(original) (raw)
%!PS-Adobe-2.0 %%Creator: dvips(k) 5.86 Copyright 1999 Radical Eye Software %%Title: nix.dvi %%Pages: 24 %%PageOrder: Ascend %%BoundingBox: 0 0 596 842 %%EndComments %DVIPSWebPage: (www.radicaleye.com) %DVIPSCommandLine: /usr/local/teTeX/bin/dvips nix -o %DVIPSParameters: dpi=600, compressed %DVIPSSource: TeX output 1999.12.07:1514 %%BeginProcSet: texc.pro %! /TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72 mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0 0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{ landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize mul 0}ifelse TR}if Resolution VResolution vsize -72 div 1 add mul TR[ matrix currentmatrix{A A round sub abs 0.00001 lt{round}if}forall round exch round exch]setmatrix}N/@landscape{/isls true N}B/@manualfeed{ statusdict/manualfeed true put}B/@copies{/#copies X}B/FMat[1 0 0 -1 0 0] N/FBB[0 0 0 0]N/nn 0 N/IEn 0 N/ctr 0 N/df-tail{/nn 8 dict N nn begin /FontType 3 N/FontMatrix fntrx N/FontBBox FBB N string/base X array /BitMaps X/BuildChar{CharBuilder}N/Encoding IEn N end A{/foo setfont}2 array copy cvx N load 0 nn put/ctr 0 N[}B/sf 0 N/df{/sf 1 N/fntrx FMat N df-tail}B/dfs{div/sf X/fntrx[sf 0 0 sf neg 0 0]N df-tail}B/E{pop nn A definefont setfont}B/Cw{Cd A length 5 sub get}B/Ch{Cd A length 4 sub get }B/Cx{128 Cd A length 3 sub get sub}B/Cy{Cd A length 2 sub get 127 sub} B/Cdx{Cd A length 1 sub get}B/Ci{Cd A type/stringtype ne{ctr get/ctr ctr 1 add N}if}B/id 0 N/rw 0 N/rc 0 N/gp 0 N/cp 0 N/G 0 N/CharBuilder{save 3 1 roll S A/base get 2 index get S/BitMaps get S get/Cd X pop/ctr 0 N Cdx 0 Cx Cy Ch sub Cx Cw add Cy setcachedevice Cw Ch true[1 0 0 -1 -.1 Cx sub Cy .1 sub]/id Ci N/rw Cw 7 add 8 idiv string N/rc 0 N/gp 0 N/cp 0 N{ rc 0 ne{rc 1 sub/rc X rw}{G}ifelse}imagemask restore}B/G{{id gp get/gp gp 1 add N A 18 mod S 18 idiv pl S get exec}loop}B/adv{cp add/cp X}B /chg{rw cp id gp 4 index getinterval putinterval A gp add/gp X adv}B/nd{ /cp 0 N rw exit}B/lsh{rw cp 2 copy get A 0 eq{pop 1}{A 255 eq{pop 254}{ A A add 255 and S 1 and or}ifelse}ifelse put 1 adv}B/rsh{rw cp 2 copy get A 0 eq{pop 128}{A 255 eq{pop 127}{A 2 idiv S 128 and or}ifelse} ifelse put 1 adv}B/clr{rw cp 2 index string putinterval adv}B/set{rw cp fillstr 0 4 index getinterval putinterval adv}B/fillstr 18 string 0 1 17 {2 copy 255 put pop}for N/pl[{adv 1 chg}{adv 1 chg nd}{1 add chg}{1 add chg nd}{adv lsh}{adv lsh nd}{adv rsh}{adv rsh nd}{1 add adv}{/rc X nd}{ 1 add set}{1 add clr}{adv 2 chg}{adv 2 chg nd}{pop nd}]A{bind pop} forall N/D{/cc X A type/stringtype ne{]}if nn/base get cc ctr put nn /BitMaps get S ctr S sf 1 ne{A A length 1 sub A 2 index S get sf div put }if put/ctr ctr 1 add N}B/I{cc 1 add D}B/bop{userdict/bop-hook known{ bop-hook}if/SI save N @rigin 0 0 moveto/V matrix currentmatrix A 1 get A mul exch 0 get A mul add .99 lt{/QV}{/RV}ifelse load def pop pop}N/eop{ SI restore userdict/eop-hook known{eop-hook}if showpage}N/@start{ userdict/start-hook known{start-hook}if pop/VResolution X/Resolution X 1000 div/DVImag X/IEn 256 array N 2 string 0 1 255{IEn S A 360 add 36 4 index cvrs cvn put}for pop 65781.76 div/vsize X 65781.76 div/hsize X}N /p{show}N/RMat[1 0 0 -1 0 0]N/BDot 260 string N/Rx 0 N/Ry 0 N/V{}B/RV/v{ /Ry X/Rx X V}B statusdict begin/product where{pop false[(Display)(NeXT) (LaserWriter 16/600)]{A length product length le{A length product exch 0 exch getinterval eq{pop true exit}if}{pop}ifelse}forall}{false}ifelse end{{gsave TR -.1 .1 TR 1 1 scale Rx Ry false RMat{BDot}imagemask grestore}}{{gsave TR -.1 .1 TR Rx Ry scale 1 1 false RMat{BDot} imagemask grestore}}ifelse B/QV{gsave newpath transform round exch round exch itransform moveto Rx 0 rlineto 0 Ry neg rlineto Rx neg 0 rlineto fill grestore}B/a{moveto}B/delta 0 N/tail{A/delta X 0 rmoveto}B/M{S p delta add tail}B/b{S p tail}B/c{-4 M}B/d{-3 M}B/e{-2 M}B/f{-1 M}B/g{0 M} B/h{1 M}B/i{2 M}B/j{3 M}B/k{4 M}B/w{0 rmoveto}B/l{p -4 w}B/m{p -3 w}B/n{ p -2 w}B/o{p -1 w}B/q{p 1 w}B/r{p 2 w}B/s{p 3 w}B/t{p 4 w}B/x{0 S rmoveto}B/y{3 2 roll p a}B/bos{/SS save N}B/eos{SS restore}B end %%EndProcSet TeXDict begin 39158280 55380996 1000 600 600 (nix.dvi) @start %DVIPSBitmapFont: Fa cmsl12 12 42 /Fa 42 128 df<007FB512E0A3B612C0A31B067C9721>45 D50 D<15FF020F13C0023F13F091 387F01FC903901FC007ED903F0133E4948133F4948EB1F80495A013FEC0FC049C7FC13FE 17E0484814071203A34848140FA217F0A2120F5BA217E0161FA35B163FA2167F12076DEC FFC0A200035C0001EC03BF6DEB073F6C6CEB067F017C011E13806D133890381F80F09026 07FFC013000100EB00FF91C7FC5E15015EA24B5AA24B5AA2001F4A5AD87F805C6D131F4B 5A00FF92C7FC49137E5D4848485A0060495A0070495A6CEB1F80003F01FFC8FC380FFFFC 6C13F0C613802C4479C131>57 D<170C171C173C173E177EA217FEA21601835EA21606A2 4C7FA2EE187FA21630A204607F173F16C0A2ED018084ED0300171F1506A25D844B130FA2 5D157003608015E04B130714015D140392C77F02061403A2020FB6FCA24A810218C71203 4A1401A25CA24A8183495AA249C9FC851306187F5B131CA2013C83137CEA01FE2607FF80 913801FFF0007F01E0027FEBFFC0B5FCA242477DC649>65 D67 D<011FB712E018FE49707E90 26003FF8C713E06E48EC1FF0F007FC4BEC01FE727EF17F80193FF11FC0023FEE0FE05DF1 07F0A21AF81903147F4B16FCA219011AFEA214FF92C9FCA54917035CA5010318FC4A1607 A31AF8A20107170F4A17F0A2191F1AE0A2010FEF3FC05CF17F801A006161011F4C5A4A4B 5A4E5A180F4E5A4E5A013F4CC7FC4A15FEEF03FCEF0FF0017FED3FE0496C903803FF80B8 48C8FC17F094C9FC47447CC34B>I<011FB9FCA39026003FF8C7120F6E481400197F4B15 1FA2190F1907A2143F5DA21903A3147F5D1706A3190002FF5C92C7FCA2171CA2173C4915 F84A130391B6FCA39138FE00070103EC01F04A13001770A4010715604A160CA3191894C7 FC130F4A1630A219701960A2011F17E04A16C01801180319801807013F160F4AED1F0060 18FF017FED03FE01FF153FB9FC60A240447CC342>I<011FB812FEA39026003FF8C7121F 6E481401F0007E4B153E191EA2190EA2143F5D1906A4147F5DA2170CA2190002FF5C92C7 FCA21738A217784915704AEB01F0160791B6FCA3903A03FE000FE04A130316011600A301 075D5CA5010F92C8FC5CA5131F5CA5133F5CA3137FEBFFF0B612F8A33F447CC340>I<01 1FB500FC017FB512F04C16E0A29026003FFCC8EBF000DA1FF0ED7FC0A24B5EA419FF143F 4B93C7FCA460147F4B5DA4180314FF92C85BA418075B4A5E91B8FCA34AC8120F13034A5E A4181F13074A5EA4183F130F4A5EA4187F131F4A5EA418FF133F4A93C8FCA3017F5D496C 4A7FB6D8E003B67EA203C093C7FC4C447CC349>72 D<011FB500FC91383FFFF8A2495C90 26003FFCC8000F1300DA1FF0ED07F81AE04B5E4FC7FC191E193861023F5E4B4A5A4E5A06 0EC8FC6060027F5D4B5CEF03804DC9FC170E5F02FF5C92C712E04C5A4C5A4C7E160F49EC 3FE04A137F4C7EED01DF9238038FF8ED0E0F0103496C7EECFC384B6C7EECFDE09139FF80 01FF150049486D7F5C4A6E7EA2717EA2010F6F7E5C717EA2717EA2011F6F7E5C717EA271 7FA2013F707E5C8585137F496C913801FFFCB600E0010FEBFFE05FA24D447CC34C>75 D<011FB6FCA39026003FFCC8FCEC1FF0A25DA5143F5DA5147F5DA514FF92C9FCA55B5CA5 13035CA513074A1503A31806A2130F4A150E180CA2181C1818011F16385C1878187018F0 1701013FED03E04A1407170F173F017FEDFFC001FF140FB9FC1880A238447CC33D>I<90 261FFFF094B512C06F198062D9003F9439037FC000021F4EC7FC1A06DA19FC5F1A0CA21A 18DA18FE1619023817310230601A611AC1157FF101831470026093380303F8A26F6C1406 A2F10C0714E002C004185B6F7E193019601A0F010117C04A6C6C5EF00180A2F003006F6C 151F0103160602006060606F7E4E133F5B01064C5CA26F6C5BA24D48137F130E010C4BC7 90C8FCED00FE17065F62011C5D0118027F5D5FA25FDC3FE0130101385D6201785D94C7FC D801FC6E1403D807FF021E4A7EB500F80307B512FE161C4A010C5E5A447BC359>I<9026 1FFFF84AB512F01BE081D9001F9239001FFC006E6CED07F0021F705ADA19FF6F5A620218 7FA26F6C140314389126303FE092C7FCA26F7EA26F6C5C147091266007FC1406A26F7EA2 6F6C140E14E04A6C6D130CA2707EA2706C131C13014A6D6C1318A2707EA2706C13381303 91C76C6C1330A2707EA270EB80705B010692387FC060A2EF3FE0A294381FF0E0130E010C 6F6C5AA2EF07FCA2EF03FF131C01186F5BA283A2187F133872C8FC137884EA01FCD807FF 82B512F818065C4C447CC349>II83 D87 D97 DII< 177FEE3FFFA25E160182A217FEA41601A217FCA41603A217F8A41607A2DA03F813F0EC3F FF9138FE0787903903F001E790390FC0006F4948137F49C7EA3FE001FE141F485A49140F 0003151F485A000F16C05B121F5B003F153FA2007F16805BA3167F12FF90C81300A45EA2 6C5DA46C14017F001F4A5A6D1307000F140F6C6C131D6C6C49B4FC6C6C01F313F839007E 03C390381FFF03D903FCEBF80030467AC436>IIIII<143C14FEEB01FF A25BA3EB01FE14FCEB00781400ADEB03F8EA01FFA3EA000F130714F0A5130F14E0A5131F 14C0A5133F1480A5137F1400A55B5BA31201487EB512F8A318437DC21C>IIII< 902703F801FEEC3FC0D801FF903B0FFFC001FFF848913B3E07F007C0FE923B7003F80E00 7FD8001FD9E001497F902607FBC0D9FC781480DAF70014E002F6010049131F02FE14FD4A ECFF804A4990C7123F130F4A5CA24A5CA3011F0203157F4A4A1500A5013F02075D4A4A5C A5017F020F140191C7495CA549021F1403494B5CA30001033F1407486C4A6C497EB5D8FC 1FB50083B512F0A34C2C7DAB52>I<903903F801FED801FF90380FFF804891383E0FE092 387007F03A000FF9E003902607FB8013F8ECF70002F6130114FE5C4A1303130F5CA25CA2 1607131F4A14F0A4160F133F4A14E0A4161F137F91C713C0A4163F5B491580A30001157F 486CECFFC0B5D8FC3F13FFA3302C7DAB36>II<91393F803F80903A1FFF81FFF049903887C0FC92389E003F010001 B8EB1F80DA7FF0EB0FC04B14E04BEB07F05D92C7EA03F8A24A15FC4A1401A218FEA31301 5CA41703010316FC5CA3EF07F8A20107150F4A15F0EF1FE0A2EF3FC01880010F157FEFFF 006E495A4C5A6EEB07F002EE495AD91FE7EB1F809126C3C0FEC7FC9138C0FFF8ED3FC092 C9FC133FA25CA4137FA291CAFCA45B487F007F13FEA2B55A373F81AB36>II<903903F007E0D801FFEB3FF848EC787CEDE1FC39000FF1C19038 07F383ECE70314EE9138EC01F89138FC00E04A1300130F5CA35CA2131F5CA5133F5CA513 7F91C8FCA55B5BA31201487EB6FCA25C262C7DAB26>I<91383FE030903903FFF8709039 0FC01EF090381E0007017C13034913015B0001EC00E0485AA412076D14C0A26D1400EA03 FEEBFFE014FE6CEBFFC06C14F06D7F6D13FE130F01017FD9000F13801401EC007F001814 3F151F1238150FA4ED1F00127CA2007E143E153C007F5C6D5B39F9C003E039F0F00FC026 E07FFFC7FC38C00FF0242E7DAC26>I<14C0A313015CA21303A21307A249C7FCA25B5B5B 5B485A1203001FB512F0B6FCA2C648C7FC12015BA512035BA512075BA5120F5BA215C0A3 001FEB018013C0A414031500A25C1406000F130E6D5A00075B6C6C5AC6B45AEB3F801C3E 77BC26>I<01FEEC3F80007FEC1FFF00FF5CA2000314000001157F491500A45E1203495C A415011207495CA41503120F495CA41507121F495CA2150FA2151FA249495AA2157F6C6C 13EF913801DFF83B07E0079FFFC03903F01E1F3800FFFCD91FE0EBC0002A2D77AB36>I< B539F001FFFCA3000F90C7EA7FE0D803FCEC3F80EE1E00161C00011518163816306D5C12 005EA24B5A7F6D49C7FC5D15066E5A133F5DA25D14C0011F5B15E05D14E1010F5B02E3C8 FCA214E614F6EB07FCA25CA26D5A5CA25CA26D5A2E2C77AA33>I<3E7FFFF87FFFF01FFF C04AB512E0B5FC0007903C0007FE0007FE006C486D48EB03F86C484A6D5A03015D61616D 80000002034AC7FCA203061406A2030C5C6D806D01185C167E03305CA2DB607F5B148001 3F01C05C82DA8180495AA2DAC3000183C8FC131F02C61486161F02CC148CA202F814D801 0F15F84A6D5AA24A5CA24A5C13074A6D5AA291C790C9FC1606422C78AA46>I<90267FFF F8EBFFFEA301030180EB3FF06D48C7EA1FC0EF0F00170E0100150C171C17186E5C805FA2 6F5B023F13015F4CC7FC15C0021F1306A25E161CEDE018020F133816305E15F002075BA2 EDF18015FB020390C8FC15FEA25DA26E5AA25D5D14005DA24A5AA24AC9FC5C14065CA200 1C5B127F5C485BA25C48485A4848CAFCEA600EEA783CEA3FF0EA0FC0373F80AA33>121 D<017FB612C0A2913980003F8001FCC7EA7F00495C49495A49495A4848495A4B5A495C4B 5A153F48C7485A4BC7FC4A5A4A5AC7485A5D140F4A5A4A5A4A5A4AC8FC495A5C0103140C 495A49485B495A495A49485B91C7FC5B4848147048481460484814E04848130148481303 49495A003F140F484813FFB75AA22A2B7DAA2B>I<000FEB03C0393F8007F0387FC00F00 FFEB1FF8A315F01380397F000FE0003CEB07801D0A6CC231>127 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fb cmex8 8 1 /Fb 1 81 df80 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fc cmmi7 7 2 /Fc 2 106 df<1238127C12FE12FFA2127F123B1203A31206A3120C1218123812701220 08127A8614>59 D<130E131F5BA2133E131C90C7FCA7EA03E0487EEA0C78EA187C1230A2 12605B12C0A2EA01F0A3485AA2485AA2EBC180EA0F81A2381F0300A213066C5A131CEA07 F06C5A11287DA617>105 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fd cmmi12 14.4 1 /Fd 1 114 df<03FE1303913907FF800F021FEBE01F91397F81F03E9139FE00F87ED903 F8EB78FE4948133D4948EB1FFC495A013F140F495A49C713F81607485A0003150F4915F0 12075B000F151F4915E0121FA2003F153F4915C0A3007F157F491580A316FF48481500A3 5D5E90C7FCA26C14035E1507A26D130F003F4A5A153F001F147F6D13FF3A0FE001EFF039 07F007CF3903F81F8F3901FFFE1F26007FF85BEB0FE090C7FC153F5EA3157F5EA315FF93 C7FCA35C5DA2140314070107B512FE5BA3304B7CB334>113 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fe msam10 12 1 /Fe 1 65 df<007FB912E0BA12F0A219E000F0CCFCB3B3AEBA12E019F0A26C18E03C3A78 B54D>64 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Ff msbm8 8 1 /Ff 1 91 df<001FB612FCA23A183E00701801F0EB6038D81BC0EBE030001FC7EAC07000 3E010113E0003C90380380C01501003801071380EC0603003090380E0700EC1C06EC180E C7EA380CEC301CEC7038ECE030ECC07001015B4A5AEB03819038070180EB0603D90E07C7 FCEB0C06EB1C0EEB380CEB301CD970381303EBE030EBC070000101601307EB80E0260381 C0130626070180130ED80603141E000E90C7FCD80C07143ED81C0E1476D8380C14E6D830 1CEB01CED87018EB078CD86038EB3E0CB712FCA2282E7EAD38>90 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fg cmmi10 10 6 /Fg 6 111 df<1403EC3FF891387FFF80D901E313C014800103133F9138001F80ED0700 92C7FC80A280A2808013018080130080147F81143F8149B47E130790380F8FF0EB3E0F49 6C7E13F83801F003D803E07F1207380FC0011380121FEA3F0014005A127EA212FE5D4813 01A35DA24813035D6C13075D127C4A5A6C91C7FC5C6C133E6C6C5A3807C0F03801FFE0D8 003FC8FC223D7DBB25>14 D<121C127FEAFF80A5EA7F00121C0909798817>58 D<121C127FEAFF80A213C0A3127F121C1200A412011380A2120313005A1206120E5A5A5A 12600A19798817>I<92391FE00380DBFFFC130002036D5A91390FE01F8F91393F0007DF 027EEB01FE02F81300495A4948147E177C4948143C495AA2011F153891C8FCA3491530A2 8094C7FC80806D7E14FEECFFE06D13FE6DEBFFC06D14F06D806D80021F7F02037FEC003F 03037F1500167F163F161FA3120C160FA2001C151F94C7FCA3003C153EA25E003E5D127E 007F4A5A6D495A6DEB0FC0D8F9F0495AD8F0FE01FEC8FC39E03FFFF8010F13E0D8C00190 C9FC313D7CBA33>83 D<14E0EB03F8A21307A314F0EB01C090C7FCAB13F8EA03FEEA070F 000E1380121C121812381230EA701F1260133F00E0130012C05BEA007EA213FE5B1201A2 5B12035BA20007131813E01438000F133013C01470EB806014E014C01381EB8380380787 00EA03FEEA00F815397EB71D>105 D110 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fh msbm10 14.4 1 /Fh 1 91 df<48BA12E04819F0A3903DC07FFC000FC003E09026C1FF8091388007C02607 C3FCC7EA1F00D9CFF0EE0F80D99FC0023E131F01BFC8007E140001FE037C133E495D495F 494A4813FC4902035C4D485A4848EC07C04E5A4991380F8007041F5C4D485A90C8123E4E C7FC4C5BC900FC133E4C5B4B5A60923803E00103075C4C485AED0F804D5A92381F000F4B 5C033E49C8FC5D173E4B137E0201147C4B5B4A5A0207495AEDC003DA0F805B4C5AEC1F00 4A495A023E131F4A91C9FC163E5C01014A15064A01FC150F49485B4B5AD907C0171F010F 495AEC8007D91F0049153E4B5A133E017E49C9127E017C5B49013E16FE4B1501485A0003 4A1503D9E001EE07FCD807C049150F4A48ED1FBCD80F80EF3F3C001F4948157ED9000F16 FC003E4AEC03F84AC8380FF07C48EF7FC000FC013E913907FF8078BB12F8A31AF048527C D14D>90 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fi cmbx12 14.4 35 /Fi 35 123 df34 D45 DI<157815FC14031407141F14FF130F0007B5FCB6FCA2 147F13F0EAF800C7FCB3B3B3A6007FB712FEA52F4E76CD43>49 DI<91380FFFC091B512FC0107ECFF80011F15E090263FF8077F9026FF800113 FC4848C76C7ED803F86E7E491680D807FC8048B416C080486D15E0A4805CA36C17C06C5B 6C90C75AD801FC1680C9FC4C13005FA24C5A4B5B4B5B4B13C04B5BDBFFFEC7FC91B512F8 16E016FCEEFF80DA000713E0030113F89238007FFE707E7013807013C018E07013F0A218 F8A27013FCA218FEA2EA03E0EA0FF8487E487E487EB57EA318FCA25E18F891C7FC6C17F0 495C6C4816E001F04A13C06C484A1380D80FF84A13006CB44A5A6CD9F0075BC690B612F0 6D5D011F1580010302FCC7FCD9001F1380374F7ACD43>I<177C17FEA216011603160716 0FA2161F163F167FA216FF5D5DA25D5DED1FBFED3F3F153E157C15FCEC01F815F0EC03E0 1407EC0FC01580EC1F005C147E147C5C1301495A495A5C495A131F49C7FC133E5B13FC48 5A5B485A1207485A485A90C8FC123E127E5ABA12C0A5C96C48C7FCAF020FB712C0A53A4F 7CCE43>I<121F7F7FEBFF8091B81280A45A1900606060A2606060485F0180C86CC7FC00 7EC95A4C5A007C4B5A5F4C5A160F4C5A484B5A4C5A94C8FC16FEC812014B5A5E4B5A150F 4B5AA24B5AA24B5A15FFA24A90C9FCA25C5D1407A2140FA25D141FA2143FA4147F5DA314 FFA55BAC6D5BA2EC3FC06E5A395279D043>55 D<171F4D7E4D7EA24D7EA34C7FA24C7FA3 4C7FA34C7FA24C7FA34C8083047F80167E8304FE804C7E03018116F8830303814C7E0307 8116E083030F814C7E031F81168083033F8293C77E4B82157E8403FE824B800201835D84 0203834B800207835D844AB87EA24A83A3DA3F80C88092C97E4A84A2027E8202FE844A82 010185A24A820103854A82010785A24A82010F855C011F717FEBFFFCB600F8020FB712E0 A55B547BD366>65 D72 D78 D<93380FFFC00303B6FC031F15E092B712FC0203D9FC0013FF 020F01C0010F13C0023F90C7000313F0DA7FFC02007F494848ED7FFE4901E0ED1FFF4949 6F7F49496F7F4990C96C7F49854948707F4948707FA24849717E48864A83481B804A8348 1BC0A2481BE04A83A2481BF0A348497113F8A5B51AFCAF6C1BF86E5FA46C1BF0A26E5F6C 1BE0A36C6D4D13C0A26C6D4D1380A26C1B006C6D4D5A6E5E6C626D6C4C5B6D6D4B5B6D6D 4B5B6D6D4B5B6D6D4B5B6D6D4B90C7FC6D6D4B5A6D01FF02035B023F01E0011F13F0020F 01FC90B512C0020390B7C8FC020016FC031F15E0030392C9FCDB001F13E0565479D265> II82 D<01061560011FEC01F04914 03017EEC07E049EC0FC04848EC1F804915004848143E48485C491478000F15F848C7485A A2003E4A5AA2003C5D007C140700785DA300F8140F4892C7FCA2D8F1FCEC1FC0D8F7FFEC 