4E78BE4D>18 D<007FB612F0B712FEEEFFC06C16F0C9EA1FFCEE03FE 9338007F80EF1FC0EF07E0717E717E717E187E183E841980180FF007C0A2180319E0A218 0119F0A21800A81801A219E01803A219C01807A2F00F80181F1900183E187E604D5A4D5A EF0FE04D5A057FC7FCEE03FEEE3FFC007FB712F0B812C04CC8FC6C15E0CDFCB0007FB912 80BA12C0A26C18803C4E78BE4D>I<19E0F003F0180FF03FE0F0FF80943803FE00EF0FF8 EF3FE0EFFF80DC03FEC7FCEE0FF8EE3FE0EEFF80DB03FEC8FCED1FF8ED7FE0913801FF80 DA07FEC9FCEC1FF0EC7FC04948CAFCEB07FCEB1FF0EB7FC04848CBFCEA07FCEA1FF0EA7F C048CCFCA2EA7FC0EA1FF0EA07FCEA01FF38007FC0EB1FF0EB07FCEB01FF9038007FC0EC 1FF0EC07FC913801FF809138007FE0ED1FF8ED07FE923800FF80EE3FE0EE0FF8EE03FE93 3800FF80EF3FE0EF0FF8EF03FE943800FF80F03FE0F00FF01803F000E01900B0007FB912 E0BA12F0A26C18E03C4E78BE4D>I<127012FCB4FCEA7FC0EA1FF0EA07FCEA01FF38007F C0EB1FF0EB07FCEB01FF9038007FC0EC1FF0EC07FC913801FF809138007FE0ED1FF8ED07 FE923800FF80EE3FE0EE0FF8EE03FE933800FF80EF3FE0EF0FF8EF03FE943800FF80F03F E0F00FF0A2F03FE0F0FF80943803FE00EF0FF8EF3FE0EFFF80DC03FEC7FCEE0FF8EE3FE0 EEFF80DB03FEC8FCED1FF8ED7FE0913801FF80DA07FEC9FCEC1FF0EC7FC04948CAFCEB07 FCEB1FF0EB7FC04848CBFCEA07FCEA1FF0EA7FC048CCFC12FC1270CDFCB0007FB912E0BA 12F0A26C18E03C4E78BE4D>I<037FB612E00207B712F0143F91B812E0010301C0C9FCD9 07FCCAFCEB0FE0EB3F8049CBFC13FC485A485A485A5B485A121F90CCFC123EA2123C127C A2127812F8A25AA87EA21278127CA2123C123EA27E7F120F6C7E7F6C7E6C7E6C7E137E6D 7EEB1FE0EB07FC6DB47E010090B712E0023F16F01407020016E03C3A78B54D>26 D<1AF0A3861A78A21A7C1A3CA21A3E1A1E1A1F747EA2747E747E87747E747E1B7E87757E F30FE0F303F8007FBC12FEBE1280A26CF3FE00CEEA03F8F30FE0F31F8051C7FC1B7E6350 5A505A63505A505AA250C8FC1A1E1A3E1A3CA21A7C1A78A21AF862A359347BB264>33 D<92B6FC02071580143F91B7120001030180C8FCD907FCC9FCEB1FE0EB3F80017ECAFC5B 485A485A485A5B485A121F90CBFC123EA2123C127CA2127812F8A25AA2B9FC1880A21800 00F0CBFCA27EA21278127CA2123C123EA27E7F120F6C7E7F6C7E6C7E6C7E137E6D7EEB1F E0EB07FC6DB47E010090B6FC023F1580140702001500313A78B542>50 D<1706170F171FA2173EA2177CA217F8A2EE01F0A2EE03E0A2EE07C0A2EE0F80A2EE1F00 A2163EA25EA25EA24B5AA24B5AA24B5AA24B5AA24BC7FCA2153EA25DA25DA24A5AA24A5A A24A5AA24A5AA24AC8FCA2143EA25CA25CA2495AA2495AA2495AA2495AA249C9FCA2133E A25BA25BA2485AA2485AA2485AA2485AA248CAFCA2123EA25AA25AA25A1260305C72C600 >54 D<0060171800F0173C6C177CA200781778007C17F8A2003C17F0003E1601A26CEE03 E0A26C17C06D1507A2000717806D150FA26C6CED1F00A20001161E6D153EA20000163C90 B712FCA26D5DA2013CC85A013E1401A2011E5D011F1403A26D5D6E1307A26D6C495AA201 0392C7FC6E5BA20101141E6E133EA26D6C5BA202781378027C13F8A2023C5BEC3E01A26E 485AA2020F5B1587A202075B15CFA26EB4C8FCA26E5AA36E5AA315781530364780C437> 56 D<190E193E19FE18011803A21807A2180FA2181FA2183F183B187B187318F318E317 0118C31703188317071803170F171EA2173CA21778A217F0EE01E0A2EE03C0A2DC07807F 160F1700161E043E7F163C167C5E5E15014B5A5E15074B5A041FB67EED1F7F4BB7FCA25D 92B8FC03F0C8FC14014A48824A5A140F00305C007049C9127F4A8300F8137E6C5B6C4848 8326FF87F0043F133001FFF0F8F04AEFFFE04A7013C04A188091CAEBFE006C48EF0FF86C 48EF07C06C4894C8FCEA07E04C4D7DC750>65 D<0403B712F8043F16FE4BB9FC1507151F 157F912601FC0090C7EA07FE912603F001ED01FCDA07C04915F0DA0F80EE0080021F1800 EC3F004A495A5C5C495A4A495A5C495A6DC7FC90C8485AA35F161FA34C5AA35F167F94B6 12C0A293B7FC624B93C7FC19FC04FCC71270030392C8FC5EA24B5AA2150F5E151F5EA24B 5AA24BCBFCA215FEA24A5AA24A5AEA0180000F495AEA1FC0486C485AD87FF05B39FFFC1F 80D87FFF90CCFC14FE6C5B6C13F06C5B00031380D800FCCDFC50477EC348>70 D<1B3C1B7CF201F8021FB912F091BA12E001031980010FF0FE00013F18F84918C001F8C7 D807F0C9FCD803F0140F4848141F120F48485D003F153FA2127F5F4848147F90C8FC5A00 F85E00E015FFC9FCA294CAFC5DA35E1503A35E1507A35E150FA35E151FA35E153FA35E15 7FA35E15FFA293CBFCA25CA25D1403A25DA24A5AA34A5AA24A5AA25D143F5D027ECCFC14 7C14604E4E7CC636>84 D<0060170C00F0171EB3B3A66C173EA20078173C007C177C007E 17FC003E17F86CEE01F06D15036C6CED07E06C6CED0FC0D803F8ED3F80D801FEEDFF0026 007FC0EB07FCD93FFCEB7FF8010FB612E001031580D9007F01FCC7FC020713C0373D7BBA 42>91 D<913807FFC0027F13FC0103B67E010F15E0903A3FFC007FF8D97FC0EB07FCD801 FEC8B4FCD803F8ED3F80D807E0ED0FC04848ED07E04848ED03F090C91201003EEE00F800 7E17FC007C177C0078173C00F8173EA248171EB3B3A60060170C373D7BBA42>I<153815 7CA215FEA24A7EA215EF02037FA2913807C7C0A291380F83E0A291381F01F0A2EC1E0002 3E7FA24A137CA24A7FA249487FA24A7F010381A249486D7EA249486D7EA249C76C7EA201 1E1400013E81A249157CA24981A2484881A24848ED0F80A2491507000717C0A24848ED03 E0A248C9EA01F0A2003EEE00F8A2003C1778007C177CA248173EA248171E0060170C373D 7BBA42>94 D<0060170C00F0171E6C173EA2007C177CA2003C1778003E17F8A26CEE01F0 A26C6CED03E0A26C6CED07C0A2000317806D150FA26C6CED1F00A26C6C153EA2017C5DA2 6D5DA2011E5D011F1401A26D6C495AA26D6C495AA26D6C495AA2010192C7FC6E5BA26D6C 133EA2027C5BA26E5BA2021E5BEC1F01A291380F83E0A2913807C7C0A2913803EF80A202 0190C8FC15FFA26E5AA2157CA21538373D7BBA42>I<126012F0B3B3B3B3B3A5B512FE14 FFA26C13FE18646FCA2C>98 D<1406140FB3B3B3B3B3A5007FB5FCB6FCA26C13FE18647E CA2C>I102 D<12FEEAFFE0EA07F8EA00FEEB7F806D7E6D7E130F6D7EA26D7EB3AD6D7EA26D7E806E7E 6E7EEC0FE0EC03FC913800FFE0A2913803FC00EC0FE0EC3FC04A5A4AC7FC5C495AA2495A B3AD495AA2495A131F495A495A01FEC8FCEA07F8EAFFE048C9FC236479CA32>I<126012 F0B3B3B3B3B3A81260046474CA1C>106 D<126012F07EA21278127CA2123C123EA2121E 121FA26C7EA212077FA212037FA212017FA26C7EA21378137CA2133C133EA2131E131FA2 6D7EA2130780A2130380A2130180A26D7EA21478147CA2143C143EA280A28081A2140781 A2140381A26E7EA2140081A21578157CA2153C153EA281A2811680A2150716C0A2150316 E0A2ED01F0A2150016F8A21678167CA2163C163EA2161E160C27647BCA32>110 D<1B0C1B1E1B3EA21B7CA21BF8A2F201F0A2F203E0A2F207C0A2F20F80A2F21F00A21A3E A262A262A24F5AA2621903A24F5AA24F5AA24FC7FCA2193EA261A261A24E5AA24E5AA24E 5AA24E5AA2010C4CC8FC133C017C163EEA01FE00035F487E001E5F00387FD8707F4B5A00 E07FD8003F4B5A80011F4B5AA26E4A5A130F6E4AC9FC13076E143E13036E5C13016E5C7F 6F5B027F1301A26F485A143F6F485A141F6F485A140F6F48CAFC1407EDFC3E14035E15FE 02015B15FF6E5BA26F5AA26F5AA26F5AA26FCBFC150E4F647A8353>112 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fh cmmi12 12 53 /Fh 53 122 df11 DI< EB01FCD907FF15E0011F13C0017F6DEB01C090B56C1480486E13032603FE0715002707F0 00FC5B01C0017C130648C76C130E001E021E130C001C80003C6E131C00381618486E1338 EE8030006002011370176000E016E0C86D5A150016C15F16C394C7FC16E316E71666166E 166CA2167C1678A3167016F05EA35EA31501A25E1503A44BC8FCA35D150EA45DA45DA333 417EAB33>I<1578913807FFE0021F13FC91383C7FFEEC7007EC6003ECE0004A13381600 A280A380A280147CA2147E143E143F816E7EA26E7E81140781EC3FFC14FF903803E1FEEB 07C190381F00FF133E49EB7F805B0001143F485A484814C049131F120F485AA248C7FC15 0F5A127EA300FEEC1F805AA316005A5DA2153E157E157CA26C5C127C4A5A6C495AA26C49 5A6C6C485A6C6C48C7FC3803E07C3800FFF0EB1FC027487CC62B>II21 D<147002F8140E0101153FA301035DA24A147EA2010715FEA24A5CA2010F1401A24A5CA2 011F1403A24A5CA2013F1407A291C75BA249140FA2017E5DA201FE021F1318183849ED80 30A20001033F13701860EE7F005E486C16E0DB01DF13C09238039F016DD9071F13804890 39801E0F83903BF7C078078700903AE1FFE003FE903AE07F8000F8000F90CAFCA25BA212 1FA25BA2123FA290CBFCA25AA2127EA212FEA25A123835417DAB3B>I<010FB712E0013F 16F05B48B812E04817C02807E0060030C7FCEB800EEA0F00001E010C13705A0038011C13 605A0060011813E000E013381240C7FC5C4B5AA214F014E01301150314C01303A3EB0780 82130FA2EB1F00A34980133E137EA24980A2000114015BA26C48EB00E0342C7EAA37>25 D<010FB612FC013F15FE5B48B712FC4816F82707E001C0C7FC01805B380F0003121E121C 5A4849C8FC126012E000405BC7FC140E141EA45CA3147CA2147814F8A4495AA31303A25C 1307A3130FA25C6D5A2F2C7EAA2A>28 D<121EEA7F80A2EAFFC0A4EA7F80A2EA1E000A0A 78891B>58 D<121EEA7F8012FF13C0A213E0A3127FEA1E601200A413E013C0A312011380 120313005A1206120E5A5A5A12600B1D78891B>II< 1618163C167CA2167816F8A216F01501A216E01503A216C01507A21680150FA2ED1F00A2 151E153EA2153C157CA2157815F8A25D1401A24A5AA25D1407A25D140FA292C7FC5CA214 1E143EA2143C147CA25CA25C1301A25C1303A25C1307A25C130FA291C8FC5BA2133EA213 3C137CA2137813F8A25B1201A25B1203A2485AA25B120FA290C9FC5AA2121E123EA2123C 127CA2127812F8A25A126026647BCA31>I<127012FCB4FCEA7FC0EA1FF0EA07FCEA01FF 38007FC0EB1FF0EB07FE903801FF809038007FE0EC1FF8EC03FE913800FF80ED3FE0ED0F F8ED03FF030013C0EE3FF0EE0FFCEE01FF9338007FC0EF1FF0EF07FCEF01FF9438007FC0 F01FE0A2F07FC0943801FF00EF07FCEF1FF0EF7FC04C48C7FCEE0FFCEE3FF0EEFFC00303 90C8FCED0FF8ED3FE0EDFF80DA03FEC9FCEC1FF8EC7FE0903801FF80D907FECAFCEB1FF0 EB7FC04848CBFCEA07FCEA1FF0EA7FC048CCFC12FC12703B3878B44C>I<1830187018F0 A217011703A24D7EA2170F171FA21737A2176717E717C793380187FCA2EE0307EE070316 06160CA216181638163004607FA216C0030113011680ED0300A21506150E150C5D845D03 707F15605DA24A5A4AB7FCA25C0206C87F5C021C157F14185CA25C14E05C495A8549C9FC 49163F1306130E5B133C137C01FE4C7ED807FFED01FF007F01F0027FEBFFC0B5FC5C4247 7DC649>65 D<91B87E19F019FC02009039C00003FF6F480100138003FFED3FC01AE093C8 121FF10FF0A24A17F84B1507A314035D190FA2020717F04B151F1AE0193F020F17C04BED 7F80F1FF004E5A021F4B5A4B4A5AF01FF0F03FC0023F4AB4C7FC4BEB1FFC92B612F018FE DA7FC0C7EA7F804BEC1FC0F00FF0727E02FF6F7E92C8FC727EA249835CA313035CA30107 5F4A1503A24E5A130F4A4B5A4E5AA2011F4C5A4A4B5A4D485A013F4B48C7FCEF0FFC4AEC 3FF801FF913801FFE0B9128005FCC8FC17C045447CC34A>I<4CB46C1318043F01F01338 4BB512FC0307D9007E1378DB1FF090380F80F0DB7F80EB03C1DA01FEC7EA01C34A48EC00 E7DA0FF0ED7FE04A48153F4A5A02FFC9121F494817C04948160F495A130F4A1780494816 07495A137F4948170091CAFC5A485A1906485AA2485A96C7FC121F5BA2123F5BA3127F5B A4485AA419C0A2180161127F180396C7FC6018066C6C160E601818001F17386D5E000F5F 6D4B5A6C6C4B5A00034CC8FC6C6C150E6C6C153C017F5DD93FC0EB01E0D91FF0EB0FC0D9 07FE017FC9FC0101B512FCD9003F13E0020790CAFC45487CC546>I<91B912FCA3020001 C0C7123F6F48EC03F803FF1501190093C91278A21A385C5DA3020317305DA314074B1460 A218E0020F4B13005DA21701021F5D4B13031707170F023F027FC8FC92B6FCA391397FC0 007E4B131EA2170E02FF140C92C7FCA2171C49031813035C611906010392C7FC4A160E19 0C191C010717184A163819301970130F4A5E180161011F16034A15074E5A013F163F4EC7 FC4AEC03FF01FFED3FFEB9FCA26046447CC348>69 D<91B912F8A3020001C0C7123F6F48 EC07F003FF1503190193C9FCA21A705C5DA3020317605DA314075D18C01701020F4B1300 5DA21703021F92C8FC4B5BA25F023F141E4B13FE92B5FCA24A5CED8000173CA202FF1418 92C7FCA217384915305CA21770010315604A91C9FCA313075CA3130F5CA3131F5CA2133F A313FFB612F8A345447CC33F>I<4CB46C1318043F01F013384BB512FC0307D9007E1378 DB1FF090380F80F0DB7F80EB03C1DA01FEC7EA01C34A48EC00E7DA0FF0ED7FE04A48153F 4A5A02FFC9121F494817C04948160F495A130F4A178049481607495A137F4948170091CA FC5A485A1906485AA2485A96C7FC121F5BA2123F5BA3127F5BA4485A4CB612805EA293C7 EBE000725AA3007F60A218FF96C7FCA26C7E5F606C7EA2000F16036D5E6C6C1507000316 0F6C6C151F6C6CED3DF8D97F8014786D6CEB01E0D91FF0903807C078D907FE90387F0070 0101B500FC1330D9003F01F090C8FC020790CAFC45487CC54D>I<91B6D8E003B61280A3 020001E0C70003EB8000DB7F806E48C7FC03FF1503A293C85BA219075C4B5EA2190F1403 4B5EA2191F14074B5EA2193F140F4B5EA2197F141F4B5EA219FF143F92B8C8FCA3DA7FC0 C712014B5DA2180314FF92C85BA218075B4A5EA2180F13034A5EA2181F13074A5EA2183F 130F4A5EA2187F131F4A5EA2013F16FFA24A93C9FCD9FFE002037FB6D8E003B67EA35144 7CC351>I<027FB512F8A217F09139007FF000ED3FC0157FA25EA315FF93C7FCA35C5DA3 14035DA314075DA3140F5DA3141F5DA3143F5DA3147F5DA314FF92C8FCA35B5CA313035C A313075CA3130F5CA2131FA25CEB7FF0007FB512F0B6FCA22D447DC32B>I<91B612F8A3 020001E0C8FC6F5A4B5AA293C9FCA35C5DA314035DA314075DA3140F5DA3141F5DA3143F 5DA3147F5DA314FF92CAFCA35B4A16C0A21801010317804A15031900A201075E4A150618 0E181E010F161C4A153C18381878011F16F84A4A5A1703013F150F4D5A4A14FF01FF0207 5BB9FCA2603A447CC342>76 D<91B500C0020FB5128082A2DA007F9239007FE00070ED1F 8074C7FCDBEFF8150E15CF03C7160C70151C1401DB83FE1518A2DB81FF15381403030016 30831A704A6D7E02061760163F7114E0140E020C6D6C5CA2706C1301141C021801075D83 190302386D7E023094C8FC1601715B147002606DEB8006A294387FC00E14E04A023F130C 18E0191C0101ED1FF04A1618170FF0F838130391C83807FC30A2943803FE705B01060301 136018FF19E0010E81010C5F187FA2131C0118705A1338181F137801FC70C9FCEA03FFB5 12F884180651447CC34E>78 DI<91B712FEF0FFE019F802009039C0000F FE6F48EB01FF03FF9138007F80F13FC093C8EA1FE0A24AEE0FF0A25D1AF81403A25DA214 07F11FF05DA2020FEE3FE0A24B16C0197F021F1780F1FF004B4A5A4E5A023F4B5A4E5A4B EC3FC006FFC7FC027FEC07FC92B612F018800380CAFC14FFA292CBFCA25BA25CA21303A2 5CA21307A25CA2130FA25CA2131FA25CA2133FA25CEBFFE0B612E0A345447CC33F>II<91B712F018FF19E002009039C0003FF86F48EB 07FC03FFEC01FEF0007F93C8EA3F801AC0F11FE05C5D1AF0A214035DA30207EE3FE05DA2 F17FC0020F17804B15FF1A004E5A021F4B5A4B4A5AF00FE04E5A023F037FC7FC4BEB03FC EF1FF092B612804A4AC8FC923980007F80EF0FC0EF07F002FF6E7E92C77F1701845B4A14 00A2170113035CA2170313075CA24D5A130F5CA3011F18185CA2013F4C13381A304A6F13 70D9FFE0020314E0B600E0ED01C00501EB0380943900FE0F00CBEA3FFEF007F045467CC3 4A>I<9339FF8001800307EBF003033F13FC9239FF007E07DA01F8EB0F0FDA07E0903807 9F004A486DB4FC4AC77E023E804A5D187E5C495A183C495AA213074A1538A3130F183080 A295C7FC806D7E8014FF6D13E015FC6DEBFFC06D14FC6E13FF6E14C0020F80020314F8EC 003F03077F9238007FFE160F1603707E8283A283A21206A4000E163EA2120C177E001E16 7CA25F5F003F15014C5A6D4A5A4C5A486C4AC8FC6D143ED87CF85CD8787E495A3AF01FC0 0FE0D8E007B51280010149C9FC39C0003FF039487BC53C>I<48BA12C05AA291C7D98000 1380D807F092C7121F4949150F0180170748C75B1903120E48020316005E121812380030 14074C5C00701806126000E0140F485DA3C8001F92C7FC5EA3153F5EA3157F5EA315FF93 CAFCA35C5DA314035DA314075DA3140F5DA3141F5DA3143F5DA2147FA214FF01037F001F B612FCA25E42447EC339>I<003FB500F80103B512E0A326003FF8C8381FF800D91FE0ED 07E0013F705A615C96C7FC60017F16065CA2180E01FF160C91C9FCA2181C4817185BA218 38000317305BA21870000717605BA218E0120F495EA21701121F495EA21703123F4993C8 FCA25F127F491506A2170E00FF160C90C9FC171CA21718173817304816705F6C5E6C1501 4C5A4CC9FC6C150E6D141E001F5D6D5C6C6CEB01E06C6C495A6C6CEB1F80C6B401FECAFC 90387FFFF8011F13E0010190CBFC43467AC342>I<007FB56C91381FFFF8B65DA2000101 E0C8000313006C0180ED01FCF000F0614E5AA2017F4C5A96C7FC1806A2606E5DA2013F5E 1870186060A24D5A6E4AC8FCA2011F1506170E170C5FA26E5C5FA2010F5D16015F4CC9FC A26E13065EA201075C5EA25E16E06E5B4B5A13034BCAFC1506A25D151CECFE185D13015D 5DA26E5AA292CBFC5C13005C5CA25CA25C45467BC339>I<023FB500E0011FB5FCA39126 007FFEC7000313E0DB3FF8913801FE006F486E5A1AF06F6C4A5A626F6C4A5A0706C7FC19 0E6F6C5C616F6C5C6171485A6F5D4EC8FC93387FC00660706C5A6060706C5A17F193380F FB8005FFC9FC5F705AA2707EA3707E5E04067F5E93381C7FC0163816704C6C7EED01C04B 486C7E160015064B6D7E5D4B6D7E5D5D4A486D7E14034AC76C7E140E5C4A6E7F143002E0 6F7E495A0103707E495A131F496C4B7E2603FFE04A487E007F01FC021FEBFFF0B5FCA250 447EC351>88 DI97 DIIIII<141E143F5C5CA314 7E143891C7FCAE133EEBFF803801C3C0380781E0380601F0120E121CEA180312381230A2 EA700700605BA2EAE00F00C05BEA001F5CA2133F91C7FCA25B137E13FE5BA212015BEC03 800003140013F01207495A1406140E140CEBC01C141814385C00035BEBE1C0C6B45A013E C7FC19437DC121>105 D<163C16FEA21501A316FCED00701600AE15FCEC03FF91380F07 80021C13C091383803E0147014E014C01301EC8007130314005B0106130F130E010C14C0 90C7FC151FA21680A2153FA21600A25DA2157EA215FEA25DA21401A25DA21403A25DA214 07A25DA2140FA25DA2141F5DA2143F001C91C7FC127F48137E5CA248485AEB03E038F807 C038781F80D83FFEC8FCEA07F0275681C128>I<14FE137FA3EB01FC13001301A25CA213 03A25CA21307A25CA2130FA25CA2131FA25C163F013FECFFC0923803C0E09138000703ED 1E0F491338ED701F017E13E0EC01C001FE018013C00203EB07004948C8FC140E00015B5C 495A5C3803FBC001FFC9FC8014F83807F1FE9038F03F809038E00FE06E7E000F130381EB C001A2001FED01C017801380A2003F15031700010013F05E481506160E007E150C161C00 FE01005BED787048EC3FE00038EC0F802B467BC433>I<01F8D903FCEC7F80D803FED91F FF903803FFE0D8071F903B7C0FC00F81F83E0E0F80E007E01C00FC001C9026C3C0030178 137C271807C700D9F0E0137E02CE902601F1C0133E003801DCDAFB80133F003001D892C7 FCD90FF814FF0070495C0060495CA200E04949485CD8C01F187E4A5C1200040715FE013F 6091C75BA2040F14014960017E5D1903041F5D13FE494B130762043F160E0001060F130C 4992C713C0191F4CED801C00031A1849027E1638F2003004FE167000071A60494A16E0F2 01C0030192380F0380000FF18700494AEC03FED80380D90070EC00F84F2D7DAB55>109 D<01F8EB03FCD803FEEB1FFFD8071F90387C0FC03B0E0F80E007E03A0C07C3C003001CD9 C7007F001801CE1301003801DC80003013D8EB0FF800705B00605BA200E0491303D8C01F 5D5C12001607013F5D91C7FCA2160F495D137E161F5F13FE49143F94C7FC187000014B13 6049147E16FE4C13E0000317C049150104F81380170300071700495D170EEE781C000FED 7C3849EC1FF0D80380EC07C0342D7DAB3A>I<91380FC00391383FF0079138F83C0F9039 03E00E1E90390FC0063E90381F800790393F00037E4914FC01FE1301485AA2484814F812 075B000F140316F0485AA2003F14074914E0A3007F140F4914C0A3151F90C713805AA215 3F6C1500A2127E5D007F14FE6C1301A214036C6C485A000F131E3807C0383803E0F13901 FFC1F838003F01130014035DA314075DA3140F5DA2141FA2143F011FB51280A21600283F 7DAB2B>113 D<01F8EB0FC0D803FEEB7FF0D8070FEBF038000E903883C07C3A0C07C701 FC001C13CE0018EBDC03003813D8003013F8D90FF013F800709038E000E0006015005C12 E0EAC01F5C1200A2133F91C8FCA35B137EA313FE5BA312015BA312035BA312075BA3120F 5BEA0380262D7DAB2C>II<141C 147EA314FE5CA313015CA313035CA313075CA2007FB512FCB6FC15F839000FC000A2131F 5CA3133F91C7FCA35B137EA313FE5BA312015BA312035BA21570000714605B15E015C000 0F130101C013801403EC070000071306140E5C6C6C5A000113F03800FFC0013FC7FC1E3F 7EBD23>I<133ED9FF8014E02603C3C0EB03F0380703E0380601F0000E1507121CD81803 5D12380030150FA2D870075D00605B161FEAE00F00C0495CEA001F4A133FA2013F92C7FC 91C7FC5E5B017E147EA216FE13FE495CA20301EB01801703484802F81300A25F03031306 16F000001407030F130E6D010D130C017C011D131C033913186D9038F0F838903A1F03C0 7870903A07FF803FE0903A01FC000F80312D7DAB38>I<013E1738D9FF80D901C013FC26 03C3C0903907E001FE380703E0380601F0000E150F001C16C0D8180316000038187E0030 031F143E00705ED86007171E5C163FD8E00F92C7121C00C049160CEA001F4A49141C047E 1418133F91C7FC04FE1438491730017E5CA20301157001FE1760495C19E019C0A2494948 1301198018031900606D0107140670130E017C010F5C017E010C1418013ED91CFC13386D D9387E13F0903B0FC0F01F01C0903B03FFC00FFF809028007F0001FEC7FC3F2D7DAB46> 119 D<02FCEB07E0903A03FF801FFC903A0F07C0781E903A1C03E0E01F903A3801F1C07F D9700013804901FB13FF4848EBFF00495B000316FE90C71438484A130012061401000E5C 120CC7FC14035DA314075DA3140F5DA3021F143817305D1770023F1460121E003F16E026 7F807FEB01C0026F148000FF01EF1303D901CFEB070000FE903887C00E267C03835B3A3C 0F01E0783A1FFC00FFE0D803F0EB3F80302D7EAB37>I<133ED9FF8014E02603C3C0EB03 F0380703E0380601F0000E1507001C16E0EA180312380030150F007016C0EA60075C161F D8E00F158000C05BEA001F4A133F1700133F91C7FC5E49147E137EA216FE01FE5C5BA215 015E485AA215035EA200001407150F6D5C017C131F153F6D13FF90391F03CFC0903807FF 8F903801FC0F90C7121F5EA2153F93C7FCD807C05BD81FE0137E5DA24848485A4A5A0180 5B39380007C00018495A001C49C8FC6C137C380781F83803FFE0C66CC9FC2C407DAB30> I E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fi cmbx12 17.28 39 /Fi 39 122 df45 D<16F04B7E1507151F153FEC01FF1407147F 010FB5FCB7FCA41487EBF007C7FCB3B3B3B3007FB91280A6395E74DD51>49 D<913801FFF8021FEBFFC091B612F8010315FF010F16C0013F8290267FFC0114F89027FF E0003F7F4890C7000F7F48486E7FD807F86E148048486E14C048486E14E048486F13F001 FC17F8486C816D17FC6E80B56C16FE8380A219FFA283A36C5BA26C5B6C90C8FCD807FC5D EA01F0CA14FEA34D13FCA219F85F19F04D13E0A294B512C019804C14004C5B604C5B4C5B 604C13804C90C7FC4C5A4C5A4B13F05F4B13804B90C8FC4B5AED1FF84B5A4B5A4B48143F 4A5B4A48C8FC4A5A4A48157E4A5A4A5AEC7F8092C9FC02FE16FE495A495A4948ED01FCD9 0FC0150749B8FC5B5B90B9FC5A4818F85A5A5A5A5ABAFCA219F0A4405E78DD51>I<92B5 FC020F14F8023F14FF49B712C04916F0010FD9C01F13FC90271FFC00077FD93FE001017F 49486D8049C86C7F484883486C6F7F14C0486D826E806E82487FA4805CA36C5E4A5E6C5B 6C5B6C495E011FC85A90C95CA294B55A614C91C7FC604C5B4C5B4C5B4C5B047F13809226 0FFFFEC8FC020FB512F817E094C9FC17F817FF91C7003F13E0040713F8040113FE707F71 7F7113E085717FA2717F85A285831A80A31AC0EA03FCEA0FFF487F487F487FA2B57EA31A 80A34D14005C7E4A5E5F6C495E49C8485BD81FF85F000F5ED807FE92B55A6C6C6C491480 6C01F0010791C7FC6C9026FF803F5B6D90B65A011F16F0010716C001014BC8FCD9001F14 F0020149C9FC426079DD51>II<01C0EE01C0D801F8160F01FF167F02F0EC07FFDAFF8090B5FC92B712 8019006060606060606095C7FC17FC5F17E0178004FCC8FC16E09026FC3FFCC9FC91CBFC ADED3FFE0203B512F0020F14FE023F6E7E91B712E001FDD9E00F7F9027FFFE00037F02F8 01007F02E06EB4FC02806E138091C8FC496F13C04917E07113F0EA00F090C914F8A219FC 83A219FEA419FFA3EA03F0EA0FFC487E487E487FA2B57EA319FEA35C4D13FC6C90C8FC5B 4917F8EA3FF001804B13F06D17E0001F5E6C6C17C06D4B1380D807FC92B512006C6C4A5B 6C6C6C01075B6C01E0011F5BD97FFE90B55A6DB712C0010F93C7FC6D15FC010115F0D900 3F1480020301F0C8FC406078DD51>III65 D<4DB5ED03C0057F02F014070407B600FE140F047FDBFFC013 1F4BB800F0133F030F05FC137F033F9127F8007FFE13FF92B6C73807FF814A02F0020113 C3020702C09138007FE74A91C9001FB5FC023F01FC16074A01F08291B548824902808249 91CB7E49498449498449498449865D49498490B5FC484A84A2484A84A24891CD127FA25A 4A1A3F5AA348491A1FA44899C7FCA25CA3B5FCB07EA380A27EA2F50FC0A26C7FA37E6E1A 1F6C1D80A26C801D3F6C6E1A00A26C6E616D1BFE6D7F6F4E5A7F6D6D4E5A6D6D4E5A6D6D 4E5A6D6E171F6D02E04D5A6E6DEFFF806E01FC4C90C7FC020F01FFEE07FE6E02C0ED1FF8 020102F8ED7FF06E02FF913803FFE0033F02F8013F1380030F91B648C8FC030117F86F6C 16E004071680DC007F02F8C9FC050191CAFC626677E375>67 DI70 D73 D78 D<94381FFFE00407B67E043F15F04BB712FE030FEEFFC0033F D9FC0014F092B500C0010F13FC020349C7000113FF4A01F86E6C7F021F496F13E04A01C0 030F7F4A496F7F91B5C96C7F0103497013FF494970804B834949717F49874949717F4987 4B8390B586484A717FA24891CB6C7FA2481D804A84481DC0A348497214E0A3481DF0A34A 85481DF8A5B51CFCB06C1DF8A36E96B5FCA36C1DF0A46C6D4E14E0A36C1DC06E606C1D80 A26C6E4D1400A26C6E4D5BA26C6E4D5BA26D6D4D5B6D636D6D4D5B6F94B5FC6D636D6D4C 5C6D6D4C91C7FC6D6E4B5B6D02E0031F5B023F6D4B13F06E01FC92B55A6E01FF02035C02 0302C0010F91C8FC020002FC90B512FC033F90B712F0030F17C0030394C9FCDB007F15F8 04071580DC001F01E0CAFC666677E379>I82 D86 D<913803FFFE027FEBFFF00103B612FE010F 6F7E4916E090273FFE001F7FD97FE001077FD9FFF801017F486D6D7F717E486D6E7F8571 7FA2717FA36C496E7FA26C5B6D5AEB1FC090C9FCA74BB6FC157F0207B7FC147F49B61207 010F14C0013FEBFE004913F048B512C04891C7FC485B4813F85A5C485B5A5CA2B55AA45F A25F806C5E806C047D7F6EEB01F96C6DD903F1EBFF806C01FED90FE114FF6C9027FFC07F C01580000191B5487E6C6C4B7E011F02FC130F010302F001011400D9001F90CBFC49437C C14E>97 D<903807FF80B6FCA6C6FC7F7FB3A8EFFFF8040FEBFF80047F14F00381B612FC 038715FF038F010014C0DBBFF0011F7FDBFFC001077F93C76C7F4B02007F03F8824B6F7E 4B6F13804B17C0851BE0A27313F0A21BF8A37313FCA41BFEAE1BFCA44F13F8A31BF0A24F 13E0A24F13C06F17804F1300816F4B5A6F4A5B4AB402075B4A6C6C495B9126F83FE0013F 13C09127F00FFC03B55A4A6CB648C7FCDAC00115F84A6C15E091C7001F91C8FC90C80003 13E04F657BE35A>I<92380FFFF04AB67E020F15F0023F15FC91B77E01039039FE001FFF 4901F8010113804901E0010713C04901804913E0017F90C7FC49484A13F0A2485B485B5A 5C5A7113E0485B7113C048701380943800FE0095C7FC485BA4B5FCAE7EA280A27EA2806C 18FCA26C6D150119F87E6C6D15036EED07F06C18E06C6D150F6D6DEC1FC06D01E0EC7F80 6D6DECFF00010701FCEB03FE6D9039FFC03FFC010091B512F0023F5D020F1580020102FC C7FCDA000F13C03E437BC148>II<92380FFFC04AB512FC020FECFF80023F15E091B712F801 03D9FE037F499039F0007FFF011F01C0011F7F49496D7F4990C76C7F49486E7F48498048 844A804884485B727E5A5C48717EA35A5C721380A2B5FCA391B9FCA41A0002C0CBFCA67E A380A27EA27E6E160FF11F806C183F6C7FF17F006C7F6C6D16FE6C17016D6C4B5A6D6D4A 5A6D01E04A5A6D6DEC3FE0010301FC49B45A6D9026FFC01F90C7FC6D6C90B55A021F15F8 020715E0020092C8FC030713F041437CC14A>III<903807FF80B6 FCA6C6FC7F7FB3A8EF1FFF94B512F0040714FC041F14FF4C8193267FE07F7F922781FE00 1F7FDB83F86D7FDB87F07FDB8FC0814C7F039FC78015BE03BC8003FC825DA25DA25DA45D B3B2B7D8F007B71280A651647BE35A>II<903807FF80B6FCA6C6FC7F7FB3A90503B61280A6DD003FEB 8000DE0FFCC7FCF01FF04E5AF0FFC04D5B4D90C8FCEF07FC4D5AEF3FF04D5A4D5A4C90C9 FC4C5AEE0FFC4C5A4C5AEE7FC04C7E03837F03877F158F039F7F03BF7F92B5FC838403FC 804B7E03F0804B6C7F4B6C7F1580707F707F707FA270807080717FA2717F717F717FA271 7F717F83867180727F95B57EB7D8E00FECFFF0A64C647BE355>107 D<903807FF80B6FCA6C6FC7F7FB3B3B3B3ADB712E0A623647BE32C>I<902607FF80D91F FFEEFFF8B691B500F00207EBFF80040702FC023F14E0041F02FF91B612F84C6F48819326 7FE07F6D4801037F922781FE001F9027E00FF0007FC6DA83F86D9026F01FC06D7F6DD987 F06D4A487F6DD98FC0DBF87EC7804C6D027C80039FC76E488203BEEEFDF003BC6E4A8003 FC04FF834B5FA24B5FA24B94C8FCA44B5EB3B2B7D8F007B7D8803FB612FCA67E417BC087 >I<902607FF80EB1FFFB691B512F0040714FC041F14FF4C8193267FE07F7F922781FE00 1F7FC6DA83F86D7F6DD987F07F6DD98FC0814C7F039FC78015BE03BC8003FC825DA25DA2 5DA45DB3B2B7D8F007B71280A651417BC05A>I<923807FFE092B6FC020715E0021F15F8 027F15FE494848C66C6C7E010701F0010F13E04901C001037F49496D7F4990C87F49486F 7E49486F7E48496F13804819C04A814819E048496F13F0A24819F8A348496F13FCA34819 FEA4B518FFAD6C19FEA46C6D4B13FCA36C19F8A26C6D4B13F0A26C19E06C6D4B13C0A26C 6D4B13806C6D4B13006D6C4B5A6D6D495B6D6D495B010701F0010F13E06D01FE017F5B01 0090B7C7FC023F15FC020715E0020092C8FC030713E048437CC151>I<902607FF80EBFF F8B6010FEBFF80047F14F00381B612FC038715FF038F010114C09227BFF0003F7FC6DAFF C0010F7F6D91C76C7F6D496E7F03F86E7F4B6E7F4B17804B6F13C0A27313E0A27313F0A2 1BF885A21BFCA3851BFEAE4F13FCA41BF861A21BF0611BE0611BC06F92B512801B006F5C 6F4A5B6F4A5B03FF4A5B70495B04E0017F13C09226CFFC03B55A03C7B648C7FC03C115F8 03C015E0041F91C8FC040313E093CBFCB3A3B712F0A64F5D7BC05A>I114 D<913A3FFF8007800107B5EAF81F011FECFE7F017F91B5FC48 B8FC48EBE0014890C7121FD80FFC1407D81FF0801600485A007F167F49153FA212FF171F A27F7F7F6D92C7FC13FF14E014FF6C14F8EDFFC06C15FC16FF6C16C06C16F06C826C826C 826C82013F1680010F16C01303D9007F15E0020315F0EC001F1500041F13F81607007C15 0100FC81177F6C163FA2171F7EA26D16F0A27F173F6D16E06D157F6D16C001FEEDFF806D 0203130002C0EB0FFE02FCEB7FFC01DFB65A010F5DD8FE0315C026F8007F49C7FC48010F 13E035437BC140>II<902607FFC0ED3FFEB60207B5FCA6C6EE00076D826D82B3B3A260A360A2607F60 183E6D6D147E4E7F6D6D4948806D6DD907F0ECFF806D01FFEB3FE06D91B55A6E1500021F 5C020314F8DA003F018002F0C7FC51427BC05A>I119 D<007FB600C0017FB512F8A6D8001F01F8C70007EBF0006D040190C7FC6D6D5D6D6D4A5A 6D6D4A5A70495A6D4C5A6E7F6E6D495A6E6D495A7049C8FC6E4A5A6E6D485A6E6D485A6E 13FFEF8FF06EEC9FE06FEBFFC06F5C6F91C9FC5F6F5B816F7F6F7F8481707F8493B57E4B 805D4B80DB0FF37FDB1FE17F04C080153F4B486C7F4B486C7F4A486D7F4A486D7F4A5A4B 6D7F020F6E7F4A486D7F4A486D804A5A4AC86C7F49486F7F4A6F7F0107707FEB3FFFB600 F049B7FCA650407EBF55>II E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fj cmr12 12 87 /Fj 87 128 df<1618163CA2167EA216FFA24B7FA24B6C7EA29238063FE0A24B6C7EA24B 6C7EA292383807FC153092387003FE15609238E001FF15C002016D7F5D02036E7E92C7FC 4A6E7E1406020E6E7E140C021C6E7E141802386E7E143002706E7E146002E06E7E5C0101 6F7F5C0103707E91C9FC183F010683181F4983180F49831807498318034983A249707EA2 4848701380A248CBEA7FC0A20006F03FE0A248F01FF0A2001FBA12F8A24819FCA24819FE A2BCFC48477CC651>1 DI<027FB67EA39126001FFEC9FC6F 5A6F5AA8B46CEFFF8001E01603D81FF0933807FC006C6C4C5A0007606D161F000360A26D 163F000160AC6C6C5F187FA4D97F804BC7FCA2013F5E02C01401131F02E04A5A010F5ED9 07F01407D903F85DD901FC4A5AD900FE4A5A027F027FC8FCDA1FC713FE0207B512F80201 14C09126001FFCC9FCED07F8A84B7E4B7E027FB67EA341447BC34C>9 DI<9239FFC0 01FC020F9038F80FFF913B3F803E3F03C0913BFC00077E07E0D903F890390FFC0FF04948 90383FF81F4948EB7FF0495A494814E049C7FCF00FE04991393FC0038049021F90C7FCAF B912F0A3C648C7D81FC0C7FCB3B2486CEC3FF0007FD9FC0FB512E0A33C467EC539>I<4A B4FC020F13E091387F80F8903901FC001C49487FD907E0130F4948137F011FECFF80495A 49C7FCA25B49EC7F00163E93C7FCACEE3F80B8FCA3C648C7FC167F163FB3B0486CEC7FC0 007FD9FC1FB5FCA330467EC536>I<913801FFC0020FEBFB8091387F803F903801FC0049 4813FFEB07E0EB1FC0A2495A49C7FC167F49143F5BAFB8FCA3C648C7123FB3B2486CEC7F C0007FD9FC1FB5FCA330467EC536>II<131F148013 3F137FA2EBFF00485A485A5B485A485A138048C7FC123E123C5A12E0124011126CC431> 19 D<121EEA7F80EAFFC0A9EA7F80ACEA3F00AB121EAC120CA5C7FCAA121EEA7F80A2EA FFC0A4EA7F80A2EA1E000A4778C61B>33 D<001EEB03C0397F800FF000FF131F01C013F8 A201E013FCA3007F130F391E6003CC0000EB000CA401E0131C491318A300011438491330 0003147090C712604814E0000614C0000E130148EB038048EB070048130E0060130C1E1D 7DC431>I<043014C00478497EA204F81303A24C5CA203011407A24C5CA20303140FA24C 91C7FCA203075CA24C131EA2030F143EA293C7123CA24B147CA2031E1478A2033E14F8A2 033C5CA2037C1301007FBA12F8BB12FCA26C19F8C72801F00007C0C7FC4B5CA30203140F A24B91C8FCA402075CA24B131EA3020F143E007FBA12F8BB12FCA26C19F8C7003EC700F8 C8FC023C5CA2027C1301A202785CA202F81303A24A5CA201011407A24A5CA20103140FA2 4A91C9FCA201075CA24A131EA2010F143EA291C7123CA249147CA2011E1478A2010C1430 46587BC451>I<121EEA7F8012FF13C0A213E0A3127FEA1E601200A413E013C0A3120113 80120313005A1206120E5A5A5A12600B1D78C41B>39 D<140C141C1438147014E0EB01C0 1303EB0780EB0F00A2131E5BA25B13F85B12015B1203A2485AA3485AA348C7FCA35AA212 3EA2127EA4127CA312FCB3A2127CA3127EA4123EA2123FA27EA36C7EA36C7EA36C7EA212 017F12007F13787FA27F7FA2EB0780EB03C01301EB00E014701438141C140C166476CA26 >I<12C07E12707E7E7E120F6C7E6C7EA26C7E6C7EA21378137C133C133E131E131FA2EB 0F80A3EB07C0A3EB03E0A314F0A21301A214F8A41300A314FCB3A214F8A31301A414F0A2 1303A214E0A3EB07C0A3EB0F80A3EB1F00A2131E133E133C137C13785BA2485A485AA248 5A48C7FC120E5A5A5A5A5A16647BCA26>I<16C04B7EB3AB007FBAFCBB1280A26C1900C8 D801E0C9FCB3AB6F5A41407BB84C>43 D<121EEA7F8012FF13C0A213E0A3127FEA1E6012 00A413E013C0A312011380120313005A1206120E5A5A5A12600B1D78891B>II<121EEA7F80A2EAFFC0A4EA7F80A2EA1E000A0A78891B>I<14FF010713E0 90381F81F890383E007C01FC133F4848EB1F8049130F4848EB07C04848EB03E0A2000F15 F0491301001F15F8A2003F15FCA390C8FC4815FEA54815FFB3A46C15FEA56D1301003F15 FCA3001F15F8A26C6CEB03F0A36C6CEB07E0000315C06D130F6C6CEB1F806C6CEB3F0001 3E137C90381F81F8903807FFE0010090C7FC28447CC131>48 D<143014F013011303131F 13FFB5FC13E713071200B3B3B0497E497E007FB6FCA3204278C131>II<49B4FC010F13E0013F13FC9038FE01FE3A01F0007F80 D803C0EB3FC048C7EA1FE0120EED0FF0EA0FE0486C14F8A215077F5BA26C48130FEA03C0 C813F0A3ED1FE0A2ED3FC01680ED7F0015FE4A5AEC03F0EC1FC0D90FFFC7FC15F0903800 01FCEC007FED3F80ED1FC0ED0FE016F0ED07F816FC150316FEA2150116FFA3121EEA7F80 487EA416FE491303A2007EC713FC00701407003015F80038140F6C15F06CEC1FE06C6CEB 3FC0D803E0EB7F803A01FE01FE0039007FFFF8010F13E0010190C7FC28447CC131>II<000615C0D807C0130701FCEB7F8090B612005D5D5D15E0158026063FFCC7FC90 C9FCAE14FF010713C090381F01F090383800FC01F0137ED807C07F49EB1F8016C090C712 0F000615E0C8EA07F0A316F81503A216FCA5123E127F487EA416F890C712075A006015F0 A20070140F003015E00038EC1FC07E001EEC3F806CEC7F006C6C13FE6C6C485A3901F807 F039007FFFE0011F90C7FCEB07F826447BC131>II< 121CA2EA1F8090B712C0A3481680A217005E0038C8120C0030151C00705D006015301670 5E5E4814014B5A4BC7FCC81206150E5D151815385D156015E04A5AA24A5A140792C8FC5C A25C141E143EA2147E147CA214FCA21301A3495AA41307A6130FAA6D5AEB01C02A457BC2 31>I<14FF010713E0011F13F890387F00FE01FC133FD801F0EB1F804848EB0FC049EB07 E00007EC03F048481301A290C713F8481400A47FA26D130116F07F6C6CEB03E013FC6C6C EB07C09039FF800F806C9038C01F006CEBF03EECF87839007FFEF090383FFFC07F01077F 6D13F8497F90381E7FFFD97C1F1380496C13C02601E00313E048486C13F000079038007F F84848EB3FFC48C7120F003EEC07FE150148140016FF167F48153FA2161FA56C151E007C 153EA2007E153C003E157C6C15F86DEB01F06C6CEB03E06C6CEB07C0D803F8EB1F80C6B4 EBFF0090383FFFFC010F13F00101138028447CC131>I<14FF010713E0011F13F890387F 80FC9038FC007E48487F4848EB1F804848EB0FC0000FEC07E0485AED03F0485A16F8007F 140190C713FCA25AA216FE1500A516FFA46C5CA36C7E5D121F7F000F5C6C6C1306150E6C 6C5B6C6C5BD8007C5B90383F01E090390FFF80FE903801FE0090C8FC150116FCA4ED03F8 A216F0D80F801307486C14E0486C130F16C0ED1F80A249EB3F0049137E001EC75A001C49 5A000F495A3907E01FE06CB51280C649C7FCEB1FF028447CC131>I<121EEA7F80A2EAFF C0A4EA7F80A2EA1E00C7FCB3A5121EEA7F80A2EAFFC0A4EA7F80A2EA1E000A2B78AA1B> I<007FBAFCBB1280A26C1900CEFCB0007FBAFCBB1280A26C190041187BA44C>61 D<16C04B7EA34B7EA34B7EA34B7EA3ED19FEA3ED30FFA203707FED607FA203E07FEDC03F A2020180ED801FA2DA03007F160FA20206801607A24A6D7EA34A6D7EA34A6D7EA2027081 0260147FA202E08191B7FCA249820280C7121FA249C87F170FA20106821707A2496F7EA3 496F7EA3496F7EA201788313F8486C83D80FFF03037FB500E0027FEBFFC0A342477DC649 >65 DI< DB0FFE146092B500C013E0020314F0913A0FFC01FC0191393FC0003E02FFC7EA0F83D903 FCEC03C74948EC01E74948EC00FF4948157F4948153F4948151F49C9120F485A49160712 0348481603A248481601A248481600A2123FA2491760127FA31900485AAE6C7EA21960A2 123F7FA2001F18E07F000F18C0A26C6C160119806C6C160312016DEE07006C6C16066D6C 150E6D6C5D6D6C5D6D6C15786D6C5D6D6C4A5AD900FFEC0780DA3FC0011FC7FCDA0FFC13 FC0203B512F0020014C0DB0FFEC8FC3B487BC546>II< B912F8A3000101C0C7127F6C6C48EC07FC17011700187C183C181CA284A31806A4180704 067FA395C7FCA4160EA2161E163E16FE91B5FCA3EC8000163E161E160EA21606A319C0A3 F0018093C7FCA41803A21900A260A260A2181EA2183E187EEF01FE170748486C147FB95A A33A447CC342>IIIII< 010FB512FEA3D9000313806E130080B3B3AB123F487E487EA44A5A13801300006C495A00 705C6C13076C5C6C495A6CEB1F802603E07FC7FC3800FFFCEB1FE027467BC332>IIIIIII82 D<49B41303010FEBE007013F13F89039FE00FE0FD801F8131FD807E0EB079F49EB03DF48 486DB4FC48C8FC4881003E81127E82127C00FC81A282A37E82A27EA26C6C91C7FC7F7FEA 3FF813FE381FFFE06C13FE6CEBFFE06C14FC6C14FF6C15C0013F14F0010F80010180D900 1F7F14019138001FFF03031380816F13C0167F163F161F17E000C0150FA31607A37EA36C 16C0160F7E17806C151F6C16006C5D6D147ED8FBC05CD8F9F0495AD8F07C495A90393FC0 0FE0D8E00FB51280010149C7FC39C0003FF02B487BC536>I<003FB912F8A3903BF0001F F8001F01806D481303003EC7150048187C0078183CA20070181CA30060180CA5481806A5 C81600B3B3A54B7EED7FFE49B77EA33F447DC346>IIII<003FB500E0011FB5FCA3C691C7000713E0D9 3FFC020190C7FC6D4815FC010F6F5A6D6C15E0A26D6C4A5A6D6C5D4DC8FC6D6D5B6E6C13 065F6E6C131C6E6C13185F6E6C13706E6C13605F913803FE01DA01FF5B4CC9FC6E1387ED 7FC616CCED3FFC6F5A5E6F7E6F7EA26F7E82A203067F150E92380C7FC04B6C7E15389238 301FF04B6C7E15E04B6C7E4A486C7E14034B6C7E02066D7F140E020C6E7E4A6E7E143802 306E7E4A6E7E14E04A6E7E49486E7E130349C86C7E496F7F5B496C8201FF83000701E002 0313F8B500F8021FEBFFF0A344447EC349>II91 D<01C01318000114384848137048C712E0000EEB01C0000C 1480001C13030018140000385B003013060070130E0060130CA300E0131C481318A400CF EB19E039FFC01FF801E013FCA3007F130FA2003F130701C013F8390F0001E01E1D71C431 >II97 DII<167FED 3FFFA315018182B3EC7F80903803FFF090380FC07C90383F000E017E1307496D5AD803F8 7F48487F5B000F81485AA2485AA2127FA290C8FC5AAB7E7FA2123FA26C7EA2000F5D7F6C 6C5B00035C6C6C9038077F806C6C010E13C0013F011C13FE90380FC0F8903803FFE09026 007F0013002F467DC436>IIIIII<143C 14FFA2491380A46D1300A2143C91C7FCADEC7F80EB3FFFA31300147F143FB3B3AA123E12 7F39FF807F00A2147EA25C6C485A383C01F06C485A3807FF80D801FEC7FC195785C21E> IIII<3901FC01FE00 FF903807FFC091381E07F091383801F8000701707F0003EBE0002601FDC07F5C01FF147F 91C7FCA25BA35BB3A8486CECFF80B5D8F83F13FEA32F2C7DAB36>II<3901FC03FC00FF90380FFF8091383C07E091387001F83A07FD E000FE00010180137F01FFEC3F8091C7EA1FC04915E049140F17F0160717F8160317FCA3 EE01FEABEE03FCA3EE07F8A217F0160F6D15E0EE1FC06D143F17806EEB7E00D9FDC05B90 39FCF003F891383C0FE091381FFF80DA03FCC7FC91C9FCAE487EB512F8A32F3F7DAB36> I<91387F8003903903FFE00790380FE07890393F801C0F90387E000E496D5AD803F8EB03 9F0007EC01BF4914FF48487F121F5B003F81A2485AA348C8FCAB6C7EA3123F7F121F6D5C 120F6D5B12076C6C5B6C6C497E6C6C130E013F131C90380FC0F8903803FFE09038007F00 91C7FCAEEEFF80033F13FEA32F3F7DAB33>I<3903F803F000FFEB1FFCEC3C3EEC707F00 07EBE0FF3803F9C000015B13FBEC007E153C01FF13005BA45BB3A748B4FCB512FEA3202C 7DAB26>I<90383FE0183901FFFC383907E01F78390F0003F8001E1301481300007C1478 127800F81438A21518A27EA27E6C6C13006C7E13FC383FFFE06C13FC6C13FF6C14C06C14 E0C614F0011F13F81300EC0FFC140300C0EB01FE1400157E7E153EA27EA36C143C6C147C 15786C14F86CEB01F039F38003E039F1F00F8039E07FFE0038C00FF01F2E7DAC26>I<13 06A5130EA4131EA3133E137EA213FE12011207001FB512F0B6FCA2C648C7FCB3A4150CAA 017E131C017F1318A26D133890381F8030ECC070903807E0E0903801FFC09038007F001E 3E7EBC26>IIIIII<003FB612 E0A29038C0003F90C713C0003CEC7F800038ECFF00A20030495A0070495AA24A5A006049 5AA24A5A4A5AA2C7485A4AC7FC5B5C495A13075C495A131F4A1360495A495AA249C712C0 485AA2485A485A1501485A48481303A24848EB07804848131F00FF14FF90B6FCA2232B7D AA2B>II<01F81302D803FE13073907FF800E48EBE01C391F1FF8F8 393807FFF0D8700113E039E0007FC00040EB1F00200978C131>126 D<001EEB0780007FEB0FE039FF801FF0EBC03FA4EB801F397F000FE0001EEB07801C0A76 C231>I E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fk cmr10 10 31 /Fk 31 122 df45 D<121C127FEAFF80A5EA7F00121C09097988 17>I66 D70 D72 DI82 DI85 D87 D97 DIIII<147E903803FF8090380FC1E0EB1F8790383F0FF0137EA213 