7FF0B50080EBFFF802C014FCA202E014FEA36C80A36C806C496C13FCA26C496C13F80003 90C7EA3FF0D801FCEC1FC02F286FD245>92 D97 D<913801FFF8021FEBFF8091B612F0010315FC010F9038 C00FFE903A1FFE0001FFD97FFC491380D9FFF05B4817C048495B5C5A485BA2486F138091 C7FC486F1300705A4892C8FC5BA312FFAD127F7FA27EA2EF03E06C7F17076C6D15C07E6E 140F6CEE1F806C6DEC3F006C6D147ED97FFE5C6D6CEB03F8010F9038E01FF0010390B55A 01001580023F49C7FC020113E033387CB63C>99 D<4DB47E0407B5FCA5EE001F1707B3A4 913801FFE0021F13FC91B6FC010315C7010F9038E03FE74990380007F7D97FFC0101B5FC 49487F4849143F484980485B83485B5A91C8FC5AA3485AA412FFAC127FA36C7EA37EA26C 7F5F6C6D5C7E6C6D5C6C6D49B5FC6D6C4914E0D93FFED90FEFEBFF80903A0FFFC07FCF6D 90B5128F0101ECFE0FD9003F13F8020301C049C7FC41547CD24B>I<913803FFC0023F13 FC49B6FC010715C04901817F903A3FFC007FF849486D7E49486D7E4849130F48496D7E48 178048497F18C0488191C7FC4817E0A248815B18F0A212FFA490B8FCA318E049CAFCA612 7FA27F7EA218E06CEE01F06E14037E6C6DEC07E0A26C6DEC0FC06C6D141F6C6DEC3F806D 6CECFF00D91FFEEB03FE903A0FFFC03FF8010390B55A010015C0021F49C7FC020113F034 387CB63D>IIII<137F497E000313E0487FA2487FA76C5BA26C5BC613806DC7FC90C8FCADEB 3FF0B5FCA512017EB3B3A6B612E0A51B547BD325>I108 DII< 913801FFE0021F13FE91B612C0010315F0010F9038807FFC903A1FFC000FFED97FF86D6C 7E49486D7F48496D7F48496D7F4A147F48834890C86C7EA24883A248486F7EA3007F1880 A400FF18C0AC007F1880A3003F18006D5DA26C5FA26C5F6E147F6C5F6C6D4A5A6C6D495B 6C6D495B6D6C495BD93FFE011F90C7FC903A0FFF807FFC6D90B55A010015C0023F91C8FC 020113E03A387CB643>I<903A3FF001FFE0B5010F13FE033FEBFFC092B612F002F30101 7F913AF7F8007FFE0003D9FFE0EB1FFFC602806D7F92C76C7F4A824A6E7F4A6E7FA2717F A285187F85A4721380AC1A0060A36118FFA2615F616E4A5BA26E4A5B6E4A5B6F495B6F49 90C7FC03F0EBFFFC9126FBFE075B02F8B612E06F1480031F01FCC8FC030313C092CBFCB1 B612F8A5414D7BB54B>I<90397FE003FEB590380FFF80033F13E04B13F09238FE1FF891 39E1F83FFC0003D9E3E013FEC6ECC07FECE78014EF150014EE02FEEB3FFC5CEE1FF8EE0F F04A90C7FCA55CB3AAB612FCA52F367CB537>114 D<903903FFF00F013FEBFE1F90B7FC 120348EB003FD80FF81307D81FE0130148487F4980127F90C87EA24881A27FA27F01F091 C7FC13FCEBFFC06C13FF15F86C14FF16C06C15F06C816C816C81C681013F1580010F15C0 1300020714E0EC003F030713F015010078EC007F00F8153F161F7E160FA27E17E07E6D14 1F17C07F6DEC3F8001F8EC7F0001FEEB01FE9039FFC00FFC6DB55AD8FC1F14E0D8F80714 8048C601F8C7FC2C387CB635>I<143EA6147EA414FEA21301A313031307A2130F131F13 3F13FF5A000F90B6FCB8FCA426003FFEC8FCB3A9EE07C0AB011FEC0F8080A26DEC1F0015 806DEBC03E6DEBF0FC6DEBFFF86D6C5B021F5B020313802A4D7ECB34>II<007FB500F090387FFFFEA5C66C48C7000F90C7FC6D6CEC07F86D6D5C 6D6D495A6D4B5A6F495A6D6D91C8FC6D6D137E6D6D5B91387FFE014C5A6E6C485A6EEB8F E06EEBCFC06EEBFF806E91C9FCA26E5B6E5B6F7E6F7EA26F7F834B7F4B7F92B5FCDA01FD 7F03F87F4A486C7E4A486C7E020F7FDA1FC0804A486C7F4A486C7F02FE6D7F4A6D7F495A 49486D7F01076F7E49486E7E49486E7FEBFFF0B500FE49B612C0A542357EB447>120 DI<001FB8FC1880A3912680007F130001FCC7B5FC01F0495B 495D49495B495B4B5B48C75C5D4B5B5F003E4A90C7FC92B5FC4A5B5E4A5B5CC7485B5E4A 5B5C4A5B93C8FC91B5FC495B5D4949EB0F805B495B5D495B49151F4949140092C7FC495A 485E485B5C485E485B4A5C48495B4815074849495A91C712FFB8FCA37E31357CB43C>I E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fj msbm10 12 3 /Fj 3 93 df<007FB712C0B812FCEFFF806C17E02800F807F00F13F8DBC00113FE017890 398000FCFF94387C3F8094383E0FC0727E94381E03F0EF1F011800717FA21978A519F8A2 4D5B1801EF1E034E5A94383E0FC094387E3F80DDFDFFC7FC933807FFFE92B612F818E095 C8FC17F0ED87C1EEC0F8923883E0FC177C923881F03EA2923880F81F84EE7C0F717E163E 93383F03E0041F7FEE0F81EF80F8EE07C0187C933803E07E183E706C7E85706C6C7E1807 94387C03E0057E7F94383E01F8716C7E197C01F86D6D6C7EF13F80007FB66C6CB512E0B7 00C015F0836C4B6C14E044447EC33D>82 D<0003B812FE4883A301879039000F803ED98F F0011F137ED9BFC0EC007C01FFC7003E5B13FC48484A485A49ECFC034902F85B4B48485A 5B494948485A0307131F04C090C7FC90C7380F803EA24B485A00064A13FCC8003E5B4B48 5AA24B485A0201130703F05B4A48485AA24A4848C8FC5E91380F803E021F5B1500023E5B 1501027C5B9138FC03E014F84948485AA24948485A0107011F156002C090C812F090380F 803EA249484814014913FC013E5B494848EC03E0A249484814070001130701F049140F48 484848141FA2484848C8EA3FC0000F49157FD9803E15FF484848EC01FBEF07F3003E49EC 0FE7D87E01ED7F87007C49903903FF0780BAFCA36C18003C447DC345>90 D<203E9C3807FFF054B612C00C3F15FE0B07B812F09ABA7E0A1F03E315FC0907B626F800 0FECFFF098B648C8003FECFF80081F0380030015FC0703B600E0CA0003ECFFE096B600F8 CC000FECFF80061F4ACE003F14FC0503B600800900ECFFE0057F02E0D0000314FF040FB5 00FCD2001F14F80303B6D46CEBFFE0037F02C00F0114FF020FB500F0D6000714F849B500 FCD7C6001FEBFFC0013F91D7C86C13FE000FB500C0A10301EBFFF8B500F0D7CA0007EBFF 8001FCD7CC121F90D7CE127F0060A1F30300E91A81D3E8>92 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fk cmti10 10 11 /Fk 11 122 df<147F903803FFC090380FC1E090381F0070017E13784913383901F801F8 3803F003120713E0120FD81FC013F091C7FC485AA2127F90C8FCA35A5AA45AA315301538 1578007C14F0007EEB01E0003EEB03C0EC0F806CEB3E00380F81F83803FFE0C690C7FC1D 2677A426>99 D<147F903803FFC090380FC1E090383F00F0017E13785B485A485A485A12 0F4913F8001F14F0383F8001EC07E0EC1F80397F81FF00EBFFF891C7FC90C8FC5A5AA55A A21530007C14381578007E14F0003EEB01E0EC03C06CEB0F806CEB3E00380781F83803FF E0C690C7FC1D2677A426>101 D103 D105 D109 DI<3903C003F0390FF01FFC391E783C0F381C7C703A3C3EE03F8038383FC0EB 7F800078150000701300151CD8F07E90C7FCEAE0FE5BA2120012015BA312035BA312075B A3120F5BA3121F5BA3123F90C9FC120E212679A423>114 D<14FE903807FF8090380F83 C090383E00E04913F00178137001F813F00001130313F0A215E00003EB01C06DC7FC7FEB FFC06C13F814FE6C7F6D13807F010F13C01300143F141F140F123E127E00FE1480A348EB 1F0012E06C133E00705B6C5B381E03E06CB45AD801FEC7FC1C267AA422>II<01F0130ED803FC133FD8071EEB7F80 EA0E1F121C123C0038143F49131F0070140FA25BD8F07E140000E08013FEC6485B150E12 015B151E0003141C5BA2153C000714385B5DA35DA24A5A140300035C6D48C7FC0001130E 3800F83CEB7FF8EB0FC0212679A426>118 D<13F0D803FCEB01C0D8071EEB03E0D80E1F 1307121C123C0038140F4914C01270A249131FD8F07E148012E013FEC648133F16001201 5B5D0003147E5BA215FE00075C5BA214015DA314035D14070003130FEBF01F3901F87FE0 38007FF7EB1FC7EB000F5DA2141F003F5C48133F92C7FC147E147C007E13FC387001F8EB 03E06C485A383C1F80D80FFEC8FCEA03F0233679A428>121 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fl cmr7 7 8 /Fl 8 56 df48 D<13381378EA01F8121F12FE12E01200B3AB487EB512F8A2 15267BA521>I<13FF000313E0380E03F0381800F848137C48137E00787F12FC6CEB1F80 A4127CC7FC15005C143E147E147C5C495A495A5C495A010EC7FC5B5B903870018013E0EA 0180390300030012065A001FB5FC5A485BB5FCA219267DA521>I<13FF000313E0380F01 F8381C007C0030137E003C133E007E133FA4123CC7123E147E147C5C495AEB07E03801FF 8091C7FC380001E06D7E147C80143F801580A21238127C12FEA21500485B0078133E0070 5B6C5B381F01F03807FFC0C690C7FC19277DA521>I<1438A2147814F81301A213031307 1306130C131C131813301370136013C012011380EA03005A120E120C121C5A12305A12E0 B612E0A2C7EAF800A7497E90383FFFE0A21B277EA621>I<0018130C001F137CEBFFF85C 5C1480D819FCC7FC0018C8FCA7137F3819FFE0381F81F0381E0078001C7F0018133EC7FC 80A21580A21230127C12FCA3150012F00060133E127000305B001C5B380F03E03803FFC0 C648C7FC19277DA521>II<1230123C003FB512E0A215C0481480A239700007000060130E140C4813 1C5C5CC75A5C1301495AA249C7FC5B130E131EA3133E133CA2137CA413FCA813781B287D A621>I E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fm cmr6 6 8 /Fm 8 62 df<130C1338137013E0EA01C0EA038013005A120EA25AA25AA312781270A312 F0AB1270A312781238A37EA27EA27E7E1380EA01C0EA00E013701338130C0E317AA418> 40 D<12C012707E7E7E7E7E1380EA01C0A2EA00E0A21370A313781338A3133CAB1338A3 13781370A313E0A2EA01C0A2EA038013005A120E5A5A5A12C00E317CA418>I<1438B2B7 12FEA3C70038C7FCB227277C9F2F>43 D<13FF000313C0380781E0380F00F0001E137848 133CA248131EA400F8131FAD0078131EA2007C133E003C133CA26C13786C13F0380781E0 3803FFC0C6130018227DA01E>48 D<13E01201120712FF12F91201B3A7487EB512C0A212 217AA01E>II<14E01301A213031307A2130D 131D13391331136113E113C1EA01811203EA07011206120C121C12181230127012E0B6FC A2380001E0A6EB03F0EB3FFFA218227DA11E>52 D61 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fn cmsy6 6 5 /Fn 5 107 df0 D<136013701360A20040132000E0137038F861 F0387E67E0381FFF803807FE00EA00F0EA07FE381FFF80387E67E038F861F038E0607000 40132000001300A21370136014157B9620>3 D48 D<023FB512F049B612F81307903A0F07C001F0013CEC00C00178150013F801F05B3801E0 0F13C0C7FC92C8FC5CA2141E143E91383FFFF8A24A5B91387800C002F890C7FC5C1301A2 5C13035C495A130F003890C9FCEA7C1FEAFE1EEAFFBCEA7FF8EA3FE0EA0F802D247EA12C >70 D<12E0B3B3AD033179A413>106 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fo cmmi6 6 13 /Fo 13 121 df<127812FCA212FEA2127E1206A3120CA2121C121812301260124007107A 8513>59 D<90B612FEA2903907C0007E161E4948130EA2160CA249C7FC1530A3013EEB60 00A2EC01E0EB3FFF495BEB7C01A301F85B1630A291C71260485A16C0A215014848EB0380 1507ED0F000007147FB7FC5D27227CA12D>69 D83 D<001FB612FCA29039003E007C00 3C151C00385B12300070151812605C5AA3C648481300A4495AA4495AA4495AA449C8FCA3 5B381FFFFE5C26227DA124>I88 D<1338137CA2137813701300A7EA0780EA1FC0EA38E012 30EA60F0EAC1E0A3EA03C0A3EA0780A2EA0F0013041306EA1E0CA21318121CEA1E70EA0F E0EA07800F237DA116>105 D<1418143C147CA214381400A7EB0780EB1FE01338EB60F0 13C0A2EA0180A2380001E0A4EB03C0A4EB0780A4EB0F00A4131EA21238EA783CEAF83813 78EA70F0EA7FC0001FC7FC162D81A119>I<13F8EA0FF0A21200A2485AA4485AA4380780 1E147FEB81C3EB8387380F060F495A1318EB700E4848C7FCA213FCEA1E7EEA3C0F80EB07 81158039780F0300A21402EB070600F0138CEB03F8386000F019247CA221>I<000F017E 13FC3A1F81FF83FF3B31C383C707803A61EE03CC039026EC01F813C0D8C1F813F013F001 E013E00003903903C0078013C0A2EE0F003907800780A2EE1E041706270F000F00130C16 3C1718A2001E011EEB1C70EE1FE0000C010CEB07802F177D9536>109 D<000F13FC381FC3FF3931C707803861EC0301F813C0EAC1F0A213E03903C00780A3EC0F 00EA0780A2EC1E041506D80F00130C143C15181538001EEB1C70EC1FE0000CEB07801F17 7D9526>I113 D115 D<3801F01E3907FC7F80390E1CE1C03818 0F8100301383007013071260EC0380D8001EC7FCA45BA21580003014C0397878018012F8 EC030038F0FC0638E19C1C387F0FF8381E03E01A177D9523>120 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fp cmti12 12 53 /Fp 53 128 df12 D14 D<13F0EA03F8EA07FC120FA6EA03CCEA001C1318A213381330A2137013E013C012 0113801203EA0700120E5A5A5A5A5A0E1D6BC41E>39 D<167016E0ED01C0ED0380ED0700 150E153C5D15F85D4A5A4A5A4A5A140F4AC7FC141E143E5C147814F8495A5C1303495AA2 495AA249C8FCA25B133E137E137CA25BA212015BA212035BA212075BA2120FA25BA2121F A290C9FCA25AA2123EA3127EA2127CA65AAB1278A6127C123CA47EA2120E120FA27E6C7E A26C7EA26C7E1360246472CA28>I<1560A2157081A281151E150E150FA2811680A3ED03 C0A516E0A21501A71503A91507A216C0A4150FA21680A2151FA21600A25DA2153EA2157E A2157C15FCA25D1401A25D14035DA214075D140F5DA24AC7FCA2143EA25C147814F8495A A2495A5C1307495A91C8FC131E133E5B13785B485A485A485A48C9FC121E5A5A12E05A23 647FCA28>I<13F0EA03FC1207A2EA0FFEA4EA07FCEA03CCEA000C131C1318A213381330 1370136013E0EA01C013801203EA0700120E5A5A5A5A5A0F1D7A891E>44 D<007FB5FCB6FCA214FEA21805789723>I<120FEA3FC0127FA212FFA31380EA7F00123C 0A0A76891E>I<16C01501A215031507ED0F80151F153F157F913801FF005C140F147F90 3807FCFEEB0FF0EB0700EB00015DA314035DA314075DA3140F5DA3141F5DA3143F5DA314 7F92C7FCA35C5CA313015CA313035CA313075CA2130FA2131F133FB612FCA25D224276C1 32>49 DII56 D<130FEB1FC0133FEB7FE013FFA214C0EB7F801400131E90C7FCB3A5120FEA3FC012 7FA212FFA35B6CC7FC123C132B76AA1E>58 D65 D<91B712FCF0FF8019E002019039 80001FF06E90C7EA07F84A6F7E727E4B81841A800203167F5DA314075D19FFA2020F1700 4B5C611803021F5E4B4A5A180F4E5A023F4B5A4BEC7F804EC7FCEF03FC027FEC0FF84BEB FFC092B6C8FC18E0913AFF800007F892C7EA01FC717E187F49834A6F7EA30103835CA313 075CA3010F5F4A157FA24E5A131F4A4A90C7FC601703013F4B5A4A4A5A4D5A017F4B5A4D 5A4A4948C8FC01FFEC0FFEB812F817C04CC9FC41447AC345>II<91B712F818FF19C00201903980003F F06E90C7EA0FF84AED03FCF000FE4B157FA2F13F800203EE1FC05DF10FE0A214074B16F0 1907A2140F5D1AF8A2141F5DA2190F143F5D1AF0A2147F4B151FA302FF17E092C9123FA3 4918C04A167F1A80A2010317FF4A1700A24E5A13074A4B5A611807010F5F4A4B5A181F61 011F4C5A4A4BC7FC18FE4D5A013F4B5A4A4A5A4D5A017FED3FC005FFC8FC4AEB03FE01FF EC1FF8B812E094C9FC16F845447AC34A>I<91B91280A30201902680000713006E90C8FC 4A163FA24B81A30203160E5DA314074B151E191CA2140F5D17075F021F020E90C7FC5DA2 171E023F141C4B133CA2177C027F5CED800392B5FCA291B65AED00071601A2496E5A5CA2 160101035D5CA2160301075D4A90CAFCA3130F5CA3131F5CA3133F5CA2137FA313FFB612 E0A341447AC340>70 DI<91B6D8803FB512E0A302010180C7387FE0006E90C86C5A4A167FA24B 5EA219FF14034B93C7FCA26014074B5DA21803140F4B5DA21807141F4B5DA2180F143F4B 5DA2181F147F92B75AA3DAFF80C7123F92C85BA2187F5B4A5EA218FF13034A93C8FCA25F 13074A5DA21703130F4A5DA21707131F4A5DA2170F133F4A5DA2017F151FA24A5D496C4A 7EB6D8803FB512E0A34B447AC348>I<027FB512E091B6FCA20200EBE000ED7F8015FFA2 93C7FCA35C5DA314035DA314075DA3140F5DA3141F5DA3143F5DA3147F5DA314FF92C8FC A35B5CA313035CA313075CA3130F5CA3131F5CA2133FA25CEBFFE0B612E0A25D2B447BC3 26>I<91B66C90383FFFF8A302010180C7000F13006E90C8EA07FC4A17F01AC04B4B5A4F C7FC193C02035E4B5DF003E0F0078002074BC8FC4B141E6018F8020F4A5A4BEB03C04D5A 4DC9FC021F141E4B137C17F04C5A023F495A4B487E161F163F027F497EED80FFED81EF92 3883CFF89138FF8F8FED1E07033C7F157849EBF00303E07F15C092380001FF495A5C707F A213074A6E7EA2173F010F825C171F84131F4A140F84A2013F6F7E5CA2017F6F7EA24A4A 7E496C4A7FB66C90B512FC5E614D447AC34B>75 D<91B612F0A25F020101C0C7FC6E5B4A 90C8FCA25DA314035DA314075DA3140F5DA3141F5DA3143F5DA3147F5DA314FF92C9FCA3 5B5CA3010316104A1538A21878010716705C18F018E0010F15015C18C01703011F15074A 1580170FA2013FED1F004A5C5F017F15FE16034A130F01FFEC7FFCB8FCA25F35447AC33D >I<91B56C93387FFFC08298B5FC02014DEBC0006E614A5FA203DF4C6CC7FC1A0E639126 03CFE05D038F5F1A381A711407030FEEE1FCA2F101C3020FEE0383020E60F107036F6C15 07021E160E021C60191CF1380F143C023804705BA2F1E01F0278ED01C091267003F85EF0 03801A3F02F0ED070002E0030E5CA24E137F130102C04B91C8FC606201036D6C5B02805F 4D5A943803800113070200DA07005BA2050E1303495D010E606F6C5A1907011E5D011C4B 5CA27048130F133C01384B5C017892C7FC191F01F85C486C027E5DD807FE027C4A7EB500 F00178013FB512C0A216705A447AC357>I<48B912F85AA2913B0007FC001FF0D807F84A 130701E0010F140349160148485C90C71500A2001E021F15E05E121C123C0038143F4C13 01007818C0127000F0147F485DA3C800FF91C7FC93C9FCA35C5DA314035DA314075DA314 0F5DA3141F5DA3143F5DA3147F5DA314FF92CAFCA35B5CA21303A21307497E007FB612C0 A25E3D446FC346>84 D91 D93 D97 DIII< EC0FE0EC7FF8903801F83E903807C00F90391F800780EB3F00017E14C0491303485A4848 1307000715805B000F140F484814005D4848133E15FCEC07F0007FEBFFC0D9FFFEC7FC14 C090C9FC5A5AA55AA4ED0180ED03C0007CEC0780A2007EEC0F00003E141E157C6C14F06C EB03E03907800F802603C07EC7FC3801FFF838003FC0222D75AB2D>II<15FCEC03 FF91390F83838091393E01CFC091387C00EF4A13FF4948137F010315804948133F495A13 1F4A1400133F91C75A5B167E13FE16FE1201495CA215011203495CA21503A2495CA21507 A25EA2150F151F5E0001143F157F6C6C13FF913801DF8090387C039F90383E0F3FEB0FFC D903F090C7FC90C7FC5DA2157EA215FEA25DA2001C495A127F48495A14074A5A485C023F C8FC00F8137E387C01F8381FFFE0000390C9FC2A407BAB2D>I<14FE137FA3EB01FC1300 1301A25CA21303A25CA21307A25CA2130FA25CA2131FA25C157F90393F83FFC091388F81 F091381E00F802387F4948137C5C4A137EA2495A91C7FCA25B484814FE5E5BA200031401 5E5BA2000714035E5B1507000F5DA249130F5E001F1678031F1370491480A2003F023F13 F0EE00E090C7FC160148023E13C01603007E1680EE070000FEEC1E0FED1F1E48EC0FF800 38EC03E02D467AC432>I<143C147E14FE1301A3EB00FC14701400AE137C48B4FC3803C7 80380703C0000F13E0120E121C13071238A21278EA700F14C0131F00F0138012E0EA003F 1400A25B137EA213FE5B12015BA212035B141E0007131C13E0A2000F133CEBC038A21478 EB807014F014E0EB81C0EA0783EBC7803803FE00EA00F8174378C11E>I<14FE137FA3EB 01FC13001301A25CA21303A25CA21307A25CA2130FA25CA2131FA25C167E013F49B4FC92 380783C09138000E07ED3C1F491370ED603F017E13E0EC01C09026FE0380138091390700 0E00D9FC0E90C7FC5C00015B5C495AEBF9C03803FB8001FFC9FCA214F03807F3FCEBF07F 9038E01FC06E7E000F130781EBC003A2001F150FA20180140EA2003F151E161C010013E0 A2485DA2007E1578167000FE01015B15F1489038007F800038021FC7FC2A467AC42D> 107 DIIIII<91381F800C91387FE01C903901F0703C903907C0387890 390F801CF890381F001D013E130F017E14F05B48481307A2484814E012075B000F140F16 C0485AA2003F141F491480A3007F143F90C71300A35D00FE147EA315FE5DA2007E1301A2 4A5A1407003E130FA26C495A143B380F80F33807C3E73901FF87E038007E071300140F5D A3141F5DA3143F92C7FCA25CA25C017F13FEA25D263F76AB2D>III<1470EB01F8A313035CA313075CA3130F 5CA3131F5CA2007FB512E0B6FC15C0D8003FC7FCA25B137EA313FE5BA312015BA312035B A312075BA3120F5BA2EC0780001F140013805C140E003F131EEB001C143C14385C6C13F0 495A6C485AEB8780D807FEC7FCEA01F81B3F78BD20>I<137C48B414072603C780EB1F80 380703C0000F7F000E153F121C0107150012385E1278D8700F147E5C011F14FE00F05B00 E05DEA003FEC0001A2495C137E150313FE495CA215071201495CA2030F13380003167849 ECC070A3031F13F0EE80E0153F00011581037F13C06DEBEF8300000101148090397C03C7 87903A3E0F07C70090391FFE01FE903903F000782D2D78AB34>I<017C143848B414FC3A 03C78001FE380703C0000F13E0120E001C14000107147E1238163E1278D8700F141E5C13 1F00F049131C12E0EA003F91C7123C16385B137E167801FE14705BA216F0000115E05B15 