FCA23901F803C091C7FCADB512FCA3D801F8C7FCB3AB487E387FFFF8A31C3B7FBA19>I< ED03F090390FF00FF890393FFC3C3C9039F81F707C3901F00FE03903E007C03A07C003E0 10000FECF000A248486C7EA86C6C485AA200075C6C6C485A6D485A6D48C7FC38073FFC38 060FF0000EC9FCA4120FA213C06CB512C015F86C14FE6CECFF804815C03A0F80007FE048 C7EA0FF0003E140348140116F8481400A56C1401007C15F06CEC03E0003F1407D80F80EB 0F80D807E0EB3F003901FC01FC39007FFFF0010790C7FC26387EA52A>III107 DI<3903F00FF000FFEB3FFCECF03F9039F1C01F803A0FF3800FC0 3803F70013FE496D7EA25BA35BB3A3486C497EB500C1B51280A329257EA42E>110 DI<3903F01FE000FFEB7FF89038F1E07E9039F3801F803A07F7000FC0 D803FEEB07E049EB03F04914F849130116FC150016FEA3167FAA16FEA3ED01FCA26DEB03 F816F06D13076DEB0FE001F614C09039F7803F009038F1E07E9038F0FFF8EC1FC091C8FC AB487EB512C0A328357EA42E>I<3807E01F00FFEB7FC09038E1E3E09038E387F0380FE7 07EA03E613EE9038EC03E09038FC0080491300A45BB3A2487EB512F0A31C257EA421> 114 DI<13 18A51338A31378A313F8120112031207001FB5FCB6FCA2D801F8C7FCB215C0A93800FC01 1580EB7C03017E13006D5AEB0FFEEB01F81A347FB220>IIII< B538803FFEA33A0FF8000FF06C48EB07C00003EC03806C7E16007F00001406A2017E5BA2 137F6D5BA26D6C5AA2ECC070010F1360A26D6C5AA214F101035BA2D901FBC7FCA214FF6D 5AA2147CA31438A21430A214701460A25CA2EA7C0100FE5B130391C8FC1306EAFC0EEA70 1C6C5AEA1FF0EA0FC027357EA32C>121 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fl cmsy7 7 3 /Fl 3 123 df<1338A50060130C00F8133E00FC137E00FE13FE383FBBF83807FFC00001 1300EA007C48B4FC000713C0383FBBF838FE38FE00FC137E00F8133E0060130C00001300 A517197B9A22>3 D<137013F8A71370A6387C71F0B512F8A3387C71F038007000A413F8 B31370AB15357CA81E>121 D<137013F8A61370A300201320387E73F0B512F8A2387E73 F038007000A413F8A6137090C7FC137013F8A61370A4387E73F0B512F8A2387E73F03820 702000001300A313F8A6137015357CA81E>I E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fm cmti10 10.95 18 /Fm 18 122 df<147E49B47E903907C1C38090391F80EFC090383F00FF017E137F491480 4848133F485AA248481400120F5B001F5C157E485AA215FE007F5C90C7FCA21401485C5A A21403EDF0385AA21407EDE078020F1370127C021F13F0007E013F13E0003E137FECF3E1 261F01E313C03A0F8781E3803A03FF00FF00D800FC133E252977A72E>97 DI100 DI<167C4BB4FC923807C78092380F83C0ED1F87161FED3F3FA2157EA217 80EE0E004BC7FCA414015DA414035DA30103B512F8A390260007E0C7FCA3140F5DA5141F 5DA4143F92C8FCA45C147EA414FE5CA413015CA4495AA4495AA4495A121E127F5C12FF49 C9FCA2EAFE1EEAF83C1270EA7878EA3FE0EA0F802A5383BF1C>III<1478EB01FCA21303A314F8EB00E014 00AD137C48B4FC38038F80EA0707000E13C0121E121CEA3C0F1238A2EA781F00701380A2 EAF03F140012005B137E13FE5BA212015BA212035B1438120713E0000F1378EBC070A214 F0EB80E0A2EB81C01383148038078700EA03FEEA00F8163E79BC1C>I108 DIII<027E1360903901FF81E0903807C1C390391F80E7C090383F00F701 7E137F5B4848EB3F80485AA2485A000F15005B121F5D4848137EA3007F14FE90C75AA348 1301485CA31403485CA314074A5A127C141F007E133F003E495A14FF381F01EF380F879F 3903FF1F80EA00FC1300143F92C7FCA35C147EA314FE5CA21301130390B512F05AA2233A 77A72A>113 DIII<137C48B4141C26038F8013 7EEA0707000E7F001E15FE121CD83C0F5C12381501EA781F007001805BA2D8F03F130314 0000005D5B017E1307A201FE5C5B150F1201495CA2151F0003EDC1C0491481A2153F1683 EE0380A2ED7F07000102FF13005C01F8EBDF0F00009038079F0E90397C0F0F1C90391FFC 07F8903907F001F02A2979A731>I<137C48B4143826038F8013FCEA0707000E7F001E14 01001C15F8EA3C0F12381503D8781F14F000701380A2D8F03F1307020013E012005B017E 130F16C013FE5B151F1201491480A2153F000315005BA25D157EA315FE5D00011301EBF8 030000130790387C1FF8EB3FF9EB07E1EB00035DA21407000E5CEA3F80007F495AA24A5A D8FF0090C7FC143E007C137E00705B387801F0383803E0381E0FC06CB4C8FCEA03F8263B 79A72C>121 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fn cmsy8 8 14 /Fn 14 113 df0 D<91B612C01307131FD97F80C8FC01FCC9FC EA01F0EA03C0485A48CAFC121E121C123C123812781270A212F05AA97E1270A212781238 123C121C121E7E6C7E6C7EEA01F0EA00FCEB7F80011FB612C01307130091C9FCAD003FB7 12C05A7E2A3B7AAB37>18 D<007FB512C0B612F86C14FEC8EA7F80ED0FC0ED03E0ED00F0 16788282160E160F8217801603A217C01601A916031780A2160717005E160E161E5E5E5E ED03E0ED0FC0ED7F80007FB500FEC7FCB612F86C14C0CBFCADB8FC178017002A3B7AAB37 >II<137813FE1201A3120313FCA3EA07F8A313F0A2EA0FE0A313C0121F1380A3EA3F00 A3123E127E127CA35AA35A0F227EA413>48 D<91B512C01307131FD97F80C7FC01FCC8FC EA01F0EA03C0485A48C9FC120E121E5A123812781270A212F05AA3B712C0A300E0C9FCA3 7E1270A212781238123C7E120E120F6C7E6C7EEA01F0EA00FCEB7F80011FB512C0130713 00222B7AA52F>50 D54 D<1406140EA2141EEB1F9CEBFFFC3801E07C38 03803C3807003E48133F001EEB7F80001C1373003C14C014F314E3007C14E0007813E113 0114C100F814F013031481A313071401A2130F130EA3131E131CA3133C1338007814E013 781370007C1303003C14C013F013E0001EEB0780121F390FC00F000007131E143E3803E0 78EBFFF0EB9F80D80780C7FC90C8FCA31C387DB223>59 D<0060150C00E0151CB3AA6C15 3C00701538A2007815786C15F06CEC01E06C6CEB07C0D807E0EB1F803A03FE01FF00C6B5 12FC013F13F0010390C7FC26297CA72F>91 D<141F14FFEB03F0EB0FC0EB1F8014005B13 3EB3A2137E137C13FC485A485AEA7FC048C7FCEA7FC0EA03F06C7E6C7E137C137E133EB3 A2133F7F1480EB0FC0EB03F0EB00FF141F18437BB123>102 D<12FCB47EEA0FE0EA01F0 EA00FC137C137E133EB3A37F1480130FEB07E0EB01FEEB007FEB01FEEB07E0EB0F80131F 1400133EB3A3137E137C13FCEA01F0EA0FE0EAFF8000FCC7FC18437BB123>I<12E0B3B3 B3AD034378B114>106 D<12E0A27E1270A212781238A2123C121CA2121E120EA2120F7E 7F1203A27F1201A27F1200A27F137013781338A2133C131CA2131E130EA2130F7FA28013 03801301A2801300A2801470A214781438143C141CA2141E140EA2140F80A215801403A2 15C0140114001A437CB123>110 D<18031807180F180E181E181C183C18381878187018 F018E01701EF03C01880170718005F170E171E171C173C17381778177017F05F16015F16 035F160701C092C7FC486C5C0007151E486C141C003F153CD873F8143800E31578D801FC 147016F06C6C5C1501017F5C1503D93F805B1507D91FC090C8FC5D90380FE00E151E9038 07F01C153C903803F83815786D6C5A5DEB00FF5D147F5D143F92C9FC80141E140E38427C 823B>112 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fo cmex10 10 20 /Fo 20 114 df<12F0B3B3B2043674811C>12 D<151E153E157C15F8EC01F0EC03E01407 EC0FC0EC1F8015005C147E5CA2495A495AA2495AA2495AA2495AA249C7FCA2137EA213FE 5B12015BA212035BA21207A25B120FA35B121FA45B123FA548C8FCA912FEB3A8127FA96C 7EA5121F7FA4120F7FA312077FA21203A27F1201A27F12007F137EA27FA26D7EA26D7EA2 6D7EA26D7EA26D7E6D7EA2147E80801580EC0FC0EC07E01403EC01F0EC00F8157C153E15 1E1F94718232>16 D<12F07E127C7E7E6C7E7F6C7E6C7E12017F6C7E137EA27F6D7EA26D 7EA26D7EA26D7EA26D7EA26D7EA280147E147F80A21580141FA215C0A2140F15E0A31407 15F0A4140315F8A5EC01FCA9EC00FEB3A8EC01FCA9EC03F8A515F01407A415E0140FA315 C0141FA21580A2143F1500A25C147E14FE5CA2495AA2495AA2495AA2495AA2495AA249C7 FC137EA25B485A5B1203485A485A5B48C8FC123E5A5A5A1F947D8232>I<160F161F163E 167C16F8ED01F0ED03E0ED07C0150FED1F801600153E157E5D4A5A5D14034A5A5D140F4A 5AA24AC7FC143E147E5CA2495AA2495AA2495AA2130F5CA2495AA2133F91C8FCA25B137E 13FEA25B1201A25B1203A35B1207A35B120FA35BA2121FA45B123FA690C9FC5AAA12FEB3 AC127FAA7E7FA6121F7FA4120FA27FA312077FA312037FA312017FA212007FA2137E137F 7FA280131FA26D7EA2801307A26D7EA26D7EA26D7EA2147E143E143F6E7EA26E7E140781 6E7E1401816E7E157E153E811680ED0FC01507ED03E0ED01F0ED00F8167C163E161F160F 28C66E823D>I<12F07E127C7E7E6C7E6C7E6C7E7F6C7E1200137C137E7F6D7E130F806D 7E1303806D7EA26D7E147C147E80A26E7EA26E7EA26E7EA2811403A26E7EA2811400A281 157E157FA2811680A2151F16C0A3150F16E0A3150716F0A31503A216F8A4150116FCA615 0016FEAA167FB3AC16FEAA16FC1501A616F81503A416F0A21507A316E0150FA316C0151F A31680153FA216005DA2157E15FE5DA214015DA24A5AA214075DA24A5AA24A5AA24AC7FC A2147E147C14FC495AA2495A5C1307495A5C131F49C8FC137E137C5B1201485A5B485A48 5A48C9FC123E5A5A5A28C67E823D>I32 D<12F07E127C7E123F7E6C7E6C 7E6C7E7F12016C7E7F137E133E133F6D7E130F806D7EA26D7E80130180130080147E147F 8081141F81140F81140781A2140381140181A2140081A2157FA36F7EA382151FA282150F A3821507A382A21503A282A31501A282A31500A382A482A21780A7163F17C0AC161F17E0 B3B3A217C0163FAC1780167FA71700A25EA45EA31501A35EA21503A35EA21507A25EA315 0F5EA3151F5EA2153F5EA34BC7FCA315FEA25D1401A25D14035D1407A25D140F5D141F5D 143F92C8FC5C147E14FE5C13015C13035C495AA2495A5C131F49C9FC133E137E5B5B485A 12035B485A485A48CAFC5A123E5A5A5A2BF87E8242>I<177C17FCEE01F8A2EE03F0EE07 E0EE0FC0A2EE1F80EE3F005E167E5E15015E15034B5A5E150F5E151F4B5AA24BC7FCA215 FEA24A5AA24A5AA24A5AA2140F5D141F5D143F5DA2147F92C8FC5CA25C13015C1303A25C 1307A3495AA3495AA3133F5CA3137F5CA313FF91C9FCA35A5BA31203A25BA31207A35BA3 120FA45BA2121FA65BA2123FA85BA2127FAE5B12FFB3A62E95688149>48 D<12F87E127EA27E6C7E6C7EA26C7E6C7E7F12016C7E7F137E137F6D7E131F80130F806D 7EA26D7EA26D7EA26D7EA2147FA26E7EA281141F81140F811407A281140381A214018114 0081A28182A36F7EA36F7EA382150FA3821507A3821503A3821501A382A281A31780A316 7FA317C0A4163FA217E0A6161FA217F0A8160FA217F8AE160717FCB3A62E957E8149>I< B47EB3A6127F7FAE123FA27FA8121FA27FA6120FA27FA41207A37FA31203A37FA21201A3 7F7EA380137FA380133FA380131FA36D7EA36D7EA3130380A2130180130080A28081143F A281141F81140F811407A26E7EA26E7EA26E7EA2157FA26F7EA26F7E150F821507826F7E 1501821500167E167F82EE1F80EE0FC0A2EE07E0EE03F0EE01F8A2EE00FC177C2E956883 49>64 DI80 DI<00 78EF078000FCEF0FC0B3B3B3A46C171F007E1880A2007F173F6C1800A26D5E001F177E6D 16FE6C6C4B5A6D15036C6C4B5A6C6C4B5A6C6C4B5A6C6C6CEC7FC06D6C4A5AD93FF80107 90C7FC6DB4EB3FFE6D90B55A010315F06D5D6D6C1480020F01FCC8FC020113E03A537B7F 45>83 D<913801FFE0020F13FC027FEBFF8049B612E04981010F15FC499038003FFED93F F8EB07FFD97FC001007F49486E7E4848C8EA1FE048486F7E48486F7E48486F7E49150148 486F7E49167E003F177F90CA7EA2481880007E171FA200FE18C048170FB3B3B3A40078EF 07803A537B7F45>I88 DI<007C1A1FA200FEF23F80B3B3B3B3A76C1A7FA2 6C1B00A26D61A2003F626D1801A2001F626D1803A26C6C4E5A6D180F0007626C6C4E5A6D 183F6C6C4E5A6C6D4D5A6E5E6D6C4C90C7FCD93FF8EE0FFE6D6C4C5A6DB4EE7FF86D01C0 4A485A6D01F002075B6D01FC021F5B9028007FFFE003B5C8FC6E90B65A020F16F8020316 E002001680033F4AC9FC030714F09226003FFECAFC51747B7F5C>91 DI<1B301B78A21BF8A21BF01A01A21BE01A03A21BC01A07A21B801A0FA2 1B0062A21A1E1A3EA21A3C1A7CA21A781AF8A262A21901A2621903A2621907A262190FA2 97C7FC61A2191E193EA2193C197CA2197819F8A2611801A2611803A261A21807A261180F A296C8FC60A2181E183EA2183C187C131001301678017016F813F860000116011203486C 5E000F1603121DD838FE5E00701607126000C05FEA407F0000160FA26D6C92C9FC5FA217 1E6D6C143EA2173C6D6C147CA2177817F86D7E5F16016D7E5F1603A26D6C5C1607A26D6C 5C160FA294CAFC027F5BA2161EEC3F80163EA2163C91381FC07CA2167891380FE0F8A25E 15E1EC07F15E15F3EC03FB5E15FFA26E5BA36E90CBFCA35D157EA2157C153C15384D9678 8353>113 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fp cmsy10 10.95 9 /Fp 9 113 df<007FB812FEBAFCA26C17FE3804799847>0 D<1506150FB3A9007FB912E0 BA12F0A26C18E0C8000FC9FCB3A6007FB912E0BA12F0A26C18E03C3C7BBB47>6 D<180E183F18FFEF03FEEF0FF8EF3FE0EFFF80933803FE00EE0FF8EE3FE0EEFF80DB03FE C7FCED0FF8ED7FE0913801FF80DA07FEC8FCEC1FF8EC7FC04948C9FCEB07FCEB1FF0EB7F C04848CAFCEA07FCEA1FF0EA7FC048CBFCA2EA7FC0EA1FF0EA07FCEA01FF38007FC0EB1F F0EB07FCEB01FF9038007FC0EC1FF0EC07FE913801FF809138007FE0ED1FF8ED03FE9238 00FF80EE3FE0EE0FF8EE03FE933800FF80EF3FE0EF0FF8EF03FEEF00FF183F180E1800AE 007FB812FEBAFCA26C17FE384879B947>20 D<0060EE018000F0EE03C0B3B3A36C1607A2 00781780007C160FA26CEE1F00003F5E6C6C157E6C6C5DD807F0EC03F8D803FCEC0FF06C B4EC3FE03B007FF003FF80011FB548C7FC010714F8010114E09026001FFEC8FC32397BB6 3D>91 DI<15C04A7E4A7EA24A7EA34A7EA2EC1F3E A2EC3E1FA2EC3C0F027C7FA24A6C7EA249486C7EA2ECE001010380A249486C7EA2494813 7CA249C77EA2011E141E013E141FA2496E7EA2496E7EA2491403000182A248486E7EA248 486E7EA2491578000F167CA248C97EA2003E82A2003C82007C1780A248EE07C0A2481603 0060EE018032397BB63D>94 D<0060EE018000F0EE03C06C1607A2007CEE0F80A2003C17 00003E5EA26C163EA26C6C5DA2000716786D15F8A26C6C4A5AA26C6C4A5AA200005E6D14 07A2017C4A5AA26D4AC7FCA2011E141E011F143EA26D6C5BA26D6C5BA26D6C485AA20101 5CECF003A26D6C485AA291387C0F80A2023C90C8FCEC3E1FA2EC1F3EA2EC0FFCA26E5AA3 6E5AA26E5A6E5A32397BB63D>I<126012F0B3B3B3B3B11260045B76C319>106 D<1A061A0F1A1FA21A3EA21A7CA21AF8A2F101F0A2F103E0A2F107C0A2F10F80A2F11F00 A2193EA261A261A24E5AA24E5AA24E5AA24E5AA24EC7FCA2183EA260A260A24D5AA24D5A 133801F85E486C15071203D80FFE4B5A121D00394CC8FCEAF1FF00C0163EC67F017F5D80 013F5D80011F4A5A80010F4A5A8001074A5AA26E495A13036E49C9FC13016E133E7F6F5A 147F6F5A143FEDE1F0141FEDE3E015F391380FF7C015FF6E5BA26E90CAFCA26E5AA26E5A A215781570485B7A834C>112 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fq cmmi8 8 35 /Fq 35 121 df11 D<157E913801FFC091380781E091381E00F01438 4A13F84A1378495A494813F891C7FC5B1306010E1301010C14F0131C0118EB03E0ED07C0 013814809039301FEF00EC3FFE13709038601FEF9138000F80ED07C013E04914E0A31201 5BA30003140F90C713C0A348EC1F80A2ED3F00A2486C137E000D147C6D5B390CE001F039 1C7003E039183C0F80D91FFEC7FCEB03F80038C9FC1230A312701260A312E05AA3253C7E AE28>I14 D<123C127E12FFA4127E123C08087A8714> 58 D<123C127EB4FCA21380A2127F123D1201A312031300A25A1206120E5A5A5A126009 157A8714>II<15C014011403 1580A214071500A25C140EA2141E141CA2143C143814781470A214F05CA213015CA21303 5C130791C7FCA25B130EA2131E131CA2133C1338A21378137013F05BA212015BA212035B A2120790C8FC5A120EA2121E121CA2123C1238A212781270A212F05AA21A437CB123>I< 92387FC003913903FFF80791391FC03E0F91397E00071FD901F8EB03BF4948EB01FED90F C013004948147E49C8FC017E157C49153C485A120348481538485AA2485A173048481500 A2127F90CAFCA35A5AA5EE018016031700A2007E5D1606160E6C5D5E6C6C5C000F5D6C6C 495A6C6CEB0780D801F8011EC7FCD8007E13F890381FFFE0010390C8FC302F7CAD32>67 D<013FB71280A2D900FEC7127F170F4A1407A20101150318005CA21303A25C1630010714 7094C7FC4A136016E0130F15019138C007C091B5FC5BECC0074A6C5AA2133FA20200EB00 0CA249151C92C71218017E1538173001FE15705F5B4C5A000115034C5A49140F161F0003 4AB4C7FCB8FC5E312D7DAC34>69 D<92387FC003913903FFF80791391FC03E0F91397E00 071FD901F8EB03BF4948EB01FED90FC013004948147E49C8FC017E157C49153C485A1203 48481538485AA2485A173048481500A2127F90CAFCA35A5AA292381FFFFCA29238003FC0 EE1F80163F1700A2127E5E167E7EA26C6C14FE000F4A5A6C7E6C6C1307D801F8EB1E3CD8 007EEBFC3890391FFFE018010390C8FC302F7CAD37>71 D<90273FFFFC0FB5FCA2D900FE C7EA3F80A24A1500A201015D177E5CA2010315FE5F5CA2010714015F5CA2010F14035F5C 91B6FC5B9139C00007E05CA2013F140F5F91C7FCA249141F5F137EA201FE143F94C7FC5B A200015D167E5BA2000315FEB539E03FFFF8A2382D7CAC3A>I78 DI<013FB6FC17E0903A00FE0007F0EE01FC4AEB007EA2010181A25C18800103 16005F5CA2010715FEA24A5C4C5A010F4A5A4C5A4AEB1F8004FFC7FC91B512F84914C002 80C9FCA3133F91CAFCA35B137EA313FE5BA312015BA21203B512E0A2312D7DAC2D>II<013FB512F816FF903A00FE001FC0EE07E04A6D7E 707E01016E7EA24A80A213034C5A5CA201074A5A5F4A495A4C5A010F4A5A047EC7FC9138 C003F891B512E04991C8FC9138C007C04A6C7E6F7E013F80150091C77EA2491301A2017E 5CA201FE1303A25BA20001EE038018005B5F0003913801FC0EB5D8E000133CEE7FF0C9EA 0FC0312E7CAC35>I<913807F00691383FFE0E9138F80F9E903903E001FE903807800049 C7127C131E49143CA2491438A313F81630A26D1400A27FEB7F8014F86DB47E15F06D13FC 01077F01007F141F02011380EC003F151F150FA215071218A3150F00381500A2151EA200 7C5C007E5C007F5C397B8003E039F1F00F8026E07FFEC7FC38C00FF0272F7CAD2B>I<00 0FB8FCA23B1FC003F8003F0100151F001C4A130E123C003801071406123000704A130EA2 0060010F140C12E0485CA2141FC715005DA2143FA292C8FCA25CA2147EA214FEA25CA213 01A25CA21303A25CA21307A25C130F131F001FB512F0A2302D7FAC29>I<3B7FFFF801FF FEA2D801FCC7EA0FC0178049EC070016060003150E160C5BA20007151C16185BA2000F15 3816305BA2001F157016605BA2003F15E05E90C8FCA24814015E127EA2150300FE92C7FC 5A5D1506150E007C5C151815386C5C5D6CEB03C0260F800FC8FC3803E03C3801FFF03800 3FC02F2E7BAC30>II97 D<13F8121FA21201A25BA21203A25BA21207A25BA2120FEBC7E0EB9FF8EBB83C381FF01E EBE01F13C09038800F80EA3F00A2123EA2007E131FA2127CA2143F00FC14005AA2147EA2 147C14FC5C387801F01303495A383C0F806C48C7FCEA0FFCEA03F0192F7DAD1E>II<151FEC03FFA2EC003FA2153EA2157EA2157CA215FCA215 F8A21401EB07E190381FF9F0EB7C1DEBF80FEA01F03903E007E0EA07C0120FEA1F8015C0 EA3F00140F5A007E1480A2141F12FE481400A2EC3F021506143E5AEC7E0E007CEBFE0C14 FC0101131C393E07BE18391F0E1E38390FFC0FF03903F003C0202F7DAD24>II<1307EB0F80EB1FC0A2EB0F80 EB070090C7FCA9EA01E0EA07F8EA0E3CEA1C3E123812301270EA607EEAE07C12C013FC48 5A120012015B12035BA21207EBC04014C0120F13801381381F01801303EB0700EA0F0613 1EEA07F8EA01F0122E7EAC18>105 D<15E0EC01F01403A3EC01C091C7FCA9147CEB03FE 9038078F80EB0E07131C013813C01330EB700F0160138013E013C0EB801F13001500A25C A2143EA2147EA2147CA214FCA25CA21301A25CA21303A25CA2130700385BEAFC0F5C49C7 FCEAF83EEAF0F8EA7FF0EA1F801C3B81AC1D>I<131FEA03FFA2EA003FA2133EA2137EA2 137CA213FCA25BA2120115F89038F003FCEC0F0E0003EB1C1EEC387EEBE07014E03807E1 C09038E3803849C7FC13CEEA0FDC13F8A2EBFF80381F9FE0EB83F0EB01F8130048140415 0C123EA2007E141C1518007CEBF038ECF83000FC1470EC78E048EB3FC00070EB0F801F2F 7DAD25>I<27078007F0137E3C1FE01FFC03FF803C18F0781F0783E03B3878E00F1E0126 3079C001B87F26707F8013B00060010013F001FE14E000E015C0485A4914800081021F13 0300015F491400A200034A13076049133E170F0007027EEC8080188149017C131F180100 0F02FCEB3F03053E130049495C180E001F0101EC1E0C183C010049EB0FF0000E6D48EB03 E0391F7E9D3E>109 D<3907C007E0391FE03FF83918F8783E393879E01E39307B801F38 707F00126013FEEAE0FC12C05B00815C0001143E5BA20003147E157C5B15FC0007ECF808 1618EBC00115F0000F1538913803E0300180147016E0001F010113C015E390C7EAFF0000 0E143E251F7E9D2B>II< 3807C01F390FF07FC0391CF8E0E0383879C138307B8738707F07EA607E13FC00E0EB0380 4848C7FCA2128112015BA21203A25BA21207A25BA2120FA25BA2121FA290C8FC120E1B1F 7E9D20>114 DI117 D<013F137C9038FFC1FF3A01C1E383803A0380F703C0390700F60F000E13FE4813FC1218 0038EC0700003049C7FCA2EA200100005BA313035CA301075B5D14C000385CD87C0F1306 00FC140E011F130C011B131C39F03BE038D8707113F0393FE0FFC0260F803FC7FC221F7E 9D28>120 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fr cmr8 8 20 /Fr 20 127 df10 D<123C127E12FFA7127EA9123CAA1218A41200A7123C127E12FFA4127E123C082F 7AAE14>33 D<13031307130E131C1338137013F0EA01E013C01203EA0780A2EA0F00A212 1EA35AA45AA512F8A25AAB7EA21278A57EA47EA37EA2EA0780A2EA03C0120113E0EA00F0 13701338131C130E1307130310437AB11B>40 D<12C07E12707E7E7E120FEA0780120313 C0EA01E0A2EA00F0A21378A3133CA4131EA5131FA2130FAB131FA2131EA5133CA41378A3 13F0A2EA01E0A2EA03C013801207EA0F00120E5A5A5A5A5A10437CB11B>I43 D48 