0116C0A24848EB0380A2ED0700A2150E12015D6D5B000014786D5B90387C01E090383F07 80D90FFFC7FCEB03F8272D78AB2D>I<017CEE038048B4020EEB0FC02603C780013FEB1F E0380703C0000E7F5E001C037E130F01071607123804FE130300785DEA700F4A1501011F 130100F001804914C012E0EA003FDA000314034C14805B137E0307140701FE1700495CA2 030F5C0001170E495CA260A24848495A60A2601201033F5C7F4B6C485A000002F713036D 9039E7E0078090267E01C349C7FC903A1F0781F81E903A0FFF007FF8D901FCEB0FE03B2D 78AB41>I<02F8133FD907FEEBFFE0903A0F0F83C0F0903A1C07C780F890393803CF0301 7013EE01E0EBFC07120101C013F8000316F00180EC01C000074AC7FC13001407485C120E C7FC140F5DA3141F5DA3143F92C8FCA34AEB03C01780147EA202FEEB0700121E003F5D26 7F81FC130E6E5BD8FF83143CD903BE5B26FE079E5B3A7C0F1F01E03A3C1E0F83C0271FF8 03FFC7FC3907E000FC2D2D7CAB2D>I<137C48B414072603C780EB1F80380703C0000F7F 000E153F001C1600130712385E0078157EEA700F5C011F14FE00F0495B12E0EA003FEC00 015E5B137E150301FE5C5BA2150700015D5BA2150F00035D5BA2151F5EA2153F12014BC7 FC6D5B00005BEB7C0390383E0F7EEB1FFEEB03F090C712FE5DA214015D121F397F8003F0 A24A5A4848485A5D48131F00F049C8FC0070137E007813F8383801F0381E07C06CB4C9FC EA01FC294078AB2F>I<027C130749B4130F49EB800E010F141E49EBC03CEDE03890393F 03F07890397C00FDF00178EB3FE00170EB03C001F0148049130790C7EA0F00151E5D5D5D 4A5A4A5A4A5A4AC7FC141E5C5C5C495A495A495A49C8FC011E14F04914E05B491301485A 4848EB03C0D807B0130701FEEB0F80390FCF801F3A1F07E07F00393E03FFFED83C015B48 6C5B00705C00F0EB7FC048011FC7FC282D7BAB28>I<000FEB0780393F801FC0397FC03F E000FF137FA4018013C0397F003F80003CEB1E001B0A66C232>127 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fq cmbx12 12 46 /Fq 46 122 df12 D46 D49 DII<163FA25E5E5D5DA25D5D5D5D A25D92B5FCEC01F7EC03E7140715C7EC0F87EC1F07143E147E147C14F8EB01F0EB03E013 0714C0EB0F80EB1F00133E5BA25B485A485A485A120F5B48C7FC123E5A12FCB91280A5C8 000F90C7FCAC027FB61280A531417DC038>I<0007150301E0143F01FFEB07FF91B6FC5E 5E5E5E5E16804BC7FC5D15E092C8FC01C0C9FCAAEC3FF001C1B5FC01C714C001DF14F090 39FFE03FFC9138000FFE01FC6D7E01F06D13804915C0497F6C4815E0C8FC6F13F0A317F8 A4EA0F80EA3FE0487E12FF7FA317F05B5D6C4815E05B007EC74813C0123E003F4A1380D8 1FC0491300D80FF0495AD807FEEBFFFC6CB612F0C65D013F1480010F01FCC7FC010113C0 2D427BC038>I<4AB47E021F13F0027F13FC49B6FC01079038807F8090390FFC001FD93F F014C04948137F4948EBFFE048495A5A1400485A120FA248486D13C0EE7F80EE1E00003F 92C7FCA25B127FA2EC07FC91381FFF8000FF017F13E091B512F89039F9F01FFC9039FBC0 07FE9039FF8003FF17804A6C13C05B6F13E0A24915F0A317F85BA4127FA5123FA217F07F 121FA2000F4A13E0A26C6C15C06D4913806C018014006C6D485A6C9038E01FFC6DB55A01 1F5C010714C0010191C7FC9038003FF02D427BC038>I<121E121F13FC90B712FEA45A17 FC17F817F017E017C0A2481680007EC8EA3F00007C157E5E00785D15014B5A00F84A5A48 4A5A5E151FC848C7FC157E5DA24A5A14035D14074A5AA2141F5D143FA2147F5D14FFA25B A35B92C8FCA35BA55BAA6D5A6D5A6D5A2F447AC238>I58 D65 D67 DIIII76 DI<923807FFC0 92B512FE0207ECFFC0021F15F091267FFE0013FC902601FFF0EB1FFF01070180010313C0 4990C76C7FD91FFC6E6C7E49486F7E49486F7E01FF8348496F7E48496F1380A248496F13 C0A24890C96C13E0A24819F04982003F19F8A3007F19FC49177FA400FF19FEAD007F19FC 6D17FFA3003F19F8A26D5E6C19F0A26E5D6C19E0A26C6D4B13C06C19806E5D6C6D4B1300 6C6D4B5A6D6C4B5A6D6C4B5A6D6C4A5B6D01C001075B6D01F0011F5B010101FE90B5C7FC 6D90B65A023F15F8020715C002004AC8FC030713C047467AC454>79 DI<923807FFC092B512FE0207ECFFC0021F15F091267F FE0013FC902601FFF0EB1FFF010701C0010713C04990C700017F49486E7F49486F7E4948 6F7E49486F7E48496F7E48496F1380A248496F13C0A24819E091C97E4819F0A248487013 F8A3007F19FCA249177FA300FF19FEAD007F19FCA36D17FF003F19F8A3001F19F06D5EA2 6C19E06E01FE5B6C912603FF8014C06C6D486D4813804B13E06C9028E01F83F00F13006C 903BF01E00F81FFE90267FF83E90387C3FFC90263FFC3C6D485AD91FFE91381EFFF0D90F FF021F5B6D01FE5D010194C7FC6D6D6CB45A023F90B512F8020703E0130202006F130703 0713C792C7EA07F8716C130F72131F9538FF80FF96B5FC7114FEA3831AFCA27213F81AF0 847213E07213C0721300F001FC48587AC454>II<003FBA12E0A59026FE000FEB8003D87FE093 38003FF049171F90C71607A2007E1803007C1801A300781800A400F819F8481978A5C817 00B3B3A20107B8FCA545437CC24E>84 D<903801FFE0011F13FE017F6D7E48B612E03A03 FE007FF84848EB1FFC6D6D7E486C6D7EA26F7FA36F7F6C5A6C5AEA00F090C7FCA40203B5 FC91B6FC1307013F13F19038FFFC01000313E0000F1380381FFE00485A5B127F5B12FF5B A35DA26D5B6C6C5B4B13F0D83FFE013EEBFFC03A1FFF80FC7F0007EBFFF86CECE01FC66C EB8007D90FFCC9FC322F7DAD36>97 DIIIIIII<137C48B4FC4813804813C0A24813E0A56C13C0A26C13806C 1300EA007C90C7FCAAEB7FC0EA7FFFA512037EB3AFB6FCA518467CC520>I107 DI<90277F8007FEEC0FFCB590 263FFFC090387FFF8092B5D8F001B512E002816E4880913D87F01FFC0FE03FF8913D8FC0 0FFE1F801FFC0003D99F009026FF3E007F6C019E6D013C130F02BC5D02F86D496D7EA24A 5D4A5DA34A5DB3A7B60081B60003B512FEA5572D7CAC5E>I<90397F8007FEB590383FFF 8092B512E0028114F8913987F03FFC91388F801F000390399F000FFE6C139E14BC02F86D 7E5CA25CA35CB3A7B60083B512FEA5372D7CAC3E>II<90397FC00FF8B590B57E02C314E002CF14F89139DFC03FFC91 39FF001FFE000301FCEB07FF6C496D13804A15C04A6D13E05C7013F0A2EF7FF8A4EF3FFC ACEF7FF8A318F017FFA24C13E06E15C06E5B6E4913806E4913006E495A9139DFC07FFC02 CFB512F002C314C002C091C7FCED1FF092C9FCADB67EA536407DAC3E>II<90387F807FB53881FFE0028313 F0028F13F8ED8FFC91389F1FFE000313BE6C13BC14F8A214F0ED0FFC9138E007F8ED01E0 92C7FCA35CB3A5B612E0A5272D7DAC2E>I<90391FFC038090B51287000314FF120F381F F003383FC00049133F48C7121F127E00FE140FA215077EA27F01E090C7FC13FE387FFFF0 14FF6C14C015F06C14FC6C800003806C15806C7E010F14C0EB003F020313E0140000F014 3FA26C141F150FA27EA26C15C06C141FA26DEB3F8001E0EB7F009038F803FE90B55A00FC 5CD8F03F13E026E007FEC7FC232F7CAD2C>IIIII121 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fr cmex10 12 41 /Fr 41 119 df0 D<12E07E12787E7E7E7F6C7E6C7E7F12016C7E7F137C137E7FA26D7EA26D7EA26D7EA36D 7EA2801301A2801300A280A2147EA2147FA4801580A7EC1FC0B3A5EC3F80A715005CA414 7EA214FEA25CA213015CA213035CA2495AA3495AA2495AA249C7FCA2137E137C13FC5B48 5A12035B485A485A90C8FC121E5A5A5A5A1A777C832E>III8 D<12F012FEEAFFC0EA3FF0EA07FCEA01FE6C6C7EEB3FC06D7E130F801307801303B3B080 1301A26D7E806E7E6E7E6E7EEC07F8EC01FC9138007F80ED1FE01503151FED7F80913801 FC00EC07F8EC1FE04A5A4A5A4AC7FC5C495AA213035CB3B013075C130F5C131F495AEBFF 804848C8FCEA07FCEA3FF0EAFFC048C9FC12F0237775833A>I<16F01501ED03E0ED07C0 ED0F80ED1F005D157E5D5D14014A5A4A5A4A5AA24A5A143F92C7FC147EA25C13015C1303 5C13075C130F5C131FA2495AA349C8FCA213FEA312015BA212035BA21207A25BA2120FA2 5BA2121FA45BA2123FA55B127FA990C9FC5AB3AA7E7FA9123F7FA5121FA27FA4120FA27F A21207A27FA21203A27F1201A27F1200A3137FA26D7EA36D7EA2130F8013078013038013 01801300147EA28081141F6E7EA26E7E6E7E6E7E140081157E8181ED0F80ED07C0ED03E0 ED01F0150024B26E833B>16 D<12F07E127C7E7E6C7E7F6C7E6C7E12017F6C7E137E7FA2 6D7E80130F6D7EA26D7E80130180130080147E147F8081A26E7EA36E7EA26E7EA3811403 A2811401A281A21400A281A281A21680A4153FA216C0A5151F16E0A9150F16F0B3AA16E0 151FA916C0153FA51680A2157FA41600A25DA25DA21401A25DA214035DA214075DA34A5A A24A5AA34A5AA292C7FC5C147E14FE5C13015C13035C495AA2495A131F5C49C8FCA2137E 5B485A5B1203485A485A5B48C9FC123E5A5A5A24B27C833B>I<171E173E177C17F8EE01 F0EE03E0EE07C0160FEE1F80EE3F00167E167C16FC4B5A4B5A15075E4B5A4B5A153F93C7 FC5D15FE5D14015D14034A5AA24A5AA24A5AA24A5AA24AC8FCA214FEA213015C13035C13 07A25C130F5C131FA25C133FA3495AA349C9FCA35A5BA312035BA31207A25BA2120FA35B A3121FA35BA3123FA55BA2127FAB485AB3B06C7EAB123FA27FA5121FA37FA3120FA37FA3 1207A27FA21203A37F1201A37F7EA36D7EA36D7EA3131F80A2130F80130780A213038013 01801300A2147FA26E7EA26E7EA26E7EA26E7EA26E7E140181140081157F8182151F6F7E 6F7E8215036F7E6F7E167C167E82EE1F80EE0FC01607EE03E0EE01F0EE00F8177C173E17 1E2FEE6B8349>I<12F07E127C7E7E6C7E6C7E7F6C7E6C7E6C7E137C137E7F6D7E80130F 6D7E6D7E801301806D7E147E147F80816E7EA26E7EA26E7EA26E7EA26E7EA26E7EA28181 82153F82A2151F82150F82A2150782A36F7EA36F7EA38281A31780167FA317C0A2163FA2 17E0A3161FA317F0A3160FA317F8A51607A217FCABEE03FEB3B0EE07FCAB17F8A2160FA5 17F0A3161FA317E0A3163FA317C0A2167FA21780A316FF1700A35D5EA34B5AA34B5AA35E 150FA25E151F5E153FA25E157F93C7FC5D5DA24A5AA24A5AA24A5AA24A5AA24A5AA24A5A 92C8FC5C147E14FE495A5C13035C495A495A131F5C49C9FC137E137C13FC485A485A485A 5B485A48CAFC123E5A5A5A2FEE7C8349>I<170F173F17FF1603EE0FFCEE1FF0EE7FE0EE FF804B13004B5A4B5A4B5A4B5A4B5A4B5A15FF5E5C93C7FC5C5D14075DA3140F5DB3B3B3 AE4A5AA3143F5DA24A5AA24A5AA24990C8FC495AA2495A495A495A495A495A49C9FC485A EA07FCEA0FF0EA3FC0B4CAFC12FCA2B4FCEA3FC0EA0FF0EA07FCEA01FE6C7EEB7FC06D7E 6D7E6D7E6D7E6D7EA26D7E6D7FA26E7EA26E7EA281141FA36E7EB3B3B3AE811407A38114 038180828082157F6F7E6F7E6F7E6F7E6F7E6F7E6F1380EE7FE0EE1FF0EE0FFCEE03FF16 00173F170F30EE73834B>26 D<12F012FE6C7E7FEA3FF0EA0FFC6C7E3801FF806C7F6D7E EB1FF06D7E6D7E806D7E7F6D7F81147F81143F81141FA381140FB3B3B3AE6E7EA46E7EA2 6E7EA26E7FA26F7EA26F7E6F7E6F7E15076F7E6F7E923800FF80EE7FC0EE1FE0EE0FF8EE 03FCEE00FF173FA217FFEE03FCEE0FF8EE1FE0EE7FC0EEFF80923801FE004B5A4B5A150F 4B5A4B5A4B5AA24B5AA24A90C7FCA24A5AA24A5AA44A5AB3B3B3AE141F5DA3143F5D147F 5D14FF5D4990C8FC5B495A5C495A495AEB7FE0495A485BD807FEC9FC485AEA3FF0EAFFC0 5B48CAFC12F030EE73834B>I[51 298 104 131 79 32 D[<12F87E127E7E7F121F 6C7E6C7E7F6C7E12016C7E7F137F7F806D7E6D7EA26D7E8013036D7EA26D7E808081143F 81141F816E7EA26E7EA26E7EA26E7EA36E7EA26F7EA282153FA282151F82150FA2821507 A282150382A3150182A28183A3707EA4707EA483161FA483160FA383A31607A383A31603 A383A582A21880A882A218C0AD177F18E0B3B3A618C017FFAD1880A25EA81800A25EA55F A31607A35FA3160FA35FA3161F5FA4163F5FA44C5AA44C5AA394C7FC5DA25E1503A35E15 075EA2150F5EA2151F5E153F5EA2157F5EA24BC8FCA24A5AA34A5AA24A5AA24A5AA24A5A 5D143F5D147F92C9FC5C5C495AA2495A13075C495AA2495A495A91CAFC5B13FE5B485A12 03485A5B485A485A123F90CBFC127E5A5A>51 298 125 131 79 I[51 298 114 131 80 40 D[<12F812FE6C7E13E07FEA3FF8EA1FFEEA07FF6C7F6C7F6C7FEB3FF06D7E806D 7E6D7E7F6D7F817F81147F81143F81141FA281140FA3811407B3B3B3B3AD8180A46E7FA3 6E7FA36F7EA26F7E151F82150F826F7E6F7E816F7F707E707E707E707E707E707E933801 FF809338007FC0EF3FE0170FA2173FEF7FC0933801FF80933803FE004C5A4C5A4C5A4C5A 4C5A4C5A4B90C7FC5D4B5A4B5A5E151F5E153F4B5AA24B5AA34A5BA34A90C8FCA45C5DB3 B3B3B3AD140F5DA3141F5DA2143F5D147F5D14FF5D5B5D4990C9FC5B495A495A5C495AEB FFE0485B485B4890CAFCEA1FFEEA3FF8B45A5B138048CBFC12F8>51 298 114 131 80 I<187C18FCEF01F8A2EF03F0EF07E0EF0FC0171F1880EF3F005F177E 17FE4C5A5F16034C5AA24C5A4C5AA24C5A167F94C7FC5E5E15015E15034B5AA24B5AA24B 5AA24B5AA2157F5E15FF93C8FCA24A5AA214035D14075DA2140F5D141FA25D143FA24A5A A34A5AA34990C9FCA35B5CA213075CA3130F5CA2131FA25CA2133FA35C137FA4495AA548 5BA55A91CAFCA55A5BA5120FA35BA4121FA55BA4123FA75BA4127FAF5BA212FFB3A836B3 638257>48 D<12F87E127EA27E6C7E6C7E7F12076C7E7F12017F6C7E137E137F6D7EA26D 7E6D7EA26D7E801303801301801300806E7EA26E7EA26E7EA26E7EA2811407811403A26E 7EA2818082157FA282153F82A2151F82A26F7EA36F7EA36F7EA38281A28381A383167FA2 83A2163FA283A3161F83A4707EA5707EA58382A5188082A518C0A382A418E0A5177FA418 F0A7173FA418F8AF171FA218FCB3A836B37D8257>I56 D<12F812FE6C7E7F13F06C7EEA 1FFC6C7E6C7E6C13C06C7F6C7F137F6D7E6D7E6D7E807F6D7F817F817F81147F81143F81 A2141F81A36E7EA56E1380B3B3B0215A6F7E59>II<913807FF80B3B3B04A1300A54A5AA35D143F A25D147F5D14FF5D5B5D5B5D4990C7FC5B5C495A495A495A13FF485B485B4890C8FC485A 485AEA7FF8485A13C05B48C9FC12F8215A6F8059>I<913807FF80B3B3B04A1300A55D14 1FA35D143F5DA2147F5D14FF5DA2495B5D5B4990C7FC5C130F5C495A495A495AA2495A48 5B4890C8FCEA07FC485A485AEA7FE0EAFF8090C9FC12FCB4FC7FEA7FE0EA1FF06C7E6C7E 6CB4FC6C7F6C7F6D7EA26D7E6D7E6D7E801307806D7F7F816D7FA281147F81143FA28114 1F81A3140F81A56E1380B3B3B021B56F8059>II64 DI80 DI<17FF040313C093380F81F093381E0078043E137C93387C01FC9338F803FEA2150116F0 1503EF01FC9338E0007003071400A3150FA45E151FA7153FA74B5AA715FFA85C93C8FCA9 5C5DA85DA74A5AA75DA75D140FA45DA3001C5C007F131FEAFF8092C9FC5C143EA26C485A 007C5B003C5B381F03E03807FF80D801FECAFC376F7B7F2F>I<923803FFC0033F13FC4A B67E020F15F0023F15FC91B8FC4983010749C66C13E04901E001077F4990C87FD93FFCED 3FFCD97FF0ED0FFE49486F7E4801800301138091CAFC4848EF7FC04848EF3FE049171F48 48EF0FF0001F19F8491707491703003F19FCA24848EF01FEA290CCFCA24819FFA248197F B3B3B3AE007C193EA248647B7F53>84 D88 DI110 D<12F012FE6C7E13E0EA3FF8EA0FFCEA03FFC67F6D7E6D7E 6D7E6D7E6D7E6D7EA26D7E7FA281147FB3B3AF81143FA281141F81140F8114076E7E6E7E 6E7E6F7E6F7EED1FF0ED07F8ED01FE923800FF80163FA216FF923801FE00ED07F8ED1FF0 ED3FC04B5A4BC7FC4A5A4A5A4A5A140F5D141F5D143F5DA2147F5DB3B3AF14FF92C8FCA2 5B495AA2495A495A495A495A495A495A000390C9FCEA0FFCEA3FF8EAFFE0138048CAFC12 F029B2748342>I<1DC0F401E01C03A2F407C0A2F40F80A2F41F00A21C3EA264A264A264 1B01A2515AA2515AA2515AA251C7FCA21B3EA263A263A2505AA2505AA2505AA2505AA250 C8FCA21A3EA21A3C1A7CA262A24F5AA24F5AA24F5AA24F5AA24FC9FCA20104173E130E01 1E5F137F495F5A486D4B5A120F261C7FC04B5A123826F03FE04B5A124000004D5A6D7E96 CAFC6D6C5DA26D6C153EA2606D7E606D7E4D5A6D7F4D5AA26E6C495AA26E6C495AA26E6C 49CBFCA26E6C133EA25F6E7E5F6E7E4C5AEC01FF4C5AA26EEB83C01687ED7FC7EECF80ED 3FEF04FFCCFCA26F5AA26F5AA26F5AA25E15035E6F5A5B78758364>I<1DC0F401E0A21C 03A21DC01C07A21D801C0FA21D0064A21C1E1C3EA21C3C1C7CA21C781CF8A2641B01A264 A21B03A2641B07A2641B0FA299C7FC63A21B1E1B3EA21B3C1B7CA21B781BF8A2631A01A2 63A21A03A2631A07A2631A0FA298C8FC62A21A1E1A3EA21A3C1A7CA21A781AF8A2621901 A262A21903A2621907A262190FA297C9FC61A2191E0104173E130E011E173C197C133E01 7F17784917F85A486D5E48170112064860486C7E003817031270486C6C5E004017071200 6D6C5E180FA296CAFC6D6C5DA2181E6D6C153EA2183C187C6D7E187818F86D7E601701A2 6D6D5CA217036E7E601707A26E6C5C170FA26E6C91CBFC5FA26E6C131E173EA2173C6E6C 137CA217786E6C13F8A25F1601EC01FF5FA26E1383A25F1687ED7FC75F16CFED3FEF94CC FC16FFA26F5AA36F5AA36F5AA35E1503A25E15015E5BB3758364>I<1DC0F401E0A21C03 A21DC0A21C07A21D80A21C0FA21D00A364A21C1EA21C3EA21C3CA21C7CA21C78A21CF8A2 64A21B01A264A31B03A264A21B07A264A21B0FA299C7FCA263A21B1EA21B3EA21B3CA31B 7CA21B78A21BF8A263A21A01A263A21A03A263A21A07A263A31A0FA298C8FCA262A21A1E A21A3EA21A3CA21A7CA21A78A21AF8A262A31901A262A21903A262A21907A262A2190FA2 97C9FCA261A2191EA21304193E130E011E173CA2013E177C133F4917785B19F85A486D5E A200061701120E000C60486C7E1803123000706038603FE012C0004017071200616D7E18 0FA296CAFC6D7E60A2181EA26D6C153EA2183CA2187C6D7E1878A36D6C15F8A260A21701 6D7F60A217036E7E60A21707A26E6C5CA2170FA295CBFC6E7EA25FA26E6C131EA2173EA2 173C6E7E177CA217786E7E17F8A25FA2913801FF01A25FA36E1383A25FA2ED7FC7A25FA2 16CFED3FEF94CCFCA216FF815EA46F5AA56F5AA46F5AA45E15015E5BEF758364>I[<1DC0 F401E0A31C03A21DC0A31C07A21D80A31C0FA21D00A364A21C1EA41C3EA21C3CA31C7CA2 1C78A31CF8A264A41B01A264A31B03A264A31B07A264A31B0FA299C7FCA463A21B1EA31B 3EA21B3CA31B7CA21B78A31BF8A263A41A01A263A31A03A263A31A07A263A31A0FA298C8 FCA462A21A1EA31A3EA21A3CA31A7CA21A78A41AF8A262A31901A262A31903A262A31907 A262A4190FA297C9FCA361A2191EA21304193E130E193C131EA2013E177CA2017F1778A2 5BA24818F8A2486D5EA2120618015A61486C7EA200301703A20060606D7E12C018071200 61A26D7EA2180FA296CAFCA26D7E60A2181EA36D6C153EA2183CA36D7E187CA21878A36D 6C15F8A260A317016D7F60A31703A26E6C5CA417076E7E60A3170FA26E6C91CBFCA35FA2 171E6E7EA2173EA2173CA26E7EA2177CA217786E7EA217F8A25FA26E7E1601A25FA36E13 83A25FA4ED7FC7A25FA3ED3FEFA294CCFCA316FF815EA5150F5EA56F5AA56F5AA55E1501 A25E>91 299 117 131 100 I<1918193CB3A21306A2130E130F5BA2497EA2137F8013FF A23801BFE0A2EA033F6D7E1206A2486C7EA212186D7E1230A2486C7EA212C01240C66C7E A36D7FA36E7EA36E7EA36E7EA36E7EA36E7EA36E7EA36E7EA36E7FA36F7EA36F7EA36F7E A36F7EA36F7EA36F7EA36F7EA36F7FA3707EA3707EA3707EA3707EA4707EA3707EA3707E A3701380A3EF7FC0A3EF3FE0A3EF1FF0A3EF0FF8A3EF07FCA3EF03FEA3EF01FFA37113BC A3F07FFCA3183FA3181FA3180FA31807A31803A31801A31800A3197CA3193819303EB575 8169>I<126012F0B3B3B3A8126004403B8169>I<007FB612F8B712FCA216F800F0C9FCB3 B3B3A31260263E3B8369>I E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fs cmsy10 12 30 /Fs 30 119 df<007FB912E0BA12F0A26C18E03C04789A4D>0 D<121FEA3F80EA7FC0EA FFE0A5EA7FC0EA3F80EA1F000B0B789E1C>I<0060160600F8160F6C161F007E163F6C16 7E6C6C15FC6C6CEC01F86C6CEC03F06C6CEC07E06C6CEC0FC06C6CEC1F80017EEC3F006D 147E6D6C5B6D6C485A6D6C485A6D6C485A6D6C485A6D6C485ADA7E3FC7FCEC3F7E6E5A6E 5A6E5AA24A7E4A7EEC3F7EEC7E3F4A6C7E49486C7E49486C7E49486C7E49486C7E49486C 7E49C7127E017E8049EC1F804848EC0FC04848EC07E04848EC03F04848EC01F84848EC00 FC48C9127E007E163F48161F48160F00601606303072B04D>I<007FBA1280BB12C0A26C 1980CEFCB0007FBA1280BB12C0A26C1980CEFCB0007FBA1280BB12C0A26C1980422C7BAE 4D>17 D<037FB612E00207B712F0143F91B812E0010301C0C9FCD907FCCAFCEB0FE0EB3F 8049CBFC13FC485A485A485A5B485A121F90CCFC123EA2123C127CA2127812F8A25AA87E A21278127CA2123C123EA27E7F120F6C7E7F6C7E6C7E6C7E137E6D7EEB1FE0EB07FC6DB4 7E010090B712E0023F16F01407020016E092CAFCB0001FB912E04818F0A26C18E03C4E78 BE4D>I<19E0F003F0180FF03FE0F0FF80943803FE00EF0FF8EF3FE0EFFF80DC03FEC7FC EE0FF8EE3FE0EEFF80DB03FEC8FCED1FF8ED7FE0913801FF80DA07FEC9FCEC1FF0EC7FC0 4948CAFCEB07FCEB1FF0EB7FC04848CBFCEA07FCEA1FF0EA7FC048CCFCA2EA7FC0EA1FF0 EA07FCEA01FF38007FC0EB1FF0EB07FCEB01FF9038007FC0EC1FF0EC07FC913801FF8091 38007FE0ED1FF8ED07FE923800FF80EE3FE0EE0FF8EE03FE933800FF80EF3FE0EF0FF8EF 03FE943800FF80F03FE0F00FF01803F000E01900B0007FB912E0BA12F0A26C18E03C4E78 BE4D>20 D<127012FCB4FCEA7FC0EA1FF0EA07FCEA01FF38007FC0EB1FF0EB07FCEB01FF 9038007FC0EC1FF0EC07FC913801FF809138007FE0ED1FF8ED07FE923800FF80EE3FE0EE 0FF8EE03FE933800FF80EF3FE0EF0FF8EF03FE943800FF80F03FE0F00FF0A2F03FE0F0FF 80943803FE00EF0FF8EF3FE0EFFF80DC03FEC7FCEE0FF8EE3FE0EEFF80DB03FEC8FCED1F F8ED7FE0913801FF80DA07FEC9FCEC1FF0EC7FC04948CAFCEB07FCEB1FF0EB7FC04848CB FCEA07FCEA1FF0EA7FC048CCFC12FC1270CDFCB0007FB912E0BA12F0A26C18E03C4E78BE 4D>I<196019F0A31801A219E01803A2F007C0A2F00F80A2F01F0060187E604D5AEF07F0 4D5AEF3F804CB4C7FCEE07FCEE7FF8923807FFE092B5C8FC49B512FC007FB612C0B600FC C9FCA26CECFFC0D8000114FC90C713FF030713E09238007FF8EE07FCEE01FF9338003F80 EF0FE0717EEF01F8717E187E8484F00F80A2F007C0A2F003E0A2180119F0A21800A31960 1900B0007FB912E0BA12F0A26C18E03C4E78BE4D>I<126012F0A37EA21278127CA27EA2 7EA26C7E7F6C7E6C7E6C7EEA00FE137FEB1FC0EB0FF8EB03FE903801FFE09038007FFE91 380FFFF00203EBFFF8DA003F90B512E0030315F0A2033F15E00203B500F8C7FC020F01F0 C8FCDA7FFEC9FC903801FFE04948CAFCEB0FF8EB1FC0017FCBFC13FEEA01F8485A485A48 5A5B48CCFCA2123EA25AA2127812F8A25AA31260CDFCB0007FB912E0BA12F0A26C18E03C 4E78BE4D>III<037FB612E00207B712F0143F91B812E0010301 C0C9FCD907FCCAFCEB0FE0EB3F8049CBFC13FC485A485A485A5B485A121F90CCFC123EA2 123C127CA2127812F8A25AA87EA21278127CA2123C123EA27E7F120F6C7E7F6C7E6C7E6C 7E137E6D7EEB1FE0EB07FC6DB47E010090B712E0023F16F01407020016E03C3A78B54D> I<00604A7E00F8EC03E000FE15F8D87F80EB01FED83FE06D6C7ED80FF8EC3FE0D803FCEC 0FF0C6B4EC03FCD93FC0EB00FFD90FF0EC3FC0D907FCEC1FF0D901FFEC07FC6D6C6CEB01 FEDA1FE09038007F80DA07F8EC1FE0DA01FEEC07F86E6C6CEB03FEDB3FE0903800FF80DB 0FF0EC3FC0DB03FCEC0FF0DB00FFEC03FCDC3FC0EB00FFDC1FF0EC7FC0DC07FCEC1FF0DC 01FEEC07F89326007F80EB01FEDD1FE09038007F80DD07F8EC1FE0DD03FEEC0FF8942600 FF80EB03FEDE3FC0EB00FFDE0FE0EC3F80A2DE3FC0ECFF00DEFF80EB03FEDD03FEC7EA0F F8DD07F8EC1FE0DD1FE0EC7F80DD7F80D901FEC7FCDC01FEC7EA07F8DC07FCEC1FF0DC1F F0EC7FC0DC3FC04AC8FC04FFC7EA03FCDB03FCEC0FF0DB0FF0EC3FC0DB3FE0ECFF80DBFF 80D903FEC9FC4A48C7EA07F8DA07F8EC1FE0DA1FE0EC7F80DA7F80D901FECAFC4948C7EA 07FCD907FCEC1FF0D90FF0EC3FC0D93FC002FFCBFC01FFC7EA03FCD803FCEC0FF0D80FF8 EC3FE0D83FE0ECFF80D87F804948CCFC00FEC7EA03F800F815E00060EC018059407BB864 >29 D<1AF0A3861A78A21A7C1A3CA21A3E1A1E1A1F747EA2747E747E87747E747E1B7E87 757EF30FE0F303F8007FBC12FEBE1280A26CF3FE00CEEA03F8F30FE0F31F8051C7FC1B7E 63505A505A63505A505AA250C8FC1A1E1A3E1A3CA21A7C1A78A21AF862A359347BB264> 33 D<92B6FC02071580143F91B7120001030180C8FCD907FCC9FCEB1FE0EB3F80017ECA FC5B485A485A485A5B485A121F90CBFC123EA2123C127CA2127812F8A25AA2B9FC1880A2 180000F0CBFCA27EA21278127CA2123C123EA27E7F120F6C7E7F6C7E6C7E6C7E137E6D7E EB1FE0EB07FC6DB47E010090B6FC023F1580140702001500313A78B542>50 D<1706170F171FA2173EA2177CA217F8A2EE01F0A2EE03E0A2EE07C0A2EE0F80A2EE1F00 A2163EA25EA25EA24B5AA24B5AA24B5AA24B5AA24BC7FCA2153EA25DA25DA24A5AA24A5A A24A5AA24A5AA24AC8FCA2143EA25CA25CA2495AA2495AA2495AA2495AA249C9FCA2133E A25BA25BA2485AA2485AA2485AA2485AA248CAFCA2123EA25AA25AA25A1260305C72C600 >54 D<190E193E19FE18011803A21807A2180FA2181FA2183F183B187B187318F318E317 0118C31703188317071803170F171EA2173CA21778A217F0EE01E0A2EE03C0A2DC07807F 160F1700161E043E7F163C167C5E5E15014B5A5E15074B5A041FB67EED1F7F4BB7FCA25D 92B8FC03F0C8FC14014A48824A5A140F00305C007049C9127F4A8300F8137E6C5B6C4848 8326FF87F0043F133001FFF0F8F04AEFFFE04A7013C04A188091CAEBFE006C48EF0FF86C 48EF07C06C4894C8FCEA07E04C4D7DC750>65 DI<0403B712F8043F16FE4BB9FC1507151F157F91 2601FC0090C7EA07FE912603F001ED01FCDA07C04915F0DA0F80EE0080021F1800EC3F00 4A495A5C5C495A4A495A5C495A6DC7FC90C8485AA35F161FA34C5AA35F167F94B612C0A2 93B7FC624B93C7FC19FC04FCC71270030392C8FC5EA24B5AA2150F5E151F5EA24B5AA24B CBFCA215FEA24A5AA24A5AEA0180000F495AEA1FC0486C485AD87FF05B39FFFC1F80D87F FF90CCFC14FE6C5B6C13F06C5B00031380D800FCCDFC50477EC348>70 D72 D<031FB512F00203B77E021F16F091B812FC01 0317FF010F188090283FE07FC00F14C0D9FE00DA007F13E0D801F84A010F13F0D803E016 034848040013F8000F187F484801FF153F003FF01FFC007F180F90C7FC00FE92C8FC4818 0712F01280C74817F85DA21AF0190F020317E05DF11FC01A80193F020717004B157E6161 4E5A4A484A5A4E5AF01F80063EC7FC4A4814FCEF07F0EF7FE09239C07FFF8091273FC1FF FEC8FC03C713F003CF138091267F9FFCC9FC16800380CAFC92CBFC5CA25C1301A25C1303 A25C13075CA2130F5C131FA25C133F5C91CCFC137E137C136046497EC345>80 D<027E1718D907FF17F8011F1701017F6D150348B5EE07F00007180FEA0FC148C6EF1FE0 123CC790C913C0193FA24A17800101177FA24AEEFF001303A24A4B5A13074A150361010F 16075C011F160F4A4B5AA24948153F61017F167F91C9FC494C5A495DA248485D4D5B1203 495D00075E495FEF3F7F000F167E5B001F4C48C7FC4C5A494A5A003F5E933807E1FEEE0F C14848EC1F81EE3F0193383E03FC167C00FF15F8ED01F0923803E007ED07C0DB0F805B6D EB1F00153E15FC9026E001F0130F397FF007E09026FC0FC0153090B5C7EBFDF06C01FCED FFE04A5E6C01E093C7FC6C90C86C5AD803F016F8CAEA03C0454781C33E>85 D<0060170C00F0171EB3B3A66C173EA20078173C007C177C007E17FC003E17F86CEE01F0 6D15036C6CED07E06C6CED0FC0D803F8ED3F80D801FEEDFF0026007FC0EB07FCD93FFCEB 7FF8010FB612E001031580D9007F01FCC7FC020713C0373D7BBA42>91 D<913807FFC0027F13FC0103B67E010F15E0903A3FFC007FF8D97FC0EB07FCD801FEC8B4 FCD803F8ED3F80D807E0ED0FC04848ED07E04848ED03F090C91201003EEE00F8007E17FC 007C177C0078173C00F8173EA248171EB3B3A60060170C373D7BBA42>I102 D<12FEEAFFE0EA07F8EA 00FEEB7F806D7E6D7E130F6D7EA26D7EB3AD6D7EA26D7E806E7E6E7EEC0FE0EC03FC9138 00FFE0A2913803FC00EC0FE0EC3FC04A5A4AC7FC5C495AA2495AB3AD495AA2495A131F49 5A495A01FEC8FCEA07F8EAFFE048C9FC236479CA32>I<126012F0B3B3B3B3B3A8126004 6474CA1C>106 D<0070130700F01480B3B3B3B3B3A800701400196474CA32>I<1B0C1B1E 1B3EA21B7CA21BF8A2F201F0A2F203E0A2F207C0A2F20F80A2F21F00A21A3EA262A262A2 4F5AA2621903A24F5AA24F5AA24FC7FCA2193EA261A261A24E5AA24E5AA24E5AA24E5AA2 010C4CC8FC133C017C163EEA01FE00035F487E001E5F00387FD8707F4B5A00E07FD8003F 4B5A80011F4B5AA26E4A5A130F6E4AC9FC13076E143E13036E5C13016E5C7F6F5B027F13 01A26F485A143F6F485A141F6F485A140F6F48CAFC1407EDFC3E14035E15FE02015B15FF 6E5BA26F5AA26F5AA26F5AA26FCBFC150E4F647A8353>112 D<003FB912F84818FCA219 F80078CCFCB3B3AE007FB912F819FCA26C18F8CDFCB0007FB912F8BA12FCA26C18F83E4E 78BE4D>118 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Ft cmmi12 12 56 /Ft 56 123 df11 D<1578913807FFE0021F13FC91383C7FFEEC7007EC6003ECE0004A13381600A280A380A2 80147CA2147E143E143F816E7EA26E7E81140781EC3FFC14FF903803E1FEEB07C190381F 00FF133E49EB7F805B0001143F485A484814C049131F120F485AA248C7FC150F5A127EA3 00FEEC1F805AA316005A5DA2153E157E157CA26C5C127C4A5A6C495AA26C495A6C6C485A 6C6C48C7FC3803E07C3800FFF0EB1FC027487CC62B>14 DI<1530A7ED33FF033F13C0ED7C0092B5 FCDA03C31300DA0780C7FC4AC8FC141C14785C495A5C495A130749C9FC131E131C133C5B 5BA2485AA2485AA2485AA248CAFCA25A121EA2123E123CA3127C1278A412F8A67EA2127C 127EA2127F6C7E7F6C7E13F8EA0FFE3807FFC06C13F86C13FF6C6C13E0011F7F010313FC 9038007FFEEC1FFF14039138007F80153F151FA2150FA393C7FCA20102131E13076D6C5A 903801E0789038007FE0EC1F802A597CC42B>I<157E913801FF80913807C3E091381F01 F0EC3E004A13F814FC4948137C495A5C0107147E495A131F5C133F49C7127FA213FEA212 015B12034914FF1207A25B000F15FE1501A2485AA21503003F15FC5B90B6FCA24815F890 38800007A2150F00FF15F090C7FCA2ED1FE0A25AED3FC0A21680157F16005A15FEA24A5A A25D14035D4A5A007C495AA24A5A007E49C7FC003E133E5C001E5B6C485A380783C06CB4 C8FCEA00FC28477CC52D>18 D<147002F8140E0101153FA301035DA24A147EA2010715FE A24A5CA2010F1401A24A5CA2011F1403A24A5CA2013F1407A291C75BA249140FA2017E5D A201FE021F1318183849ED8030A20001033F13701860EE7F005E486C16E0DB01DF13C092 38039F016DD9071F1380489039801E0F83903BF7C078078700903AE1FFE003FE903AE07F 8000F8000F90CAFCA25BA2121FA25BA2123FA290CBFCA25AA2127EA212FEA25A12383541 7DAB3B>22 D<010FB712E0013F16F05B48B812E04817C02807E0060030C7FCEB800EEA0F 00001E010C13705A0038011C13605A0060011813E000E013381240C7FC5C4B5AA214F014 E01301150314C01303A3EB078082130FA2EB1F00A34980133E137EA24980A2000114015B A26C48EB00E0342C7EAA37>25 D<010FB612FC013F15FE5B48B712FC4816F82707E001C0 C7FC01805B380F0003121E121C5A4849C8FC126012E000405BC7FC140E141EA45CA3147C A2147814F8A4495AA31303A25C1307A3130FA25C6D5A2F2C7EAA2A>28 D<161CA21618A21638A21630A21670A21660A216E0A25EA21501A25EA21503A293C8FCA2 5DED7FE0913807FFFE91391FC63F809139FE0E07C0D901F8EB03F0903A07E00C00F8D91F C08090263F001C137E017E814913184848ED1F8000031438485A4848013014C0A2484813 70A248481360A248C712E0A24B133F481780481301A24B137F180014034816FE92C7FC4C 5A6C49495AA2007E0106495A4C5A6C010E495A4C5A261F800C49C7FC000F15FC3A07C01C 01F8D803E0EB07E03A01F8181F80D8007E01FEC8FC90381FFFF801011380D90030C9FCA2 1470A21460A214E0A25CA21301A25CA21303A291CAFCA332597BC43A>30 D<121EEA7F80A2EAFFC0A4EA7F80A2EA1E000A0A78891B>58 D<121EEA7F8012FF13C0A2 13E0A3127FEA1E601200A413E013C0A312011380120313005A1206120E5A5A5A12600B1D 78891B>II<1618163C167CA2167816F8A216F01501 A216E01503A216C01507A21680150FA2ED1F00A2151E153EA2153C157CA2157815F8A25D 1401A24A5AA25D1407A25D140FA292C7FC5CA2141E143EA2143C147CA25CA25C1301A25C 1303A25C1307A25C130FA291C8FC5BA2133EA2133C137CA2137813F8A25B1201A25B1203 A2485AA25B120FA290C9FC5AA2121E123EA2123C127CA2127812F8A25A126026647BCA31 >I<127012FCB4FCEA7FC0EA1FF0EA07FCEA01FF38007FC0EB1FF0EB07FE903801FF8090 38007FE0EC1FF8EC03FE913800FF80ED3FE0ED0FF8ED03FF030013C0EE3FF0EE0FFCEE01 FF9338007FC0EF1FF0EF07FCEF01FF9438007FC0F01FE0A2F07FC0943801FF00EF07FCEF 1FF0EF7FC04C48C7FCEE0FFCEE3FF0EEFFC0030390C8FCED0FF8ED3FE0EDFF80DA03FEC9 FCEC1FF8EC7FE0903801FF80D907FECAFCEB1FF0EB7FC04848CBFCEA07FCEA1FF0EA7FC0 48CCFC12FC12703B3878B44C>I<1830187018F0A217011703A24D7EA2170F171FA21737 A2176717E717C793380187FCA2EE0307EE07031606160CA216181638163004607FA216C0 030113011680ED0300A21506150E150C5D845D03707F15605DA24A5A4AB7FCA25C0206C8 7F5C021C157F14185CA25C14E05C495A8549C9FC49163F1306130E5B133C137C01FE4C7E D807FFED01FF007F01F0027FEBFFC0B5FC5C42477DC649>65 D<91B87E19F019FC020090 39C00003FF6F480100138003FFED3FC01AE093C8121FF10FF0A24A17F84B1507A314035D 190FA2020717F04B151F1AE0193F020F17C04BED7F80F1FF004E5A021F4B5A4B4A5AF01F F0F03FC0023F4AB4C7FC4BEB1FFC92B612F018FEDA7FC0C7EA7F804BEC1FC0F00FF0727E 02FF6F7E92C8FC727EA249835CA313035CA301075F4A1503A24E5A130F4A4B5A4E5AA201 1F4C5A4A4B5A4D485A013F4B48C7FCEF0FFC4AEC3FF801FF913801FFE0B9128005FCC8FC 17C045447CC34A>I<91B912FCA3020001C0C7123F6F48EC03F803FF1501190093C91278 A21A385C5DA3020317305DA314074B1460A218E0020F4B13005DA21701021F5D4B130317 07170F023F027FC8FC92B6FCA391397FC0007E4B131EA2170E02FF140C92C7FCA2171C49 031813035C611906010392C7FC4A160E190C191C010717184A163819301970130F4A5E18 0161011F16034A15074E5A013F163F4EC7FC4AEC03FF01FFED3FFEB9FCA26046447CC348 >69 D<91B912F8A3020001C0C7123F6F48EC07F003FF1503190193C9FCA21A705C5DA302 0317605DA314075D18C01701020F4B13005DA21703021F92C8FC4B5BA25F023F141E4B13 FE92B5FCA24A5CED8000173CA202FF141892C7FCA217384915305CA21770010315604A91 C9FCA313075CA3130F5CA3131F5CA2133FA313FFB612F8A345447CC33F>I<4CB46C1318 043F01F013384BB512FC0307D9007E1378DB1FF090380F80F0DB7F80EB03C1DA01FEC7EA 01C34A48EC00E7DA0FF0ED7FE04A48153F4A5A02FFC9121F494817C04948160F495A130F 4A178049481607495A137F4948170091CAFC5A485A1906485AA2485A96C7FC121F5BA212 3F5BA3127F5BA4485A4CB612805EA293C7EBE000725AA3007F60A218FF96C7FCA26C7E5F 606C7EA2000F16036D5E6C6C15070003160F6C6C151F6C6CED3DF8D97F8014786D6CEB01 E0D91FF0903807C078D907FE90387F00700101B500FC1330D9003F01F090C8FC020790CA FC45487CC54D>I<91B6D8E003B61280A3020001E0C70003EB8000DB7F806E48C7FC03FF 1503A293C85BA219075C4B5EA2190F14034B5EA2191F14074B5EA2193F140F4B5EA2197F 141F4B5EA219FF143F92B8C8FCA3DA7FC0C712014B5DA2180314FF92C85BA218075B4A5E A2180F13034A5EA2181F13074A5EA2183F130F4A5EA2187F131F4A5EA2013F16FFA24A93 C9FCD9FFE002037FB6D8E003B67EA351447CC351>I<91B600E049B512C0A3020001E0C8 383FF800DB7F80ED1FE003FF94C7FC1A3E93C9127862F101C04A4C5A4B4BC8FC191C6102 035E4B5DF003804EC9FC0207150E4B14386060020F4A5A4B0107CAFC170E5F021F14784B 13F84C7E1603023F130F4B487E163BEEE1FF91387FC1C1DB83807FED8700159CDAFFB86D 7E5D03C06D7E5D4990C7FC4A6E7EA2717E13034A811707A201076F7E5C717EA2130F4A6E 7FA2727E131F5C727E133F854A82D9FFE04B7EB600E0010FB512E05FA252447CC353>75 D<91B500C0933803FFFE63630200F1FE00DB6FE0EE1BF803EF171F1B3703CFEF67F0A21B CF0201EF018F038F60DB87F0ED030F1B1F020317060307040C5BA2F2183F020717300206 616F6C15601B7F020E17C0020CDC018090C7FCA24F485A021C16060218606F6C5C1A0102 381618023004305BA2F16003027016C00260606F6CEB01801A0702E0ED03004A03065CA2 4E130F01015E4A60047F5B1A1F01035E91C74A5CA24D48133F494BC7FC010661EE3F861A 7F010E158C010C039892C8FCA205B05C011C15E001186001386E5A190101785D01FC92C7 5BD803FFEF07FEB500F8011E0107B512FE161C160C5F447BC35E>77 D79 D<91B712FEF0FFE019F802009039C0000FFE6F48EB01FF03FF913800 7F80F13FC093C8EA1FE0A24AEE0FF0A25D1AF81403A25DA21407F11FF05DA2020FEE3FE0 A24B16C0197F021F1780F1FF004B4A5A4E5A023F4B5A4E5A4BEC3FC006FFC7FC027FEC07 FC92B612F018800380CAFC14FFA292CBFCA25BA25CA21303A25CA21307A25CA2130FA25C A2131FA25CA2133FA25CEBFFE0B612E0A345447CC33F>I<9339FF8001800307EBF00303 3F13FC9239FF007E07DA01F8EB0F0FDA07E09038079F004A486DB4FC4AC77E023E804A5D 187E5C495A183C495AA213074A1538A3130F183080A295C7FC806D7E8014FF6D13E015FC 6DEBFFC06D14FC6E13FF6E14C0020F80020314F8EC003F03077F9238007FFE160F160370 7E8283A283A21206A4000E163EA2120C177E001E167CA25F5F003F15014C5A6D4A5A4C5A 486C4AC8FC6D143ED87CF85CD8787E495A3AF01FC00FE0D8E007B51280010149C9FC39C0 003FF039487BC53C>83 D<48BA12C05AA291C7D980001380D807F092C7121F4949150F01 80170748C75B1903120E48020316005E12181238003014074C5C00701806126000E0140F 485DA3C8001F92C7FC5EA3153F5EA3157F5EA315FF93CAFCA35C5DA314035DA314075DA3 140F5DA3141F5DA3143F5DA2147FA214FF01037F001FB612FCA25E42447EC339>I<007F B56C91381FFFF8B65DA2000101E0C8000313006C0180ED01FCF000F0614E5AA2017F4C5A 96C7FC1806A2606E5DA2013F5E1870186060A24D5A6E4AC8FCA2011F1506170E170C5FA2 6E5C5FA2010F5D16015F4CC9FCA26E13065EA201075C5EA25E16E06E5B4B5A13034BCAFC 1506A25D151CECFE185D13015D5DA26E5AA292CBFC5C13005C5CA25CA25C45467BC339> 86 DI<023FB500E0011FB5FCA39126007FFEC7000313E0DB3FF8913801FE006F48 6E5A1AF06F6C4A5A626F6C4A5A0706C7FC190E6F6C5C616F6C5C6171485A6F5D4EC8FC93 387FC00660706C5A6060706C5A17F193380FFB8005FFC9FC5F705AA2707EA3707E5E0406 7F5E93381C7FC0163816704C6C7EED01C04B486C7E160015064B6D7E5D4B6D7E5D5D4A48 6D7E14034AC76C7E140E5C4A6E7F143002E06F7E495A0103707E495A131F496C4B7E2603 FFE04A487E007F01FC021FEBFFF0B5FCA250447EC351>I<020FB812C05C1A8093268000 01130003F8C7FCDA3FE04A5A03804A5A92C8485A027E4B5A027C4B5A02784B5A4A4B5AA2 4A4A90C7FC4A4A5A01014B5A4D5A4A4A5A01034B5A91C8485A4D5AA290C84890C8FC4C5A 4C5A4C5A4C5A4C5A4C5A4C5AA24B90C9FC4B5A4B5A4B5A4B5A4B5A4B5AA24B5A4A90CAFC 4A5A4A4814064A5A4A5A4A48140E4A48140CA24A48141C4990C8121849481538495A4948 5D495A494815F049485D1701494814034890C8485A4848150F4848151F48484B5A484815 FF48481403043F90C8FC48B8FCB9FC5F42447BC343>90 D97 DIIIII<157E913803FF8091390FC1E0E091391F0073F0027E13334A133F4948131F01 0315E04948130F495AA2494814C0133F4A131F137F91C713805B163F5A491500A25E1203 49147EA216FEA2495CA21501A25EA21503150700015D150F0000141F6D133F017CEB77E0 90383E01E790381F078F903807FE0FD901F85B90C7FC151FA25EA2153FA293C7FCA2001C 147E007F14FE485C4A5A140348495AEC0FC000F8495A007C01FEC8FC381FFFF8000313C0 2C407EAB2F>I<14FE137FA3EB01FC13001301A25CA21303A25CA21307A25CA2130FA25C A2131FA25CED3FC090393F81FFF0913887C0FC91380E007E023C133ED97F70133F4A7F4A 14805C13FF91C7FC5BA24848143F17005BA200035D167E5BA2000715FE5E5B1501000F5D A24913035E001F1607030713064914E0150F003FEDC00E170C90C7141CEE801848163817 30007E167017E000FE91380781C0EEC38048913801FF000038EC007C30467BC438>I<14 1E143F5C5CA3147E143891C7FCAE133EEBFF803801C3C0380781E0380601F0120E121CEA 180312381230A2EA700700605BA2EAE00F00C05BEA001F5CA2133F91C7FCA25B137E13FE 5BA212015BEC03800003140013F01207495A1406140E140CEBC01C141814385C00035BEB E1C0C6B45A013EC7FC19437DC121>I<163C16FEA21501A316FCED00701600AE15FCEC03 FF91380F0780021C13C091383803E0147014E014C01301EC8007130314005B0106130F13 0E010C14C090C7FC151FA21680A2153FA21600A25DA2157EA215FEA25DA21401A25DA214 03A25DA21407A25DA2140FA25DA2141F5DA2143F001C91C7FC127F48137E5CA248485AEB 03E038F807C038781F80D83FFEC8FCEA07F0275681C128>I<14FE137FA3EB01FC130013 01A25CA21303A25CA21307A25CA2130FA25CA2131FA25C163F013FECFFC0923803C0E091 38000703ED1E0F491338ED701F017E13E0EC01C001FE018013C00203EB07004948C8FC14 0E00015B5C495A5C3803FBC001FFC9FC8014F83807F1FE9038F03F809038E00FE06E7E00 0F130381EBC001A2001FED01C017801380A2003F15031700010013F05E481506160E007E 150C161C00FE01005BED787048EC3FE00038EC0F802B467BC433>II<01F8D903FCEC7F80D803FED91FFF903803FFE0D8071F903B7C0F C00F81F83E0E0F80E007E01C00FC001C9026C3C0030178137C271807C700D9F0E0137E02 CE902601F1C0133E003801DCDAFB80133F003001D892C7FCD90FF814FF0070495C006049 5CA200E04949485CD8C01F187E4A5C1200040715FE013F6091C75BA2040F14014960017E 5D1903041F5D13FE494B130762043F160E0001060F130C4992C713C0191F4CED801C0003 