D<130C133C137CEA03FC12FFEAFC7C1200B3B113FE387FFFFEA2172C7AAB23>II<140EA2141E143EA2147E14FEA2EB01BE1303143E1306130E130C1318133813301360 13E013C0EA0180120313001206120E120C5A123812305A12E0B612FCA2C7EA3E00A9147F 90381FFFFCA21E2D7EAC23>52 D61 D73 D<3B7FFFE003FFF8A2000390C713806C48EC7E000000157C017F14786D14706E5B6D6C5B 6D6C485A15036D6C48C7FC903803F80601015BECFC1C6D6C5AEC7F305DEC3FE06E5A140F 816E7E81140DEC1DFCEC38FEEC307F14609138E03F8049486C7EEC800FD903007F496D7E 010E6D7E130C011C6D7E496D7E49147E167F01F0EC3F80000316C0D80FF8EC7FE0D8FFFE 0103B5FCA2302D7EAC35>88 D91 D93 D<013F13F89038FFC3FE3903E1FF1E 3807807C000F140C391F003E00A2003E7FA76C133EA26C6C5A00071378380FE1F0380CFF C0D81C3FC7FC90C8FCA3121E121F380FFFF814FF6C14C04814F0391E0007F84813004814 7C12F848143CA46C147C007C14F86CEB01F06CEB03E03907E01F803901FFFE0038003FF0 1F2D7E9D23>103 D105 D107 DI111 D<38078008380FE01C381FF838383FFFF038707FE038E01FC0384007 8016077AAC23>126 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fs cmmi10 10.95 13 /Fs 13 111 df<121EEA7F80A2EAFFC0A4EA7F80A2EA1E000A0A798919>58 D<121EEA7F8012FF13C0A213E0A3127FEA1E601200A413E013C0A312011380120313005A 120E5A1218123812300B1C798919>I61 D<17075F84171FA2173F177FA217FFA25E 5EA24C6C7EA2EE0E3F161E161C1638A21670A216E0ED01C084ED0380171FED07005D150E 5DA25D157815705D844A5A170F4A5A4AC7FC92B6FC5CA2021CC7120F143C14384A81A24A 140713015C495AA249C8FC5B130E131E4982137C13FED807FFED1FFEB500F00107B512FC A219F83E417DC044>65 D67 D<49B9FCA3D9000190C7120718004B157F193F191E14035DA314075D191CA2140F5D1707 4D133C021F020E13384B1500A2171E023F141C4B133C177C17FC027FEB03F892B5FCA391 39FF8003F0ED00011600A2495D5CA2160101035D5CA293C9FC13075CA3130F5CA3131F5C A2133FA25C497EB612F8A3403E7DBD3A>70 D79 D83 D97 D106 DI109 DI E %EndDVIPSBitmapFont %DVIPSBitmapFont: Ft cmr10 10.95 62 /Ft 62 127 df<913801FFC0021F13FC9139FF007F80D903F8EB0FE0D90FF0EB07F8D91F C0EB01FCD97F806DB4FC49C86C7E48486F7E00038348486F7E000F8349150F001F834915 07003F83A348486F7EAA6C6C4B5AA3001F5FA26C6C4B5AA200075F6D151F00035FA26C6C 4B5A00005FA2017F4BC7FC6D157EA26D6C5C010F5DA26D6C495A00E0EF0380010315E0D8 70019238C007006E130301001580A36C0160EC000E003C017049131E263FFFF0ECFFFEA3 6C5FA339407CBF42>10 D<4AB4EB0FE0021F9038E03FFC913A7F00F8FC1ED901FC90383F F03FD907F090397FE07F80494801FF13FF4948485BD93F805C137F0200ED7F00EF003E01 FE6D91C7FC82ADB97EA3C648C76CC8FCB3AE486C4A7E007FD9FC3FEBFF80A339407FBF35 >I<4AB4FC021F13C091387F01F0903901FC0078D907F0131C4948133E494813FF49485A 137F1400A213FE6F5A163893C7FCAA167FB8FCA33900FE00018182B3AC486CECFF80007F D9FC3F13FEA32F407FBF33>I<4B6C130C4B6C131EA20307143EA24C133CA2030F147CA2 93C71278A24B14F8A2031E5CA2033E1301A2033C5CA3037C1303A203785CA203F81307A2 4B5CA20201140F007FBAFCBB1280A26C1900C72707C0003EC8FC4B133CA3020F147CA292 C71278A24A14F8A2021E5CA3023E1301007FBAFCBB1280A26C1900C727F80007C0C8FC4A 5CA20101140FA24A91C9FCA301035CA24A131EA20107143EA24A133CA2010F147CA291C7 1278A34914F8A2011E5CA2013E1301A2013C5CA201186D5A41517BBE4C>35 D<121EEA7F8012FF13C0A213E0A3127FEA1E601200A413E013C0A312011380120313005A 120E5A1218123812300B1C79BE19>39 D<1430147014E0EB01C0EB03801307EB0F00131E 133E133C5B13F85B12015B1203A2485AA2120F5BA2121F90C7FCA25AA3123E127EA6127C 12FCB2127C127EA6123E123FA37EA27F120FA27F1207A26C7EA212017F12007F13787F13 3E131E7FEB07801303EB01C0EB00E014701430145A77C323>I<12C07E12707E7E121E7E 6C7E7F12036C7E7F12007F1378137CA27FA2133F7FA21480130FA214C0A3130714E0A613 0314F0B214E01307A614C0130FA31480A2131F1400A25B133EA25BA2137813F85B12015B 485A12075B48C7FC121E121C5A5A5A5A145A7BC323>I<1506150FB3A9007FB912E0BA12 F0A26C18E0C8000FC9FCB3A915063C3C7BB447>43 D<121EEA7F8012FF13C0A213E0A312 7FEA1E601200A413E013C0A312011380120313005A120E5A1218123812300B1C798919> II<121EEA7F80A2EAFFC0A4EA7F80A2EA1E000A0A798919>I48 DII<150E151E153EA2157EA215FE1401A214 03EC077E1406140E141CA214381470A214E0EB01C0A2EB0380EB0700A2130E5BA25B5BA2 5B5B1201485A90C7FC5A120E120C121C5AA25A5AB8FCA3C8EAFE00AC4A7E49B6FCA3283E 7EBD2D>52 D<1238123C123F90B612FCA316F85A16F016E00078C712010070EC03C0ED07 8016005D48141E151C153C5DC8127015F04A5A5D14034A5A92C7FC5C141EA25CA2147C14 7814F8A213015C1303A31307A3130F5CA2131FA6133FAA6D5A0107C8FC26407BBD2D>55 D<121EEA7F80A2EAFFC0A4EA7F80A2EA1E00C7FCB3121EEA7F80A2EAFFC0A4EA7F80A2EA 1E000A2779A619>58 D<007FB912E0BA12F0A26C18E0CDFCAE007FB912E0BA12F0A26C18 E03C167BA147>61 D<15074B7EA34B7EA34B7EA34B7EA34B7E15E7A2913801C7FC15C3A2 91380381FEA34AC67EA3020E6D7EA34A6D7EA34A6D7EA34A6D7EA34A6D7EA349486D7E91 B6FCA249819138800001A249C87EA24982010E157FA2011E82011C153FA2013C82013815 1FA2017882170F13FC00034C7ED80FFF4B7EB500F0010FB512F8A33D417DC044>65 DIII70 D72 DI<011FB512 FCA3D9000713006E5A1401B3B3A6123FEA7F80EAFFC0A44A5A1380D87F005B007C130700 385C003C495A6C495A6C495A2603E07EC7FC3800FFF8EB3FC026407CBD2F>I76 D78 D80 DI<003FB91280A3903AF0007FE001018090393FC0003F48C7ED1F C0007E1707127C00781703A300701701A548EF00E0A5C81600B3B14B7E4B7E0107B612FE A33B3D7DBC42>84 DIII91 D93 D97 DI<49B4FC010F13E090383F00F8017C131E4848131F4848137F0007ECFF80485A5B121FA2 4848EB7F00151C007F91C7FCA290C9FC5AAB6C7EA3003FEC01C07F001F140316806C6C13 076C6C14000003140E6C6C131E6C6C137890383F01F090380FFFC0D901FEC7FC222A7DA8 28>IIII<167C903903F801FF903A1FFF078F8090397E0FDE1F90 38F803F83803F001A23B07E000FC0600000F6EC7FC49137E001F147FA8000F147E6D13FE 00075C6C6C485AA23901F803E03903FE0FC026071FFFC8FCEB03F80006CAFC120EA3120F A27F7F6CB512E015FE6C6E7E6C15E06C810003813A0FC0001FFC48C7EA01FE003E140048 157E825A82A46C5D007C153E007E157E6C5D6C6C495A6C6C495AD803F0EB0FC0D800FE01 7FC7FC90383FFFFC010313C0293D7EA82D>III<1478EB01FEA2 EB03FFA4EB01FEA2EB00781400AC147FEB7FFFA313017F147FB3B3A5123E127F38FF807E 14FEA214FCEB81F8EA7F01387C03F0381E07C0380FFF803801FC00185185BD1C>III<2701F801FE14FF00FF902707FF C00313E0913B1E07E00F03F0913B7803F03C01F80007903BE001F87000FC2603F9C06D48 7F000101805C01FBD900FF147F91C75B13FF4992C7FCA2495CB3A6486C496CECFF80B5D8 F87FD9FC3F13FEA347287DA74C>I<3901F801FE00FF903807FFC091381E07E091387803 F000079038E001F82603F9C07F0001138001FB6D7E91C7FC13FF5BA25BB3A6486C497EB5 D8F87F13FCA32E287DA733>I<14FF010713E090381F81F890387E007E01F8131F4848EB 0F804848EB07C04848EB03E0000F15F04848EB01F8A2003F15FCA248C812FEA44815FFA9 6C15FEA36C6CEB01FCA3001F15F86C6CEB03F0A26C6CEB07E06C6CEB0FC06C6CEB1F80D8 007EEB7E0090383F81FC90380FFFF0010090C7FC282A7EA82D>I<3901FC03FC00FF9038 1FFF8091387C0FE09039FDE003F03A03FFC001FC6C496C7E91C7127F49EC3F805BEE1FC0 17E0A2EE0FF0A3EE07F8AAEE0FF0A4EE1FE0A2EE3FC06D1580EE7F007F6E13FE9138C001 F89039FDE007F09039FC780FC0DA3FFFC7FCEC07F891C9FCAD487EB512F8A32D3A7EA733 >I<02FF131C0107EBC03C90381F80F090397F00387C01FC131CD803F8130E4848EB0FFC 150748481303121F485A1501485AA448C7FCAA6C7EA36C7EA2001F14036C7E15076C6C13 0F6C7E6C6C133DD8007E137990383F81F190380FFFC1903801FE0190C7FCAD4B7E92B512 F8A32D3A7DA730>I<3901F807E000FFEB1FF8EC787CECE1FE3807F9C100031381EA01FB 1401EC00FC01FF1330491300A35BB3A5487EB512FEA31F287EA724>I<90383FC0603901 FFF8E03807C03F381F000F003E1307003C1303127C0078130112F81400A27E7E7E6D1300 EA7FF8EBFFC06C13F86C13FE6C7F6C1480000114C0D8003F13E0010313F0EB001FEC0FF8 00E01303A214017E1400A27E15F07E14016C14E06CEB03C0903880078039F3E01F0038E0 FFFC38C01FE01D2A7DA824>I<131CA6133CA4137CA213FCA2120112031207001FB512C0 B6FCA2D801FCC7FCB3A215E0A912009038FE01C0A2EB7F03013F138090381F8700EB07FE EB01F81B397EB723>IIIIII<01F01308D8 03FC131C48B4133848EB8070391F3FF3E0393807FFC0486C138048C613000040133C1E09 79BC2D>126 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fu cmbx10 10.95 7 /Fu 7 117 df<16FCA24B7EA24B7EA34B7FA24B7FA34B7FA24B7FA34B7F157C03FC7FED F87FA2020180EDF03F0203804B7E02078115C082020F814B7E021F811500824A81023E7F 027E81027C7FA202FC814A147F49B77EA34982A2D907E0C7001F7F4A80010F835C83011F 8391C87E4983133E83017E83017C81B500FC91B612FCA5463F7CBE4F>65 D<903807FFC0013F13F848B6FC48812607FE037F260FF8007F6DEB3FF0486C806F7EA36F 7EA26C5A6C5AEA01E0C8FC153F91B5FC130F137F3901FFFE0F4813E0000F1380381FFE00 485A5B485A12FF5BA4151F7F007F143F6D90387BFF806C6C01FB13FE391FFF07F36CEBFF E100031480C6EC003FD91FF890C7FC2F2B7DA933>97 D<13FFB5FCA512077EAFEDFFE002 0713FC021FEBFF80027F80DAFF8113F09139FC003FF802F06D7E4A6D7E4A13074A807013 80A218C082A318E0AA18C0A25E1880A218005E6E5C6E495A6E495A02FCEB7FF0903AFCFF 01FFE0496CB55AD9F01F91C7FCD9E00713FCC7000113C033407DBE3A>II<3901FE01FE00FF903807FF804A13E04A13F0EC3F1F91387C3F F8000713F8000313F0EBFFE0A29138C01FF0ED0FE091388007C092C7FCA391C8FCB3A2B6 FCA525297DA82B>114 D<90383FFC1E48B512BE000714FE5A381FF00F383F800148C7FC 007E147EA200FE143EA27E7F6D90C7FC13F8EBFFE06C13FF15C06C14F06C806C806C806C 80C61580131F1300020713C014000078147F00F8143F151F7EA27E16806C143F6D140001 E013FF9038F803FE90B55A15F0D8F87F13C026E00FFEC7FC222B7DA929>II E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fv cmsy10 10 3 /Fv 3 123 df3 D<130F497EA96DC7FCA71306A3007EEB07E039FFC63FF090B5FCA2EBC63F397E 0607E0000090C7FCA2130FA5497EB3A76DC7FCAD1306A61C4D7CBA25>121 D<130F497EA86DC7FCA51306A2007EEB07E039FFC63FF090B5FCA2EBC63F397E0607E000 0090C7FCA2130FA5497EA86DC7FC90C8FC130F497EA86DC7FCA51306A2397F860FE0B612 F0A3397F861FE0D80006C7FCA2130FA5497EA86DC7FC1C4C7CBA25>I E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fw cmr12 14.4 22 /Fw 22 122 df<922603FF80137F033F9039F003FFE04AB5D8F80F13F0913C07FE00FE3F C0F8DA1FE090391F7F01FC4A489138FE03FE02FFC7387FFC074948ECFFF8495A494815F0 130F4A9238E003FC4948EE01F8057F90C7FC715A495AB2BA12FEA426003FC0C7D83FC0C7 FCB3B3A584D9FFF0ECFFF0007F9026FFE07FEBFFF8A447547ED344>11 D65 D<49B612FEA490C7003F138092380FFE001507B3B3B3A21206EA3FC0487E487EA44B 5AA25B007F5D0180131F0078C75B6C143F003E4A5A6C5D6C6C495A2707E003FEC7FC3901 FC07FC6CB512F0013F13C0D907FCC8FC2F547BD13C>74 DI< B712E0A4C66C90CAFCEB3FFC6D5AB3B3A9191CA51938A61978A319F819F0A218011803A2 1807180F181F183F18FF013F1503496C023F13E0BAFCA43E527BD149>I78 D83 D97 D<17FF4BB5FCA4ED0007160182B3A6EC0FF8EC7FFF49B512E0903907FC 03F090391FE0007C49487F49C7120F01FE80484880485A000781484880A2485AA2485AA2 127FA35B12FFAB127FA27FA2123FA27F121FA26C6C5C00075D7F6C6C5C6C6C5C6C6C021E 7F6D6C017C13E0D91FC049EBFF8090390FF807E00103B512800100495ADA1FF091C7FC39 547CD241>100 DI104 D<1378EA01FE487E487FA66C90C7FC6C5AEA007890C8FCB0EB7F80B5FCA4 1203C6FC137FB3B3A43801FFE0B61280A419507CCF21>I107 DI<01FFD907FEEC03FFB590261FFFC0010F13E0037F01F001 3F13F8912701F80FFC9038FC07FE913D03C003FE01E001FF000390260700019038038000 C6010E6D6C48C76C7E6D48DA7F8E6E7E4A159CA24ADA3FF86E7E02605D14E04A5DA34A5D B3AD2601FFE0DAFFF0EC7FF8B6D8C07F9026FFE03FB512F0A45C347CB363>I<01FFEB07 FCB590383FFF8092B512E0913901F00FF8913903C007FC000349C66C7EC6010E13016D48 6D7E5C143002706E7E146014E05CA35CB3AD2601FFE0903801FFE0B600C0B612C0A43A34 7CB341>II<01FFEB1F80B5EB7FF0913801FFF8913803E1 FC91380783FE0003EB0F07C6131EEB7F1C1438143091387003FC91386000F0160014E05C A45CB3AA8048487EB612F0A427347DB32E>114 DII<007FB5 D8800FB51280A4C69026FC0003EBF000D93FF86D1380011F4BC7FC010F15F801075D6D6C 5C6E495A6D6C5C6D14076E6C48C8FCEDC01E6E6C5A021F133891380FF0786F5A913807FD E002035BEC01FF5E80157F6F7E824B7E15FFEDE7F802017F913803C3FEEC07814AC67E02 0E80021E6D7E4A133F4A6D7E4A80707E4948130749486D7E010781010F6E7E013F8201FF 8200076D010713F0B500F8011FEBFFE0A43B337FB23E>120 DI E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fx cmr17 20.74 18 /Fx 18 121 df45 D58 D73 D<913803FF80021F13F891B512FE903A03 FC01FF80903A07E0003FE0D91F80EB0FF8013EC76C7E496E7E01F06E7E48486E7F717E48 48153F4982D807A06F7E13FC487E6D6F7E80A2717EA46C90C8FC6C5A6C5ACAFCA6EE07FF 0303B5FC157F913903FFFE07021F138091387FF800903801FFC0010790C7FCEB1FFCEB3F F0EBFFE0485B485B4890C8FC5B485A485AA2485A1A0E485AA312FF5B170FA4171FA26D15 3F007F163B177B6DDBF1FE131C003F16E16C6C14016C6C912603C0FF13386C6CEC0F806C 6C6C903A1F007F80706C6D017CECE1E028007FF803F8EB3FFF011FB500E06D1380010391 C7000713009026003FF8EC01FC474D79CB4F>97 D99 D<191FF07FFF051FB5FCA5EF001F180784 A284B3B0ED07FE92387FFFC00203B512F091390FFC01FC91393FE0001FDAFF80EB078149 90C7EA03E1D903FCEC01F14948EC0079D91FF0153D4948151D4A151F49488101FF824890 C9FC48835B0007835B120F5B121FA2123F5BA2127FA35BA212FFAE127FA27FA3123FA36C 7EA36C7EA200075F7F00035F6C7E606C6D5D6D6C153D013F16396D6C03797F6D6C15F16D 6CDA03E17FD903FEDA078113F0D900FFDA1F01EBFFF0DA7FC0137E91391FF803F80207B5 12E0020114809127001FF800EC80004C797AF758>II<131EEB7F80497E487F487FA66C5B6C5B6D5A011E C7FC90C8FCB3A7EB01F0EA07FFB5FCA51201EA007F133FA2131FB3B3B3A3497EEBFFFEB6 12FCA51E727AF12A>105 D108 DIII<02F849B47ED803FF021F13F8B5027F13FE923A01FC01FF80923A07E0003FE003 1FC76C7E033EEC0FFCC60278EC03FE013F496E7E90261FF9E06E7FDAFBC0826DB4486F7E 92C96C7E737E5C4A707E864A160786851B80A2851BC0A2851BE0A5F27FF0AEF2FFE0A54F 13C0A34F1380A21B0061626E160F626E161F626E4C5A4F5A6F5EDAFBC015FFDAF9E04A5B DAF8F04A48C7FC03784A5A6F4A5A031FEC3FF06F6CEBFFC0922603F80790C8FC0300B512 FC043F13E0DC07FEC9FC93CBFCB3A7497EEB7FFFB77EA54C6C7BCA58>I114 DI<1407A85CA65CA35CA35CA25CA2 5BA25B5B5B5B5B5B48B712FE120FB8FCA3D8000190C9FCB3B3A2EF01C0B0EF03806D7FA3 027FEC0700815F6E6C130E021F141E6F131C6E6C5B6E6C13F8913901FF01F09139007FFF C0031F5BDB03FCC7FC326B7EE93D>I<02F8EE0F80D803FFEE3FFFB5030FB5FCA5C6EE00 0F013F1603011F82A2010F82B3B3A660A460A3601307606E150E0103161E606E4B7F0101 16706D6C03F07F6FD903E013F86E6C4948EBFFF8DA1FE0EB1F00DA0FFE13FE0203B512F8 DA007F13E0030790C7EBC0004D4C7ACA58>I<007FB500FC0203B512FEA5C66C01F06E14 C0010F496E01FCC7FC010349ED7FF06D18C06D60077EC8FC6E6C157C6E6C5D6E6C5D4E5A 6E6C5D6E6C14036E6C4A5A4EC9FC6E6D131E6E7F6F6C5B033F5C705B6F6C5B92380FFC01 0307495A70485A6F6C48CAFC6F138E6F139E17FC705A705A161F83707E707E835E4C7F04 3C7F4C6C7E16709338F03FF04B486C7E4B486C7E168003076D7E4B486C7E031E6D7F5D03 386D7F03786E7E4B6E7E4A48141F4A4881727E4A486E7E4AC81203021E82023E6F7F027E 6F7F4A167F010184010784D91FFE83017FEFFFFE0007B54B6D7EB600C00207ECFFC0A552 4A80C953>120 D E %EndDVIPSBitmapFont end %%EndProlog %%BeginSetup %%Feature: *Resolution 600dpi TeXDict begin %%EndSetup %%Page: 1 1 1 0 bop 380 502 a Fx(Inclusion-exclusion:)74 b(exact)52 b(and)g(appro)l(ximate)413 837 y Fw(Je\013)39 b(Kahn)951 793 y Fv(\003)1229 837 y Fw(Nathan)f(Linial)1982 793 y Fv(y)2260 837 y Fw(Alex)g(Samoro)s(dnitsky)3337 793 y Fv(z)1675 1263 y Fu(Abstract)380 1423 y Ft(It)49 b(is)e(often)i (required)d(to)j(\014nd)e(the)i(probabilit)m(y)d(of)i(the)h(union)d(of) j(giv)m(en)f Fs(n)g Ft(ev)m(en)m(ts)244 1536 y Fs(A)312 1550 y Fr(1)351 1536 y Fs(;)15 b(:)g(:)g(:)i(;)e(A)621 1550 y Fq(n)669 1536 y Ft(.)41 b(The)30 b(answ)m(er)h(is)e(pro)m (vided,)h(of)h(course,)g(b)m(y)f(the)h(inclusion-exclusion)c(form)m (ula:)244 1649 y(Pr)o(\()p Fp([)p Fs(A)505 1663 y Fq(i)534 1649 y Ft(\))36 b(=)712 1585 y Fo(P)800 1672 y Fq(i)843 1649 y Ft(Pr\()p Fs(A)1044 1663 y Fq(i)1072 1649 y Ft(\))25 b Fp(\000)1227 1585 y Fo(P)1315 1672 y Fq(i<j)1446 0="" 1="" 2="" 3="" 4="" 5="" 34="" 36="" 39="" 43="" 48="" 55="" 59="" 65="" 67="" 72="" 74="" 80="" 82="" 86="" 100="" 105="" 108="" 110="" 111="" 124="" 150="" 178="" 181="" 197="" 201="" 208="" 220="" 222="" 231="" 244="" 254="" 266="" 273="" 276="" 282="" 296="" 303="" 325="" 329="" 340="" 342="" 366="" 369="" 381="" 384="" 394="" 395="" 404="" 407="" 416="" 431="" 457="" 461="" 475="" 486="" 498="" 511="" 512="" 513="" 540="" 561="" 567="" 569="" 578="" 597="" 603="" 611="" 614="" 661="" 667="" 686="" 697="" 701="" 706="" 711="" 712="" 721="" 760="" 763="" 766="" 774="" 779="" 785="" 786="" 791="" 796="" 798="" 803="" 818="" 837="" 838="" 852="" 923="" 926="" 955="" 968="" 971="" 990="" 1009="" 1021="" 1024="" 1028="" 1051="" 1086="" 1088="" 1109="" 1115="" 1125="" 1133="" 1148="" 1156="" 1171="" 1183="" 1186="" 1196="" 1207="" 1224="" 1231="" 1259="" 1267="" 1286="" 1304="" 1331="" 1338="" 1371="" 1375="" 1382="" 1385="" 1387="" 1390="" 1398="" 1402="" 1422="" 1424="" 1456="" 1500="" 1508="" 1523="" 1536="" 1542="" 1544="" 1548="" 1557="" 1563="" 1602="" 1617="" 1626="" 1642="" 1649="" 1663="" 1665="" 1668="" 1675="" 1680="" 1686="" 1687="" 1690="" 1699="" 1701="" 1707="" 1722="" 1724="" 1762="" 1766="" 1790="" 1796="" 1811="" 1831="" 1845="" 1858="" 1860="" 1875="" 1880="" 1883="" 1915="" 1916="" 1946="" 1950="" 1951="" 1954="" 1965="" 1988="" 1989="" 2034="" 2036="" 2090="" 2101="" 2119="" 2144="" 2155="" 2157="" 2193="" 2197="" 2211="" 2214="" 2215="" 2216="" 2227="" 2241="" 2253="" 2257="" 2261="" 2266="" 2277="" 2278="" 2287="" 2299="" 2311="" 2314="" 2317="" 2325="" 2327="" 2329="" 2340="" 2352="" 2361="" 2376="" 2377="" 2382="" 2397="" 2406="" 2408="" 2411="" 2412="" 2425="" 2439="" 2447="" 2449="" 2451="" 2460="" 2464="" 2473="" 2483="" 2509="" 2511="" 2518="" 2521="" 2533="" 2539="" 2552="" 2569="" 2584="" 2593="" 2594="" 2601="" 2608="" 2617="" 2625="" 2634="" 2640="" 2649="" 2661="" 2665="" 2675="" 2677="" 2679="" 2687="" 2713="" 2721="" 2730="" 2755="" 2758="" 2761="" 2778="" 2781="" 2786="" 2796="" 2797="" 2807="" 2824="" 2827="" 2833="" 2837="" 2838="" 2849="" 2853="" 2857="" 2858="" 2870="" 2885="" 2891="" 2902="" 2905="" 2907="" 2912="" 2914="" 2917="" 2932="" 2936="" 2937="" 2947="" 2951="" 2957="" 2959="" 2973="" 2980="" 2990="" 2996="" 3000="" 3007="" 3020="" 3021="" 3022="" 3023="" 3031="" 3032="" 3033="" 3034="" 3037="" 3048="" 3066="" 3074="" 3079="" 3089="" 3097="" 3113="" 3131="" 3136="" 3153="" 3158="" 3210="" 3217="" 3227="" 3232="" 3242="" 3248="" 3320="" 3328="" 3337="" 3352="" 3361="" 3375="" 3384="" 3394="" 3396="" 3409="" 3415="" 3423="" 3437="" 3441="" 3448="" 3458="" 3474="" 3488="" 3514="" 3529="" 3535="" 3544="" 3554="" 3561="" 3578="" 3587="" 3593="" 3601="" 3636="" 3639="" 3677="" 3682="" 3685="" 3692="" 3700="" 3702="" 3710="" 3713="" 3729="" 3734="" 3735="" 3744="" 3759="" 3766="" 3770="" 3785="" 3800="" 3801="" 3802="" 3813="" 3827="" 3830="" 3835="" 3842="" 3857="" 3861="" 3866="" 3884="" 3922="" 3926="" 3940="" 3941="" 3950="" 4039="" 4043="" 4071="" 4113="" 4116="" 4149="" 4152="" 4163="" 4174="" 4212="" 4237="" 4252="" 4257="" 4265="" 4269="" 4272="" 4283="" 4294="" 4356="" 4357="" 4359="" 4372="" 4377="" 4378="" 4392="" 4404="" 