1A1849027E1638F2003004FE167000071A60494A16E0F201C0030192380F0380000FF187 00494AEC03FED80380D90070EC00F84F2D7DAB55>I<01F8EB03FCD803FEEB1FFFD8071F 90387C0FC03B0E0F80E007E03A0C07C3C003001CD9C7007F001801CE1301003801DC8000 3013D8EB0FF800705B00605BA200E0491303D8C01F5D5C12001607013F5D91C7FCA2160F 495D137E161F5F13FE49143F94C7FC187000014B136049147E16FE4C13E0000317C04915 0104F81380170300071700495D170EEE781C000FED7C3849EC1FF0D80380EC07C0342D7D AB3A>III<91380FC00391 383FF0079138F83C0F903903E00E1E90390FC0063E90381F800790393F00037E4914FC01 FE1301485AA2484814F812075B000F140316F0485AA2003F14074914E0A3007F140F4914 C0A3151F90C713805AA2153F6C1500A2127E5D007F14FE6C1301A214036C6C485A000F13 1E3807C0383803E0F13901FFC1F838003F01130014035DA314075DA3140F5DA2141FA214 3F011FB51280A21600283F7DAB2B>I<01F8EB0FC0D803FEEB7FF0D8070FEBF038000E90 3883C07C3A0C07C701FC001C13CE0018EBDC03003813D8003013F8D90FF013F800709038 E000E0006015005C12E0EAC01F5C1200A2133F91C8FCA35B137EA313FE5BA312015BA312 035BA312075BA3120F5BEA0380262D7DAB2C>II<141C147EA314FE5CA313015CA313035CA313075CA2007FB512FCB6FC15 F839000FC000A2131F5CA3133F91C7FCA35B137EA313FE5BA312015BA312035BA2157000 0714605B15E015C0000F130101C013801403EC070000071306140E5C6C6C5A000113F038 00FFC0013FC7FC1E3F7EBD23>I<133ED9FF8014E02603C3C0EB03F0380703E0380601F0 000E1507121CD818035D12380030150FA2D870075D00605B161FEAE00F00C0495CEA001F 4A133FA2013F92C7FC91C7FC5E5B017E147EA216FE13FE495CA20301EB01801703484802 F81300A25F0303130616F000001407030F130E6D010D130C017C011D131C033913186D90 38F0F838903A1F03C07870903A07FF803FE0903A01FC000F80312D7DAB38>I<013E140E D9FF80EB3F802603C3C0137F380703E0380601F0120E121CD81803143F0038151F003015 0FA2D87007140700605BA2D8E00F150000C0497FEA001F4A5B1606133F91C7FC160E4914 0C137EA2161C01FE14185B1638163016704848146016E05E150100005D15036D49C7FC15 06017C130E017E5B6D137890380F81E06DB45AD900FEC8FC292D7DAB2F>I<013E1738D9 FF80D901C013FC2603C3C0903907E001FE380703E0380601F0000E150F001C16C0D81803 16000038187E0030031F143E00705ED86007171E5C163FD8E00F92C7121C00C049160CEA 001F4A49141C047E1418133F91C7FC04FE1438491730017E5CA20301157001FE1760495C 19E019C0A24949481301198018031900606D0107140670130E017C010F5C017E010C1418 013ED91CFC13386DD9387E13F0903B0FC0F01F01C0903B03FFC00FFF809028007F0001FE C7FC3F2D7DAB46>I<02FCEB07E0903A03FF801FFC903A0F07C0781E903A1C03E0E01F90 3A3801F1C07FD9700013804901FB13FF4848EBFF00495B000316FE90C71438484A130012 061401000E5C120CC7FC14035DA314075DA3140F5DA3021F143817305D1770023F146012 1E003F16E0267F807FEB01C0026F148000FF01EF1303D901CFEB070000FE903887C00E26 7C03835B3A3C0F01E0783A1FFC00FFE0D803F0EB3F80302D7EAB37>I<133ED9FF8014E0 2603C3C0EB03F0380703E0380601F0000E1507001C16E0EA180312380030150F007016C0 EA60075C161FD8E00F158000C05BEA001F4A133F1700133F91C7FC5E49147E137EA216FE 01FE5C5BA215015E485AA215035EA200001407150F6D5C017C131F153F6D13FF90391F03 CFC0903807FF8F903801FC0F90C7121F5EA2153F93C7FCD807C05BD81FE0137E5DA24848 485A4A5A01805B39380007C00018495A001C49C8FC6C137C380781F83803FFE0C66CC9FC 2C407DAB30>I<027CEB018049B413034901801300010F6D5A49EBE00E6F5A90393F03F8 38903978007EF80170EB1FF00160EB01E001E05C49495A90C748C7FC150E5D5D5D5D4A5A 4A5A4AC8FC140E5C5C5C5CEB03C049C9FC130E49141C4914185B49143848481430491470 D8039014F048B4495A3A0FEFC007C0391E03F01FD81C01B55A486C91C7FC485C00606D5A 00E0EB3FF048EB0FC0292D7CAB2D>I E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fu cmbx12 17.28 43 /Fu 43 128 df34 D45 DI<16F04B7E1507151F153FEC01FF1407147F010FB5FCB7 FCA41487EBF007C7FCB3B3B3B3007FB91280A6395E74DD51>49 D<913801FFF8021FEBFF C091B612F8010315FF010F16C0013F8290267FFC0114F89027FFE0003F7F4890C7000F7F 48486E7FD807F86E148048486E14C048486E14E048486F13F001FC17F8486C816D17FC6E 80B56C16FE8380A219FFA283A36C5BA26C5B6C90C8FCD807FC5DEA01F0CA14FEA34D13FC A219F85F19F04D13E0A294B512C019804C14004C5B604C5B4C5B604C13804C90C7FC4C5A 4C5A4B13F05F4B13804B90C8FC4B5AED1FF84B5A4B5A4B48143F4A5B4A48C8FC4A5A4A48 157E4A5A4A5AEC7F8092C9FC02FE16FE495A495A4948ED01FCD90FC0150749B8FC5B5B90 B9FC5A4818F85A5A5A5A5ABAFCA219F0A4405E78DD51>I<92B5FC020F14F8023F14FF49 B712C04916F0010FD9C01F13FC90271FFC00077FD93FE001017F49486D8049C86C7F4848 83486C6F7F14C0486D826E806E82487FA4805CA36C5E4A5E6C5B6C5B6C495E011FC85A90 C95CA294B55A614C91C7FC604C5B4C5B4C5B4C5B047F138092260FFFFEC8FC020FB512F8 17E094C9FC17F817FF91C7003F13E0040713F8040113FE707F717F7113E085717FA2717F 85A285831A80A31AC0EA03FCEA0FFF487F487F487FA2B57EA31A80A34D14005C7E4A5E5F 6C495E49C8485BD81FF85F000F5ED807FE92B55A6C6C6C4914806C01F0010791C7FC6C90 26FF803F5B6D90B65A011F16F0010716C001014BC8FCD9001F14F0020149C9FC426079DD 51>II<01C0 EE01C0D801F8160F01FF167F02F0EC07FFDAFF8090B5FC92B71280190060606060606060 95C7FC17FC5F17E0178004FCC8FC16E09026FC3FFCC9FC91CBFCADED3FFE0203B512F002 0F14FE023F6E7E91B712E001FDD9E00F7F9027FFFE00037F02F801007F02E06EB4FC0280 6E138091C8FC496F13C04917E07113F0EA00F090C914F8A219FC83A219FEA419FFA3EA03 F0EA0FFC487E487E487FA2B57EA319FEA35C4D13FC6C90C8FC5B4917F8EA3FF001804B13 F06D17E0001F5E6C6C17C06D4B1380D807FC92B512006C6C4A5B6C6C6C01075B6C01E001 1F5BD97FFE90B55A6DB712C0010F93C7FC6D15FC010115F0D9003F1480020301F0C8FC40 6078DD51>III65 DI73 D77 D80 D82 D<001FBEFCA64849C79126E0000F148002E0180091C8171F498601F81A0349864986A249 1B7FA2491B3F007F1DC090C9181FA4007E1C0FA600FE1DE0481C07A5CA95C7FCB3B3B3A3 021FBAFCA663617AE070>84 D<496C1560496C15F0496C4A7E010F150349484A5A49484A 5A49C8485A01FE4B5A48484BC7FC49157E48485D48484A5AA248484A5AA248484A5AA290 C85B48150F003E5EA2007E151F007C93C8FCA300FC5D48153EA2017FED1FC026F9FFC0EC 7FF000FB6D4A7EB56C013F7F6E816E81A26E1680A26C81A36C81A24A16006C816C496D5B 6C496D5B6C496D5B6C496E5A6C6CC8EA1FC039316CE353>92 D<913803FFFE027FEBFFF0 0103B612FE010F6F7E4916E090273FFE001F7FD97FE001077FD9FFF801017F486D6D7F71 7E486D6E7F85717FA2717FA36C496E7FA26C5B6D5AEB1FC090C9FCA74BB6FC157F0207B7 FC147F49B61207010F14C0013FEBFE004913F048B512C04891C7FC485B4813F85A5C485B 5A5CA2B55AA45FA25F806C5E806C047D7F6EEB01F96C6DD903F1EBFF806C01FED90FE114 FF6C9027FFC07FC01580000191B5487E6C6C4B7E011F02FC130F010302F001011400D900 1F90CBFC49437CC14E>97 D<903807FF80B6FCA6C6FC7F7FB3A8EFFFF8040FEBFF80047F 14F00381B612FC038715FF038F010014C0DBBFF0011F7FDBFFC001077F93C76C7F4B0200 7F03F8824B6F7E4B6F13804B17C0851BE0A27313F0A21BF8A37313FCA41BFEAE1BFCA44F 13F8A31BF0A24F13E0A24F13C06F17804F1300816F4B5A6F4A5B4AB402075B4A6C6C495B 9126F83FE0013F13C09127F00FFC03B55A4A6CB648C7FCDAC00115F84A6C15E091C7001F 91C8FC90C8000313E04F657BE35A>I<92380FFFF04AB67E020F15F0023F15FC91B77E01 039039FE001FFF4901F8010113804901E0010713C04901804913E0017F90C7FC49484A13 F0A2485B485B5A5C5A7113E0485B7113C048701380943800FE0095C7FC485BA4B5FCAE7E A280A27EA2806C18FCA26C6D150119F87E6C6D15036EED07F06C18E06C6D150F6D6DEC1F C06D01E0EC7F806D6DECFF00010701FCEB03FE6D9039FFC03FFC010091B512F0023F5D02 0F1580020102FCC7FCDA000F13C03E437BC148>II<92380FFFC04AB512FC020FECFF80023F 15E091B712F80103D9FE037F499039F0007FFF011F01C0011F7F49496D7F4990C76C7F49 486E7F48498048844A804884485B727E5A5C48717EA35A5C721380A2B5FCA391B9FCA41A 0002C0CBFCA67EA380A27EA27E6E160FF11F806C183F6C7FF17F006C7F6C6D16FE6C1701 6D6C4B5A6D6D4A5A6D01E04A5A6D6DEC3FE0010301FC49B45A6D9026FFC01F90C7FC6D6C 90B55A021F15F8020715E0020092C8FC030713F041437CC14A>III<903807FF80B6FCA6C6FC7F7FB3A8EF1FFF94B512F0040714FC041F14FF4C8193267FE0 7F7F922781FE001F7FDB83F86D7FDB87F07FDB8FC0814C7F039FC78015BE03BC8003FC82 5DA25DA25DA45DB3B2B7D8F007B71280A651647BE35A>II<903807FF80B6FCA6C6FC7F7FB3A90503B6 1280A6DD003FEB8000DE0FFCC7FCF01FF04E5AF0FFC04D5B4D90C8FCEF07FC4D5AEF3FF0 4D5A4D5A4C90C9FC4C5AEE0FFC4C5A4C5AEE7FC04C7E03837F03877F158F039F7F03BF7F 92B5FC838403FC804B7E03F0804B6C7F4B6C7F1580707F707F707FA270807080717FA271 7F717F717FA2717F717F83867180727F95B57EB7D8E00FECFFF0A64C647BE355>107 D<903807FF80B6FCA6C6FC7F7FB3B3B3B3ADB712E0A623647BE32C>I<902607FF80D91F FFEEFFF8B691B500F00207EBFF80040702FC023F14E0041F02FF91B612F84C6F48819326 7FE07F6D4801037F922781FE001F9027E00FF0007FC6DA83F86D9026F01FC06D7F6DD987 F06D4A487F6DD98FC0DBF87EC7804C6D027C80039FC76E488203BEEEFDF003BC6E4A8003 FC04FF834B5FA24B5FA24B94C8FCA44B5EB3B2B7D8F007B7D8803FB612FCA67E417BC087 >I<902607FF80EB1FFFB691B512F0040714FC041F14FF4C8193267FE07F7F922781FE00 1F7FC6DA83F86D7F6DD987F07F6DD98FC0814C7F039FC78015BE03BC8003FC825DA25DA2 5DA45DB3B2B7D8F007B71280A651417BC05A>I<923807FFE092B6FC020715E0021F15F8 027F15FE494848C66C6C7E010701F0010F13E04901C001037F49496D7F4990C87F49486F 7E49486F7E48496F13804819C04A814819E048496F13F0A24819F8A348496F13FCA34819 FEA4B518FFAD6C19FEA46C6D4B13FCA36C19F8A26C6D4B13F0A26C19E06C6D4B13C0A26C 6D4B13806C6D4B13006D6C4B5A6D6D495B6D6D495B010701F0010F13E06D01FE017F5B01 0090B7C7FC023F15FC020715E0020092C8FC030713E048437CC151>I<902607FF80EBFF F8B6010FEBFF80047F14F00381B612FC038715FF038F010114C09227BFF0003F7FC6DAFF C0010F7F6D91C76C7F6D496E7F03F86E7F4B6E7F4B17804B6F13C0A27313E0A27313F0A2 1BF885A21BFCA3851BFEAE4F13FCA41BF861A21BF0611BE0611BC06F92B512801B006F5C 6F4A5B6F4A5B03FF4A5B70495B04E0017F13C09226CFFC03B55A03C7B648C7FC03C115F8 03C015E0041F91C8FC040313E093CBFCB3A3B712F0A64F5D7BC05A>III<913A3FFF8007800107B5EAF81F011FECFE7F017F91B5 FC48B8FC48EBE0014890C7121FD80FFC1407D81FF0801600485A007F167F49153FA212FF 171FA27F7F7F6D92C7FC13FF14E014FF6C14F8EDFFC06C15FC16FF6C16C06C16F06C826C 826C826C82013F1680010F16C01303D9007F15E0020315F0EC001F1500041F13F8160700 7C150100FC81177F6C163FA2171F7EA26D16F0A27F173F6D16E06D157F6D16C001FEEDFF 806D0203130002C0EB0FFE02FCEB7FFC01DFB65A010F5DD8FE0315C026F8007F49C7FC48 010F13E035437BC140>II<902607FFC0ED3FFEB60207B5FCA6C6EE00076D826D82B3B3A260A360A260 7F60183E6D6D147E4E7F6D6D4948806D6DD907F0ECFF806D01FFEB3FE06D91B55A6E1500 021F5C020314F8DA003F018002F0C7FC51427BC05A>III<007FB600C0017FB512F8A6D8001F01F8C70007EBF0006D040190C7FC6D6D5D6D6D4A 5A6D6D4A5A70495A6D4C5A6E7F6E6D495A6E6D495A7049C8FC6E4A5A6E6D485A6E6D485A 6E13FFEF8FF06EEC9FE06FEBFFC06F5C6F91C9FC5F6F5B816F7F6F7F8481707F8493B57E 4B805D4B80DB0FF37FDB1FE17F04C080153F4B486C7F4B486C7F4A486D7F4A486D7F4A5A 4B6D7F020F6E7F4A486D7F4A486D804A5A4AC86C7F49486F7F4A6F7F0107707FEB3FFFB6 00F049B7FCA650407EBF55>II127 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fv cmr12 12 86 /Fv 86 128 df2 D10 D<9239FFC001FC020F9038F80FFF913B3F803E3F03 C0913BFC00077E07E0D903F890390FFC0FF0494890383FF81F4948EB7FF0495A494814E0 49C7FCF00FE04991393FC0038049021F90C7FCAFB912F0A3C648C7D81FC0C7FCB3B2486C EC3FF0007FD9FC0FB512E0A33C467EC539>I<4AB4FC020F13E091387F80F8903901FC00 1C49487FD907E0130F4948137F011FECFF80495A49C7FCA25B49EC7F00163E93C7FCACEE 3F80B8FCA3C648C7FC167F163FB3B0486CEC7FC0007FD9FC1FB5FCA330467EC536>I<91 3801FFC0020FEBFB8091387F803F903801FC00494813FFEB07E0EB1FC0A2495A49C7FC16 7F49143F5BAFB8FCA3C648C7123FB3B2486CEC7FC0007FD9FC1FB5FCA330467EC536>I< DBFF80EB3FE0020F9039F001FFFC913B3F807C0FF01F913CFC000E3F800380D903F86D48 486C7E4948D90FFC804948D93FF8130F4948017F4A7E49485C49C75BA25B494B6D5A041F 6E5A96C8FCACF107F0BBFCA3C648C7391FC0001F190F1907B3B0486C4A6C497E007FD9FC 0FB50083B512E0A34B467EC551>II22 D<121EEA7F80EAFFC0A9EA7F80 ACEA3F00AB121EAC120CA5C7FCAA121EEA7F80A2EAFFC0A4EA7F80A2EA1E000A4778C61B >33 D<001EEB03C0397F800FF000FF131F01C013F8A201E013FCA3007F130F391E6003CC 0000EB000CA401E0131C491318A3000114384913300003147090C712604814E0000614C0 000E130148EB038048EB070048130E0060130C1E1D7DC431>I<121EEA7F8012FF13C0A2 13E0A3127FEA1E601200A413E013C0A312011380120313005A1206120E5A5A5A12600B1D 78C41B>39 D<140C141C1438147014E0EB01C01303EB0780EB0F00A2131E5BA25B13F85B 12015B1203A2485AA3485AA348C7FCA35AA2123EA2127EA4127CA312FCB3A2127CA3127E A4123EA2123FA27EA36C7EA36C7EA36C7EA212017F12007F13787FA27F7FA2EB0780EB03 C01301EB00E014701438141C140C166476CA26>I<12C07E12707E7E7E120F6C7E6C7EA2 6C7E6C7EA21378137C133C133E131E131FA2EB0F80A3EB07C0A3EB03E0A314F0A21301A2 14F8A41300A314FCB3A214F8A31301A414F0A21303A214E0A3EB07C0A3EB0F80A3EB1F00 A2131E133E133C137C13785BA2485A485AA2485A48C7FC120E5A5A5A5A5A16647BCA26> I<16C04B7EB3AB007FBAFCBB1280A26C1900C8D801E0C9FCB3AB6F5A41407BB84C>43 D<121EEA7F8012FF13C0A213E0A3127FEA1E601200A413E013C0A312011380120313005A 1206120E5A5A5A12600B1D78891B>II<121EEA7F80A2EAFFC0A4 EA7F80A2EA1E000A0A78891B>I<14FF010713E090381F81F890383E007C01FC133F4848 EB1F8049130F4848EB07C04848EB03E0A2000F15F0491301001F15F8A2003F15FCA390C8 FC4815FEA54815FFB3A46C15FEA56D1301003F15FCA3001F15F8A26C6CEB03F0A36C6CEB 07E0000315C06D130F6C6CEB1F806C6CEB3F00013E137C90381F81F8903807FFE0010090 C7FC28447CC131>48 D<143014F013011303131F13FFB5FC13E713071200B3B3B0497E49 7E007FB6FCA3204278C131>II<49B4 FC010F13E0013F13FC9038FE01FE3A01F0007F80D803C0EB3FC048C7EA1FE0120EED0FF0 EA0FE0486C14F8A215077F5BA26C48130FEA03C0C813F0A3ED1FE0A2ED3FC01680ED7F00 15FE4A5AEC03F0EC1FC0D90FFFC7FC15F090380001FCEC007FED3F80ED1FC0ED0FE016F0 ED07F816FC150316FEA2150116FFA3121EEA7F80487EA416FE491303A2007EC713FC0070 1407003015F80038140F6C15F06CEC1FE06C6CEB3FC0D803E0EB7F803A01FE01FE003900 7FFFF8010F13E0010190C7FC28447CC131>II<000615C0D807C0130701FCEB 7F8090B612005D5D5D15E0158026063FFCC7FC90C9FCAE14FF010713C090381F01F09038 3800FC01F0137ED807C07F49EB1F8016C090C7120F000615E0C8EA07F0A316F81503A216 FCA5123E127F487EA416F890C712075A006015F0A20070140F003015E00038EC1FC07E00 1EEC3F806CEC7F006C6C13FE6C6C485A3901F807F039007FFFE0011F90C7FCEB07F82644 7BC131>II<121CA2EA1F8090B712C0A3481680A217 005E0038C8120C0030151C00705D0060153016705E5E4814014B5A4BC7FCC81206150E5D 151815385D156015E04A5AA24A5A140792C8FC5CA25C141E143EA2147E147CA214FCA213 01A3495AA41307A6130FAA6D5AEB01C02A457BC231>I<14FF010713E0011F13F890387F 00FE01FC133FD801F0EB1F804848EB0FC049EB07E00007EC03F048481301A290C713F848 1400A47FA26D130116F07F6C6CEB03E013FC6C6CEB07C09039FF800F806C9038C01F006C EBF03EECF87839007FFEF090383FFFC07F01077F6D13F8497F90381E7FFFD97C1F138049 6C13C02601E00313E048486C13F000079038007FF84848EB3FFC48C7120F003EEC07FE15 0148140016FF167F48153FA2161FA56C151E007C153EA2007E153C003E157C6C15F86DEB 01F06C6CEB03E06C6CEB07C0D803F8EB1F80C6B4EBFF0090383FFFFC010F13F001011380 28447CC131>I<14FF010713E0011F13F890387F80FC9038FC007E48487F4848EB1F8048 48EB0FC0000FEC07E0485AED03F0485A16F8007F140190C713FCA25AA216FE1500A516FF A46C5CA36C7E5D121F7F000F5C6C6C130E150C6C6C131C6C6C5BD8007C5B90383F01E090 390FFF80FE903801FE0090C8FC150116FCA4ED03F8A216F0D80F801307486C14E0486C13 0F16C0ED1F80A249EB3F0049137E001EC75A001C495A000F495A3907E01FE06CB51280C6 49C7FCEB1FF028447CC131>I<121EEA7F80A2EAFFC0A4EA7F80A2EA1E00C7FCB3A5121E EA7F80A2EAFFC0A4EA7F80A2EA1E000A2B78AA1B>I<121EEA7F80A2EAFFC0A4EA7F80A2 EA1E00C7FCB3A5121E127FEAFF80A213C0A4127F121E1200A512011380A3120313005A12 06120E120C121C5A5A12600A3E78AA1B>I<007FBAFCBB1280A26C1900CEFCB0007FBAFC BB1280A26C190041187BA44C>61 D63 D<16C04B7EA34B7EA34B7EA34B7EA3ED19FEA3ED30FFA203707FED607FA203E07FEDC03F A2020180ED801FA2DA03007F160FA20206801607A24A6D7EA34A6D7EA34A6D7EA2027081 0260147FA202E08191B7FCA249820280C7121FA249C87F170FA20106821707A2496F7EA3 496F7EA3496F7EA201788313F8486C83D80FFF03037FB500E0027FEBFFC0A342477DC649 >65 DI< DB0FFE146092B500C013E0020314F0913A0FFC01FC0191393FC0003E02FFC7EA0F83D903 FCEC03C74948EC01E74948EC00FF4948157F4948153F4948151F49C9120F485A49160712 0348481603A248481601A248481600A2123FA2491760127FA31900485AAE6C7EA21960A2 123F7FA2001F18E07F000F18C0A26C6C160119806C6C160312016DEE07006C6C16066D6C 150E6D6C5D6D6C5D6D6C15786D6C5D6D6C4A5AD900FFEC0780DA3FC0011FC7FCDA0FFC13 FC0203B512F0020014C0DB0FFEC8FC3B487BC546>II< B912F8A3000101C0C7127F6C6C48EC07FC17011700187C183C181CA284A31806A4180704 067FA395C7FCA4160EA2161E163E16FE91B5FCA3EC8000163E161E160EA21606A319C0A3 F0018093C7FCA41803A21900A260A260A2181EA2183E187EEF01FE170748486C147FB95A A33A447CC342>IIIII< 010FB512FEA3D9000313806E130080B3B3AB123F487E487EA44A5A13801300006C495A00 705C6C13076C5C6C495A6CEB1F802603E07FC7FC3800FFFCEB1FE027467BC332>IIIIIII82 D<49B41303010FEBE007013F13F89039FE00FE0FD801F8131FD807E0EB079F49EB03DF48 486DB4FC48C8FC4881003E81127E82127C00FC81A282A37E82A27EA26C6C91C7FC7F7FEA 3FF813FE381FFFE06C13FE6CEBFFE06C14FC6C14FF6C15C0013F14F0010F80010180D900 1F7F14019138001FFF03031380816F13C0167F163F161F17E000C0150FA31607A37EA36C 16C0160F7E17806C151F6C16006C5D6D147ED8FBC05CD8F9F0495AD8F07C495A90393FC0 0FE0D8E00FB51280010149C7FC39C0003FF02B487BC536>I<003FB912F8A3903BF0001F F8001F01806D481303003EC7150048187C0078183CA20070181CA30060180CA5481806A5 C81600B3B3A54B7EED7FFE49B77EA33F447DC346>IIII91 D<01C01318000114384848137048C712E0000EEB01C0000C1480001C1303 0018140000385B003013060070130E0060130CA300E0131C481318A400CFEB19E039FFC0 1FF801E013FCA3007F130FA2003F130701C013F8390F0001E01E1D71C431>II<130C131E133F497EEBF3C03801E1E038 03C0F03807807848487E001E7F487F0070EB038048EB01C00040EB00801A0E75C331>I< EB07FC90383FFF809038F80FE03903C003F048C66C7E000E6D7ED80FC0137E486C137F6D 6D7EA36F7EA26C5AEA0380C8FCA4EC0FFF49B5FC90380FFE1FEB3FC0EBFF00EA03FC485A 485A485A485A127F5B176048C7FCA3153FA36D137F007F14EF6D9038C7E0C0003F13013A 1FE00783F13B07F81E03FF802701FFFC0113003A001FE0007C2B2E7CAC31>97 DII<167FED3FFFA315018182B3EC7F80903803FFF090380FC07C 90383F000E017E1307496D5AD803F87F48487F5B000F81485AA2485AA2127FA290C8FC5A AB7E7FA2123FA26C7EA2000F5D7F6C6C5B00035C6C6C9038077F806C6C010E13C0013F01 1C13FE90380FC0F8903803FFE09026007F0013002F467DC436>IIIIII<143C14FFA2491380A46D1300A2143C91C7FCADEC7F80EB 3FFFA31300147F143FB3B3AA123E127F39FF807F00A2147EA25C6C485A383C01F06C485A 3807FF80D801FEC7FC195785C21E>IIII<3901FC01FE00FF903807FFC091381E07F091383801F800070170 7F0003EBE0002601FDC07F5C01FF147F91C7FCA25BA35BB3A8486CECFF80B5D8F83F13FE A32F2C7DAB36>II<3901FC03FC00FF9038 0FFF8091383C07E091387001F83A07FDE000FE00030180137FD801FFEC3F8091C7EA1FC0 4915E049140F17F0160717F8160317FCA3EE01FEABEE03FCA3EE07F8A217F0160F6D15E0 EE1FC06D143F17806EEB7E00D9FDC05B9039FCF003F891383C0FE091381FFF80DA03FCC7 FC91C9FCAE487EB512F8A32F3F7DAB36>I<91387F8003903903FFE00790380FE0789039 3F801C0F90387E000E496D5AD803F8EB039F0007EC01BF4914FF48487F121F5B003F81A2 485AA348C8FCAB6C7EA3123F7F121F6D5C120F6D5B12076C6C5B6C6C497E6C6C130E013F 131C90380FC0F8903803FFE09038007F0091C7FCAEEEFF80033F13FEA32F3F7DAB33>I< 3903F803F000FFEB1FFCEC3C3EEC707F0007EBE0FF3803F9C000015B13FBEC007E153C01 FF13005BA45BB3A748B4FCB512FEA3202C7DAB26>I<90383FE0183901FFFC383907E01F 78390F0003F8001E1301481300007C1478127800F81438A21518A27EA27E6C6C13006C7E 13FC383FFFE06C13FC6C13FF6C14C06C14E0C614F0011F13F81300EC0FFC140300C0EB01 FE1400157E7E153EA27EA36C143C6C147C15786C14F86CEB01F039F38003E039F1F00F80 39E07FFE0038C00FF01F2E7DAC26>I<1306A5130EA4131EA3133E137EA213FE12011207 001FB512F0B6FCA2C648C7FCB3A4150CAA017E131C017F1318A26D133890381F8030ECC0 70903807E0E0903801FFC09038007F001E3E7EBC26>IIIIII<003FB612E0A29038C0003F90C713C0003CEC7F800038EC FF00A20030495A0070495AA24A5A0060495AA24A5A4A5AA2C7485A4AC7FC5B5C495A1307 5C495A131F4A1360495A495AA249C712C0485AA2485A485A1501485A48481303A24848EB 07804848131F00FF14FF90B6FCA2232B7DAA2B>II<01F81302D803 FE13073907FF800E48EBE01C391F1FF8F8393807FFF0D8700113E039E0007FC00040EB1F 00200978C131>126 D<001EEB0780007FEB0FE039FF801FF0EBC03FA4EB801F397F000F E0001EEB07801C0A76C231>I E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fw cmr10 10 53 /Fw 53 128 df<121C127FEAFF80A213C0A3127F121C1200A412011380A2120313005A12 06120E5A5A5A12600A1979B917>39 D<146014E0EB01C0EB0380EB0700130E131E5B5BA2 5B485AA2485AA212075B120F90C7FCA25A121EA2123EA35AA65AB2127CA67EA3121EA212 1F7EA27F12077F1203A26C7EA26C7E1378A27F7F130E7FEB0380EB01C0EB00E014601352 78BD20>I<12C07E12707E7E7E120F6C7E6C7EA26C7E6C7EA21378A2137C133C133E131E A2131F7FA21480A3EB07C0A6EB03E0B2EB07C0A6EB0F80A31400A25B131EA2133E133C13 7C1378A25BA2485A485AA2485A48C7FC120E5A5A5A5A5A13527CBD20>I<121C127FEAFF 80A213C0A3127F121C1200A412011380A2120313005A1206120E5A5A5A12600A19798817 >44 DI<121C127FEAFF80A5EA7F00121C0909798817>I48 DII<0006140CD80780133C9038F003F890 B5FC5D5D158092C7FC14FC38067FE090C9FCABEB07F8EB3FFE9038780F803907E007E090 388003F0496C7E12066E7EC87EA28181A21680A4123E127F487EA490C71300485C12E000 605C12700030495A00385C6C1303001E495A6C6C485A3907E03F800001B5C7FC38007FFC EB1FE0213A7CB72A>53 D56 D<007FB812F8B912FCA26C17F8CC FCAE007FB812F8B912FCA26C17F836167B9F41>61 D<1538A3157CA315FEA34A7EA34A6C 7EA202077FEC063FA2020E7FEC0C1FA2021C7FEC180FA202387FEC3007A202707FEC6003 A202C07F1501A2D901807F81A249C77F167FA20106810107B6FCA24981010CC7121FA249 6E7EA3496E7EA3496E7EA213E0707E1201486C81D80FFC02071380B56C90B512FEA3373C 7DBB3E>65 D<913A01FF800180020FEBE003027F13F8903A01FF807E07903A03FC000F0F D90FF0EB039F4948EB01DFD93F80EB00FF49C8127F01FE153F12014848151F4848150FA2 48481507A2485A1703123F5B007F1601A35B00FF93C7FCAD127F6DED0180A3123F7F001F 160318006C7E5F6C7E17066C6C150E6C6C5D00001618017F15386D6C5CD91FE05C6D6CEB 03C0D903FCEB0F80902701FF803FC7FC9039007FFFFC020F13F002011380313D7BBA3C> 67 DI72 DI76 DI82 DI<003FB812E0A3D9C003EB001F273E0001FE130348EE01F00078160000 701770A300601730A400E01738481718A4C71600B3B0913807FF80011FB612E0A335397D B83C>II87 D91 D93 D97 DIIII<147E903803FF8090380FC1E0EB1F8790383F0FF0137EA213 FCA23901F803C091C7FCADB512FCA3D801F8C7FCB3AB487E387FFFF8A31C3B7FBA19>I< ED03F090390FF00FF890393FFC3C3C9039F81F707C3901F00FE03903E007C03A07C003E0 10000FECF000A248486C7EA86C6C485AA200075C6C6C485A6D485A6D48C7FC38073FFC38 060FF0000EC9FCA4120FA213C06CB512C015F86C14FE6CECFF804815C03A0F80007FE048 C7EA0FF0003E140348140116F8481400A56C1401007C15F06CEC03E0003F1407D80F80EB 0F80D807E0EB3F003901FC01FC39007FFFF0010790C7FC26387EA52A>IIIIII<2703F00FF0EB1FE000FFD93FFCEB7FF8913AF03F01E07E903BF1C01F8380 3F3D0FF3800FC7001F802603F70013CE01FE14DC49D907F8EB0FC0A2495CA3495CB3A348 6C496CEB1FE0B500C1B50083B5FCA340257EA445>I<3903F00FF000FFEB3FFCECF03F90 39F1C01F803A0FF3800FC03803F70013FE496D7EA25BA35BB3A3486C497EB500C1B51280 A329257EA42E>II<3903F01FE000FFEB7FF89038F1E07E9039F3801F 803A0FF7000FC0D803FEEB07E049EB03F04914F849130116FC150016FEA3167FAA16FEA3 ED01FCA26DEB03F816F06D13076DEB0FE001F614C09039F7803F009038F1E07E9038F0FF F8EC1FC091C8FCAB487EB512C0A328357EA42E>II<3807E01F00FFEB7FC09038E1E3 E09038E387F0380FE707EA03E613EE9038EC03E09038FC0080491300A45BB3A2487EB512 F0A31C257EA421>II<1318A51338A31378A313F8120112031207001FB5FCB6FCA2D801F8C7FCB215 C0A93800FC011580EB7C03017E13006D5AEB0FFEEB01F81A347FB220>IIIIII<003FB5 12FCA2EB8003D83E0013F8003CEB07F00038EB0FE012300070EB1FC0EC3F800060137F15 0014FE495AA2C6485A495AA2495A495A495AA290387F000613FEA2485A485A0007140E5B 4848130C4848131CA24848133C48C7127C48EB03FC90B5FCA21F247EA325>I<001C131C 007F137F39FF80FF80A5397F007F00001C131C190978B72A>127 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fx cmsy7 7 1 /Fx 1 4 df<1338A50060130C00F8133E00FC137E00FE13FE383FBBF83807FFC0000113 00EA007C48B4FC000713C0383FBBF838FE38FE00FC137E00F8133E0060130C00001300A5 17197B9A22>3 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fy cmsy8 8 25 /Fy 25 119 df0 D<130C131EA50060EB01800078130739FC0C 0FC0007FEB3F80393F8C7F003807CCF83801FFE038007F80011EC7FCEB7F803801FFE038 07CCF8383F8C7F397F0C3F8000FCEB0FC039781E078000601301000090C7FCA5130C1A1D 7C9E23>3 D20 D<17C01601A316031780A21607EE0F00160E161E5E5E4B5A4B5AED0FC0 037FC7FCEC03FEEC3FF890381FFFC0B548C8FC14E014FE39001FFFC09038003FF8EC03FE EC007FED0FC0ED03E06F7EED00788282160E160FEE07801603A217C01601A316001700AD B812C0A32A3B7AAB37>22 D<12C07EA37E1270A212787E121C121E7E6C7EEA03E06C7EEA 00FCEB3F80EB1FF0EB07FF010013FE021FB512C01401141FDAFFFEC7FC010790C8FCEB1F F0EB3F8001FCC9FCEA01F0485AEA078048CAFC121E121C123C5A1270A212F05AA4CBFCAD B812C0A32A3B7AAB37>I<170EA3170F8384170384170184717E1878187C84180FF007C0 BA12F819FC19F8CBEA07C0F00F00183E601878604D5A60170360170795C7FC5F170EA33E 237CA147>33 D<137813FE1201A3120313FCA3EA07F8A313F0A2EA0FE0A313C0121F1380 A3EA3F00A3123E127E127CA35AA35A0F227EA413>48 DI< 91B512C01307131FD97F80C7FC01FCC8FCEA01F0EA03C0485A48C9FC120E121E5A123812 781270A212F05AA3B712C0A300E0C9FCA37E1270A212781238123C7E120E120F6C7E6C7E EA01F0EA00FCEB7F80011FB512C013071300222B7AA52F>I54 D<1406140EA2141EEB1F9CEBFFFC3801E07C3803803C3807003E48133F001EEB7F80001C 1373003C14C014F314E3007C14E0007813E1130114C100F814F013031481A313071401A2 130F130EA3131E131CA3133C1338007814E013781370007C1303003C14C013F013E0001E EB0780121F390FC00F000007131E143E3803E078EBFFF0EB9F80D80780C7FC90C8FCA31C 387DB223>59 D<4A7E1403B3B3A6007FB712FEB8FC7E2F2E7CAD38>63 D<173017F0160116031607A2160FA2161F161B163B1633167316E3A2ED01C316831503EE 03F81507150EA2ED1C011538A2157015E0A2EC01C0EC0380A2DA07007F140E92B5FC141F 5C5C0270C7FC4A801301382003C038700780D8780FC8127FEAFE3FD8FFFE160449169C49 ED3FF86C4816E06C4816C06C48ED1F000007CBFC36337EAF38>65 DI<033FB512FE0203B7FC140F143F913A780F80007E902601E01F1438D903C0 1520D9078090C8FCEB0F005B011E5B5B0138133E90C7FCA25DA35DA34AB512FCA25F4A5C 9238E000C04B90C7FC1407A24A5AA292C9FC5C141E143E143C147C147814F8001E5BEA3F 01387F81E038FFE3C06CB45A6C48CAFC6C5AEA07E0382F7FAC32>70 D<0060150C00E0151CB3AA6C153C00701538A2007815786C15F06CEC01E06C6CEB07C0D8 07E0EB1F803A03FE01FF00C6B512FC013F13F0010390C7FC26297CA72F>91 DI<126012E0B3 B3B3A9B51280A27E114374B11F>98 DI<14 1F14FFEB03F0EB0FC0EB1F8014005B133EB3A2137E137C13FC485A485AEA7FC048C7FCEA 7FC0EA03F06C7E6C7E137C137E133EB3A2133F7F1480EB0FC0EB03F0EB00FF141F18437B B123>102 D<12FCB47EEA0FE0EA01F0EA00FC137C137E133EB3A37F1480130FEB07E0EB 01FEEB007FEB01FEEB07E0EB0F80131F1400133EB3A3137E137C13FCEA01F0EA0FE0EAFF 8000FCC7FC18437BB123>I<12E0B3B3B3AD034378B114>106 D<0060136000E01370B3B3 B3AB00601360144379B123>I<18031807180F180E181E181C183C18381878187018F018 E01701EF03C01880170718005F170E171E171C173C17381778177017F05F16015F16035F 160701C092C7FC486C5C0007151E486C141C003F153CD873F8143800E31578D801FC1470 16F06C6C5C1501017F5C1503D93F805B1507D91FC090C8FC5D90380FE00E151E903807F0 1C153C903803F83815786D6C5A5DEB00FF5D147F5D143F92C9FC80141E140E38427C823B >112 D<003FB712E04816F017E00070CAFCB3B3007FB712E017F017E0CBFCAD007FB712 E0B812F017E02C3B7AAB37>118 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fz cmr8 8 18 /Fz 18 112 df22 D<13031307130E131C1338137013F0EA01E013 C01203EA0780A2EA0F00A2121EA35AA45AA512F8A25AAB7EA21278A57EA47EA37EA2EA07 80A2EA03C0120113E0EA00F013701338131C130E1307130310437AB11B>40 D<12C07E12707E7E7E120FEA0780120313C0EA01E0A2EA00F0A21378A3133CA4131EA513 1FA2130FAB131FA2131EA5133CA41378A313F0A2EA01E0A2EA03C013801207EA0F00120E 5A5A5A5A5A10437CB11B>I43 D48 D<130C133C137CEA03FC12FFEAFC7C1200B3B113FE387F FFFEA2172C7AAB23>III<140EA2141E143EA2 147E14FEA2EB01BE1303143E1306130E130C131813381330136013E013C0EA0180120313 001206120E120C5A123812305A12E0B612FCA2C7EA3E00A9147F90381FFFFCA21E2D7EAC 23>I<000CEB0180380FC01F90B512005C5C14F014C0D80C7EC7FC90C8FCA8EB1FC0EB7F F8380DE07C380F801F01001380000E130F000CEB07C0C713E0A2140315F0A4127812FCA4 48EB07E012E0006014C00070130F6C14806CEB1F006C133E380780F83801FFE038007F80 1C2D7DAB23>II<1230123C003FB512F8 A215F05A15E039700001C000601480140348EB0700140E140CC7121C5C143014705C495A A2495AA249C7FCA25B130E131EA2133EA3133C137CA413FCA913781D2E7CAC23>I<123C 127E12FFA4127E123C1200AD123C127E12FFA4127E123C081D7A9C14>58 D61 D<13C0487E487E487EEA0F3CEA1E1E487E 3870038038E001C0EAC000120A78AD23>94 D<013F13F89038FFC3FE3903E1FF1E380780 7C000F140C391F003E00A2003E7FA76C133EA26C6C5A00071378380FE1F0380CFFC0D81C 3FC7FC90C8FCA3121E121F380FFFF814FF6C14C04814F0391E0007F848130048147C12F8 48143CA46C147C007C14F86CEB01F06CEB03E03907E01F803901FFFE0038003FF01F2D7E 9D23>103 D108 D111 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: FA cmex10 10.95 5 /FA 5 89 df<140E141E143C147814F01301EB03E0EB07C0A2EB0F80EB1F00A2133E137E 137C13FC5B1201A2485AA3485AA2120F5BA2121FA25BA2123FA390C7FCA25AA6127E12FE B3A4127E127FA67EA27FA3121FA27FA2120FA27F1207A26C7EA36C7EA212007F137C137E 133E7FA2EB0F80EB07C0A2EB03E0EB01F013001478143C141E140E176C72832A>0 D<12E07E12787E7E121F6C7E6C7EA26C7E6C7EA26C7E7F137C137E133E133FA2EB1F80A3 EB0FC0A214E01307A214F0A21303A214F8A31301A214FCA6130014FEB3A414FC1301A614 F8A21303A314F0A21307A214E0A2130F14C0A2EB1F80A3EB3F00A2133E137E137C13FC5B 485AA2485A485AA2485A48C7FC121E5A5A5A5A176C7C832A>I16 D<12F07E127C7E7E6C7E6C7E7F6C7E6C7E12007F137E7FA26D7E6D7EA26D7EA26D7E6D7E A26D7EA280147E147F80A26E7EA281140FA281140781A21403A281A2140181A3140081A4 157E157FA5811680A9ED1FC0B3A9ED3F80A916005DA5157E15FEA45D1401A35D1403A25D A21407A25D140F5DA2141F5DA24AC7FCA25C147E14FE5CA2495AA2495A495AA2495AA249 5A49C8FCA2137E5B5B1201485A485A5B485A48C9FC123E5A5A5A22A37D8336>I88 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: FB cmmi8 8 32 /FB 32 123 df<147C49B4FC903803C78090380783C090381F03E0EB1E01133E017C13F0 13F8A2EA01F0120313E01207A2EA0FC01403A2EA1F80A21407003F14E0130090B5FCA239 7F000FC0127EA2141F1580127C00FC14005CA2147EA248137C14FC00785B495AA2387C03 E0383C07C0495A001C90C7FCEA1E3EEA0FF8EA03E01C307DAE21>18 D<123C127E12FFA4127E123C08087A8714>58 D<123C127EB4FCA21380A2127F123D1201 A312031300A25A1206120E5A5A5A126009157A8714>II<15C0140114031580A214071500A25C140EA2141E141CA2143C 143814781470A214F05CA213015CA213035C130791C7FCA25B130EA2131E131CA2133C13 38A21378137013F05BA212015BA212035BA2120790C8FC5A120EA2121E121CA2123C1238 A212781270A212F05AA21A437CB123>I<12E012F812FEEA3F80EA0FE0EA03F8EA00FEEB 3F80EB0FE0EB03F8EB00FC143FEC0FC0EC07F0EC01FCEC007FED1FC0ED07F0ED01FCED00 7FEE1FC01607161FEE7F00ED01FCED07F0ED1FC0037FC7FCEC01FCEC07F0EC0FC0023FC8 FC14FCEB03F8EB0FE0EB3F8001FEC9FCEA03F8EA0FE0EA3F8000FECAFC12F812E02A2B7A A537>I<1670A216F01501A24B7EA21507150DA2151915391531ED61FC156015C0EC0180 A2EC03005C14064A7F167E5C5CA25C14E05C4948137F91B6FC5B0106C7123FA25B131C13 18491580161F5B5B120112031207000FED3FC0D8FFF8903807FFFEA22F2F7DAE35>65 D<013FB71280A2D900FEC7127F170F4A1407A20101150318005CA21303A25C1630010714 7094C7FC4A136016E0130F15019138C007C091B5FC5BECC0074A6C5AA2133FA20200EB00 0CA249151C92C71218017E1538173001FE15705F5B4C5A000115034C5A49140F161F0003 4AB4C7FCB8FC5E312D7DAC34>69 D<92387FC003913903FFF80791391FC03E0F91397E00 071FD901F8EB03BF4948EB01FED90FC013004948147E49C8FC017E157C49153C485A1203 48481538485AA2485A173048481500A2127F90CAFCA35A5AA292381FFFFCA29238003FC0 EE1F80163F1700A2127E5E167E7EA26C6C14FE000F4A5A6C7E6C6C1307D801F8EB1E3CD8 007EEBFC3890391FFFE018010390C8FC302F7CAD37>71 D77 D<013FB6FC17E0903A00FE0007F0EE01FC4AEB007EA20101 81A25C1880010316005F5CA2010715FEA24A5C4C5A010F4A5A4C5A4AEB1F8004FFC7FC91 B512F84914C00280C9FCA3133F91CAFCA35B137EA313FE5BA312015BA21203B512E0A231 2D7DAC2D>80 D<913807F00691383FFE0E9138F80F9E903903E001FE903807800049C712 7C131E49143CA2491438A313F81630A26D1400A27FEB7F8014F86DB47E15F06D13FC0107 7F01007F141F02011380EC003F151F150FA215071218A3150F00381500A2151EA2007C5C 007E5C007F5C397B8003E039F1F00F8026E07FFEC7FC38C00FF0272F7CAD2B>83 D<000FB8FCA23B1FC003F8003F0100151F001C4A130E123C003801071406123000704A13 0EA20060010F140C12E0485CA2141FC715005DA2143FA292C8FCA25CA2147EA214FEA25C A21301A25CA21303A25CA21307A25C130F131F001FB512F0A2302D7FAC29>I86 D<90260FFFFCEB7FFFA2 9026007FC0EB0FF06E48148018006E6C131E1718020F5C6F5B02075C6F485A020349C7FC EDF8065E6E6C5A5E6E6C5A5EED7F8093C8FC6F7EA26F7E153F156FEDCFE0EC0187913803 07F0EC0703020E7F141C4A6C7E14704A6C7E495A4948137F49C7FC010E6E7E5B496E7E5B D801F081D807F8143FD8FFFE0103B5FCA2382D7EAC3A>88 D97 D<13F8121FA21201A25BA21203A25BA21207 A25BA2120FEBC7E0EB9FF8EBB83C381FF01EEBE01F13C09038800F80EA3F00A2123EA200 7E131FA2127CA2143F00FC14005AA2147EA2147C14FC5C387801F01303495A383C0F806C 48C7FCEA0FFCEA03F0192F7DAD1E>II<131FEA03FF A2EA003FA2133EA2137EA2137CA213FCA25BA21201143F9038F1FFC09038F3C1F03803FF 0001FC7F5BA2485A5BA25B000F13015D1380A2001F13035D1300140748ECC04016C0003E 130F1580007E148191381F0180007C1403ED070000FCEB0F06151E48EB07F80070EB01E0 222F7DAD29>104 D<1307EB0F80EB1FC0A2EB0F80EB070090C7FCA9EA01E0EA07F8EA0E 3CEA1C3E123812301270EA607EEAE07C12C013FC485A120012015B12035BA21207EBC040 14C0120F13801381381F01801303EB0700EA0F06131EEA07F8EA01F0122E7EAC18>I<15 E0EC01F01403A3EC01C091C7FCA9147CEB03FE9038078F80EB0E07131C013813C01330EB 700F0160138013E013C0EB801F13001500A25CA2143EA2147EA2147CA214FCA25CA21301 A25CA21303A25CA2130700385BEAFC0F5C49C7FCEAF83EEAF0F8EA7FF0EA1F801C3B81AC 1D>I<131FEA03FFA2EA003FA2133EA2137EA2137CA213FCA25BA2120115F89038F003FC EC0F0E0003EB1C1EEC387EEBE07014E03807E1C09038E3803849C7FC13CEEA0FDC13F8A2 EBFF80381F9FE0EB83F0EB01F81300481404150C123EA2007E141C1518007CEBF038ECF8 3000FC1470EC78E048EB3FC00070EB0F801F2F7DAD25>I<27078007F0137E3C1FE01FFC 03FF803C18F0781F0783E03B3878E00F1E01263079C001B87F26707F8013B00060010013 F001FE14E000E015C0485A4914800081021F130300015F491400A200034A13076049133E 170F0007027EEC8080188149017C131F1801000F02FCEB3F03053E130049495C180E001F 0101EC1E0C183C010049EB0FF0000E6D48EB03E0391F7E9D3E>109 D<3907C007E0391FE03FF83918F8783E393879E01E39307B801F38707F00126013FEEAE0 FC12C05B00815C0001143E5BA20003147E157C5B15FC0007ECF8081618EBC00115F0000F 1538913803E0300180147016E0001F010113C015E390C7EAFF00000E143E251F7E9D2B> I<90387C01F89038FE07FE3901CF8E0F3A03879C0780D907B813C0000713F000069038E0 03E0EB0FC0000E1380120CA2D8081F130712001400A249130F16C0133EA2017EEB1F80A2 017C14005D01FC133E5D15FC6D485A3901FF03E09038FB87C0D9F1FFC7FCEBF0FC000390 C8FCA25BA21207A25BA2120FA2EAFFFCA2232B829D24>112 D<903807E03090381FF870 90387C1CF0EBF80D3801F00F3903E007E0EA07C0000F1303381F800715C0EA3F00A24813 0F007E1480A300FE131F481400A35C143E5A147E007C13FE5C1301EA3E07EA1F0E380FFC F8EA03F0C7FC13015CA313035CA21307A2EBFFFEA21C2B7D9D20>I115 D<130E131FA25BA2133EA2137EA2137CA213FCA2 B512F8A23801F800A25BA21203A25BA21207A25BA2120FA25BA2001F1310143013001470 146014E0381E01C0EB0380381F0700EA0F0EEA07FCEA01F0152B7EA919>I118 D<013F137C9038FFC1FF3A01 C1E383803A0380F703C0390700F60F000E13FE4813FC12180038EC0700003049C7FCA2EA 