4415="" 4438="" 4452="" 4454="" 4475="" 4478="" 4490="" 4493="" 4499="" 4512="" 4514="" 4571="" 4598="" 4609="" 4656="" 4669="" 4670="" 4679="" 4692="" 4695="" 4700="" 4713="" 4718="" 4736="" 4751="" 4753="" 4800="" 4804="" 4812="" 4839="" 4847="" 4870="" 4900="" 4980="" 4995="" 5000="" 5070="" 5100="" 5349="" y="" ft(pr)o(\()p="" fs(a)1646="" fq(i)1699="" fp(\\)g="" fs(a)1853="" fq(j)1889="" ft(\))g="" fp(\006)f="" fs(:)15="" b(:)g(:)r="" ft(.)60="" b(unfortunately)-8="" b(,)38="" b(this)e(form)m(ula)g(has)="" y(exp)s(onen)m(tially)c(man)m(y)j(terms,)g(and)e(only)h="" (rarely)f(do)s(es)h(one)g(manage)i(to)e(carry)h(out)f(the)g(ex-)244="" y(act)41="" b(calculation.)69="" b(f)-8="" b(rom)40="" b(a)g(computational)g="" (p)s(oin)m(t)f(of)h(view,)i(\014nding)37="" b(the)j(probabilit)m(y)e(of)="" y(the)33="" b(union)e(is)h(an)g(in)m(tractable,)i(#p-hard)d="" (problem,)i(ev)m(en)g(in)e(v)m(ery)j(restricted)e(cases.)49="" b(this)244="" y(state)40="" b(of)f(a\013airs)g(mak)m(es)h(it)e="" (reasonable)h(to)h(seek)g(appro)m(ximate)f(solutions)e(that)j(are)f="" (com-)244="" y(putationally)h(feasible.)72="" b(a)m(ttempts)43="" b(to)f(\014nd)e(suc)m(h)h(appro)m(ximate)h(solutions)e(ha)m(v)m(e)j(a)e="" (long)244="" y(history)33="" b(starting)h(already)g(with)f(bo)s(ole)h="" ([1)q(].)53="" b(a)34="" b(recen)m(t)h(step)f(in)f(this)g(direction)g(w)m(as)="" i(tak)m(en)244="" y(b)m(y)27="" b(linial)d(and)i(nisan)g([4)q(])h(who)f="" (sough)m(t)h(appro)m(ximations)f(to)h(the)g(probabilit)m(y)e(of)i(the)g="" (union,)244="" y(giv)m(en)f(the)h(probabilities)c(of)k(all)f="" fs(j)5="" b="" ft(-wise)26="" b(in)m(tersections)g(of)h(the)g(ev)m(en)m(ts)h="" (for)e="" fs(j)31="" ft(=")25" b(1)p="" fs(;)15="" b(:)g(:)g(:)i(k)s="" ft(.)40="" b(they)244="" y(dev)m(elop)s(ed)33="" b(a)i(metho)s(d)e(to)i="" (appro)m(ximate)f(pr\()p="" fp([)p="" fs(a)1989="" fq(i)2017="" ft(\),)i(from)d(the)h(ab)s(o)m(v)m(e)i(data)e(with)f(an)h(addi-)="" y(tiv)m(e)29="" b(error)g(of)h(exp\()p="" fp(\000)p="" fs(o)s="" ft(\()p="" fs(k)s(=")1191" fp(p)p="" v="" x="" fs(n)p="" ft(\)\).)41="" b(in)28="" b(the)i(presen)m(t)f(article)g="" (w)m(e)g(dev)m(elop)g(an)h(expression)d(that)244="" y(can)33="" b(b)s(e)g(computed)g(in)f(p)s(olynomial)f(time,)j(that,)h(giv)="" m(en)e(the)h(sums)2637="" fo(p)2725="" fn(j)p="" fq(s)t="" fr(=")p" fq(j)2917="" ft(pr\()p="" fp(\\)3111="" fq(i)p="" fn(2)p="" fq(s)3232="" fs(a)3300="" fq(i)3329="" ft(\))f(for)244="" fs(j)f="" ft(,)32="" b(appro)m(ximates)f(pr\()p="" fs(a)1548="" fq(i)1576="" ft(\))g(with)f(an)h(additiv)m="" (e)g(error)f(of)i(exp)o(\()p="" fp(\000)2909="" ft(~)2899="" y(\012\()p="" fs(k)3050="" fr(2)3090="" fs(="n)p" ft(\)\).)44="" y(error)30="" b(is)f(optimal,)h(up)f(to)i(the)="" g(logarithmic)e(factor)i(implicit)d(in)h(the)2662="" y(~)2652="" y(\012)h(notation.)380="" y(the)21="" b(problem)e(of)i(en)="" m(umerating)f(satisfying)g(assignmen)m(ts)g(of)h(a)h(b)s(o)s(olean)e="" (form)m(ula)g(in)f(dnf)244="" y(form)35="" fs(f)47="" fp(_)735="" fq(m)735="" fr(1)801="" fs(c)866="" fq(i)930="" ft(is)h(an)h(instance)f(of)h(the)g="" (general)g(problem)e(that)i(had)f(b)s(een)g(extensiv)m(ely)244="" y(studied)f([7)q(].)57="" b(here)37="" fs(a)1035="" fq(i)1099="" ft(is)e(the)h(set)g(of)h(assignmen)m(ts)e(that)i="" (satisfy)e="" fs(c)2681="" fq(i)2709="" ft(,)j(and)d(pr)o(\()p="" fp(\\)3147="" fq(s)3269="" fs(a)3337="" fq(i)3366="" ft(\))f(=")244" fs(a)292="" fq(s)343="" ft(2)433="" fq(n)526="" ft(where)44="" fp(^)864="" fq(s)986="" fs(c)1051="" fq(i)1124="" ft(is)g(satis\014ed)g(b)m(y)h="" fs(a)1783="" fq(s)1879="" ft(assignmen)m(ts.)85="" b(judging)43="" b(from)i(the)g(general)244="" y(results,)40="" b(it)e(is)g(hard)g(to)h(exp)s(ect)g(a)h(decen)m(t)f(appro)m(ximation)f="" (of)h="" fs(f)13="" ft('s)39="" b(n)m(um)m(b)s(er)e(of)i(satisfying)244="" y(assignmen)m(ts,)f(without)d(kno)m(wledge)i(of)f(the)h(n)m(um)m="" (b)s(ers)e="" fs(a)2264="" fq(s)2351="" ft(for,)j(sa)m(y)-8="" b(,)39="" b(all)d(cardinalities)e(1)h="" fp(\024)244="" y(j)p="" fs(s)5="" fp(j)48="" b(\024)521="" y(p)p="" fs(m)p="" ft(.)80="" b(quite)43="" b(surprisingly)-8="" b(,)44="" b(already)f(the)h(n)m(um)m(b)s(ers)e="" fs(a)2509="" fq(s)2604="" ft(o)m(v)m(er)j="" fp(j)p="" b(\024)f="" ft(log)q(\()p="" fs(n)29="" ft(+)g(1\))244="" fm(uniquely)j(determine)h(the)g(numb)-5="" b(er)33="" b(of)g(satisfying)g="" (assignments)h(for)d="" ft(.)380="" y(w)-8="" b(e)32="" b(p)s(oin)m(t)d(out)i(a)g(connection)f(b)s(et)m(w)m(een)h(our)f(w)m="" (ork)h(and)f(the)g(edge-reconstruction)h(con-)244="" y(jecture.)42="" b(finally)29="" b(w)m(e)i(discuss)e(other)i(sp)s(ecial)e="" (instances)h(of)h(the)g(problem,)f(e.g.,)i(computing)244="" y(p)s(ermanen)m(ts)k(of)i(0)p="" ft(1)38="" b(matrices,)h(ev)-5="" b(aluating)37="" b(c)m(hromatic)h(p)s(olynomials)c(of)="" j(graphs)g(and)f(for)244="" y(families)28="" b(of)j(ev)m(en)m(ts)g="" (whose)g(v)m(c)f(dimension)e(is)h(b)s(ounded.)p="" a="" fl(\003)149="" fk(rutgers)48="" b(univ)n(ersit)n(y)-7="" b(.)96="" b(w)-7="" b(ork)48="" b(supp)r(orted)f(in)h="" (part)g(b)n(y)f(a)h(gran)n(t)e(of)i(the)g(binational)f(israel-us)g="" (science)0="" y(f)-7="" b(oundation.)115="" fl(y)149="" fk(hebrew)27="" b(.)36="" b(ork)26="" b(supp)r(orted)g(in)h(part)g(b)n(y)f(a)g(gran)n(t)g(of)g(the)i="" (binational)d(israel-us)h(science)h(f)-7="" b(ounda-)0="" y(tion)28="" b(and)f(b)n(y)g(the)h(israel)f(science)g(f)-7="" fl(z)149="" fk(hebrew)28="" b(univ)n(ersit)n(y)1851="" fj(1)p="" eop="" %%page:="" bop="" fi(1)161="" b(in)l(tro)t(duction)0="" fj(let)23="" fh(a)238="" fr(1)277="" fh(;)17="" b(:)g(:)g(:)f(;)h(a)="" fq(n)638="" fj(b)s(e)23="" b(ev)m(en)m(ts)i(in)c(a)i="" (probabilit)m(y)d(space.)41="" b(the)24="" b(inclusion-exclusion)c(form)m="" (ula)h(expresses)0="" b(probabilit)m(y)e(of)h(their)g(union:)="" y(pr\()p="" fg([)p="" fh(a)623="" fq(i)652="" fj(\))27="" b(=")821" fo(x)869="" fq(i)957="" fj(pr)q(\()p="" fh(a)1173="" fq(i)1201="" fj(\))22="" fg(\000)1360="" fo(x)1365="" fq(i<j)1497="" fj(pr\()p="" fh(a)1712="" fq(i)1763="" fg(\\)g="" fh(a)1924="" fq(j)1961="" fj(\))g(+)2161="" fo(x)2119="" fq(i<j)t(<k)2340="" fh(a)2556="" fq(i)2606="" fg(\\)h="" fh(a)2768="" fq(j)2826="" fh(a)2988="" fq(k)3031="" fj(\))f="" fg(\007)g="" fh(:)17="" b(:)g(:)28="" fj(=")1238" y(=")1419" fo(x)1342="" fr([)p="" fq(n)p="" fr(])p="" fn(\023)p="" fn(6)p="" fn(;)1616="" fj(\()p="" fg(\000)p="" fj(1\))1818="" fn(j\000)p="" fr(1)2015="" fg(\\)2223="" fq(s)2345="" fh(a)2418="" fq(i)2446="" fj(\))p="" fh(:)0="" fj(if)34="" b(an)m(y)h(of)f(the)h="" (2)617="" fq(n)687="" fg(\000)24="" fj(1)34="" b(terms)g(is)g="" (unkno)m(wn,)i(it)e(is)g(not)g(p)s(ossible,)g(in)f(general,)i(to)f="" (exactly)g(ev)-5="" b(aluate)0="" fh(a)281="" fq(i)310="" fj(\).)68="" b(man)m(y)41="" b(in)m(v)m(estigators)g="" (\(e.g.)68="" b([2])40="" b(and)h(the)g(references)i(therein\))d(had)h(ask)m="" (ed)h(ho)m(w)g(w)m(ell)0="" fj(\))29="" b(can)g(b)s(e)g="" ff(appr)-5="" b(oximate)g(d)27="" fj(giv)m(en)i(only)f(partial)f(information)f(on)i="" (the)h(n)m(um)m(b)s(ers)h(pr\()p="" fg(\\)3461="" fq(s)3584="" fh(a)3657="" fq(i)3685="" fj(\).)146="" y(linial)42="" b(and)k(nisan)e([4])h(sho)m(w)m(ed)i="" (that)e(if)f(pr\()p="" fg(\\)1956="" fq(s)2078="" fh(a)2151="" fq(i)2180="" fj(\))g(is)h(kno)m(wn)h="" (whenev)m(er)i="" fg(j)p="" fh(s)6="" fg(j)48="" b(\024)h="" fh(k)s="" fj(,)f(then)0="" fj(\))25="" b(ma)m(y)f(b)s(e)i(b)s(e)f(appro)m(ximated)f(as)h="" (follo)m(ws:)38="" b(if)25="" fh(k)31="" fh(o)s="" fj(\()2294="" fg(p)p="" fh(n)p="" fj(\),)f(then)g(it)e(is)g(p)="" s(ossible)g(to)h(estimate)0="" y(the)38="" b(probabilit)m(y)e(of)h(the)h="" (union)f(to)h(within)e(an)i(additiv)m(e)f(error)h(of)f="" fj(\(1)24="" fg(\000)j="" fh(k)2902="" fr(2)2941="" fh(="n)p" fj(\).)59="" b(moreo)m(v)m(er,)40="" b(for)0="" fh(k)i="" fj(\()325="" fj(\),)h(this)f(is)e(also)h(essen)m(tially)g="" (optimal.)61="" b(ho)m(w)m(ev)m(er,)44="" b(for)39="" b(larger)f="" fj(,)k([4)o(])e(fails)e(to)h(pro)m(vide)0="" y(a)h(full)f(answ)m(er.)68="" b(a)41="" b(metho)s(d)e(of)h(appro)m(ximation)f="" (whic)m(h)i(is)e(dev)m(elop)s(ed)j(in)d(that)i(pap)s(er)f(o\013ers)h="" (an)0="" y(appro)m(ximation)32="" b(to)j(within)e="" fh(e)1124="" fn(\000)p="" fr(\012\()p="" fq(k)r(=")1331" fn(p)p="" fr(\))1499="" fj(of)h(the)h(truth.)50="" b(this)34="" b(degree)i(of)e(appro)m(ximation)e(has)j(b)s(een)0="" y(sho)m(wn)26="" b(\(ibid.\))39="" b(to)24="" b(b)s(e)g(sub)s(optimal.)38="" b(this)25="" b(problem)e(is)g(resolv)m(ed)j(in)d(the)i(presen)m(t)h="" (article:)37="" b(giv)m(en)25="" b(the)0="" y(n)m(um)m(b)s(ers)387="" fo(p)475="" fq(j)669="" fg(\\)877="" fq(s)999="" fh(a)1072="" fq(i)1100="" fj(\))i(for)e(all)f="" fh(j)34="" fg(\024)28="" fj(,)g(w)m(e)f(can)g(appro)m(ximate)e="" (the)i(probabilit)m(y)d(of)i(the)h(union)0="" y(to)35="" b(within)f(an)g(additiv)m(e)h(error)g(of)f="" fh(e)1341="" fn(\000)1404="" fr(~)1396="" fq(k)1513="" fe(2)1548="" fq(="n)p" fr(\))1657="" fj(.)51="" b(moreo)m(v)m(er,)37="" b(the)f(appro)m(ximation)c(can)k(b)="" s(e)f(computed)0="" y(in)f(p)s(olynomial)d(time.)49="" b(the)36="" b(result)f(is)f(tigh)m(t)g(in)h(the)g(sense)i(that)d(giv)m(en)="" h(the)g(n)m(um)m(b)s(ers)h(pr)q(\()p="" fg(\\)3489="" fq(s)3611="" fh(a)3684="" fq(i)3712="" fj(\))0="" y(for)d(all)e="" fg(j)28="" b(\024)i="" fj(,)k(it)e(is)h(in)f(general)h(imp)s(ossible)e(to)i="" (appro)m(ximate)g(pr\()p="" fh(a)2748="" fq(i)2777="" fj(\))g(to)g(within)f(an)i(additiv)m(e)0="" y(error)c(smaller)e(than)j="" fh(e)841="" fn(\000)912="" fr(~)896="" fq(o)q="" fr(\()p="" fq(k)1017="" fe(2)1052="" fr(\))1192="" fj(\(regardless)f(of)g="" (the)h(computational)d(complexit)m(y)h(in)m(v)m(olv)m(ed)i(in)f(the)0="" y(appro)m(ximation\).)146="" y(the)39="" b(problem)e(of)g(en)m="" (umerating)g(the)h(satisfying)f(assignmen)m(ts)h(of)f(a)h(dnf)e(form)m="" (ula)g(is)i(an)f(in-)0="" y(stance)43="" b(of)e(the)i(general)e="" (problem.)70="" b(already)42="" b(this)f(sp)s(ecial)g(case)i(is)e(kno)m(wn)j="" (to)d(b)s(e)h(complete)f(for)0="" y(the)c(class)f(#p)i(.)e(muc)m(h)i="" (atten)m(tion)e(has)h(b)s(een)g(giv)m(en)f(to)h(e\016cien)m(t)g="" (algorithms)d(for)i="" b(oximating)0="" fj(this)33="" b(n)m(um)m(b)s(er,)h(see)g([7])f(and)h(the)f(references)j(therein.)45="" b(t)-8="" b(o)34="" b(put)f(the)h(dnf)e(problem)g(in)h(the)h(general)0="" y(con)m(text)i(of)e(our)g(problem,)g(let)f(the)i(probabilit)m(y)e="" (space)i(b)s(e)g="" fg(f)p="" fj(0)p="" fg(g)2498="" fq(n)2578="" fj(under)35="" b(uniform)e(distribution.)0="" y(asso)s(ciated)38="" b(with)f(ev)m(ery)j(clause)e(in)e(the)j(dnf)d="" (form)m(ula)g(is)h(the)h(ev)m(en)m(t)i(that)d(this)h(clause)g(is)f="" (satis-)0="" y(\014ed.)44="" b(eac)m(h)34="" b(suc)m(h)g(ev)m(en)m(t)h(is,)="" d(in)g(fact,)g(a)h(sub)s(cub)s(e)h(of)e(the)h="" fj(-dimensional)d(cub)s(e.)44="" b(or)32="" b(this)g(problem)0="" y(something)38="" b(quite)h(remark)-5="" b(able)37="" b(happ)s(ens:)57="" b(while)38="" b(an)m(y)i(decen)m(t)g(appro)m(ximation)d(for)h(the)i="" (general)0="" y(problem)35="" b(requires)j(information)33="" b(on)j(\012\()1533="" fh(m)p="" fj(\)-wise)g(in)m(tersections,)j(here)e(the)g(answ)m(er)h="" (is)e="" ff(uniquely)0="" y(determine)-5="" b(d)32="" fj(from)f(the)i="" (probabilities)d(of)i="" fg(\024)c="" fj(\(log)16="" fh(n)23="" fj(+)f(1\)-wise)32="" b(in)m(tersections.)146="" y(our)i(metho)s(ds)f="" (o\013er)h(also)e(some)i(new)g(insigh)m(t)f(in)m(to)f(the)i="" (edge{reconstruction)h(problem)d(from)0="" y(graph)42="" b(theory)-8="" b(.)74="" b(in)42="" b(particular)f(m)s(\177)-51="" b(uller's)41="" b([8])h(theorem)h(can)f(b)s(e)h(repro)m(v)m(ed)h(and)e="" (put)h(in)f(a)g(more)0="" y(general)32="" b(con)m(text)i(that)e(ma)m(y)h="" (p)s(ossibly)f(lead)g(to)g(further)h(progress)g(on)g(this)f="" (conjecture.)146="" b(e)27="" b(then)h(p)s(oin)m(t)e(out)g(that)h="" (calculating)d(0)p="" fj(1)26="" b(p)s(ermanen)m(ts)i(ma)m(y)e="" (also)g(b)s(e)h(view)m(ed)h(as)f(an)g(instance)0="" y(of)f(the)g(general)g(problem,)h(and)f(similarly)c(the)27="" b(problem)e(of)h(computing)f(c)m(hromatic)g(p)s(olynomials)e(of)1851="" y(2)p="" fj(graphs.)45="" b(some)32="" b(commen)m(ts)h(are)g(made)g="" (on)g(the)g(p)s(ossibilit)m(y)e(of)h(getting)g(estimates)h(for)f(these)="" j(cases)0="" y(that)j(are)f(b)s(etter)i(than)f(those)g(ac)m(hiev)-5="" b(in)g(the)i(general)e(case.)60="" b(finally)35="" b(w)m(e)k(deriv)m(e)g(a)e(theorem)0="" y(similar)27="" b(to)k(the)g(one)g(for)f(dnf)g(form)m(ulas,)g(in)g(case)i(the)f(v)m(c)h="" (dimension)d(of)h(our)h(family)d(of)i(ev)m(en)m(ts)j(is)0="" y(b)s(ounded.)0="" fi(2)161="" b(near-tigh)l(t)78="" b(appro)l(ximations)f(for)i(general)f(inclusion-)242="" y(exclusion)0="" fj(the)34="" b(main)c(result)j(of)f(this)g="" (section)h(is:)0="" fd(theorem)k(2.1)-8="" b(:)42="" ff(l)-5="" b(et)28="" fh(a)917="" fr(1)957="" b(:)g(:)g(:)f(;)h(a)1249="" fq(n)1323="" ff(and)28="" fh(b)1580="" fr(1)1619="" b(:)g(:)g(:)f(;)h(b)1912="" fq(n)1987="" ff(b)-5="" b(e)28="" b(c)-5="" b(ol)5="" b(le)-5="" b(ctions)26="" b(of)i(events)g(in)f(some)g(pr)-5="" b(ob)g(ability)0="" y(sp)g(ac)g(e)34="" b(wher)-5="" b(e:)1299="" fj(pr)1420="" fo(="" )1498="" y(\\)1485="" fq(s)1620="" fh(a)1693="" fq(i)1721="" fo(!)1837="" b(pr)2083="" )2162="" y(\\)2149="" fq(s)2283="" fh(b)2357="" fq(i)2385="" fo(!)0="" ff(for)35="" b(every)f(subset)h="" fh(s)f="" fg(\032)28="" fj([)p="" fj(])35="" ff(such)g(that)g="" fg(j)27="" ff(.)45="" b(then)1010="" fo(\014)1010="" y(\014)1010="" y(\014)1038="" fj(pr)1159="" )1260="" fq(n)1235="" fo([)1224="" fh(a)1428="" fq(i)1457="" fo(!)1544="" fg(\000)23="" fj(pr)1765="" )1866="" fq(n)1842="" fo([)1831="" fh(b)2036="" fq(i)2064="" fo(!)2130="" y(\014)2130="" y(\014)2207="" fh(e)2378="" fr(\012\()2575="" fc(k)2609="" fe(2)p="" fc(n)11="" fe(log)h="" fc(n)2708="" fr(\))0="" ff(mor)-5="" b(e)g(over,)34="" b(ther)-5="" b(e)35="" b(ar)-5="" b(o)g(e\016cients)34="" fh(\025)1421="" fq(j)1485="" fh(\025)1645="" fq(j;k)r(;n)1833="" ff(such)35="" b(that)811="" fo(\014)811="" y(\014)811="" y(\014)880="" fq(k)840="" fo(x)838="" fq(j)t="" fh(\025)1035="" fq(j)1114="" fo(x)1088="" fq(j)1277="" fj(pr)1398="" )1477="" y(\\)1464="" fq(s)1598="" fh(a)1671="" fq(i)1700="" fo(!)1787="" fj(pr)2008="" )2109="" fq(n)2085="" fo([)2074="" fh(a)2278="" fq(i)2306="" fo(!)2372="" y(\014)2372="" y(\014)2427="" fh(e)2577="" fr(\012\()2775="" fc(k)2809="" fc(n)10="" fe(log)i="" fc(n)2908="" ff(and)34="" b(these)h(c)-5="" fh(\025)990="" fq(j)1061="" ff(c)-5="" b(an)34="" b(b)-5="" b(found)f(in)h(time)g(p)-5="" b(olynomial)33="" b(in)i="" ff(.)146="" y(on)30="" b(the)h(other)f(hand,)g(families)f="" fh(a)1409="" fr(1)1449="" b(:)g(:)g(:)f(;)h(a)1741="" fq(n)1818="" ff(and)30="" fh(b)2077="" fr(1)2116="" b(:)g(:)g(:)f(;)h(b)2409="" fq(n)2486="" ff(exist)30="" b(for)g(which)g="" fj(pr)17="" b(\()3288="" fo(t)3357="" fq(s)3495="" fh(a)3568="" fq(i)3596="" fj(\))40="" y(pr)17="" b(\()159="" fo(t)228="" fq(s)366="" fh(b)440="" fq(i)469="" fj(\))35="" ff(whenever)e="" fh(k)38="" ff(and)992="" fo(\014)992="" y(\014)992="" y(\014)1020="" fj(pr)1141="" )1242="" fq(n)1217="" fo([)1206="" fh(a)1410="" fq(i)1438="" fo(!)1526="" fj(pr)1747="" )1848="" fq(n)1824="" fo([)1813="" fh(b)2017="" fq(i)2046="" fo(!)2111="" y(\014)2111="" y(\014)2189="" fg(\025)50="" fh(e)2361="" fq(o)r="" fr(\()2509="" fc(k)2543="" fe(2)2588="" y(log)12="" fc(n)p="" a(n)2726="" fd(remark)37="" b(2.2)o(:)44="" fj(w)-8="" b(e)33="" b(follo)m(w)d(the)i(notation)f(in)g([4])h="" (and)g(denote)h(b)m(y)g="" fh(e)6="" fh(k)s(;)17="" b(n)p="" fj(\))32="" b(the)g(maxim)m(um)e(di\013er-)0="" y(ence)38="" b(b)s(et)m(w)m(een)h(pr\()p="" fh(a)883="" fq(i)912="" fj(\))e(and)g(pr\()p="" fh(b)1463="" fq(i)1492="" fj(\),)g(where)i(there)e(are)g="" fh(n)g="" fj(ev)m(en)m(ts)i="" fh(a)2769="" fq(i)2834="" fj(and)e="" fh(b)3497="" fq(i)3562="" fj(suc)m(h)0="" y(that)34="" b(the)g(in)m(tersection)g="" (of)f(an)m(y)i="" fg(\024)30="" fh(k)37="" fj(of)c(the)h="" fh(a)1754="" fq(i)1783="" fj('s)g(has)g(the)g(same)g(probabilit)m(y)e(of)="" h(the)i(corresp)s(ond-)0="" y(ing)43="" b(ev)m(en)m(t)j(with)e="" fh(b)751="" fq(i)780="" fj('s.)79="" b(the)45="" b(theorem)f(states)h="" (that)f="" fj(\))48="" fg(\000)2826="" fj(~)2812="" y(\002\()2936="" fq(k)2975="" fq(n)3019="" fj(\)\).)78="" b(our)45="" b(b)s(elief)d(is)0="" y(that)31="" b(the)i(logarithmic)28="" b(terms)j(hidden)h(in)f(the)h="" (\\soft)g(\002")f(notation)f(are)i(redundan)m(t)h(and)f(the)g(truth)0="" y(is)38="" fj(\))39="" fj(\002\()955="" fq(k)994="" fq(n)1038="" fj(\)\).)63="" b(moreo)m(v)m(er,)42="" b(w)m(e)e(think)f(that)f(the)i(presen)="" m(t)g(metho)s(ds)f(are)g(p)s(o)m(w)m(erful)0="" y(enough)33="" b(to)f(establish)g(this)h(statemen)m(t)g(and)f(no)h(essen)m(tial)f(new)="" i(ideas)e(will)f(b)s(e)h(required.)p="" a(com)m(bining)f(t)m(w)m(o)i(lemmas)e(from)g([4])i(\(pp.)44="" b(354,)31="" b(357\))h(w)m(e)i(get)e(the)h(follo)m(wing:)1851="" y(3)p="" fd(lemma)37="" b(2.3)9="" b(:)66="" fj(\))46="" fg(\024)h="" fh(\016)i="" ff(i\013)44="" b(e)45="" b(is)g(a)g(r)-5="" b(e)g(al)44="" b(p)-5="" b(olynomial)44="" fh(q)49="" ff(of)c(de)-5="" b(gr)g(e)g(e)44="" b(at)h(most)g="" fh(k)j="" ff(whose)0="" y(c)-5="" b(onstant)43="" b(term)g(is)f(zer)-5="" b(o,)45="" b(so)d(that)i="" fh(q)t="" fg(\000)i="" fg(j)42="" b(\024)1999="" fq(\016)p="" fr(2)p="" fq(\016)2131="" ff(holds)g(for)h(every)g(inte)-5="" b(ger)42="" fh(m)h="" b(:)g(:)g(:)e(;)i(n)p="" ff(.)0="" y(mor)-5="" b(if)h="" fh(x)p="" fj(\))28="" fo(p)950="" fq(k)950="" y(j)t="" fh(\025)1150="" fq(j)1187="" fo(\020)1236="" fq(x)1240="" y(j)1276="" fo(\021)1326="" ff(,)34="" b(then)980="" fo(\014)980="" y(\014)980="" y(\014)1050="" fq(k)1009="" fo(x)1008="" fh(\025)1204="" fq(j)1283="" fo(x)1257="" fq(j)1447="" fj(pr)1568="" )1646="" y(\\)1633="" fq(s)