200100005BA313035CA301075B5D14C000385CD87C0F130600FC140E011F130C011B131C 39F03BE038D8707113F0393FE0FFC0260F803FC7FC221F7E9D28>120 DI<011E13 30EB3F809038FFC07048EBE0E0ECF1C03803C0FF9038803F80903800070048130EC75A5C 5C5C495A495A49C7FC131E13385B491340484813C0485A38070001000EEB0380380FE007 391FF81F0038387FFF486C5A38601FFC38E00FF038C003C01C1F7D9D21>I E %EndDVIPSBitmapFont %DVIPSBitmapFont: FC cmsy10 10.95 5 /FC 5 113 df<007FB812F8B912FCA26C17F83604789847>0 D<121EEA7F80A2EAFFC0A4 EA7F80A2EA1E000A0A799B19>I<0060EE018000F0EE03C0B3B3A36C1607A20078178000 7C160FA26CEE1F00003F5E6C6C157E6C6C5DD807F0EC03F8D803FCEC0FF06CB4EC3FE03B 007FF003FF80011FB548C7FC010714F8010114E09026001FFEC8FC32397BB63D>91 DI<1A03F207801A0FA2F21F00A21A3EA262A262A2 4F5AA24F5AA24F5AA24F5AA24FC7FCA2193EA261A261A24E5AA24E5AA24E5AA24E5AA24E C8FCA2183EA260A260A24D5A131C017C5E01FE15031201D807FF4B5A120E484C5A00787F D8E07F4BC9FC00C07FD8003F153E80011F5D80010F5D8001074A5A8001034A5AA26E495A 13016E495A7F6F48CAFC147FEDC03E143F6F5A141F6F5A140FEDF1F015F9913807FBE015 FF6E5BA26E5BA26E90CBFCA2157EA2153C1538495B7B834C>112 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: FD cmmi10 10.95 13 /FD 13 121 df<121EEA7F80A2EAFFC0A4EA7F80A2EA1E000A0A798919>58 D<121EEA7F8012FF13C0A213E0A3127FEA1E601200A413E013C0A312011380120313005A 120E5A1218123812300B1C798919>I61 D<17075F84171FA2173F177FA217FFA25E 5EA24C6C7EA2EE0E3F161E161C1638A21670A216E0ED01C084ED0380171FED07005D150E 5DA25D157815705D844A5A170F4A5A4AC7FC92B6FC5CA2021CC7120F143C14384A81A24A 140713015C495AA249C8FC5B130E131E4982137C13FED807FFED1FFEB500F00107B512FC A219F83E417DC044>65 D79 D<49B712F018FF19C0D9000190C76C7EF00FF84BEC03FC1801020382727E5DA214071A80 5DA2140F4E13005DA2021F5E18034B5D1807023F5E4E5A4B4A5A4E5A027F4B5A06FEC7FC 4BEB03FCEF3FF091B712C005FCC8FC92CBFCA25BA25CA21303A25CA21307A25CA2130FA2 5CA2131FA25CA2133FA25C497EB612E0A3413E7DBD3A>I101 D106 DI<01F8EB0FF0D803FEEB3FFC3A078F80F03E3A0F0F83C01F3B0E07 C7800F80001CEBCF0002FE80003C5B00385B495A127800705BA200F049131F011F5D0000 5BA2163F013F92C7FC91C7FC5E167E5B017E14FE5EA201FE0101EB03804914F8A2030313 07000103F013005B170E16E000035E49153C17385F0007913801F1E0496DB45AD801C002 3FC7FC31297EA737>110 D112 D114 D120 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: FE cmr10 10.95 59 /FE 59 128 df<913801FFC0021F13FC9139FF007F80D903F8EB0FE0D90FF0EB07F8D91F C0EB01FCD97F806DB4FC49C86C7E48486F7E00038348486F7E000F8349150F001F834915 07003F83A348486F7EAA6C6C4B5AA3001F5FA26C6C4B5AA200075F6D151F00035FA26C6C 4B5A00005FA2017F4BC7FC6D157EA26D6C5C010F5DA26D6C495A00E0EF0380010315E0D8 70019238C007006E130301001580A36C0160EC000E003C017049131E263FFFF0ECFFFEA3 6C5FA339407CBF42>10 D12 D<001E130F397F803FC0 00FF137F01C013E0A201E013F0A3007F133F391E600F3000001300A401E01370491360A3 000114E04913C00003130101001380481303000EEB070048130E0018130C0038131C0030 13181C1C7DBE2D>34 D<1430147014E0EB01C0EB03801307EB0F00131E133E133C5B13F8 5B12015B1203A2485AA2120F5BA2121F90C7FCA25AA3123E127EA6127C12FCB2127C127E A6123E123FA37EA27F120FA27F1207A26C7EA212017F12007F13787F133E131E7FEB0780 1303EB01C0EB00E014701430145A77C323>40 D<12C07E12707E7E121E7E6C7E7F12036C 7E7F12007F1378137CA27FA2133F7FA21480130FA214C0A3130714E0A6130314F0B214E0 1307A614C0130FA31480A2131F1400A25B133EA25BA2137813F85B12015B485A12075B48 C7FC121E121C5A5A5A5A145A7BC323>I<1506150FB3A9007FB912E0BA12F0A26C18E0C8 000FC9FCB3A915063C3C7BB447>43 D<121EEA7F8012FF13C0A213E0A3127FEA1E601200 A413E013C0A312011380120313005A120E5A1218123812300B1C798919>II<121EEA7F80A2EAFFC0A4EA7F80A2EA1E000A0A798919>I48 DII56 D<121EEA7F80A2EAFFC0A4EA7F80A2EA1E00C7FCB3121EEA7F80A2EAFFC0A4 EA7F80A2EA1E000A2779A619>58 D<007FB912E0BA12F0A26C18E0CDFCAE007FB912E0BA 12F0A26C18E03C167BA147>61 D63 D<15074B7EA34B7EA34B7EA34B7EA34B7E15E7 A2913801C7FC15C3A291380381FEA34AC67EA3020E6D7EA34A6D7EA34A6D7EA34A6D7EA3 4A6D7EA349486D7E91B6FCA249819138800001A249C87EA24982010E157FA2011E82011C 153FA2013C820138151FA2017882170F13FC00034C7ED80FFF4B7EB500F0010FB512F8A3 3D417DC044>65 D67 DI70 D72 DI75 DIIII83 D<003FB91280A3903AF0007FE001018090393FC0003F48C7ED1FC0007E170712 7C00781703A300701701A548EF00E0A5C81600B3B14B7E4B7E0107B612FEA33B3D7DBC42 >I91 D<486C13C0000313010100 1380481303000EEB070048130E0018130C0038131C003013180070133800601330A300E0 1370481360A400CFEB678039FFC07FE001E013F0A3007F133FA2003F131F01C013E0390F 0007801C1C73BE2D>II97 DI<49B4FC01 0F13E090383F00F8017C131E4848131F4848137F0007ECFF80485A5B121FA24848EB7F00 151C007F91C7FCA290C9FC5AAB6C7EA3003FEC01C07F001F140316806C6C13076C6C1400 0003140E6C6C131E6C6C137890383F01F090380FFFC0D901FEC7FC222A7DA828>IIII<167C903903F801FF903A1FFF078F8090397E0FDE1F9038F803F838 03F001A23B07E000FC0600000F6EC7FC49137E001F147FA8000F147E6D13FE00075C6C6C 485AA23901F803E03903FE0FC026071FFFC8FCEB03F80006CAFC120EA3120FA27F7F6CB5 12E015FE6C6E7E6C15E06C810003813A0FC0001FFC48C7EA01FE003E140048157E825A82 A46C5D007C153E007E157E6C5D6C6C495A6C6C495AD803F0EB0FC0D800FE017FC7FC9038 3FFFFC010313C0293D7EA82D>III107 DI<2701F801FE14FF00FF902707FFC00313E0913B1E 07E00F03F0913B7803F03C01F80007903BE001F87000FC2603F9C06D487F000101805C01 FBD900FF147F91C75B13FF4992C7FCA2495CB3A6486C496CECFF80B5D8F87FD9FC3F13FE A347287DA74C>I<3901F801FE00FF903807FFC091381E07E091387803F000079038E001 F82603F9C07F0001138001FB6D7E91C7FC13FF5BA25BB3A6486C497EB5D8F87F13FCA32E 287DA733>I<14FF010713E090381F81F890387E007E01F8131F4848EB0F804848EB07C0 4848EB03E0000F15F04848EB01F8A2003F15FCA248C812FEA44815FFA96C15FEA36C6CEB 01FCA3001F15F86C6CEB03F0A26C6CEB07E06C6CEB0FC06C6CEB1F80D8007EEB7E009038 3F81FC90380FFFF0010090C7FC282A7EA82D>I<3901FC03FC00FF90381FFF8091387C0F E09039FDE003F03A07FFC001FC6C496C7E6C90C7127F49EC3F805BEE1FC017E0A2EE0FF0 A3EE07F8AAEE0FF0A4EE1FE0A2EE3FC06D1580EE7F007F6E13FE9138C001F89039FDE007 F09039FC780FC0DA3FFFC7FCEC07F891C9FCAD487EB512F8A32D3A7EA733>I<02FF131C 0107EBC03C90381F80F090397F00387C01FC131CD803F8130E4848EB0FFC150748481303 121F485A1501485AA448C7FCAA6C7EA36C7EA2001F14036C7E15076C6C130F6C7E6C6C13 3DD8007E137990383F81F190380FFFC1903801FE0190C7FCAD4B7E92B512F8A32D3A7DA7 30>I<3901F807E000FFEB1FF8EC787CECE1FE3807F9C100031381EA01FB1401EC00FC01 FF1330491300A35BB3A5487EB512FEA31F287EA724>I<90383FC0603901FFF8E03807C0 3F381F000F003E1307003C1303127C0078130112F81400A27E7E7E6D1300EA7FF8EBFFC0 6C13F86C13FE6C7F6C1480000114C0D8003F13E0010313F0EB001FEC0FF800E01303A214 017E1400A27E15F07E14016C14E06CEB03C0903880078039F3E01F0038E0FFFC38C01FE0 1D2A7DA824>I<131CA6133CA4137CA213FCA2120112031207001FB512C0B6FCA2D801FC C7FCB3A215E0A912009038FE01C0A2EB7F03013F138090381F8700EB07FEEB01F81B397E B723>IIIIII<001FB61280A2EBE0000180 140049485A001E495A121C4A5A003C495A141F00385C4A5A147F5D4AC7FCC6485AA2495A 495A130F5C495A90393FC00380A2EB7F80EBFF005A5B484813071207491400485A48485B A248485B4848137F00FF495A90B6FCA221277EA628>I<01F01308D803FC131C48B41338 48EB8070391F3FF3E0393807FFC0486C138048C613000040133C1E0979BC2D>126 D<001C130E007FEB3F8039FF807FC0A5397F003F80001CEB0E001A0977BD2D>I E %EndDVIPSBitmapFont %DVIPSBitmapFont: FF cmbx10 10.95 7 /FF 7 117 df<16FCA24B7EA24B7EA34B7FA24B7FA34B7FA24B7FA34B7F157C03FC7FED F87FA2020180EDF03F0203804B7E02078115C082020F814B7E021F811500824A81023E7F 027E81027C7FA202FC814A147F49B77EA34982A2D907E0C7001F7F4A80010F835C83011F 8391C87E4983133E83017E83017C81B500FC91B612FCA5463F7CBE4F>65 D<903807FFC0013F13F848B6FC48812607FE037F260FF8007F6DEB3FF0486C806F7EA36F 7EA26C5A6C5AEA01E0C8FC153F91B5FC130F137F3901FFFE0F4813E0000F1380381FFE00 485A5B485A12FF5BA4151F7F007F143F6D90387BFF806C6C01FB13FE391FFF07F36CEBFF E100031480C6EC003FD91FF890C7FC2F2B7DA933>97 D<13FFB5FCA512077EAFEDFFE002 0713FC021FEBFF80027F80DAFF8113F09139FC003FF802F06D7E4A6D7E4A13074A807013 80A218C082A318E0AA18C0A25E1880A218005E6E5C6E495A6E495A02FCEB7FF0903AFCFF 01FFE0496CB55AD9F01F91C7FCD9E00713FCC7000113C033407DBE3A>II<3901FE01FE00FF903807FF804A13E04A13F0EC3F1F91387C3F F8000713F8000313F0EBFFE0A29138C01FF0ED0FE091388007C092C7FCA391C8FCB3A2B6 FCA525297DA82B>114 D<90383FFC1E48B512BE000714FE5A381FF00F383F800148C7FC 007E147EA200FE143EA27E7F6D90C7FC13F8EBFFE06C13FF15C06C14F06C806C806C806C 80C61580131F1300020713C014000078147F00F8143F151F7EA27E16806C143F6D140001 E013FF9038F803FE90B55A15F0D8F87F13C026E00FFEC7FC222B7DA929>II E %EndDVIPSBitmapFont %DVIPSBitmapFont: FG cmsy10 10 1 /FG 1 4 df3 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: FH cmr12 14.4 16 /FH 16 122 df65 D83 D97 D<17FF4BB5FCA4ED0007160182B3A6EC0FF8EC7FFF49B512E0903907FC03F090391FE000 7C49487F49C7120F01FE80484880485A000781484880A2485AA2485AA2127FA35B12FFAB 127FA27FA2123FA27F121FA26C6C5C00075D7F6C6C5C6C6C5C6C6C021E7F6D6C017C13E0 D91FC049EBFF8090390FF807E00103B512800100495ADA1FF091C7FC39547CD241>100 DI<1378EA01FE487E487FA66C90C7FC6C5AEA007890 C8FCB0EB7F80B5FCA41203C6FC137FB3B3A43801FFE0B61280A419507CCF21>105 D107 DI<01FFD907 FEEC03FFB590261FFFC0010F13E0037F01F0013F13F8912701F80FFC9038FC07FE913D03 C003FE01E001FF000390260700019038038000C6010E6D6C48C76C7E6D48DA7F8E6E7E4A 159CA24ADA3FF86E7E02605D14E04A5DA34A5DB3AD2601FFE0DAFFF0EC7FF8B6D8C07F90 26FFE03FB512F0A45C347CB363>I<01FFEB07FCB590383FFF8092B512E0913901F00FF8 913903C007FC000349C66C7EC6010E13016D486D7E5C143002706E7E146014E05CA35CB3 AD2601FFE0903801FFE0B600C0B612C0A43A347CB341>II<01FFEB1F80B5EB7FF0913801FFF8913803E1FC91380783FE0003EB0F07C6131EEB7F1C 1438143091387003FC91386000F0160014E05CA45CB3AA8048487EB612F0A427347DB32E >114 DII<007FB5D8800FB51280A4C69026FC0003EBF000D9 3FF86D1380011F4BC7FC010F15F801075D6D6C5C6E495A6D6C5C6D14076E6C48C8FCEDC0 1E6E6C5A021F133891380FF0786F5A913807FDE002035BEC01FF5E80157F6F7E824B7E15 FFEDE7F802017F913803C3FEEC07814AC67E020E80021E6D7E4A133F4A6D7E4A80707E49 48130749486D7E010781010F6E7E013F8201FF8200076D010713F0B500F8011FEBFFE0A4 3B337FB23E>120 DI E %EndDVIPSBitmapFont %DVIPSBitmapFont: FI cmr17 20.74 22 /FI 22 122 df45 D65 D69 D73 D<913803FF80021F13F891B512FE903A03FC01FF80 903A07E0003FE0D91F80EB0FF8013EC76C7E496E7E01F06E7E48486E7F717E4848153F49 82D807A06F7E13FC487E6D6F7E80A2717EA46C90C8FC6C5A6C5ACAFCA6EE07FF0303B5FC 157F913903FFFE07021F138091387FF800903801FFC0010790C7FCEB1FFCEB3FF0EBFFE0 485B485B4890C8FC5B485A485AA2485A1A0E485AA312FF5B170FA4171FA26D153F007F16 3B177B6DDBF1FE131C003F16E16C6C14016C6C912603C0FF13386C6CEC0F806C6C6C903A 1F007F80706C6D017CECE1E028007FF803F8EB3FFF011FB500E06D1380010391C7000713 009026003FF8EC01FC474D79CB4F>97 D99 D<191FF07FFF051FB5FCA5EF001F180784A284B3B0 ED07FE92387FFFC00203B512F091390FFC01FC91393FE0001FDAFF80EB07814990C7EA03 E1D903FCEC01F14948EC0079D91FF0153D4948151D4A151F49488101FF824890C9FC4883 5B0007835B120F5B121FA2123F5BA2127FA35BA212FFAE127FA27FA3123FA36C7EA36C7E A200075F7F00035F6C7E606C6D5D6D6C153D013F16396D6C03797F6D6C15F16D6CDA03E1 7FD903FEDA078113F0D900FFDA1F01EBFFF0DA7FC0137E91391FF803F80207B512E00201 14809127001FF800EC80004C797AF758>II103 D<14F8EA03FFB5FCA5C6FC133F131FA2130FB3B09338 03FF80041F13F8047F13FE923A01FC03FF80923A03E0007FE0DB0F80EB1FF0031EC76C7E 5D4B6E7E4B6E7E5D14F9DAFBC06E7E5D14FF92C9FC865CA35CA45CB3B3A8496C4B7FD97F FF030713F0B7D8800FB612F8A54D787AF758>I<131EEB7F80497E487F487FA66C5B6C5B 6D5A011EC7FC90C8FCB3A7EB01F0EA07FFB5FCA51201EA007F133FA2131FB3B3B3A3497E EBFFFEB612FCA51E727AF12A>I108 DIII<02F849B47ED803FF021F13F8B5027F13FE923A01FC01FF80923A07E0003F E0031FC76C7E033EEC0FFCC60278EC03FE013F496E7E90261FF9E06E7FDAFBC0826DB448 6F7E92C96C7E737E5C4A707E864A160786851B80A2851BC0A2851BE0A5F27FF0AEF2FFE0 A54F13C0A34F1380A21B0061626E160F626E161F626E4C5A4F5A6F5EDAFBC015FFDAF9E0 4A5BDAF8F04A48C7FC03784A5A6F4A5A031FEC3FF06F6CEBFFC0922603F80790C8FC0300 B512FC043F13E0DC07FEC9FC93CBFCB3A7497EEB7FFFB77EA54C6C7BCA58>I114 DI<1407A85CA65CA35CA35CA25CA2 5BA25B5B5B5B5B5B48B712FE120FB8FCA3D8000190C9FCB3B3A2EF01C0B0EF03806D7FA3 027FEC0700815F6E6C130E021F141E6F131C6E6C5B6E6C13F8913901FF01F09139007FFF C0031F5BDB03FCC7FC326B7EE93D>I<02F8EE0F80D803FFEE3FFFB5030FB5FCA5C6EE00 0F013F1603011F82A2010F82B3B3A660A460A3601307606E150E0103161E606E4B7F0101 16706D6C03F07F6FD903E013F86E6C4948EBFFF8DA1FE0EB1F00DA0FFE13FE0203B512F8 DA007F13E0030790C7EBC0004D4C7ACA58>I<007FB500FC0203B512FEA5C66C01F06E14 C0010F496E01FCC7FC010349ED7FF06D18C06D60077EC8FC6E6C157C6E6C5D6E6C5D4E5A 6E6C5D6E6C14036E6C4A5A4EC9FC6E6D131E6E7F6F6C5B033F5C705B6F6C5B92380FFC01 0307495A70485A6F6C48CAFC6F138E6F139E17FC705A705A161F83707E707E835E4C7F04 3C7F4C6C7E16709338F03FF04B486C7E4B486C7E168003076D7E4B486C7E031E6D7F5D03 386D7F03786E7E4B6E7E4A48141F4A4881727E4A486E7E4AC81203021E82023E6F7F027E 6F7F4A167F010184010784D91FFE83017FEFFFFE0007B54B6D7EB600C00207ECFFC0A552 4A80C953>120 DI E %EndDVIPSBitmapFont end %%EndProlog %%BeginSetup %%Feature: *Resolution 600dpi TeXDict begin %%PaperSize: A4 %%EndSetup %%Page: 1 1 1 0 bop 185 502 a FI(Appro)l(ximate)52 b(Inclusion-Exclusion)k(and)c (orthogonal)1463 710 y(p)t(olynomials)1337 1041 y FH(Alex)38 b(Samoro)s(dnitsky)2413 998 y FG(\003)1675 1437 y FF(Abstract)380 1583 y FE(The)25 b(inclusion-exclusion)d(form)m(ula)j(expresses)g(the)h (probabilit)m(y)d(of)j(the)g(union)e(of)i(a)g(fam-)244 1696 y(ily)j(of)h(sets)h(in)e(terms)h(of)h(the)f(probabilities)d(of)k (their)e(in)m(tersections:)963 1866 y FD(P)13 b(r)s FE(\()p FC([)p FD(A)1242 1880 y FB(i)1270 1866 y FE(\))26 b(=)1427 1780 y FA(X)1480 1975 y FB(i)1573 1866 y FD(P)13 b(r)s FE(\()p FD(A)1791 1880 y FB(i)1820 1866 y FE(\))20 b FC(\000)1966 1780 y FA(X)1976 1975 y FB(i<j)2112 0="" 1="" 2="" 3="" 4="" 41="" 55="" 59="" 66="" 71="" 72="" 74="" 94="" 100="" 111="" 112="" 142="" 157="" 220="" 235="" 244="" 269="" 276="" 292="" 311="" 340="" 368="" 379="" 416="" 425="" 453="" 461="" 472="" 485="" 487="" 489="" 497="" 520="" 533="" 545="" 581="" 588="" 606="" 609="" 647="" 685="" 693="" 702="" 717="" 730="" 757="" 774="" 786="" 822="" 847="" 850="" 872="" 877="" 916="" 952="" 967="" 977="" 980="" 1020="" 1051="" 1073="" 1087="" 1088="" 1141="" 1161="" 1193="" 1205="" 1225="" 1228="" 1278="" 1297="" 1372="" 1374="" 1387="" 1393="" 1395="" 1428="" 1433="" 1451="" 1465="" 1469="" 1484="" 1488="" 1500="" 1501="" 1567="" 1585="" 1586="" 1602="" 1666="" 1682="" 1688="" 1705="" 1721="" 1740="" 1804="" 1808="" 1819="" 1823="" 1866="" 1876="" 1880="" 1888="" 1921="" 1925="" 1940="" 1949="" 1956="" 1978="" 1996="" 2045="" 2084="" 2099="" 2105="" 2116="" 2117="" 2158="" 2172="" 2176="" 2211="" 2217="" 2219="" 2230="" 2237="" 2244="" 2256="" 2257="" 2294="" 2298="" 2313="" 2329="" 2343="" 2357="" 2392="" 2431="" 2456="" 2470="" 2472="" 2477="" 2487="" 2490="" 2497="" 2518="" 2546="" 2550="" 2558="" 2565="" 2568="" 2582="" 2591="" 2598="" 2645="" 2681="" 2683="" 2687="" 2706="" 2707="" 2718="" 2719="" 2726="" 2741="" 2742="" 2767="" 2777="" 2813="" 2838="" 2839="" 2846="" 2855="" 2877="" 2914="" 2947="" 2950="" 2968="" 2983="" 2994="" 3017="" 3066="" 3081="" 3086="" 3104="" 3194="" 3217="" 3253="" 3268="" 3284="" 3286="" 3307="" 3367="" 3373="" 3408="" 3420="" 3423="" 3456="" 3468="" 3469="" 3512="" 3533="" 3549="" 3577="" 3585="" 3630="" 3646="" 3653="" 3687="" 3697="" 3721="" 3723="" 3738="" 3759="" 3817="" 3832="" 3871="" 3893="" 3921="" 3938="" 3946="" 3953="" 3984="" 4032="" 4055="" 4058="" 4069="" 4071="" 4094="" 4097="" 4105="" 4129="" 4146="" 4161="" 4178="" 4193="" 4210="" 4286="" 4299="" 4323="" 4362="" 4363="" 4370="" 4396="" 4399="" 4403="" 4407="" 4414="" 4436="" 4467="" 4527="" 4549="" 4552="" 4567="" 4569="" 4647="" 4662="" 4689="" 4768="" 4775="" 4805="" 4810="" 4820="" 4861="" 4888="" 4922="" 4952="" 4975="" 5009="" 5052="" 5070="" 5096="" 5100="" 5349="" y="" fd(p)13="" b(r)s="" fe(\()p="" fd(a)2330="" fb(i)2379="" fc(\\)20="" b="" fd(a)2528="" fb(j)2564="" fe(\))h(+)f="" fd(:::)244="" fe(assume)j(no)m(w,)i(that)f(w)m(e)f(are)h(giv)m(en)f="" (the)h(probabilities)c(of)j(all)g(the)g="" fd(j)5="" fe(-wise)23="" b(in)m(tersections)g(of)h(the)244="" y(ev)m(en)m(ts,)j(for)d="" fd(j)31="" fe(=")25" b(1)p="" fd(;)15="" b(:::;)g(k)s="" fe(.)41="" b(ho)m(w)25="" b(w)m(ell)e(can)i(w)m(e)f(estimate)h(the)g(probabilit)m(y)d="" (of)i(the)h(union)d="" fc([)p="" fd(a)3411="" fb(i)3463="" fe(?)244="" y(linial)35="" b(and)i(nisan)g([10)q(])h(follo)m(w)m="" (ed)f(b)m(y)h(kahn,)h(linial)c(and)i(samoro)s(dnitsky)f([8])i(dev)m="" (elop)g(a)244="" y(metho)s(d)h(to)h(appro)m(ximate)f="" fd(a)1517="" fb(i)1545="" fe(\))40="" b(from)f(the)g(ab)s(o)m(v)m(e)i(data)f(with)e(an)h="" (additiv)m(e)g(error)g(of)244="" fd(exp)399="" fa(\020)453="" fc(\000)534="" fe(~)524="" y(\012)605="" fa(\000)647="" fd(k)697="" fz(2)736="" fd(="n)836" fa(\001)878="" y(\021)968="" fe(and)c(sho)m(w)g(this)g(error)g(to)i(b)s(e)e(optimal)g(up)f="" (to)j(the)f(logarithmic)e(factor)244="" y(implicit)27="" b(in)693="" y(~)683="" y(\012)j(notation.)380="" y(the)h(inclusion-exclusion)c(form)m(ula)j(is)g(the)h(m\177)-45="" b(obius)30="" b(in)m(v)m(ersion)g(form)m(ula)g(for)g(the)i(lattice)244="" y(of)37="" b(subsets)f(of)h(a)h(\014nite)e(set.)61="" b(one)36="" b(can)i(also)f(ask)g(this)f(question)g(in)g(other)h(settings)g="" (-)g(in)f(a)244="" y(recen)m(t)41="" b(pap)s(er)d(ma)m(vronicolas)i([12)="" q(])g(deals)f(with)g(the)g(question)g(of)h(\\appro)m(ximate)g(m\177)-45="" b(obius)244="" y(in)m(v)m(ersion)30="" b(form)m(ula")h(for)g(the)g="" (lattice)h(of)f(subspaces)g(of)g(a)h(\014nite)e(dimensional)f(v)m="" (ector)j(space)244="" y(o)m(v)m(er)g(a)e(\014nite)g(\014eld.)380="" y(one)37="" b(can)g(try)g(to)h(\014gure)e(out)i(what)f(\\appro)m="" (ximate)g(m\177)-45="" b(obius)36="" b(in)m(v)m(ersion")g(migh)m(t)h(mean)244="" y(for)j(a)g(general)h(p)s(oset.)70="" b(it)40="" b(is)g(easy)g(to)h="" (generalize)g(the)f(question)f(to)i(the)g(class)f(of)g(graded)244="" y(p)s(osets)26="" b(and)g(to)h(sho)m(w,)g(that)g(the)f(b)s(est)g(p)s="" (ossible)e(appro)m(ximation)h(for)h(suc)m(h)g(a)h(p)s(oset)f="" fd(p)40="" fe(equals)244="" y(the)28="" b(distance)g(\(in)f(the)i(suprem)="" m(um)d(norm\))i(b)s(et)m(w)m(een)h(a)g(c)m(haracteristic)g(function)d="" (of)j(the)f(zero)244="" y(elemen)m(t)d(of)g="" fd(p)38="" fe(and)24="" b(a)h(subspace)g(spanned)e(b)m(y)i(c)m(haracteristic)g="" (functions)f(of)h(a)g(certain)g(family)244="" y(of)d(up)m(w)m="" (ards-monotone)h(subsets)f(of)g="" fe(.)38="" b(\(in)22="" b(the)h(sp)s(ecial)d(cases)k(of)e(the)h(lattice)g(of)f(subsets)g(and)="" y(the)k(lattice)h(of)f(subspaces)g(this)f(reduces)g(to)i(the)g="" (results)d(obtained)i(in)f(the)h(ab)s(o)m(v)m(e)i(men)m(tioned)244="" y(pap)s(ers.