1768="" fh(a)1841="" fq(i)1869="" fo(!)1957="" fg(\000)22="" fj(pr)2177="" )2279="" fq(n)2254="" fo([)2243="" fh(a)2447="" fq(i)2475="" fo(!)2541="" y(\014)2541="" y(\014)2596="" fh(\016)n(:)0="" fd(pro)s(of:)70="" fj(\(of)45="" b(theorem)h(2.1\))f(w)-8="" b(e)47="" b(follo)m(w)d(the)i="" (approac)m(h)g(suggested)h(b)m(y)g(lemma)d(2.3)i(and)g(ex-)0="" y(plicitly)c(construct)j(p)s(olynomials)c="" fj(\))k(that)f(satisfy)g(the)h(lemma)d(with)i="" fh(\016)51="" fj(\012\()3500="" fq(k)3539="" fq(n)11="" fr(log)i="" fq(n)3647="" fj(\)\).)0="" y(the)41="" b(co)s(e\016cien)m(ts)h(of)e(this)g(p)s(olynomial,)f="" (expressed)k(as)e(a)f(linear)f(com)m(bination)f(of)3191="" fo(\020)3241="" fq(x)3245="" y(j)3281="" fo(\021)3371="" fj(o)m(v)m(er)j="" fh(j)47="" y(1)p="" b(:)g(:)g(:)f(;)h(k)45="" fj(will)40="" b(satisfy)i(the)g(claim)e(made)i(in)g(the)g(theorem.)73="" b(by)43="" b(a)f(simple)f(c)m(hange)i(of)f(v)-5="" b(ariable,)0="" y(w)m(e)51="" b(need)h(to)e(construct)h(a)f(real)g(p)s(olynomial)d="" fh(t)j="" fj(of)g(degree)h="" fj(whic)m(h)d(satis\014es)g="" fh(t)p="" fj(\))58="" b(and)0="" y(\001)28="" fg(\025)g="" fj(max)396="" fq(m)p="" fq(;:::)o(;n)p="" fr(1)800="" fj(,)k(where)i(\001)28="" fj(\012\()2052="" fq(k)2091="" fq(n)2199="" fj(\)\).)146="" y(t)-8="" b(o)41="" b(b)s(egin,)i(w)m(e)f="" (c)m(ho)s(ose)g(for)f="" fh(t)g="" fj(to)g(v)-5="" b(anish)41="" b(at)f(in)m(teger)h(p)s(oin)m(ts)g(near)g(the)h(ends)g(of)f(the)g(in)m="" (terv)-5="" b(al)0="" y([0)p="" b(:)g(:)g(:)f(;)h(n)22="" fg(\000)g="" fj(1].)44="" b(that)33="" b(is,)f(w)m(e)h(let)1262="" fh(s)p="" fq(a)p="" fr(1)1581="" fo(y)1616="" fr(0)1698="" fh(x)22="" fg(\000)h="" fh(i)p="" fg(\001)2056="" fr(1)2070="" fo(y)2059="" fq(b)2189="" fh(x)h="" fg(\000)f="" fh(j)6="" y(and)45="" fj(\))j(:=")g" fj(\).)79="" b(in)m(tegers)g="" fh(a)f="" fj(and)h="" fh(b)g="" fj(dep)s(end)g(on)g="" fh(n)f="" fj(and)h(their)f(sum)g(is)g="" fj(.)79="" y(maxim)m(um)30="" b(of)j="" fg(j)f="" fj(o)m(v)m(er)i="" fh(m)28="" fj(1)32="" b(is)g(the)i(maxim)m(um)c(of)i="" fg(j)2677="" fq(s)p="" fr(\))p="" fr(\))2837="" fg(j)g="" fj(o)m(v)m(er)i(the)f(same)g(set)g(of)0="" fj('s.)44="" b(a)33="" b(direct)f(calculation)f(with)h(the)h(p)s="" (olynomial)c="" fh(s)j="" fj(yields:)244="" fg(j)282="" fj(\))499="" fo(\020)717="" fq(m)730="" y(a)779="" fo(\021\020)879="" fr(1)989="" fq(b)1129="" fo(\021)p="" a(\020)902="" fq(n)904="" y(a)944="" fo(\021)1216="" fg(\024)1331="" fo(\020)1421="" fq(n)1381="" y(a)p="" fr(+)p="" fq(b)1503="" a(\020)1421="" fq(n)1423="" y(a)1464="" fo(\021)1591="" fj(2)1745="" fq(h)5="" fr(\()1915="" fc(a)p="" fe(+)p="" fc(b)p="" a(n)2033="" fq(h)g="" fr(\()2218="" a(n)2264="" fr(\)+)p="" fq(o)p="" fr(\(1\)\))2502="" fh(:)1096="" fj(\(1\))146="" y(if)35="" fh(k)g="" fg(\025)d="" fj(3)p="" fh(n=")p" fj(5)j(w)m(e)h(select)f="" fh(a)d="" fj(2.)51="" b(it)35="" b(is)f(easily)g(v)m(eri\014ed)i(that)f(for)f(ev)m(ery)="" j(c)m(hoice)e(of)g="" fh(m)g="" fj(in)f(our)0="" y(range,)f(the)g(righ)m(t)="" e(hand)i(side)g(in)f(equation)g(1)g(is)g(exp)s(onen)m(tially)g(small)e="" (in)i="" fj(,)h(as)g(needed.)146="" y(f)-8="" b(or)29="" fh(k)i(<)d="" fj(5)h(a)h(more)f(complicated)f="" (construction)i(is)g(called)f(for.)42="" b(w)-8="" b(e)30="" b(still)e(guaran)m="" (tee)i(that)g="" fh(t)0="" fj(v)-5="" b(anishes)30="" b(on)f(in)m(tegral)e="" (p)s(oin)m(ts)i(near)g(the)h(ends)g(of)f(the)g(in)m(terv)-5="" b(al)28="" b([0)p="" b(:)g(:)g(:)f(;)h(n)e="" fj(1].)43="" b(around)29="" b(the)h(cen)m(ter)0="" y(of)43="" b(this)f(in)m(terv)-5="" b(al,)45="" b(w)m(e)f(con)m(trol)e(the)h(gro)m(wth)h="" (of)e="" fh(t)i="" fj(using)e(a)h(\(linearly)e(transformed\))i(tc)m(heb)m="" (yshef)0="" y(p)s(olynomial.)d(let)1120="" fr(1)1439="" fo(y)1475="" fr(0)1556="" fh(x)23="" fj(\))h="" fg(\001)1914="" fr(1)1928="" fo(y)1917="" fq(b)2047="" fh(x)g="" fg(\001)f="" fh(\034)2460="" fq(r)2499="" y(where)34="" fh(\034)324="" fq(r)395="" fj(is)e(a)g(linearly)f(transformed)h(tc)m(heb)m="" (yshef)k(p)s(olynomial:)1397="" fh(\034)1439="" fq(r)1478="" fh(t)1797="" fq(r)1835="" fj(\()1966="" fh(x)c="" fh(a)p="" a(n)h="" fh(b)h="" fh(a)2288="" fj(here)36="" fh(t)290="" fq(r)328="" fj(\))g(is)f(the)h="" fh(r)s="" fj(-th)e(tc)m(heb)m(yshef)39="" b(p)s(olynomial,)33="" b(and)j="" fh(a)24="" fj(+)g="" fh(r)36="" fj(.)52="" b(e)36="" b(also)e(let)h="" fh(\013)e="" fh(a="n)0" fj(and)i="" fh(\014)i="" fh(b="n)p" fj(.)50="" b(or)34="" fh(n)24="" fh(b)32="" fh(m)f="" fg(\025)h="" fh(a)j="" fj(the)g(same)g(calculation)d="" (carried)j(out)f(for)g="" fh(k)h="" fj(5)i(can)h(b)s(e)1851="" y(4)p="" fj(rep)s(eated.)56="" b(since)37="" b(a)g(tc)m(heb)m(yshef)j="" (p)s(olynomial)33="" b(v)-5="" b(aries)36="" b(b)s(et)m(w)m(een)j="" fj(1)d(and)h(1)f(when)i(the)f(argumen)m(t)0="" y(is)32="" b(a)g(real)g(in)g([)p="" fj(1],)32="" b(w)m(e)i(conclude)f(that)244="" fj(2)708="" fq(\013)p="" fq(\014)s="" fr(\)\))1317="" b(t)1450="" fq(r)1488="" fj(\()1618="" fh(n)22="" a(n)g="" fh(a)h="" fh(b)1941="" fh(:)1619="" fj(\(2\))146="" y(the)23="" b(tc)m(heb)m(yshef)="" i(p)s(olynomial)18="" b(can)k(b)s(e)g(written)g(as)g="" fh(t)2115="" fq(r)2153="" fr(1)p="" a(2)2487="" fo(\020)2537="" fj(+)2750="" fh(x)2888="" fr(2)2950="" fj(1\))3137="" fq(r)3197="" fj(+)f(\()p="" fg(\000)3510="" fh(x)3648="" fr(2)3710="" fj(1)o(\))3896="" fq(r)3934="" fo(\021)3984="" fj(,)0="" y(whic)m(h)33="" b(is)f(con)m(v)m(enien)m(t)j(for)d(estimations.)41="" b(using)33="" b(this)f(expression,)i(it)d(not)i(hard)f(to)h(sho)m(w)g(that:)847="" fh(t)904="" fq(r)942="" fj(\()1072="" fh(b)1395="" fh(t)1621="" fq(r)1659="" fj(\()1798="" y(1)22="" fh(\013)p="" fj(1)g="" fh(\013)h="" fh(\014)2132="" fj(\(1)22="" b(+)2510="" fo(q)p="" fj(2)p="" fh(\014)5="" fj(\))2740="" fq(r)2778="" fj(t)-8="" b(o)31="" b(get)g(an)g(upp)s(er)g(b)s(ound)h(on)f="" fg(j)1186="" fr(\))1345="" fj(,)g(w)m(e)h(select)g="" fh(\013)c="" fq(k)p="" a(n)12="" fr(log)h="" fq(n)2366="" fj(\))30="" b(and)h="" fh(\014)j="" fh(\013)2877="" fr(2)2916="" fj(.)43="" b(ogether)32="" b(with)f(the)0="" y(lo)m(w)m(er)i(b)s(ound)f(on)h="" fh(t)748="" fq(r)786="" fj(,)g(w)m(e)g(obtain,)f(after)g(some)h="" (calculations,)d(an)j(upp)s(er)g(b)s(ound)g(in)f(equation)g(2:)941="" fg(8)p="" fh(m)d="" b(:)g(:)g(:)f(;)h(n)110="" fg(j)1687="" fj(\))1904="" fj(exp)q(\()p="" fj(\012\()2538="" fh(k)2592="" fh(n)17="" fj(log)g="" fh(n)2733="" fj(\)\))0="" y(as)33="" b(claimed.)146="" b(e)38="" b(no)m(w)f(turn)g(to)g="" (a)g(lo)m(w)m(er)g(b)s(ound)g(on)g="" fj(\).)56="" b(by)38="" b(a)e(sligh)m(t)g(mo)s(di\014cation)e(of)j="" (lemma)e(2.3,)0="" y(this)28="" b(amoun)m(ts)g(to)h(sho)m(wing)f(that)g="" (there)i(is)e(no)g(p)s(olynomial)d="" fh(t)k="" fj(of)f(degree)h="" fj(with)d="" fj(\(0\))g(=")g(1)g(and)g(with)0" fh(<)h(\017)i="" fj(for)g(ev)m(ery)h="" b(:)g(:)g(:)f(;)h(n)29="" fj(where)j="" fh(\017)c="" fj(\012\()2257="" fq(k)2296="" fe(2)2343="" fr(log)13="" a(n)2499="" fj(\)\).)42="" b(letting)29="" fj(\))f(=")g(1)16" b(+)3440="" fo(p)3528="" fq(k)3528="" fr(1)3587="" fh(a)3638="" fq(i)3666="" fh(x)3721="" fq(i)0="" fj(w)m(e)28="" b(need)f(to)g(sho)m(w)g(that)g(the)g(follo)="" m(wing)d(system)k(of)e(linear)f(inequalities)g(\(in)g(the)i="" fh(a)3035="" fq(i)3064="" fj(\))f(is)h(inconsisten)m(t:)1027="" b(:)g(:)g(:)e(;)i(n)133="" fh(\017)28="" b(<)f="" fj(1)22="" b(+)2237="" fq(k)2196="" fo(x)2199="" fh(a)2384="" fq(i)2412="" fh(m)2497="" fq(i)2553="" fh(<)28="" b(\017:)0="" fj(inconsistency)38="" b(will)33="" b(b)s(e)i(established)h(b)m(y)g(linearly)e(com)m(bining)g="" fh(k)27="" fj(+)d(1)35="" b(of)g(these)i(inequalities.)50="" b(our)0="" y(plan)33="" b(is)g(to)g(\014nd)h="" fh(x)688="" fr(1)728="" b(:)g(:)g(:)e(;)i(x)1001="" fq(k)r="" fr(+1)1168="" fj(\(in)m(tegers\))34="" b(whic)m(h)g(are)f(the)h(indices)f(for)g(inequalities)f(participating)0="" y(in)27="" b(this)g(com)m(bination,)g(the)h="" fh(x)1091="" fq(j)1128="" fj(-th)f(inequalit)m(y)g(b)s(eing)g(w)m(eighed)="" h(b)m(y)g="" fh(w)2552="" fq(j)2616="" b(:)g(:)g(:)f(;)h(k)e="" fj(+)d(1\).)41="" b(\(in)28="" b(fact,)0="" y(lp)i(dualit)m(y)f(sa)m(ys)i(w)m(e)g(ha)m(v)m="" (e)g(no)f(c)m(hoice)g(here,)h(and)f(this)f(is)g="" ff(the)h="" fj(w)m(a)m(y)h(to)f(deriv)m(e)g(a)g(con)m(tradiction\).)41="" b(a)0="" y(con)m(tradiction)31="" b(is)i(obtained)f(if)f(follo)m(wing)f="" (conditions)h(hold:)1279="" fh(i)d="" b(:)g(:)g(:)e(;)i(k)1948="" fr(+1)1952="" fo(x)1951="" fh(w)2163="" fq(j)2199="" fh(x)2254="" fq(i)2254="" y(j)2319="" b(0)0="" b(means)g(that)f(all)f="" (nonconstan)m(t)i(terms)g(get)f(eliminated,)e(and)1502="" fr(+1)1507="" fo(x)1549="" fr(1)1647="" fh(w)1717="" fq(j)1781="">)e(\017)1941 4269 y Fq(k)r Fr(+1)1945 4294 y Fo(X)1988 4475 y Fr(1)2086 4377 y Fg(j)p Fh(w)2184 4392 y Fq(j)2220 4377 y Fg(j)0 4634 y Fj(whic)m(h)33 b(means)f(that)g(the)h(com)m(bination)d(of)i (constan)m(t)h(terms)g(is)f(a)g(con)m(tradiction.)42 b(It)32 b(is)g(con)m(v)m(enien)m(t)0 4755 y(to)g(normalize)f(with)786 4688 y Fo(P)873 4715 y Fq(k)r Fr(+1)873 4779 y(1)1023 4755 y Fh(w)1093 4770 y Fq(j)1157 4755 y Fj(=)c(1,)33 b(th)m(us)g(transforming)e(the)i(latter)f(condition)f(to:)1618 4959 y(1)p 1618 5004 49 4 v 1623 5095 a Fh(\017)1704 5027 y(>)1808 4919 y Fq(k)r Fr(+1)1812 4944 y Fo(X)1855 5125 y Fr(1)1953 5027 y Fg(j)p Fh(w)2051 5042 y Fq(j)2087 5027 y Fg(j)p Fh(:)1851 5349 y Fj(5)p eop %%Page: 6 6 6 5 bop 0 100 a Fj(Observ)m(e)32 b(that)d(the)h Fh(w)815 115 y Fq(j)881 100 y Fj(satisfy)f(a)h(linear)e(system)i(of)f (equations,)i(and)f(can,)g(therefore)g(b)s(e)g(expressed)0 220 y(in)35 b(terms)h(of)g(the)g Fh(x)733 235 y Fq(j)806 220 y Fj(b)m(y)h(Cramer's)g(rule.)53 b(The)37 b(matrix)e(of)g(this)h (linear)f(system)i(of)e(equations)i(is)e(a)0 340 y(V)-8 b(andermonde,)33 b(so)g(the)g(expressions)h(for)e Fh(w)1660 355 y Fq(j)1729 340 y Fj(are)g(con)m(v)m(enien)m(t:)1410 613 y Fh(w)1480 628 y Fq(j)1544 613 y Fj(=)c Fg(\006)1872 476 y Fo(Q)1950 563 y Fq(i)p Fn(6)p Fr(=)p Fq(j)2082 543 y Fh(x)2137 558 y Fq(i)p 1735 590 568 4 v 1735 615 a Fo(Q)1814 702 y Fq(i)p Fn(6)p Fr(=)p Fq(j)1929 681 y Fj(\()p Fh(x)2022 696 y Fq(i)2073 681 y Fg(\000)23 b Fh(x)2228 696 y Fq(j)2265 681 y Fj(\))2312 613 y Fh(:)0 892 y Fj(Our)33 b(goal)d(is,)j(then,)g(to)f(\014nd)h(in)m(tegers)g Fh(x)1511 907 y Fr(1)1551 892 y Fh(;)17 b(:)g(:)g(:)f(;)h(x)1825 907 y Fq(k)r Fr(+1)1990 892 y Fj(for)32 b(whic)m(h)1430 1076 y Fq(k)r Fr(+1)1435 1101 y Fo(X)1433 1283 y Fq(j)t Fr(=1)1576 1184 y Fg(j)1622 1101 y Fo(Y)1620 1286 y Fq(i)p Fn(6)p Fr(=)p Fq(j)1865 1117 y Fh(x)1920 1132 y Fq(i)p 1758 1161 298 4 v 1758 1252 a Fh(x)1813 1267 y Fq(i)1863 1252 y Fg(\000)23 b Fh(x)2018 1267 y Fq(j)2065 1184 y Fg(j)k Fh(<)2234 1117 y Fj(1)p 2234 1161 49 4 v 2239 1252 a Fh(\017)2293 1184 y(:)0 1509 y Fj(Our)37 b(c)m(hoice)g(for)f (the)i Fh(x)880 1524 y Fq(i)945 1509 y Fj(is)f(as)g(follo)m(ws:)51 b(Let)37 b Fh(R)f Fj(:=)f Fg(b)2020 1470 y Fq(k)2059 1447 y Fe(2)p 2020 1486 74 4 v 2035 1544 a Fq(n)2103 1509 y Fg(c)p Fj(.)57 b(F)-8 b(or)36 b Fh(i)f Fj(=)g(1)p Fh(;)17 b(:)g(:)g(:)f(;)h(R)37 b Fj(w)m(e)h(let)f Fh(x)3317 1524 y Fq(i)3380 1509 y Fj(=)e Fh(i)p Fj(.)57 b(F)-8 b(or)0 1647 y Fh(R)29 b(<)e(i)h Fg(\024)g Fh(k)e Fj(+)c(1)32 b(w)m(e)i(let)d Fh(x)967 1662 y Fq(i)1024 1647 y Fj(=)c Fg(b)1181 1608 y Fq(i)1205 1584 y Fe(2)p 1182 1624 59 4 v 1185 1681 a Fq(R)1250 1647 y Fg(c)p Fj(.)0 1925 y Fd(Prop)s(osition)36 b(2.4)o(:)45 b Ff(With)35 b(the)g(ab)-5 b(ove)34 b(choic)-5 b(e)34 b(of)g(the)h Fh(x)2119 1940 y Fq(i)2148 1925 y Ff(,)g(for)f(every)h Fh(i)p Ff(,)1213 2080 y Fo(Y)1210 2264 y Fq(j)t Fn(6)p Fr(=)p Fq(i)1479 2095 y Fh(x)1534 2110 y Fq(j)p 1348 2139 353 4 v 1348 2231 a Fg(j)p Fh(x)1431 2246 y Fq(i)1482 2231 y Fg(\000)22 b Fh(x)1636 2246 y Fq(j)1673 2231 y Fg(j)1738 2163 y Fh(<)28 b Fj(exp)q(\()p Fh(O)s Fj(\()p Fh(R)17 b Fj(log)f Fh(n)p Fj(\)\))p Fh(:)0 2521 y Fd(Remark)37 b(2.5)o(:)45 b Fj(F)-8 b(or)32 b(future)h(reference,)h(let)e Fh(Y)54 b Fj(b)s(e)32 b(the)h(left)f(expression)i(in)e(this)g(inequalit)m(y)-8 b(.)p 3523 2529 34 67 v 0 2799 a Fd(Pro)s(of:)42 b Fj(Calculate)30 b(the)h(n)m(umerator)g(\014rst.)43 b(Whether)32 b Fh(x)2111 2814 y Fq(i)2170 2799 y Fj(is)f(missing)e(from)g(this)i(pro)s(duct)g (is)f(incon-)0 2919 y(sequen)m(tial)j(for)f(the)h(t)m(yp)s(e)g(of)f (estimate)g(w)m(e)i(are)e(seeking.)892 3126 y Fo(Y)1015 3209 y Fh(x)1070 3224 y Fq(j)1134 3209 y Fj(=)c Fh(R)q Fj(!)1408 3101 y Fq(k)r Fr(+1)1419 3126 y Fo(Y)1357 3309 y Fq(j)t Fr(=)p Fq(R)p Fr(+1)1588 3209 y Fg(b)1642 3141 y Fh(j)1688 3105 y Fr(2)p 1642 3185 86 4 v 1647 3277 a Fh(R)1737 3209 y Fg(c)g(\024)g Fh(R)q Fj(!)2033 3126 y Fo(Y)2166 3141 y Fh(j)2212 3105 y Fr(2)p 2166 3185 V 2171 3277 a Fh(R)2289 3209 y Fj(=)2429 3141 y(\()p Fh(k)d Fj(+)d(1\)!)2755 3105 y Fr(2)p 2402 3185 419 4 v 2402 3277 a Fh(R)q Fj(!)p Fh(R)2579 3248 y Fq(k)r Fn(\000)p Fq(R)p Fr(+1)2831 3209 y Fh(:)0 3508 y Fj(No)m(w)k(let)f(us)h(turn)g (to)f(the)h(denominator.)40 b(Here)26 b(w)m(e)h(ha)m(v)m(e)g(to)e (distinguish)f(b)s(et)m(w)m(een)k(the)e(cases)h(where)0 3628 y Fh(i)33 b Fj(is)f(among)f(the)i(\014rst)g Fh(R)h Fj(indices,)e(or)g(is)h(bigger.)146 3798 y(If)g(1)27 b Fg(\024)h Fh(i)g Fg(\024)h Fh(R)k Fj(and)g Fh(x)944 3813 y Fq(i)1000 3798 y Fj(=)28 b Fh(i)p Fj(,)33 b(then)533 4005 y Fo(Y)432 4189 y Fr(1)p Fn(\024)p Fq(j)t Fn(6)p Fr(=)p Fq(i)p Fn(\024)p Fq(R)758 4088 y Fg(j)p Fh(i)22 b Fg(\000)h Fh(x)996 4103 y Fq(j)1033 4088 y Fg(j)f(\001)1184 3980 y Fq(k)r Fr(+1)1195 4005 y Fo(Y)1132 4189 y Fq(j)t Fr(=)p Fq(R)p Fr(+1)1363 4088 y Fj(\()p Fh(x)1456 4103 y Fq(j)1515 4088 y Fg(\000)h Fh(i)p Fj(\))28 b Fg(\025)g Fj(\()p Fh(i)22 b Fg(\000)h Fj(1\)!\()p Fh(R)g Fg(\000)g Fh(i)p Fj(\)!)2527 3980 y Fq(k)r Fr(+1)2538 4005 y Fo(Y)2476 4189 y Fq(j)t Fr(=)p Fq(R)p Fr(+1)2707 4088 y Fj(\()2755 4021 y Fh(j)2801 3984 y Fr(2)p 2755 4065 86 4 v 2760 4156 a Fh(R)2872 4088 y Fg(\000)g Fh(i)f Fg(\000)h Fj(1\))k Fg(\025)0 4481 y Fj(\()p Fh(i)19 b Fg(\000)g Fj(1\)!\()p Fh(R)g Fg(\000)g Fh(i)p Fj(\)!)650 4373 y Fq(k)r Fr(+1)661 4398 y Fo(Y)642 4582 y Fq(R)p Fr(+2)813 4414 y Fj(\()p Fh(j)28 b Fg(\000)22 b Fh(R)h Fg(\000)g Fj(1\)\()p Fh(j)28 b Fj(+)22 b Fh(R)h Fg(\000)g Fj(1\))p 813 4458 977 4 v 1263 4549 a Fh(R)1827 4481 y Fj(=)28 b(\()p Fh(i)18 b Fg(\000)h Fj(1\)!\()p Fh(R)h Fg(\000)f Fh(i)p Fj(\)!)p Fh(R)2631 4440 y Fq(R)p Fn(\000)p Fq(k)2782 4481 y Fj(\()p Fh(k)j Fg(\000)d Fh(R)q Fj(\)!\()p Fh(k)j Fj(+)c Fh(R)q Fj(\)!)p Fh(=)p Fj(\(2)p Fh(R)q Fj(\)!)0 4728 y(Dividing)30 b(out,)i(an)h(upp)s(er)g(b)s(ound)g(for)f Fh(Y)54 b Fj(is)32 b(obtained:)842 5002 y Fh(Y)49 b Fg(\024)1491 4935 y Fj(\(2)p Fh(R)q Fj(\)!\()p Fh(k)25 b Fj(+)d(1\)!)2044 4898 y Fr(2)p 1063 4979 1449 4 v 1063 5070 a Fh(R)q Fj(!\()p Fh(i)h Fg(\000)f Fj(1\)!\()p Fh(R)h Fg(\000)g Fh(i)p Fj(\)!\()p Fh(k)j Fg(\000)c Fh(R)q Fj(\)!\()p Fh(k)j Fj(+)d Fh(R)q Fj(\)!)2549 5002 y Fg(\024)28 b Fh(n)2712 4961 y Fq(O)r Fr(\()p Fq(R)p Fr(\))2881 5002 y Fh(:)1851 5349 y Fj(6)p eop %%Page: 7 7 7 6 bop 146 100 a Fj(No)m(w)33 b(consider)g(the)g(case)h(where)g Fh(i)28 b(>)f(R)34 b Fj(and)e Fh(x)1921 115 y Fq(i)1978 100 y Fj(=)27 b Fg(b)2135 60 y Fq(i)2159 37 y Fe(2)p 2136 76 59 4 v 2139 134 a Fq(R)2204 100 y Fg(c)p Fj(.)44 b(In)33 b(this)f(case,)307 293 y Fq(R)281 317 y Fo(Y)273 500 y Fq(j)t Fr(=1)395 400 y Fj(\()p Fh(x)488 415 y Fq(i)539 400 y Fg(\000)23 b Fh(j)6 b Fj(\))933 317 y Fo(Y)739 502 y Fq(R)p Fr(+1)p Fn(\024)p Fq(j)t Fn(6)p Fr(=)p Fq(i)p Fn(\024)p Fq(k)r Fr(+1)1249 400 y Fg(j)p Fh(x)1332 415 y Fq(i)1383 400 y Fg(\000)22 b Fh(x)1537 415 y Fq(j)1574 400 y Fg(j)28 b(\025)1843 330 y(b)1897 290 y Fq(i)1921 267 y Fe(2)p 1898 306 V 1901 364 a Fq(R)1966 330 y Fg(c)p Fj(!)p 1745 377 392 4 v 1745 477 a Fg(b)1799 438 y Fq(i)1823 419 y Fe(2)p 1799 454 59 4 v 1802 512 a Fq(R)1890 477 y Fg(\000)22 b Fh(R)q Fg(c)p Fj(!)2168 400 y Fg(\001)2478 317 y Fo(Y)2218 502 y Fq(R)p Fr(+1)p Fn(\024)p Fq(j)t Fn(6)p Fr(=)p Fq(i;i)p Fr(+1)p Fn(\024)p Fq(k)r Fr(+1)2872 333 y Fg(j)p Fh(j)2946 297 y Fr(2)3007 333 y Fg(\000)g Fh(i)3139 297 y Fr(2)3201 333 y Fg(\000)h Fh(i)p Fg(j)p 2872 377 491 4 v 3079 469 a Fh(R)3400 400 y Fg(\025)622 646 y Fo( )698 725 y Fh(i)731 689 y Fr(2)793 725 y Fg(\000)f Fh(R)967 689 y Fr(2)p 698 769 309 4 v 815 861 a Fh(R)1017 646 y Fo(!)1083 669 y Fq(R)1163 792 y Fg(\001)f Fh(R)1287 751 y Fq(R)p Fn(\000)p Fq(k)r Fr(+1)1551 792 y Fg(\001)1861 709 y Fo(Y)1601 894 y Fq(R)p Fr(+1)p Fn(\024)p Fq(j)t Fn(6)p Fr(=)p Fq(i;i)p Fr(+1)p Fn(\024)p Fq(k)r Fr(+1)2245 792 y Fg(j)p Fj(\()p Fh(j)27 b Fg(\000)c Fh(i)f Fg(\000)h Fj(1\)\()p Fh(j)28 b Fj(+)22 b Fh(i)p Fj(\))p Fg(j)27 b(\025)1045 1056 y Fj(\()p Fh(i)1116 1020 y Fr(2)1177 1056 y Fg(\000)c Fh(R)1352 1020 y Fr(2)1392 1056 y Fj(\))1430 1020 y Fq(R)p 1045 1100 443 4 v 1162 1192 a Fh(R)1237 1163 y Fq(k)r Fn(\000)p Fr(1)1519 1123 y Fg(\001)1579 1056 y Fj(\()p Fh(i)f Fg(\000)h Fh(R)g Fg(\000)g Fj(2\)!\()p Fh(k)i Fg(\000)e Fh(i)p Fj(\)!\()p Fh(k)i Fj(+)d Fh(i)p Fj(\)!)p 1579 1100 1127 4 v 1976 1192 a(\()p Fh(R)i Fj(+)e Fh(i)p Fj(\)!)146 1393 y(Dividing)30 b(the)j(n)m(umerator)f(b)m(y)i (the)f(denominator)e(yields:)0 1667 y Fh(Y)49 b Fg(\024)462 1600 y Fj(\()p Fh(R)23 b Fj(+)f Fh(i)p Fj(\)!)p Fh(R)868 1564 y Fq(R)p 221 1644 947 4 v 221 1736 a Fj(\()p Fh(i)g Fg(\000)h Fh(R)g Fg(\000)g Fj(2\)!\()p Fh(i)796 1707 y Fr(2)857 1736 y Fg(\000)g Fh(R)1032 1707 y Fr(2)1072 1736 y Fj(\))1110 1707 y Fq(R)1177 1667 y Fg(\001)1343 1600 y Fj(\()p Fh(k)j Fj(+)c(1\)!)1670 1564 y Fr(2)p 1215 1644 623 4 v 1215 1736 a Fj(\()p Fh(k)j Fg(\000)e Fh(i)p Fj(\)!\()p Fh(k)i Fj(+)d Fh(i)p Fj(\)!)1875 1667 y Fg(\024)28 b Fh(k)2034 1626 y Fr(4)2084 1600 y Fj(\()p Fh(R)23 b Fj(+)f Fh(i)p Fj(\))2388 1564 y Fr(2)p Fq(R)2481 1600 y Fh(R)2556 1564 y Fq(R)p 2084 1644 531 4 v 2128 1736 a Fj(\()p Fh(i)2199 1707 y Fr(2)2260 1736 y Fg(\000)h Fh(R)2435 1707 y Fr(2)2474 1736 y Fj(\))2512 1707 y Fq(R)2652 1667 y Fj(=)k Fh(k)2809 1626 y Fr(4)2849 1667 y Fh(R)2924 1626 y Fq(R)2998 1546 y Fo(\022)3070 1600 y Fh(i)22 b Fj(+)g Fh(R)p 3069 1644 231 4 v 3069 1736 a(i)g Fg(\000)h Fh(R)3309 1546 y Fo(\023)3370 1558 y Fq(R)3456 1667 y Fg(\024)28 b Fh(n)3619 1626 y Fq(O)r Fr(\()p Fq(R)p Fr(\))3787 1667 y Fh(;)0 1931 y Fj(as)33 b(claimed.)0 2310 y Fi(3)161 b(On)54 b(en)l(umerating)e(satisfying)i(assignmen)l(ts)e(for)i(DNF)0 2577 y Fj(In)33 b(this)f(section)h(w)m(e)g(sho)m(w:)0 2845 y Fd(Theorem)k(3.1)m(:)44 b Ff(L)-5 b(et)33 b Fh(F)47 b Ff(b)-5 b(e)32 b(a)h(DNF)g(formula)f(in)h Fh(n)g Ff(b)-5 b(o)g(ole)g(an)31 b(variables)h(with)h(clauses)f Fh(C)3326 2860 y Fr(1)3365 2845 y Fh(;)17 b(:)g(:)g(:)f(;)h(C)3654 2860 y Fq(m)3720 2845 y Ff(.)0 2965 y(F)-7 b(or)39 b Fh(S)44 b Fg(\022)38 b Fj([)p Fh(m)p Fj(])p Ff(,)j(let)g Fh(a)810 2980 y Fq(S)901 2965 y Ff(b)-5 b(e)40 b(the)g(numb)-5 b(er)40 b(of)g(satisfying)f(assignments)g(for)h Fg(^)2882 2980 y Fq(i)p Fn(2)p Fq(S)3004 2965 y Fh(C)3074 2980 y Fq(i)3102 2965 y Ff(.)61 b(The)40 b(numb)-5 b(ers)0 3086 y Fh(a)51 3101 y Fq(S)143 3086 y Ff(wher)g(e)40 b Fh(S)47 b Ff(r)-5 b(anges)40 b(over)h(al)5 b(l)40 b(subsets)h(of)g (no)f(mor)-5 b(e)41 b(than)f Fj(log)17 b Fh(n)27 b Fj(+)f(1)41 b Ff(memb)-5 b(ers)40 b(of)g Fj([)p Fh(m)p Fj(])p Ff(,)j(alr)-5 b(e)g(ady)0 3206 y(uniquely)35 b(determine)f(the)h(numb)-5 b(er)34 b(of)h(satisfying)f(assignments)g(for)h Fh(F)14 b Ff(.)0 3474 y Fd(Remark)37 b(3.2)9 b(:)64 b Fj(Observ)m(e)45 b(that)e(the)h(n)m(um)m(b)s(er)f Fh(a)1874 3489 y Fq(S)1968 3474 y Fj(is)g(alw)m(a)m(ys)h(either)f(zero)g(or)g(2)3082 3438 y Fq(n)p Fn(\000)p Fq(k)3222 3474 y Fj(,)j(where)e Fh(k)i Fj(is)0 3594 y(the)36 b(n)m(um)m(b)s(er)g(of)f(distinct)g(v)-5 b(ariables)35 b(whic)m(h)h(app)s(ear)g(in)f(all)e Fh(C)2340 3609 y Fq(i)2404 3594 y Fj(o)m(v)m(er)k Fh(i)c Fg(2)g Fh(S)6 b Fj(.)53 b(In)36 b(particular,)f(these)0 3715 y(n)m(um)m(b)s(ers)e(are)g(v)m(ery)h(easy)g(to)e(ev)-5 b(aluate.)p 1524 3723 34 67 v 0 3983 a Fd(Pro)s(of:)43 b Fj(W)-8 b(e)33 b(start)g(with)f(the)h(follo)m(wing)d(lemma)0 4228 y Fd(Lemma)37 b(3.3)t(:)55 b Ff(L)-5 b(et)41 b Fh(A)877 4243 y Fq(i)945 4228 y Ff(and)e Fh(B)1213 4243 y Fq(i)1281 4228 y Ff(b)-5 b(e)40 b(two)g(families)e(of)i(events)f(\()p Fh(i)e Fj(=)g(1)p Fh(;)17 b(:)g(:)g(:)f(;)h(n)p Ff(\).)59 b(F)-7 b(or)39 b Fh(S)k Fg(\022)37 b Fj([)p Fh(n)p Fj(])p Ff(,)42 b(let)0 4348 y Fh(a)51 4363 y Fq(S)130 4348 y Fj(:=)27 b(Pr)q(\()403 4282 y Fo(T)472 4369 y Fq(i)p Fn(2)p Fq(S)610 4348 y Fh(A)683 4363 y Fq(i)711 4348 y Fj(\))p Ff(.)45 b(A)n(lso)35 b(let)1336 4561 y Fh(\013)1398 4576 y Fq(S)1477 4561 y Fj(:=)28 b(Pr\()1763 4478 y Fo(\\)1750 4662 y Fq(i)p Fn(2)p Fq(S)1884 4561 y Fh(A)1957 4576 y Fq(i)2008 4561 y Fg(\\)2113 4478 y Fo(\\)2096 4663 y Fq(j)t Fn(62)p Fq(S)2239 4561 y Fh(A)2312 4520 y Fq(c)2312 4586 y(j)2348 4561 y Fj(\))p Fh(:)0 4859 y Ff(De\014ne)40 b Fh(b)355 4874 y Fq(S)448 4859 y Ff(and)i Fh(\014)700 4874 y Fq(S)792 4859 y Ff(analo)-5 b(gously.)64 b(Supp)-5 b(ose)41 b(that)h(for)g(every)f(subset)h Fh(S)k Fg(6)p Fj(=)40 b([)p Fh(n)p Fj(])p Ff(,)k Fh(a)3136 4874 y Fq(S)3227 4859 y Fj(=)c Fh(b)3384 4874 y Fq(S)3436 4859 y Ff(.)65 b(Then)0 4980 y(ther)-5 b(e)35 b(is)f(a)g(r)-5 b(e)g(al)34 b Fh(\017)h Ff(of)f(absolute)h(value)f(at)h(most)f Fj(\()1830 4940 y Fr(1)p 1830 4956 36 4 v 1830 5014 a(2)1875 4980 y Fj(\))1913 4943 y Fq(n)p Fn(\000)p Fr(1)2050 4980 y Ff(,)h(such)f(that)h(for)f(every)h Fh(S)e Fg(\022)28 b Fj([)p Fh(n)p Fj(])35 b Ff(ther)-5 b(e)35 b(holds)0 5100 y Fh(\013)62 5115 y Fq(S)141 5100 y Fj(=)27 b Fh(\014)299 5115 y Fq(S)372 5100 y Fj(+)22 b(\()p Fg(\000)p Fj(1\))672 5064 y Fn(j)p Fq(S)t Fn(j)762 5100 y Fh(\017)p Ff(.)1851 5349 y Fj(7)p eop %%Page: 8 8 8 7 bop 0 100 a Fd(Pro)s(of:)41 b Fj(Although)27 b(this)h(statemen)m(t) g(implicitly)c(app)s(ears)k(in)f([4])h(\(the)g(case)h Fh(k)i Fj(=)c Fh(n)13 b Fg(\000)g Fj(1\),)29 b(w)m(e)g(cannot)0 220 y(resist)44 b(presen)m(ting)g(the)g(follo)m(wing)d(short)j(and)g (simple)e(pro)s(of.)76 b(Rather)44 b(than)f(think)h(of)f(the)h(t)m(w)m (o)0 340 y(families)f(of)j(ev)m(en)m(ts)i Fh(A)876 355 y Fq(i)951 340 y Fj(and)e Fh(B)1228 355 y Fq(i)1256 340 y Fj(,)k(w)m(e)d(represen)m(t)h(the)f(situation)d(through)i Fh(\013)h Fj(and)g Fh(\014)k Fj(whic)m(h)c(are)0 461 y(view)m(ed)33 b(as)e(real)g(functions)g(on)g(all)f(subsets)j(of)e([)p Fh(n)p Fj(],)h(or,)g(what)f(is)g(the)h(same,)g(on)f(the)h Fh(n)p Fj(-dimensional)0 581 y(cub)s(e.)44 b(Also,)32 b(let)g Fh(\015)707 596 y Fq(S)785 581 y Fj(:=)c Fh(\013)978 596 y Fq(S)1051 581 y Fg(\000)23 b Fh(\014)1206 596 y Fq(S)1256 581 y Fj(,)33 b(and)g Fh(c)1548 596 y Fq(S)1626 581 y Fj(:=)28 b Fh(a)1808 596 y Fq(S)1881 581 y Fg(\000)23 b Fh(b)2022 596 y Fq(S)2073 581 y Fj(.)43 b(By)33 b (inclusion-exclusion:)993 760 y Fh(\015)1044 775 y Fq(S)1122 760 y Fj(=)1242 677 y Fo(X)1225 861 y Fq(T)10 b Fn(\023)p Fq(S)1378 760 y Fj(\()p Fg(\000)p Fj(1\))1580 719 y Fn(j)p Fq(T)g Fn(n)p Fq(S)t Fn(j)1756 760 y Fh(c)1798 775 y Fq(T)1964 760 y Fj(and)111 b Fh(c)2274 775 y Fq(S)2352 760 y Fj(=)2472 677 y Fo(X)2456 861 y Fq(T)10 b Fn(\023)p Fq(S)2625 760 y Fh(\015)2676 775 y Fq(T)2730 760 y Fh(;)0 1022 y Fj(for)38 b(ev)m(ery)j Fh(S)6 b Fj(.)62 b(In)40 b(the)f(presen)m(t)i(case,)g Fh(c)1506 1037 y Fq(S)1595 1022 y Fj(=)e(0)f(for)h(ev)m(ery)h Fh(S)45 b Fg(6)p Fj(=)38 b([)p Fh(n)p Fj(])h(and)g(the)h(conclusion)e(follo)m(ws.)0 1142 y(T)-8 b(o)37 b(see)g(that)g Fg(j)p Fh(\017)p Fg(j)d(\024)h Fj(\()814 1103 y Fr(1)p 814 1119 36 4 v 814 1176 a(2)859 1142 y Fj(\))897 1106 y Fq(n)p Fn(\000)p Fr(1)1034 1142 y Fj(,)j(observ)m(e)g(that)e(since)h Fh(\015)42 b Fj(is)36 b(the)h(di\013erence)g(b)s(et)m(w)m(een)i(t)m(w)m(o)e(probabilit)m(y)0 1262 y(distributions,)31 b(ob)m(viously)1029 1196 y Fo(P)1116 1283 y Fq(S)1184 1262 y Fh(\015)1240 1221 y Fr(+)1235 1287 y Fq(S)1326 1262 y Fg(\024)e Fj(1,)j(but)1719 1196 y Fo(P)1806 1283 y Fq(S)1874 1262 y Fh(\015)1930 1221 y Fr(+)1925 1287 y Fq(S)2017 1262 y Fj(=)27 b(2)2169 1226 y Fq(n)p Fn(\000)p Fr(1)2306 1262 y Fg(j)p Fh(\017)p Fg(j)32 b Fj(whic)m(h)h(concludes)h(the)f(pro)s(of.)p 3612 1270 34 67 v 146 1421 a(W)-8 b(e)35 b(can)g(turn)g(no)m(w)g(to)g (a)f(pro)s(of)g(of)g(Theorem)h(3.1:)47 b(Let)35 b Fh(F)44 b Fj(=)31 b Fg(_)2566 1385 y Fq(m)2566 1445 y Fr(1)2633 1421 y Fh(C)2703 1436 y Fq(i)2766 1421 y Fj(and)k Fh(F)3035 1385 y Fn(0)3089 1421 y Fj(=)c Fg(_)3262 1385 y Fq(m)3262 1445 y Fr(1)3329 1421 y Fh(C)3406 1385 y Fn(0)3399 1445 y Fq(i)3463 1421 y Fj(b)s(e)k(t)m(w)m(o)0 1541 y(DNF)29 b(form)m(ulae)f(on)i(v)-5 b(ariables)29 b Fh(x)1229 1556 y Fr(1)1268 1541 y Fh(;)17 b(:)g(:)g(:)f(;)h(x)1542 1556 y Fq(n)1589 1541 y Fj(.)43 b(The)31 b(in)m(tegers)f Fh(a)2266 1556 y Fq(S)2347 1541 y Fj(and)f Fh(a)2584 1505 y Fn(0)2584 1566 y Fq(S)2665 1541 y Fj(are)h(de\014ned)h(as)f(b)s(efore,)h(and)0 1661 y(w)m(e)41 b(assume)f(that)g(if)f Fg(j)p Fh(S)6 b Fg(j)39 b(\024)i Fj(log)16 b Fh(n)28 b Fj(+)f(1,)41 b(then)g Fh(a)1819 1676 y Fq(S)1910 1661 y Fj(=)f Fh(a)2077 1625 y Fn(0)2077 1686 y Fq(S)2128 1661 y Fj(.)66 b(If)39 b(this)h(last)f(equalit)m(y)h(holds)f(for)h Ff(al)5 b(l)39 b Fh(S)6 b Fj(,)0 1782 y(then)34 b(ob)m(viously)g Fh(F)47 b Fj(and)33 b Fh(F)1033 1746 y Fn(0)1090 1782 y Fj(ha)m(v)m(e)i(an)e (equal)g(n)m(um)m(b)s(er)h(of)f(satisfying)g(assignmen)m(ts.)47 b(Observ)m(e)35 b(that)0 1902 y(if)40 b Fh(a)149 1917 y Fq(S)242 1902 y Fj(=)i(0,)h(then)f(there)f(are)h(t)m(w)m(o)f(clauses) h Fh(C)1736 1917 y Fq(i)1805 1902 y Fj(and)f Fh(C)2073 1917 y Fq(j)2150 1902 y Fj(with)g Fh(i;)17 b(j)48 b Fg(2)43 b Fh(S)k Fj(whose)42 b(conjunction)f(is)f(a)0 2023 y(con)m(tradiction) 30 b(i.e.,)i Fh(a)827 2038 y Fn(f)p Fq(i;j)t Fn(g)1005 2023 y Fj(=)c(0.)43 b(If)31 b Fh(T)42 b Fg(\022)28 b Fj([)p Fh(n)p Fj(])j(satis\014es)i Fh(a)2081 2038 y Fq(T)2164 2023 y Fj(=)27 b(0,)32 b(then)g(b)m(y)g(this)f(observ)-5 b(ation)31 b(there)h(is)0 2143 y(a)g(t)m(w)m(o-elemen)m(t)h(subset)h Fh(P)46 b Fj(of)32 b Fh(T)46 b Fj(for)32 b(whic)m(h)i Fh(a)1728 2158 y Fq(P)1814 2143 y Fj(=)28 b(0,)k(hence)i(also)e Fh(a)2544 2107 y Fn(0)2544 2168 y Fq(P)2630 2143 y Fj(=)c(0)k(and)h(so) f Fh(a)3175 2107 y Fn(0)3175 2168 y Fq(T)3258 2143 y Fj(=)c(0.)146 2301 y(W)-8 b(e)46 b(w)m(an)m(t)h(to)e(consider)h(a)f (minimal)d(set)k Fh(S)56 b Fg(\022)50 b Fj([)p Fh(n)p Fj(])c(for)f(whic)m(h)h Fh(a)2662 2316 y Fq(S)2763 2301 y Fg(6)p Fj(=)k Fh(a)2940 2265 y Fn(0)2940 2326 y Fq(S)2991 2301 y Fj(.)82 b(By)47 b(assumption)0 2422 y Fg(j)p Fh(S)6 b Fg(j)27 b(\025)h Fj(log)17 b Fh(n)7 b Fj(+)g(2.)41 b(Also,)26 b(the)g(previous)g(remarks)f(allo)m(w)f(us)i(to)f(assume)h (that)f Fh(a)2869 2437 y Fq(S)2920 2422 y Fh(;)17 b(a)3015 2386 y Fn(0)3015 2446 y Fq(S)3093 2422 y Fg(6)p Fj(=)28 b(0.)41 b(Therefore,)0 2542 y(w)m(e)31 b(are)g(allo)m(w)m(ed)e(to)h (assume)h(that)f(there)h(are)f(no)h(negated)f(literals)f(in)g(the)i (clauses)g Fh(C)3198 2557 y Fq(i)3256 2542 y Fj(and)f Fh(C)3520 2506 y Fn(0)3513 2567 y Fq(i)3574 2542 y Fj(o)m(v)m(er)0 2663 y Fh(i)k Fg(2)g Fh(S)6 b Fj(.)53 b(Ha)m(ving)36 b(made)f(this)h(assumption,)g(let)g Fh(Q)1876 2678 y Fq(i)1940 2663 y Fj(and)g Fh(Q)2210 2626 y Fn(0)2210 2687 y Fq(i)2274 2663 y Fj(b)s(e)h(the)f(set)h(of)e(v)-5 b(ariables)35 b(in)g Fh(C)3447 2678 y Fq(i)3511 2663 y Fj(\(resp.)0 2783 y Fh(C)77 2747 y Fn(0)70 2808 y Fq(i)100 2783 y Fj(\).)44 b(It)32 b(follo)m(ws)g(that)g(for)g(an)m(y)h Fh(T)42 b Fg(\022)28 b Fh(S)6 b Fj(,)1541 2962 y Fh(a)1592 2977 y Fq(T)1675 2962 y Fj(=)27 b(2)1827 2920 y Fq(n)p Fn(\000j[)1992 2931 y Fc(i)p Fb(2)p Fc(T)2104 2920 y Fq(Q)2160 2930 y Fc(i)2186 2920 y Fn(j)0 3140 y Fj(and)d(similarly)c (in)j(the)i(primed)e(case.)41 b(It)24 b(follo)m(ws)f(no)m(w)i(that)e(w) m(e)i(are)f(in)f(the)i(follo)m(wing)c(situation)h(with)0 3261 y(resp)s(ect)k(to)e(the)h(families)d Fh(Q)1022 3276 y Fq(i)1075 3261 y Fj(and)j Fh(Q)1334 3225 y Fn(0)1334 3285 y Fq(i)1362 3261 y Fj(:)40 b(F)-8 b(or)24 b(ev)m(ery)i Fh(T)41 b Fg(\032)29 b Fh(S)6 b Fj(,)26 b(other)f(than)f Fh(T)42 b Fj(=)27 b Fh(S)6 b Fj(,)26 b Fg(j)3000 3194 y Fo(S)3069 3282 y Fq(T)3140 3261 y Fh(Q)3217 3276 y Fq(i)3246 3261 y Fg(j)h Fj(=)h Fg(j)3450 3194 y Fo(S)3518 3282 y Fq(T)3590 3261 y Fh(Q)3667 3225 y Fn(0)3667 3285 y Fq(i)3695 3261 y Fg(j)p Fj(,)0 3381 y(while)40 b(for)h Fh(T)56 b Fj(=)42 b Fh(S)k Fj(the)c(t)m(w)m(o)g(sides)f(disagree.)69 b(F)-8 b(rom)40 b(the)h(inclusion-exclusion)e(form)m(ula)h(w)m(e)i(can) 0 3502 y(conclude)33 b(that)g(also)f Fg(j)854 3435 y Fo(T)923 3522 y Fq(T)994 3502 y Fh(Q)1071 3517 y Fq(i)1100 3502 y Fg(j)c Fj(=)g Fg(j)1305 3435 y Fo(T)1373 3522 y Fq(T)1445 3502 y Fh(Q)1522 3465 y Fn(0)1522 3526 y Fq(i)1550 3502 y Fg(j)33 b Fj(for)f(ev)m(ery)j Fh(T)47 b Fj(whic)m(h)33 b(is)f(a)h(prop)s(er)g(subset)i(of)d Fh(S)6 b Fj(,)33 b(but)g(not)0 3622 y(for)f Fh(T)41 b Fj(=)28 b Fh(S)6 b Fj(.)43 b(W)-8 b(e)33 b(no)m(w)g(in)m(v)m(ok)m(e)h (Lemma)d(3.3,)i(and)f(conclude)h(that)942 3850 y Fg(\000)p Fj(\()1067 3783 y(1)p 1067 3827 49 4 v 1067 3918 a(2)1127 3850 y(\))1165 3809 y Fn(j)p Fq(S)t Fn(j\000)p Fr(1)1372 3850 y Fg(\024)1487 3783 y Fj(\()p Fg(j)1570 3716 y Fo(T)1639 3803 y Fq(S)1706 3783 y Fh(Q)1783 3798 y Fq(i)1812 3783 y Fg(j)21 b(\000)i(j)2006 3716 y Fo(T)2075 3803 y Fq(S)2142 3783 y Fh(Q)2219 3746 y Fn(0)2219 3807 y Fq(i)2247 3783 y Fg(j)p Fj(\))p 1487 3827 826 4 v 1871 3918 a Fh(n)2351 3850 y Fg(\024)28 b Fj(\()2504 3783 y(1)p 2504 3827 49 4 v 2504 3918 a(2)2562 3850 y(\))2600 3809 y Fn(j)p Fq(S)t Fn(j\000)p Fr(1)2781 3850 y Fh(:)0 4060 y Fj(This)d(is)f(obtained)h(b)m (y)h(placing)d(a)i(uniform)e(distribution)g(on)h([)p Fh(n)p Fj(])i(and)f(viewing)f Fh(Q)2982 4075 y Fq(i)3035 4060 y Fj(and)h Fh(Q)3294 4024 y Fn(0)3294 4084 y Fq(i)3347 4060 y Fj(as)h(ev)m(en)m(ts.)0 4180 y(Since)i(w)m(e)h(are)f(assuming)f (that)g(the)i(middle)d(term)h(do)s(es)h(not)g(v)-5 b(anish,)28 b(its)g(absolute)f(v)-5 b(alue)28 b(is)f(at)g(least)14 4261 y Fr(1)p 10 4277 43 4 v 10 4335 a Fq(n)95 4301 y Fj(and)33 b(w)m(e)h(conclude)f(that)f Fg(j)p Fh(S)6 b Fg(j)27 b(\024)h Fj(log)17 b Fh(n)22 b Fj(+)g(1,)32 b(a)h(con)m (tradiction)e(whic)m(h)i(completes)f(the)h(pro)s(of.)p 3589 4309 34 67 v 0 4520 a Fd(Remark)k(3.4)t(:)54 b Fj(While)37 b(this)g(result)h(is)f(satisfying)g(in)g(terms)g(of)g(the)h(in)m (tersection)g(sizes)g(that)g(are)0 4640 y(b)s(eing)31 b(considered,)j(at)d(this)h(writing)f(this)g(statemen)m(t)i(is)f(only)f (existen)m(tial.)43 b(W)-8 b(e)32 b(do)g(not)g(kno)m(w)h(an)m(y)0 4760 y(e\013ectiv)m(e)h(w)m(a)m(y)h(of)e(actually)f(reading)h(the)h(n)m (um)m(b)s(er)f(of)g(satisfying)g(assignmen)m(ts)h(from)e(the)i(in)m (tegers)0 4881 y Fh(a)51 4896 y Fq(S)135 4881 y Fj(as)e(ab)s(o)m(v)m (e.)p 569 4889 V 146 5100 a(F)-8 b(or)32 b(an)h(application)d(of)i (this)g(result)g(in)g(Learning)g(Theory)-8 b(,)34 b(see)f([3].)1851 5349 y(8)p eop %%Page: 9 9 9 8 bop 0 100 a Fi(4)161 b(Inclusion-exclusion)36 b(and)f(the)g (edge-reconstruction)d(prob-)242 282 y(lem)0 551 y Fj(The)27 b Ff(de)-5 b(ck)24 b Fj(asso)s(ciated)i(with)f(a)g(graph)h Fh(G)h Fj(=)h(\()p Fh(V)5 b(;)17 b(E)6 b Fj(\))25 b(is)g(the)h(list)e (of)h(unlab)s(eled)g(graphs)h Fg(f)p Fh(G)8 b Fg(n)g Fh(e)p Fg(j)p Fh(e)27 b Fg(2)h Fh(E)6 b Fg(g)p Fj(.)0 672 y(The)26 b(w)m(ell-kno)m(wn)f(edge-reconstruction)h(conjecture)g (states)g(that)e(ev)m(ery)j(graph)e(with)g(four)f(edges)i(or)0 792 y(more)31 b(is)g(uniquely)g(determined)g(b)m(y)h(its)f(dec)m(k.)45 b(The)32 b(most)f(successful)i(approac)m(h)f(to)f(this)g(problem,)0 912 y(initiated)38 b(b)m(y)k(Lo)m(v\023)-49 b(asz)42 b([5])e(and)h(impro)m(v)m(ed)g(b)m(y)g(M)s(\177)-51 b(uller)39 b([8])i(pro)s(ceeds)h(as)f(follo)m(ws:)58 b(Let)41 b Fh(G)g Fj(and)f Fh(H)0 1033 y Fj(b)s(e)c(t)m(w)m(o)g(graphs)g(with)f (the)h(same)g(dec)m(k.)54 b(There)37 b(is)e(no)h(loss)f(in)g(assuming)g (that)g Fh(V)22 b Fj(\()p Fh(G)p Fj(\))33 b(=)f Fh(V)22 b Fj(\()p Fh(H)8 b Fj(\))32 b(=)0 1153 y([)p Fh(n)p Fj(].)79 b(Let)45 b Fh(X)56 b Fj(=)48 b Fh(X)747 1168 y Fq(n)838 1153 y Fj(b)s(e)d(the)f(probabilit)m(y)f(space)i(of)f(all)f(p)s(erm)m (utations)g(on)i([)p Fh(n)p Fj(])f(under)i(uniform)0 1273 y(distribution.)c(F)-8 b(or)31 b Fh(S)j Fg(\022)28 b Fh(E)6 b Fj(\()p Fh(G)p Fj(\),)32 b(let)g Fh(A)1447 1288 y Fq(S)1531 1273 y Fj(b)s(e)h(the)g(ev)m(en)m(t)1091 1493 y Fh(A)1164 1508 y Fq(S)1242 1493 y Fj(=)28 b Fg(f)p Fh(\031)j Fg(2)d Fh(X)8 b Fg(j)p Fh(E)e Fj(\()p Fh(\031)t Fj(\()p Fh(G)p Fj(\)\))22 b Fg(n)g Fh(E)6 b Fj(\()p Fh(G)p Fj(\))27 b Fg(\023)h Fh(S)6 b Fg(g)p Fh(:)0 1713 y Fj(Lik)m(ewise,)1085 1834 y Fh(B)1159 1849 y Fq(S)1237 1834 y Fj(=)28 b Fg(f)p Fh(\031)j Fg(2)d Fh(X)8 b Fg(j)p Fh(E)e Fj(\()p Fh(\031)t Fj(\()p Fh(G)p Fj(\)\))21 b Fg(n)h Fh(E)6 b Fj(\()p Fh(H)i Fj(\))28 b Fg(\023)g Fh(S)6 b Fg(g)p Fh(:)0 2008 y Fj(\(Here)31 b Fh(E)6 b Fj(\()p Fh(\031)t Fj(\()p Fh(G)p Fj(\)\))31 b(is)f(the)h(edge-set)g(of)f(the)i(v)m(ertex-p)s(erm)m(uted)g(graph.\)) 43 b(Since)30 b Fh(G;)17 b(H)38 b Fj(ha)m(v)m(e)32 b(the)f(same)0 2129 y(dec)m(k,)e(it)24 b(can)h(b)s(e)h(sho)m(wn)h(that)e(Pr\()p Fh(A)1339 2144 y Fq(S)1390 2129 y Fj(\))j(=)f(Pr)q(\()p Fh(B)1776 2144 y Fq(S)1826 2129 y Fj(\))f(for)e(ev)m(ery)k(prop)s(er)d (subset)i Fh(S)33 b Fg(\032)c Fh(E)6 b Fj(\()p Fh(G)p Fj(\).)41 b(Consider)0 2249 y(no)m(w)33 b(t)m(w)m(o)h(families)29 b(of)k(ev)m(en)m(ts)i Fg(f)p Fh(A)1274 2264 y Fq(e)1310 2249 y Fg(j)p Fh(e)28 b Fg(2)g Fh(E)6 b Fj(\()p Fh(G)p Fj(\))p Fg(g)33 b Fj(and)g Fg(f)p Fh(B)2133 2264 y Fq(e)2169 2249 y Fg(j)p Fh(e)28 b Fg(2)g Fh(E)6 b Fj(\()p Fh(G)p Fj(\))p Fg(g)p Fj(.)44 b(If)32 b(Pr)q(\()p Fh(A)3029 2264 y Fq(S)3080 2249 y Fj(\))27 b(=)h(Pr\()p Fh(B)3465 2264 y Fq(S)3516 2249 y Fj(\))33 b(also)0 2369 y(for)28 b Fh(S)33 b Fj(=)28 b Fh(E)6 b Fj(\()p Fh(G)p Fj(\),)29 b(then)f(b)m(y)i(inclusion-exclusion,)d(corresp)s(onding)h(atoms)f(in)h (these)h(t)m(w)m(o)g(families)c(are)0 2490 y(equiprobable.)42 b(In)29 b(particular,)e(since)i(the)h(iden)m(tit)m(y)e(p)s(erm)m (utation)f(maps)h Fh(G)h Fj(to)f(itself,)g(there)i(is)e(also)0 2610 y(some)k Fh(\031)g Fg(2)c Fh(X)40 b Fj(for)32 b(whic)m(h)i Fh(E)6 b Fj(\()p Fh(\031)t Fj(\()p Fh(G)p Fj(\)\))27 b(=)g Fh(E)6 b Fj(\()p Fh(H)i Fj(\),)32 b(namely)g Fh(G)h Fj(and)f Fh(H)40 b Fj(are)33 b(isomorphic.)146 2780 y(As)f(the)g (reader)g(can)f(see,)i(w)m(e)g(are)e(exactly)h(in)e(the)i(situation)e (co)m(v)m(ered)j(b)m(y)f(Lemma)e(3.3,)h(and)h(w)m(e)0 2901 y(ma)m(y)g(conclude:)0 3179 y Fd(Prop)s(osition)k(4.1)s(:)54 b Ff(L)-5 b(et)39 b Fh(G;)17 b(H)47 b Ff(b)-5 b(e)39 b(a)g(p)-5 b(air)39 b(of)f(gr)-5 b(aphs)39 b(with)g Fh(n)g Ff(vertic)-5 b(es)39 b(and)g Fh(m)g Ff(e)-5 b(dges)39 b(for)g(which)0 3299 y(the)30 b(e)-5 b(dge-r)g(e)g(c)g(onstruction)30 b(c)-5 b(onje)g(ctur)g(e)30 b(fails.)43 b(L)-5 b(et)30 b Fh(\013)1928 3314 y Fq(S)2010 3299 y Ff(\(r)-5 b(esp.)42 b Fh(\014)2348 3314 y Fq(S)2399 3299 y Ff(\))31 b(b)-5 b(e)30 b(the)g(pr)-5 b(ob)g(ability)30 b(\(in)g Fh(X)36 b Fj(=)27 b Fh(X)3663 3314 y Fq(n)3710 3299 y Ff(\))0 3420 y(that)k Fh(E)6 b Fj(\()p Fh(\031)t Fj(\()p Fh(G)p Fj(\)\))14 b Fg(n)g Fh(E)6 b Fj(\()p Fh(G)p Fj(\))27 b(=)h Fh(S)36 b Ff(\(r)-5 b(esp.)43 b Fh(E)6 b Fj(\()p Fh(\031)t Fj(\()p Fh(G)p Fj(\)\))14 b Fg(n)g Fh(E)6 b Fj(\()p Fh(H)i Fj(\))26 b(=)i Fh(S)6 b Ff(\).)43 b(Then)30 b(ther)-5 b(e)31 b(is)g(a)g(r)-5 b(e)g(al)31 b Fh(\017)g Ff(of)g(absolute)0 3540 y(value)k(no)f(bigger)g(than)h Fj(\()946 3501 y Fr(1)p 946 3517 36 4 v 946 3574 a(2)991 3540 y Fj(\))1029 3504 y Fq(m)p Fn(\000)p Fr(1)1221 3540 y Ff(such)f(that)i Fh(\013)1704 3555 y Fq(S)1776 3540 y Fg(\000)23 b Fh(\014)1931 3555 y Fq(S)2010 3540 y Fj(=)k(\()p Fg(\000)p Fj(1\))2315 3504 y Fn(j)p Fq(S)t Fn(j)2405 3540 y Fh(\017)36 b Ff(for)e(every)h Fh(S)e Fg(\022)c Fh(E)6 b Fj(\()p Fh(G)p Fj(\))p Ff(.)0 3818 y Fj(Th)m(us,)53 b(a)46 b(coun)m(terexample)i(to)f(the)h(conjecture)g(m)m(ust)f(satisfy) h(a)e(large)h(n)m(um)m(b)s(er)g(of)g(additional)0 3938 y(constrain)m(ts.)53 b(M)s(\177)-51 b(uller's)34 b(Theorem,)j(that)e Fh(m)f Fg(\024)f Fj(log)1936 3962 y Fr(2)1975 3938 y Fj(\()p Fh(n)p Fj(!\))25 b(+)f(1)35 b(follo)m(ws)g(immediately:)46 b(F)-8 b(or)35 b(noniso-)0 4059 y(morphic)c Fh(G)i Fj(and)g Fh(H)8 b Fj(,)32 b(necessarily)h Fh(\017)28 b Fg(6)p Fj(=)f(0,)33 b(so)g(\()1760 4020 y Fr(1)p 1760 4036 V 1760 4093 a(2)1805 4059 y Fj(\))1843 4023 y Fq(m)p Fn(\000)p Fr(1)2027 4059 y Fg(\025)28 b(j)p Fh(\017)p Fg(j)g(\025)2383 4020 y Fr(1)p 2370 4036 63 4 v 2370 4093 a Fq(n)p Fr(!)2442 4059 y Fj(.)0 4441 y Fi(5)161 b(Other)82 b(instances)g(of)h (inclusion-exclusion)g(and)g(their)242 4624 y(appro)l(ximations)0 4893 y Fj(In)48 b(this)g(section)g(w)m(e)h(consider)f(t)m(w)m(o)h (families)c(of)i(en)m(umeration)h(problems)f(whic)m(h)i(ma)m(y)e(b)s(e) i(ap-)0 5013 y(proac)m(hed)34 b(via)d(inclusion-exclusion.)1851 5349 y(9)p eop %%Page: 10 10 10 9 bop 0 100 a Fd(Remark)37 b(5.1:)47 b Fj(Ryser's)36 b(form)m(ula)31 b(for)j(computing)e(the)i(p)s(ermanen)m(t)g(of)g(an)f Fh(n)23 b Fg(\002)h Fh(n)34 b Fj(matrix)e Fh(A)i Fj(\(see)0 220 y([9]\))e(is)h(based)g(on)g(a)f(sligh)m(t)f(extension)j(of)e(the)h (inclusion-exclusion)d(principle:)1069 527 y Fh(P)14 b(er)s Fj(\()p Fh(A)p Fj(\))27 b(=)1549 444 y Fo(X)1517 632 y Fq(S)t Fn(\022)p Fr([)p Fq(n)p Fr(])1701 527 y Fj(\()p Fg(\000)p Fj(1\))1903 486 y Fq(n)p Fn(\000j)p Fq(S)t Fn(j)2143 419 y Fq(n)2111 444 y Fo(Y)2107 626 y Fq(i)p Fr(=1)2238 356 y Fo(0)2238 506 y(@)2314 444 y(X)2311 628 y Fq(j)t Fn(2)p Fq(S)2453 527 y Fh(a)2504 542 y Fq(ij)2565 356 y Fo(1)2565 506 y(A)2654 527 y Fh(:)0 834 y Fj(W)-8 b(e)32 b(concen)m(trate)g(on)f(matrices)g(of)g(zeros)h (and)f(ones,)i(where)f(Ryser's)h(form)m(ula)c(is)i(a)g(sp)s(ecial)f (case)i(of)0 955 y(the)24 b(usual)f(inclusion-exclusion)e(principle.)39 b(Under)24 b(some)f(mild)e(assumptions)i(the)h(p)s(ermanen)m(t)f(of)g Fh(A)0 1075 y Fj(is)j(uniquely)h(determined)g(b)m(y)h(the)f(terms)g (whic)m(h)h(corresp)s(ond)f(to)g(sets)h Fh(S)33 b Fj(of)26 b(cardinalit)m(y)f Fg(\025)j Fh(n)11 b Fg(\000)g Fj(log)17 b Fh(n)0 1196 y Fj(in)32 b(the)i(ab)s(o)m(v)m(e)g(form)m(ula.)43 b(W)-8 b(e)33 b(do)g(not)g(go)f(in)m(to)h(the)g(exact)h(statemen)m(t)g (of)e(these)i(mild)d(assumptions)0 1316 y(and)i(only)g(men)m(tion)f (that)h(\(i\))f(This)h(statemen)m(t)h(is)f(not)g(true)g (unconditionally)e(-)h(tak)m(e)i(A)f(to)g(b)s(e)h(the)0 1436 y(iden)m(tit)m(y)e(matrix,)f(B)h(the)g(zero)h(matrix.)41 b(\(ii\))30 b(An)j(example)e(where)j(our)d(\(unsp)s(eci\014ed\))j (assumption)0 1557 y(do)e(apply)h(is)f(that)g(where)i Fh(A)f Fj(has)g(an)f(all-ones)f(column.)p 2142 1565 34 67 v 0 1835 a Fd(Remark)37 b(5.2)14 b(:)75 b Fj(Other)49 b(instances)g(of)g(the)g(inclusion-exclusion)e(principle)g(ma)m(y)i (yield)f(results)0 1955 y(whic)m(h)34 b(exceed)i(the)e(general)g(case.) 48 b(W)-8 b(e)34 b(p)s(oin)m(t)f(out)h(that)f Ff(chr)-5 b(omatic)35 b(p)-5 b(olynomials)33 b Fj(of)g(graphs)h(ma)m(y)0 2076 y(b)s(e)i(view)m(ed)g(as)g(a)f(class)h(of)f(suc)m(h)i(examples.)52 b(\(F)-8 b(or)34 b(the)i(basic)f(theory)i(of)e(c)m(hromatic)f(p)s (olynomials,)0 2196 y(see)42 b(Lo)m(v\023)-49 b(asz)41 b([6])f(Chapter)i(9\).)66 b(Brie\015y)-8 b(,)43 b(let)c Fh(G)i Fj(=)g(\()p Fh(V)5 b(;)17 b(E)6 b Fj(\))40 b(b)s(e)h(a)f(graph)g (and)h(let)f Fh(\025)g Fj(b)s(e)g(a)h(p)s(ositiv)m(e)0 2316 y(in)m(teger.)67 b(Denote)40 b(b)m(y)h Fh(P)932 2331 y Fq(G)991 2316 y Fj(\()p Fh(\025)p Fj(\))f(the)h(n)m(um)m(b)s(er) g(of)f(prop)s(er)g(coloring)e(of)i Fh(G)g Fj(with)g Fh(\025)g Fj(colors.)67 b Fh(P)3482 2331 y Fq(G)3541 2316 y Fj(\()p Fg(\001)p Fj(\))39 b(is)0 2437 y(called)c(the)i(c)m(hromatic)e(p)s (olynomial)d(of)k Fh(G)p Fj(.)54 b(As)37 b(w)m(e)g(presen)m(tly)h(sho)m (w,)g(it)d(is)h(indeed)h(a)f(p)s(olynomial)0 2557 y(of)i(degree)i Fh(n)p Fj(,)g(the)g(n)m(um)m(b)s(er)f(of)f(v)m(ertices)i(in)e Fh(G)p Fj(.)62 b(T)-8 b(o)39 b(this)f(end,)j(consider)e(the)g (collection)e(\011)i(of)f(all)0 2677 y Fh(\025)57 2641 y Fq(n)142 2677 y Fj(mappings)e Fh(f)48 b Fj(:)37 b Fh(V)58 b Fg(!)36 b(f)p Fj(1)p Fh(;)17 b(:)g(:)g(:)f(;)h(\025)p Fg(g)p Fj(.)58 b(F)-8 b(or)37 b(ev)m(ery)j(edge)f Fh(u)d Fj(=)g([)p Fh(x;)17 b(y)t Fj(])37 b Fg(2)g Fh(E)6 b Fj(,)39 b(let)e Fh(A)3090 2692 y Fq(u)3173 2677 y Fj(b)s(e)h(the)g(family)0 2798 y(of)e(mappings)g Fh(f)45 b Fg(2)35 b Fj(\011)h(that)h(fail)d(to)j (b)s(e)f(a)h(prop)s(er)f(coloring)f(on)h(the)i(edge)f Fh(u)p Fj(,)g(i.e.)55 b(those)37 b(mapping)0 2918 y(satisfying)24 b Fh(f)11 b Fj(\()p Fh(x)p Fj(\))28 b(=)g Fh(f)11 b Fj(\()p Fh(y)t Fj(\).)39 b(It)26 b(is)f(easily)f(seen)j(that)e(for)g(ev)m(ery)i (edge)f Fh(u)f Fj(the)g(cardinalit)m(y)f(of)h Fh(A)3368 2933 y Fq(u)3438 2918 y Fj(is)g Fh(\025)3586 2882 y Fq(n)p Fn(\000)p Fr(1)3723 2918 y Fj(.)0 3039 y(Moreo)m(v)m(er,)31 b(if)c Fh(U)38 b Fg(\022)28 b Fh(E)34 b Fj(is)28 b(a)f(set)i(of)f (edges,)i(then)f Fg(j)13 b(\\)1886 3054 y Fq(u)p Fn(2)p Fq(U)2046 3039 y Fh(A)2119 3054 y Fq(u)2164 3039 y Fg(j)27 b Fj(is)h Fh(\025)2370 3002 y Fq(k)2441 3039 y Fj(for)f(some)h(in)m (teger)g Fh(k)j(<)c(n)p Fj(:)42 b(Simply)0 3159 y(shrink)37 b(the)h(edges)g Fh(u)d Fg(2)h Fh(U)10 b Fj(,)39 b(if)d(the)i(resulting) e(graph)h(has)g Fh(k)k Fj(v)m(ertices,)e(then)f Fg(j)25 b(\\)3028 3174 y Fq(u)p Fn(2)p Fq(U)3200 3159 y Fh(A)3273 3174 y Fq(u)3319 3159 y Fg(j)35 b Fj(=)g Fh(\025)3550 3123 y Fq(k)3593 3159 y Fj(.)57 b(A)0 3279 y(mapping)21 b Fh(f)38 b Fj(:)28 b Fh(V)49 b Fg(!)27 b(f)p Fj(1)p Fh(;)17 b(:)g(:)g(:)f(;)h(\025)p Fg(g)k Fj(is)h(a)g(prop)s(er)g (coloring)e(of)h Fh(G)h Fj(i\013)f(it)h(is)f(in)h(none)g(of)g(the)g (sets)i Fh(A)3347 3294 y Fq(u)3392 3279 y Fj(\()p Fh(u)j Fg(2)h Fh(E)6 b Fj(\),)0 3400 y(whence)35 b(the)f(n)m(um)m(b)s(er)f(of) g(prop)s(er)g Fh(\025)p Fj(-colorings)e(of)h Fh(G)h Fj(is)g Fh(\025)2164 3364 y Fq(n)2233 3400 y Fg(\000)23 b(j)g([)2450 3415 y Fq(u)p Fn(2)p Fq(E)2620 3400 y Fh(A)2693 3415 y Fq(u)2738 3400 y Fg(j)p Fj(.)45 b(An)33 b(application)e(of)i(the)0 3520 y(inclusion-exclusion)f(form)m(ula)g(yields)h(an)h(expression)h (for)e(the)i(n)m(um)m(b)s(er)f(of)f(prop)s(er)h(colorings)e(as)i(a)0 3641 y(signed)28 b(sum)h(of)f(p)s(o)m(w)m(ers)i(of)d Fh(\025)p Fj(,)j(i.e.,)f(a)f(p)s(olynomial)d(with)j(in)m(teger)g(co)s (e\016cien)m(ts.)43 b(Some)28 b(other)h(kno)m(wn)0 3761 y(prop)s(erties)j(of)g(c)m(hromatic)f(p)s(olynomials)e(can)j(b)s(e)g (deduced)i(from)d(this)h(p)s(ersp)s(ectiv)m(e.)44 b(W)-8 b(e)33 b(raise)f(the)0 3881 y(problem)25 b(of)h(appro)m(ximating)e(the) j(n)m(um)m(b)s(er)g(of)e(prop)s(er)i Fh(\025)p Fj(-colorings)d(of)i (graphs)g(using)g(our)h(approac)m(h)0 4002 y(to)32 b(appro)m(ximate)g (inclusion-exclusion.)p 1548 4010 V 0 4384 a Fi(6)161 b(F)-13 b(amilies)56 b(with)d(a)i(b)t(ounded)c(V)l(C)i(dimension)0 4653 y Fd(De\014nition)36 b(6.1)13 b(:)72 b Fj(W)-8 b(e)47 b(recall)f(the)i(de\014nition)e(of)h Fh(d)2047 4668 y Fq(V)15 b(C)2162 4653 y Fj(\()p Fg(F)10 b Fj(\),)51 b(the)d(V)-8 b(apnik-Cherv)m(onenkis)48 b(\(V)m(C\))0 4773 y(dimension)32 b(of)g(a)h(family)d(of)j(sets)h Fg(F)k(\032)29 b Fj(2)1521 4737 y Fr(X)1610 4773 y Fj(\(see)34 b([10]\).)45 b(A)33 b(subset)h Fh(S)h Fg(\032)28 b Fh(X)8 b Fj(,)33 b(is)g(said)f(to)h(b)s (e)g Ff(shatter)-5 b(e)g(d)0 4894 y Fj(b)m(y)32 b Fg(F)41 b Fj(if)30 b(for)h(ev)m(ery)j(subset)e Fh(T)42 b Fg(\032)28 b Fh(S)6 b Fj(,)32 b(there)g(is)f(some)g Fh(F)41 b Fg(2)28 b(F)41 b Fj(with)31 b Fh(T)41 b Fj(=)28 b Fh(S)e Fg(\\)20 b Fh(F)14 b Fj(.)42 b(De\014ne)32 b Fh(d)3358 4909 y Fq(V)16 b(C)3474 4894 y Fj(\()p Fg(F)10 b Fj(\))31 b(as)0 5014 y(the)i(largest)f(cardinalit)m(y)f(of)h(a)g(set)h(shattered)h(b)m (y)f Fg(F)10 b Fj(.)p 2031 5022 V 1826 5349 a(10)p eop %%Page: 11 11 11 10 bop 0 100 a Fd(Theorem)37 b(6.2)6 b(:)57 b Ff(L)-5 b(et)42 b Fg(A)d Fj(=)h Fg(f)p Fj(A)1245 115 y Fr(i)1268 100 y Fg(g)1318 115 y Fr(i)p Fn(2)p Fr(I)1456 100 y Ff(b)-5 b(e)41 b(a)g(family)f(of)h(me)-5 b(asur)g(able)41 b(subsets)g(of)g(a)g (me)-5 b(asur)g(e)41 b(sp)-5 b(ac)g(e)0 220 y Fj(\()p Fh(X)r(;)17 b(\026)p Fj(\))41 b Ff(with)f Fh(d)571 235 y Fq(V)16 b(C)687 220 y Fj(\()p Fg(A)p Fj(\))38 b(=)h(d)p Ff(.)63 b(As)41 b(b)-5 b(efor)g(e,)41 b(let)g Fh(a)1807 235 y Fq(S)1897 220 y Fj(:=)e Fh(\026)p Fj(\()2136 154 y Fo(T)2205 241 y Fq(i)p Fn(2)p Fq(S)2343 220 y Fh(A)2416 235 y Fq(i)2444 220 y Fj(\))i Ff(for)g Fh(S)k Fg(\022)39 b Fh(I)8 b Ff(.)62 b(The)41 b(numb)-5 b(ers)40 b Fh(a)3699 235 y Fq(S)0 340 y Ff(wher)-5 b(e)34 b Fg(j)p Fh(S)6 b Fg(j)27 b(\024)h Fj(2)578 304 y Fq(d)p Fr(+1)743 340 y Ff(determine)35 b Fh(a)1252 355 y Fq(T)1342 340 y Ff(on)f(al)5 b(l)35 b(\(\014nite\))f(subsets)h Fh(T)48 b Ff(of)35 b Fh(I)8 b Ff(.)0 591 y Fd(Pro)s(of:)49 b Fj(Let)35 b Fg(f)p Fh(A)652 606 y Fq(i)680 591 y Fg(g)p Fh(;)17 b Fg(f)p Fh(B)898 606 y Fq(j)934 591 y Fg(g)35 b Fj(b)s(e)g(t)m(w)m(o)h (families)c(of)j(sets)i(with)d(V)m(C)j(dimension)c(at)i(most)g Fh(d)p Fj(,)g(suc)m(h)i(that)0 711 y Fh(a)51 726 y Fq(S)135 711 y Fj(=)c Fh(b)285 726 y Fq(S)372 711 y Fj(for)i(all)f Fh(S)6 b Fj(,)36 b Fg(j)p Fh(S)6 b Fg(j)32 b(\024)i Fj(2)1106 675 y Fq(d)p Fr(+1)1236 711 y Fj(.)53 b(Consider)36 b(a)f(minimal)d (\014nite)j(set)i Fh(N)43 b Fg(\022)34 b Fh(I)43 b Fj(for)36 b(whic)m(h)g Fh(a)3405 726 y Fq(N)3505 711 y Fg(6)p Fj(=)d Fh(b)3655 726 y Fq(N)3723 711 y Fj(.)0 831 y(F)-8 b(or)28 b(con)m(v)m(enience)j(assume)e(that)g Fh(N)38 b Fj(=)28 b([)p Fh(n)p Fj(],)i(i.e.,)f Fh(a)1863 846 y Fq(S)1941 831 y Fj(=)f Fh(b)2086 846 y Fq(S)2166 831 y Fj(for)g(all)f Fh(S)33 b Fg(\032)c Fj([)p Fh(n)p Fj(])g(and)g Fh(a)3020 847 y Fr([)p Fq(n)p Fr(])3134 831 y Fg(6)p Fj(=)e Fh(b)3278 847 y Fr([)p Fq(n)p Fr(])3365 831 y Fj(.)42 b(W)-8 b(e)29 b(will)0 952 y(pro)m(v)m(e)34 b(that)e(either)h Fh(d)802 967 y Fq(V)15 b(C)917 952 y Fg(f)p Fh(A)1040 967 y Fq(i)1068 952 y Fg(g)33 b Fj(or)f Fh(d)1321 967 y Fq(V)15 b(C)1436 952 y Fg(f)p Fh(B)1560 967 y Fq(j)1597 952 y Fg(g)32 b Fj(is)g(greater)h(than)g Fh(d)f Fj(and)g(th)m(us)i(reac)m(h)f(a)g (con)m(tradiction.)146 1116 y(Also,)24 b(de\014ne)f(as)f(b)s(efore)g Fh(\013)1109 1131 y Fq(S)1187 1116 y Fj(:=)28 b Fh(\026)p Fj(\()1415 1050 y Fo(T)1484 1137 y Fq(i)p Fn(2)p Fq(S)1622 1116 y Fh(A)1695 1131 y Fq(i)1723 1116 y Fg(\\)1789 1050 y Fo(T)1859 1137 y Fq(j)t Fn(2)p Fr([)p Fq(n)p Fr(])p Fn(n)p Fq(S)2123 1116 y Fh(A)2196 1080 y Fq(c)2196 1141 y(j)2233 1116 y Fj(\).)40 b(By)22 b(Lemma)e(3.3)i Fh(\013)3026 1131 y Fq(S)3077 1116 y Fg(\000)p Fh(\014)3209 1131 y Fq(S)3288 1116 y Fj(=)27 b(\()p Fg(\000)p Fj(1\))3593 1080 y Fn(j)p Fq(S)t Fn(j)3684 1116 y Fh(\017)p Fj(.)0 1237 y(Assume)39 b(that)g Fh(\017)f(>)g Fj(0,)i(so)f Fh(\013)1080 1252 y Fq(T)1173 1237 y Fh(>)e Fj(0)i(for)f(ev)m(en)i Fg(j)p Fh(T)14 b Fg(j)38 b Fj(whence)i(the)f(sets)2640 1170 y Fo(T)2709 1257 y Fq(i)p Fn(2)p Fq(T)2852 1237 y Fh(A)2925 1252 y Fq(i)2979 1237 y Fg(\\)3072 1170 y Fo(T)3141 1257 y Fq(j)t Fn(62)p Fq(T)3292 1237 y Fh(A)3365 1201 y Fq(c)3365 1261 y(j)3440 1237 y Fj(are)g(not)0 1357 y(empt)m(y)33 b(when)h Fg(j)p Fh(T)14 b Fg(j)31 b Fj(is)h(ev)m(en.)146 1522 y(View)k Fh(U)44 b Fj(=)33 b([2)691 1486 y Fr(\()p Fq(n)p Fn(\000)p Fr(1\))883 1522 y Fj(])j(as)g(the)g(family)e(of)h(all)f(subsets)k(of)d([)p Fh(n)p Fj(])h(ha)m(ving)g(an)g(ev)m(en)h(cardinalit)m(y)-8 b(.)52 b(F)-8 b(or)0 1642 y Fh(i)28 b Fg(2)g Fj([)p Fh(n)p Fj(])33 b(let)f Fh(L)507 1657 y Fq(i)563 1642 y Fg(\022)c Fh(U)10 b Fj(,)34 b(b)s(e)e(the)h(family)d(of)i(all)f Fh(T)41 b Fg(\022)29 b Fj([)p Fh(n)p Fj(])j(of)h(ev)m(en)h(cardinalit)m (y)d(with)h Fh(i)c Fg(2)g Fh(T)14 b Fj(.)146 1807 y(The)36 b(family)d Fg(f)p Fh(L)766 1822 y Fq(i)794 1807 y Fg(g)844 1822 y Fq(i)p Fn(2)p Fr([)p Fq(n)p Fr(])1036 1807 y Fj(has)i(V)m(C)h (dimension)d Fh(k)i Fj(=)d([log)16 b Fh(n)p Fj(].)51 b(Indeed,)37 b Fg(T)57 b Fj(=)32 b(T)3013 1822 y Fr(1)3053 1807 y Fh(::)p Fj(T)3177 1822 y Fr(k)3253 1807 y Fj(is)j(shattered)0 1927 y(b)m(y)41 b Fg(f)p Fh(L)259 1942 y Fq(i)288 1927 y Fg(g)f Fj(i\013)f(for)h(ev)m(ery)j Fh(S)j Fg(\022)c Fj([)p Fh(k)s Fj(])68 b Fg(\\)1392 1942 y Fq(i)p Fn(2)p Fq(S)1542 1927 y Fh(T)1599 1942 y Fq(i)1668 1927 y Fj(is)40 b(not)g(a)g(subset)i(of)e Fg([)2536 1942 y Fq(j)t Fn(62)p Fq(S)2667 1927 y Fh(T)2724 1942 y Fq(j)2760 1927 y Fj(.)67 b(T)-8 b(o)41 b(construct)h(suc)m(h)f Fg(T)0 2047 y Fj(tak)m(e)c Fh(T)272 2062 y Fq(i)333 2047 y Fj(=)c Fg(f)p Fh(x)h Fg(2)f Fj([)p Fh(n)p Fj(])j Fg(j)g Fj(the)g(i-th)f(digit)f(in)h(binary) g(represen)m(tation)i(of)e(x)h(is)g Fh(\017)2891 2062 y Fq(i)2919 2047 y Fg(g)p Fj(.)53 b(\(If)36 b Fh(n)g Fj(is)f(o)s(dd)h(or)f(a)0 2168 y(m)m(ultiple)d(of)j(four)g(than)g Fh(\017)973 2183 y Fq(i)1036 2168 y Fj(can)g(alw)m(a)m(ys)h(b)s(e)f(c)m (hosen)h(so)g(that)e Fg(j)p Fh(T)2402 2183 y Fq(i)2430 2168 y Fg(j)h Fj(is)f(ev)m(en.)53 b(Otherwise,)36 b(note)f(that)0 2288 y(the)d(sets)358 2222 y Fo(T)427 2309 y Fq(i)p Fn(2)p Fq(S)565 2288 y Fh(B)639 2303 y Fq(i)688 2288 y Fg(\\)776 2222 y Fo(T)845 2309 y Fq(j)t Fn(62)p Fq(S)992 2288 y Fh(B)1071 2252 y Fq(c)1066 2313 y(j)1137 2288 y Fj(are)g(not)g(empt)m (y)g(for)g(o)s(dd)g Fg(j)p Fh(S)6 b Fg(j)p Fj(,)31 b(and)h(carry)g(out) g(the)g(whole)g(argumen)m(t)0 2409 y(with)g Fg(f)p Fh(B)346 2424 y Fq(j)383 2409 y Fg(g)p Fj(.\))146 2573 y(Let)i Fh(T)379 2588 y Fr(1)418 2573 y Fh(:::T)556 2588 y Fq(k)633 2573 y Fj(b)s(e)f(the)h Fh(k)i Fj(co)s(ordinates)d(shattered)h(b)m(y)h Fg(f)p Fh(L)2223 2588 y Fq(i)2251 2573 y Fg(g)p Fj(.)45 b(Chose,)35 b(for)e(1)28 b Fg(\024)i Fh(r)h Fg(\024)f Fh(k)s Fj(,)j(a)g(p)s(oin)m(t)g Fh(x)3712 2588 y Fq(r)0 2694 y Fj(in)116 2627 y Fo(T)185 2714 y Fq(i)p Fn(2)p Fq(T)297 2722 y Fc(r)353 2694 y Fh(A)426 2709 y Fq(i)477 2694 y Fg(\\)567 2627 y Fo(T)637 2714 y Fq(j)t Fn(62)p Fq(T)758 2722 y Fc(r)813 2694 y Fh(A)886 2657 y Fq(c)886 2718 y(j)922 2694 y Fj(.)50 b(Put)35 b Fh(X)k Fj(=)31 b Fg(f)p Fh(x)1524 2709 y Fq(r)1562 2694 y Fg(g)1612 2709 y Fq(r)r Fn(2)p Fr([)p Fq(k)r Fr(])1775 2694 y Fj(.)49 b(W)-8 b(e)36 b(will)c(sho)m(w)k(that)e Fh(X)42 b Fj(is)35 b(shattered)g(b)m(y)h Fh(A)3530 2709 y Fq(i)3593 2694 y Fj(and)0 2814 y(so)29 b Fh(d)167 2829 y Fq(V)16 b(C)283 2814 y Fg(f)p Fh(A)406 2829 y Fq(i)434 2814 y Fg(g)27 b(\025)h Fh(k)j(>)d(d)p Fj(.)42 b(T)-8 b(ak)m(e)30 b Fh(S)j Fg(\022)28 b Fj([)p Fh(k)s Fj(].)43 b(Let)29 b Fh(i)f Fg(2)g Fj([)p Fh(n)p Fj(])h(b)s(e)g(suc)m(h)i(that)d Fh(T)2607 2829 y Fq(j)2673 2814 y Fj(is)g(in)g Fh(L)2943 2829 y Fq(i)3001 2814 y Fj(i\013)f Fh(j)35 b Fj(is)29 b(in)f Fh(S)6 b Fj(.)42 b(Then)0 2934 y Fh(X)30 b Fg(\\)22 b Fh(A)272 2949 y Fq(i)328 2934 y Fj(=)28 b Fg(f)p Fh(x)537 2949 y Fq(r)575 2934 y Fg(g)625 2949 y Fq(r)r Fn(2)p Fq(S)757 2934 y Fj(,)k(completing)f(the)i(pro)s(of.)p 146 3107 34 67 v 0 3349 a Fd(Example)k(6.3)-10 b(:)41 b Fj(The)24 b(V)m(C)g(dimension)e(of)h(an)m(y)h(family)d(of)i(compact)g (triangles)f(in)g(the)i(plane)f(is)g(easily)0 3470 y(sho)m(wn)i(to)e(b) s(e)g Fg(\024)28 b Fj(7.)40 b(Therefore)25 b(for)e(an)m(y)h(suc)m(h)g Fg(F)33 b Fj(and)24 b(a)f(measure)g Fh(\026)g Fj(on)g(the)h(plane)f(w)m (e)h(ma)m(y)f(conclude)0 3590 y(as)41 b(follo)m(ws:)58 b(The)42 b(measures)g(of)e(all)f(up)i(to)f(256-wise)g(in)m (tersections:)60 b Fh(A)2765 3605 y Fq(T)2862 3590 y Fj(=)41 b Fg(\\)3045 3605 y Fq(i)p Fn(2)p Fq(T)3172 3590 y Fh(A)3245 3605 y Fq(i)3273 3590 y Fh(;)17 b Fg(j)p Fh(T)d Fg(j)41 b(\024)h Fj(256)0 3710 y(uniquely)33 b(determine)f(the)h (measure)g(of)f(the)h(in)m(tersection)f(of)g(an)m(y)i(\014nite)e (subfamily)f(of)h Fg(F)10 b Fj(.)p 3454 3718 V 0 4084 a Fi(7)161 b(Ac)l(kno)l(wledgmen)l(t)0 4348 y Fj(W)-8 b(e)33 b(are)g(grateful)e(to)h(Y)-8 b(uri)32 b(Rabino)m(vic)m(h)g(for)g (stim)m(ulating)e(discussions.)0 4722 y Fi(References)49 4980 y Fj([1])49 b(G.)25 b(Bo)s(ole,)i Fd(An)i(in)m(v)m(estigation)f (of)j(the)f(la)m(ws)f(of)i(though)m(t)f(on)g(whic)m(h)f(are)i(founded)g (the)201 5100 y(mathematical)k(theories)h(of)i(logic)e(and)i (probabilities)p Fj(,)30 b(Do)m(v)m(er)j(1st)g(prin)m(ting,)e(1854.) 1826 5349 y(11)p eop %%Page: 12 12 12 11 bop 49 100 a Fj([2])49 b(J.)35 b(Galam)m(b)s(os,)f(T.)i(Xu,)h(A)e (new)i(metho)s(d)e(for)g(generating)f(Bonferroni-t)m(yp)s(e)h (inequalities)f(b)m(y)201 220 y(iteration,)c(Math.)j(Pro)s(c.)g(Cam)m (bridge)f(Philos.)f(So)s(c.)i(107)f(\(1990\),)f(no.)i(3,)f(601-607.)49 423 y([3])49 b(M.)30 b(Kearns,)h(Y.)f(Mansour,)h(D.)f(Ron,)g(R.)f (Rubinfeld,)h(R.)g(E.)g(Sc)m(hapire)g(and)g(L.)g(Sellie,)f(On)h(the)201 544 y(learnabilit)m(y)f(of)j(discrete)i(distributions,)d(STOC)i(26)f (\(1994\),)g(273-282.)49 747 y([4])49 b(N.)34 b(Linial)e(and)j(N.)g (Nisan,)g(Appro)m(ximate)f(inclusion-exclusion,)f Fa(Com)m(binatorica)p Fj(,)g(10\(1990\))201 868 y(349-365.)49 1071 y([5])49 b(L.)d(Lo)m(v\023)-49 b(asz,)50 b(A)d(note)f(on)g(the)g(line)f (reconstruction)i(problem,)h(J.)f(Com)m(b.)f(Theory)h([B],)f(13)201 1191 y(\(1972\),)31 b(309-310.)49 1395 y([6])49 b(L.)32 b(Lo)m(v\023)-49 b(asz,)34 b Fd(Com)m(binatorial)h(Problems)h(and)i (Exercises)p Fj(,)32 b(North)g(Holland,)f(1979.)49 1598 y([7])49 b(M.)f(Lub)m(y)g(and)g(B.)g(V)-8 b(elic)m(k)m(o)m(vic,)51 b(On)d(deterministic)e(appro)m(ximation)g(of)h(DNF,)g(STOC)h(23)201 1719 y(\(1991\),)31 b(430-438.)49 1922 y([8])49 b(W.)39 b(M)s(\177)-51 b(uller,)38 b(The)i(edge)g(reconstruction)f(h)m(yp)s (othesis)h(is)f(true)g(for)g(graphs)g(with)g(more)f(than)201 2042 y Fh(n)17 b Fj(log)401 2066 y Fr(2)457 2042 y Fh(n)33 b Fj(edges,)h(J.)f(Com)m(b.)f(Theory)i([B],)f(22)f(\(1977\),)g (281-283.)49 2246 y([9])49 b(H.)h(J.)g(Ryser,)56 b Fd(Com)m(binatorial) f(Mathematics)p Fj(,)f(The)d(Mathematical)d(Asso)s(ciation)h(of)201 2366 y(America,)31 b(1963.)0 2570 y([10])49 b(V.)c(N.)h(V)-8 b(apnik)46 b(and)g(A.)g(Y)-8 b(a.)45 b(Cherv)m(onenkis,)52 b(On)46 b(the)g(uniform)e(con)m(v)m(ergence)k(of)e(relativ)m(e)201 2690 y(frequencies)24 b(of)e(ev)m(en)m(ts)j(to)e(their)f (probabilities,)g(Theoret.)i(Probl.)e(and)h(Its)h(Appl.)e(16,)i(2)f (\(1971\),)201 2810 y(264-280.)1826 5349 y(12)p eop %%Trailer end userdict /end-hook known{end-hook}if %%EOF </j)1446>