\))380="" y(f)-8="" b(or)35="" b(the)f(lattice)g(of)g="" (subsets,)g(w)m(e)g(impro)m(v)m(e)f(the)h(additiv)m(e)f(error)g(of)h="" (the)g(appro)m(ximation)244="" y(to)26="" fd(o)s="" fe(\()457="" fc(p)p="" v="" x="" fd(n)o="" fe(\))9="" fc(\001)g="" fe(2)710="" fy(\000)p="" fb(n)814="" fa(\000)965="" fb(n)855="" fz(\()p="" fb(n)p="" fb(k)r="" fz(\))p="" fb(=")p" fz(2)1117="" fa(\001)1159="" fe(,)26="" b(whic)m(h)e(is)g(optimal)f(up)h(to)i(a)f(m)m(ultiplicativ)m(e)e="" (factor)j(of)f="" fe(\()3208="" fd(n)p="" fe(\).)39="" b(a)244="" y(k)m(ey)29="" b(role)e(is)g(pla)m(y)="" m(ed)h(b)m(y)g(three)g(families)e(of)i(orthogonal)h(p)s(olynomials:)36="" b(discrete)29="" b(cheb)m(yshev)244="" y(p)s(olynomials,)f(hahn)i(p)s="" (olynomials)d(and)j(kra)m(w)m(c)m(houk)h(p)s(olynomials.)380="" y(it)c(turns)f(out)h(that)g(this)f(result)g(has)g(some)i(simple)d="" (but)h(somewhat)h(unexp)s(ected)f(connec-)244="" y(tions)k(with)f(co)="" s(ding)g(and)h(graph)g(theory)-8="" b(.)p="" a="" fx(\003)149="" fw(hebrew)28="" b(univ)n(ersit)n(y)e(and)i="" (dima)n(cs)g(cen)n(ter,)f(rutgers)g(univ)n(ersit)n(y)1851="" fv(1)p="" eop="" %%page:="" bop="" fu(1)161="" b(in)l(tro)t(duction)0="" fv(this)26="" b(pap)s(er)g(returns)g(once)h(again)d(to)h(the)i(question)f="" (of)f(appro)m(ximated)g(inclusion-exclusion,)g(raised)0="" y(in)37="" b([10])h(and)h(addressed)h(also)d(in)h(subsequen)m(t)j([8])="" d(and)g([12].)60="" b(w)-8="" b(e)39="" b(refer)g(to)f(these)h(pap)s(ers)g(for)f="" (the)0="" y(computational)29="" b(motiv)-5="" b(ation)28="" b(of)j(the)g="" (problem.)42="" b(here)32="" b(w)m(e)h(start)e(with)g(reviewing)g(the)h="" (approac)m(h)f(of)0="" y([10])k(to)h(the)g(solution)e(of)h(this)h="" (question,)h(con)m(tin)m(ued)f(in)f([8])h(and)g(in)f([12)o(].)53="" b(then)37="" b(w)m(e)g(describ)s(e)f(our)0="" y(results,)d(and)g(discuss)="" h(the)f(w)m(a)m(y)g(they)h(are)e(related)h(to)f(the)h(previous)g(w)m="" (ork.)146="" y(let)26="" b(us)h(\014rst)f(describ)s(e)g(the)g(question:)="" b(the)27="" b(inclusion-exclusion)c(form)m(ula)h(expresses)29="" b(the)d(prob-)0="" y(abilit)m(y)j(of)i(the)h(union)f(of)f(a)i(family)="" c(of)j(sets)i(in)d(terms)i(of)e(the)i(probabilities)d(of)i(their)f(in)m="" (tersections:)893="" ft(p)14="" fv(\()p="" fs([)p="" ft(a)1194="" fb(i)1222="" fv(\))28="" b(=")1391" fr(x)1451="" fb(i)1552="" ft(a)1787="" fb(i)1814="" fv(\))22="" fs(\000)1974="" fr(x)1990="" fb(i<j)2134="" ft(a)2369="" fb(i)2419="" fs(\\)22="" ft(a)2580="" fb(j)2617="" fv(\))g(+)g="" ft(:::)0="" fv(assume)44="" b(no)m(w,)i(that)c(w)m(e)i(are)f(giv)m(en)g(the)g="" (probabilities)d(of)i(all)f(the)i="" ft(j)6="" fv(-wise)43="" b(in)m(tersections)g(of)g(the)0="" y(ev)m(en)m(ts,)35="" b(for)d="" ft(j)i="" fv(=")27" ft(;)17="" fv(.)43="" b(ho)m(w)33="" b(w)m(ell)f(can)h(w)m(e)h(estimate)d(the)i(probabilit)m(y)e="" (of)h(the)h(union)f="" ft(a)3480="" fb(i)3541="" fv(?)146="" y(a)h(precise)g(form)m(ulation)d([10])i(is)g(as)h="" (follo)m(ws:)0="" fq(main)38="" b(question)0="" fv(find)244="" ft(e)6="" ft(k)s(;)17="" b(n)p="" fv(\))27="" fr(\000)894="" fs([)1122="" fb(n)1122="" y(i)p="" fz(="1)1240" ft(a)1313="" fb(i)1341="" fs(\000)h="" fs([)1729="" fb(n)1729="" y(j)t="" ft(b)1929="" fb(j)1966="" fv(\))2004="" fr(\001)3625="" fv(\(1\))0="" y(where)33="" b(the)f(suprem)m(um)g(ranges)h(o)m(v)m(er)f(all)e(families)f="" (of)i(ev)m(en)m(ts)j="" ft(a)2401="" fz(1)2441="" b(:)g(:)g(:)f(;)h(a)2733="" fb(n)2811="" fv(and)32="" ft(b)3074="" fz(1)3114="" b(:)g(:)g(:)f(;)h(b)3407="" fb(n)3485="" fv(in)31="" b(an)m(y)0="" y(probabilit)m(y)g(spaces,)j(that)e(satisfy:)1312="" fs(\\)1540="" fb(i)p="" fy(2)p="" fb(s)1661="" ft(a)1734="" fb(i)1763="" fs(\\)2160="" fb(j)t="" fb(s)2289="" ft(b)2363="" fb(j)2400="" fv(\))0="" y(for)32="" b(all)f="" ft(s)i="" fs(\032)28="" fv([)p="" ft(n)p="" fv(],)33="" b(suc)m(h)h(that)f="" fs(j)p="" ft(s)6="" fs(j)26="" b(\024)j="" ft(k)s="" fv(.)146="" y(the)k(approac)m(h)e="" (suggested)i(in)d([10])h(con)m(tains)h(t)m(w)m(o)g(main)d(steps.)45="" b(in)31="" b(the)h(\014rst)g(step)g(the)g(\\target)0="" y(v)-5="" b(alue")35="" fv(\))36="" b(is)f(sho)m(wn)i(to)f(b)s(e)g(the)g(optim)m(um)e(of)h(a)g="" (certain)h(linear)e(program.)52="" b(p)m(assing)36="" b(to)g(the)0="" y(dual)c(pro)s(duces)h(a)g(follo)m(wing)d(\(rather)i(surprising\))="" g(result:)0="" y(let)42="" ft(\016)227="" fz(0)307="" fv(is)f(a)g(function)g(on)g(0)p="" ft(;)g(:)g(:)g(:)f(;)h(n)41="" fv(de\014ned)i(b)m(y)f="" ft(\016)2031="" fz(0)2070="" ft(i)p="" fv(\))h(=")g" ft(\016)2384="" fz(0)p="" fb(;i)2467="" fv(.)70="" b(\(recall)39="" b(that)i="" fp(kr)-5="" b(one)g(cker's)42="" ft(\016)t="" fp(-)0="" y(function)e="" ft(\016)432="" fb(i;j)553="" fv(is)g(1)g(if)f="" ft(i)j="" ft(j)46="" fv(and)41="" b(is)f(0)g(otherwise.\))68="" b(e)41="" b(w)m(an)m(t)g(to)f(appro)m="" (ximate)g="" ft(\016)3214="" fz(0)3294="" fv(as)g(close)h(as)0="" y(p)s(ossible)33="" b(b)m(y)i(a)f(p)s(olynomial)c(of)k(b)s(ounded)g="" (degree.)49="" b(namely)-8="" b(,)33="" b(giv)m(en)h(0)c="" fs(\024)g="" ft(k)j="" fs(\024)e="" fv(,)j(w)m(e)h(ask:)47="" b(what)34="" b(is)0="" ft(e)p="" fv(\))34="" fb(p)596="" fv(\(max)816="" fb(;:::)n(;n)1091="" ft(p)p="" ft(\016)1442="" fz(0)1481="" fv(\))p="" fv(\))17="" ft(;)36="" fv(where)i(the)f(in\014m)m(um)e(ranges)i(o)m(v)m(er)h(all)c="" (p)s(olynomials)0="" ft(p)e="" fv(of)h(degree)g="" fs(\024)28="" fv(.)44="" b(it)32="" b(turns)i(out)e(that)g="" fs(\001)f="" ft(k)s(;)c(n)p="" ft(;)33="" fv(or)f(in)g(other)h(w)="" m(ords:)244="" fs(\001)g(k)p="" ft(\016)899="" fz(0)960="" fs(\000)h(p)1129="" fb(k)1172="" fs(k)1222="" fy(1)1296="" ft(;)2302="" fv(\(2\))0="" y(where)34="" fs(p)351="" fb(k)426="" fv(is)e(the)h(space)h="" (of)e(p)s(olynomials)e(of)i(degree)h="" ft(k)36="" fv(on)c(0)p="" ft(;)g(:)g(:)g(:)f(;)h(n)p="" y(in)39="" b(the)f(second)h(step)g([10)o(])f(attac)m(ks)h="" (the)g(appro)m(ximation)c(question)k(of)e(\014nding)g="" fv(\))38="" b(using)0="" y(tec)m(hniques)j(from)d(the)h="" fp(the)-5="" b(ory)42="" b(of)e(appr)-5="" b(oximation)40="" b(of)g(functions)h(of)f(the)h(r)-5="" b(e)g(al)41="" b(variable)p="" fv(.)62="" b(it)39="" b(turns)1851="" y(2)p="" fv(out,)29="" b(that)g(suitably)f(scaled)h="" fp(chebyshev)h(p)-5="" b(olynomials)27="" fv(of)i(degree)g="" fv(pro)m(vide)d(a)f(go)s(o)s(d)g(candidate)g(for)0="" y(the)33="" b(appro)m(ximation)d(of)i="" ft(\016)972="" fz(0)1012="" fv(,)h(and)f(this)h(leads)f(to)g(the)h(follo)m(wing)d="" (b)s(ounds)j(on)g="" fv(\):)0="" y(1.)43="" b(f)-8="" b(or)32="" ft(k)f="" ft(o)p="" fv(\()564="" fs(p)p="" fv(\))1371="" fr(\022)1978="" fv(1)22="" fs(\000)2158="" ft(k)2212="" fz(2)p="" ft(n)2262="" fr(\023)2352="" ft(:)0="" fv(2.)43="" b(\()610="" fv(\))1543="" ft(;)0="" fv(3.)43="" b(and)33="" b(for)f="" fs(\035)691="" y(p)p="" ft(n)1234="" y(e)6="" ft(o)1771="" fr(\022)1844="" ft(exp)2010="" fr(\032)2085="" fs(\000)2192="" fv(2)p="" ft(k)p="" ft(n)2324="" fr(\033\023)2489="" fv(while)38="" b(this)g(estimate)g(of)g="" fv(\))39="" b(turns)h(to)e(b)s(e)h(optimal)d(for)i="" ft(k)k="" fs(\024)2603="" fv(,)e(it's)f(optimalit)m(y)c(for)k(the)0="" y(other)31="" b(v)-5="" b(alues)31="" b(of)f="" fv(w)m(as)d(not)g(at)f(all)f="" (clear.)43="" b(fact)f([10])h(sho)m(ws)h(that,)f(at)g(least)f(for)="" g(a)h(certain)f(range)0="" y(of)i="" fv(,)h(the)g(estimate)f(is)g="" (not)g(optimal,)e(b)m(y)j(computing)f="" ft(n)22="" fz(1)p="" a(2)2718="" fo(n)p="" fn(\000)p="" fm(1)2882="" fv(precisely)-8="" b(.)146="" y(the)37="" b(task)f(of)f(impro)m(ving)e(the)j(estimates)f(for)g="" fv(\))35="" b(w)m(as)h(con)m(tin)m(ued)="" g(in)f([8].)52="" b(it)35="" b(w)m(as)i(under-)0="" y(sto)s(o)s(d)f(that)g="" (the)h(\\problem")d(of)i(cheb)m(yshev)k(p)s(olynomials)33="" b(is)j(that)g(they)i(actually)d(do)h(to)s(o)f(m)m(uc)m(h)0="" y(-)g(instead)g(of)g(pro)m(viding)f(a)h(go)s(o)s(d)f(appro)m="" (ximation)f(to)i(zero)h(in)f(the)g(in)m(teger)h(p)s(oin)m(ts)e(1)p="" b(:)g(:)g(:)f(;)h(n)p="" fv(,)36="" b(they)0="" y(appro)m(ximate)26="" b(zero)h(on)g(the)g="" fp(whole)h(interval)f="" fv([1)p="" fv(].)41="" b(a)27="" b(natural)e(attempt)h(to)h(remedy)g(this)g="" (situation)0="" y(is)39="" b(to)h(\\tailor-mak)m(e")c(the)k(appro)m="" (ximating)e(p)s(olynomial)e="" ft(q)43="" fv(b)m(y)e(constraining)e="" ft(q)k="" fv(to)c(ha)m(v)m(e)j(a)d(lot)f(of)0="" y(in)m(teger)32="" b(zero)s(es)h(in)e(the)i(\\righ)m(t")d(places)j(on)e(the)i(in)m(terv)-5="" b(al)31="" b([1)p="" fv(],)32="" b(and)g(then,)h(p)s(ossibly)-8="" b(,)31="" b(m)m(ultiplying)0="" y(the)k(obtained)e(p)s(olynomial)e(b)m="" (y)k(a)f(suitably)g(scaled)g(cheb)m(yshev)k(p)s(olynomial)31="" b(of)i(a)h(small)e(degree)j(-)0="" y(to)h(\\round)g(things)g(out".)54="" b(this)37="" b(approac)m(h)f(leads)g([8])h(to)e(an)i(impro)m(v)m(ed)f="" (estimate)f(on)h="" b(for)0="" ft(k)31="" fs(\035)209="" fv(.)1153="" fs(\024)i="" ft(exp)1762="" fr(\032)1837="" fs(\000)p="" fv(\012)2001="" fr(\022)2084="" ft(k)2138="" fz(2)2195="" fv(log)16="" a(n)2405="" fr(\023)q(\033)2570="" fv(this)29="" b(inequalit)m(y)f(turns)i(out)e(to)h(b)="" s(e)g(rather)g(tigh)m(t.)42="" b(using)28="" b(linear)f(dualit)m(y)h(once)i="" (again)3236="" fz(1)3304="" fv([8])f(pro)m(vide)0="" y(also)j(a)g(lo)m(w)m(er)h(estimate)e(on)i="" fv(\):)1167="" fs(\025)g="" ft(exp)1776="" fr(\032)1851="" ft(o)2022="" fr(\022)2197="" ft(k)2251="" ft(n)17="" fv(log)g="" ft(n)2391="" fr(\023\033)2556="" fv(using)43="" b(the)h(con)m(v)m="" (enien)m(t)971="" y(~)957="" y(\002)f(notation)f(w)m(e)j(actually)d="" (arriv)m(e)h(to)g(a)g(\\tigh)m(t")g(estimate:)64="" fv(\))46="" ft(exp)166="" fr(n)233="" fs(\000)324="" fv(~)310="" y(\002)403="" fr(\020)472="" fb(k)511="" fm(2)p="" fb(n)555="" fr(\021)q(o)698="" ft(:)146="" fv(no)m(w,)27="" b(let)e(us)g(c)m(hange)h="" (direction,)g(and)f(return)g(once)h(more)e(to)g(the)i="" (inclusion-exclusion)d(form)m(ula.)0="" y(it)34="" b(is)g(w)m(ell-kno)m="" (wn)g([19])g(that)g(this)f(form)m(ula)g(is)g(a)h(sp)s(ecial)f(case)i="" (of)f(the)g="" fp(m\177)-50="" b(inversion)f(formula)0="" fv(for)f(partially)e(ordered)k(sets.)51="" b(\(the)35="" b(underlying)f(p)s(oset)h(in)f(our)h(case)h(is)e(the)h(lattice)e(of)h="" (all)f(subsets)0="" y(of)28="" b(an)h="" fv(-set.\))43="" b(therefore)30="" b(one)f(can)g(ask)h([10)o(])f(whether)h(an)f(analog)e="" (of)i(the)g(results)g(describ)s(ed)h(ab)s(o)m(v)m(e)0="" y(exists)41="" b(for)f(other)g(p)s(osets.)68="" b(a)40="" b(step)h(in)f(this)g(direction)f(w)m(as)i(tak)m(en)h(b)m(y)f(ma)m="" (vronicolas)e([12],)j(who,)p="" fl(1)149="" fw(this)28="" b(is)f(this)h(rare)e(case,)h(in)h(whic)n="" (h)f(passing)g(to)g(the)h(dual)f(t)n(wice)h(do)r(esn't)f(lead)g(bac)n="" (k)g(to)h(the)f(original)f(question,)0="" y(since)h(the)h(underlying)="" f(space)g(had)h(b)r(een)g(mean)n(while)f(altered)g(b)n(y)g(considering)="" f(only)i="" fk(symmetric)i(events)d="" fw([10)o(],)h([8].)1851="" fv(3)p="" fv(follo)m(wing)32="" b([2])k(considers)g(the)f="" ft(q)t="" fp(-analo)-5="" b(g)36="" b(of)h(the)g(principle)f(of)h="" (inclusion-exclusion)p="" fv(,)d(whic)m(h)i(means)0="" y(that)41="" b(the)g(lattice)f(of)g(all)f(subsets)k(of)e(an)g="" fv(-set)g(is)g(replaced)g(b)m(y)h(the)f(lattice)f(of)g(all)f="" (subspaces)k(of)0="" y(an)h="" fv(-dimensional)e(v)m(ector)j="" (space)g(o)m(v)m(er)g(a)f(\014nite)g(\014eld)g(with)g="" fv(elemen)m(ts.)79="" b(let)44="" b(us)h(describ)s(e)g(in)0="" y(some)36="" b(detail)f(the)i(framew)m(ork)f(addressed)i(in)e([12)o="" (].)55="" b(let)36="" ft(v)2235="" fb(n)2213="" y(q)2318="" fv(b)s(e)h(an)f="" fv(-dimensional)d(v)m(ector)38="" b(space)0="" y(o)m(v)m(er)g(a)f(\014nite)f(\014eld)h(with)f="" ft(q)41="" fv(elemen)m(ts.)57="" b(let)37="" ft(x)45="" fv(b)s(e)37="" b(a)f(set)i(suc)m(h)g(that)f(with)g(ev)m(ery)h(v)m(ector)g="" ft(v)h="" fs(2)c="" ft(v)3703="" fb(n)3681="" y(q)0="" fv(is)45="" b(asso)s(ciated)h(a)g(subset)h="" fs(a)1076="" fb(v)1167="" fs(\022)k="" ft(x)8="" fv(.)83="" b(assume)47="" b(also)d(that)i(the)g(asso)s(ciation)f(b)s(et)m(w)m(een)j(elemen)m(ts)0="" y(of)c="" ft(x)53="" fv(and)44="" b(subspaces)k(of)c="" ft(v)1118="" fb(n)1097="" y(q)1210="" fv(is)g(regular)g(in)g(the)h(follo)m="" (wing)d(sense:)69="" b(for)45="" b(eac)m(h)g="" ft(x)k="" fs(2)g="" ft(x)j="" fv(the)45="" b(set)0="" ft(v)57="" fb(x)128="" fr(\010)290="" ft(v)31="" fs(2)e="" ft(v)541="" fb(n)520="" y(q)621="" fs(j)j="" ft(x)c="" fs(2)g(a)938="" fb(v)978="" fr(\011)1069="" fv(is)k(either)g(empt)m(y)h(or)f(a)g(subspace)i(of)e="" ft(v)2538="" fb(n)2516="" y(q)2585="" b(an)m(y)h(subspace)h="" ft(t)41="" fs(v)28="" fv(let)g="" ft(s)197="" fb(t)280="" fs(j)17="" b(f)o="" ft(x)28="" ft(x)40="" fs(j)32="" ft(t)42="" ft(v)1097="" fb(x)1141="" fs(g)16="" b(j)p="" fv(.)42="" b(then)30="" b(the)g="" fv(-analog)c(of)j(inclusion-exclusion)e="" (principle)g(is)i(giv)m(en)0="" y(b)m(y)k(the)g(follo)m(wing)d(form)m="" (ula)h([19]:)926="" fs(j)21="" b([)1041="" fb(v)r="" fb(v)1182="" fo(n)1165="" y(q)1251="" fs(a)1331="" fb(v)1372="" fs(j)27="" fr(x)1531="" fb(t)10="" fy(v)p="" fb(v)1693="" fo(n)1678="" y(q)1736="" fv(1\))1938="" y(dim)n="" fb(t)g="" fz(\)+1)2300="" ft(q)2347="" fv(\()2385="" y(dim)o="" fm(\()p="" fo(t)e="" fm(\))2497="" y(2)2640="" fv(\))2682="" ft(s)2742="" fb(t)2797="" fv([12])33="" b(deals)g(with)g(the)h="" (follo)m(wing)d(question:)46="" b(supp)s(ose)34="" b(that)f(w)m(e)i(kno)m(w)f="" ft(s)2718="" fb(t)2774="" fv(,)f(for)g(all)e(subspaces)36="" ft(t)47="" fv(of)0="" ft(v)79="" fb(n)57="" y(q)159="" fv(of)34="" b(dimension)e="" ft(j)k="" b(0)p="" ft(;)g(:)g(:)g(:)f(;)h(k)s="" fv(.)47="" b(ho)m(w)34="" b(w)m(ell)f(can)h(w)m(e)h(estimate)e="" fs(j)23="" b([)2660="" fb(v)2801="" fo(n)2784="" y(q)2870="" fs(a)2950="" fb(v)2991="" fv(?)46="" b(more)35="" b(precisely)-8="" b(,)0="" y(w)m(e)34="" b(can,)f(without)f(loss)g(of)g(generalit)m(y)g([10])g="" (assume)h(that)g="" fv(is)32="" b(a)g(probabilit)m(y)f(space)j(and)="" e(set)244="" ft(e)322="" fb(q)r="" fz(\))415="" ft(sup)946="" fr(\000)991="" fs([)1219="" fb(v)1359="" fo(n)1343="" y(q)1405="" fs(a)1485="" fb(v)1526="" fs(\000)g="" fs([)1913="" fb(v)2053="" fo(n)2037="" y(q)2100="" fs(b)2165="" fb(v)2206="" fv(\))2244="" fr(\001)2307="" ft(;)1291="" fv(\(3\))0="" y(where)41="" b(the)f(suprem)m(um)g(ranges)h(o)m(v)m(er)f(all)e(families)f(of)i(ev)m="" (en)m(ts)j="" fs(fa)2530="" fb(v)2571="" fs(g)2621="" fb(v)2761="" fo(n)2745="" y(q)2847="" fv(and)e="" fs(fb)3159="" fb(v)3200="" fs(g)3250="" fb(v)3391="" fo(n)3374="" y(q)3477="" fv(in)f(an)m(y)0="" y(probabilit)m(y)33="" b(spaces,)k(that)e(satisfy:)48="" ft(s)1457="" fy(a)1451="" fb(t)1549="" ft(s)1722="" fy(b)1716="" fb(t)1809="" fv(for)j(all)f="" ft(t)45="" fs(v)32="" ft(v)2388="" fb(n)2366="" y(q)2435="" fv(,)j(suc)m(h)h(that)f(dim)o(\()p="" ft(t)14="" fv(\))31="" fs(\024)h="" fv(.)50="" b(\(here)0="" ft(s)66="" fy(a)60="" fb(t)159="" fv(and)33="" ft(s)415="" fy(b)409="" fb(t)499="" fv(ha)m(v)m(e)h(the)f(ob)m(vious)g(de\014nition\).)42="" b(what)33="" b(is)f="" ft(e)2204="" fz(\))2297="" fv(\)?)146="" y(the)34="" b(approac)m(h)g(of)f([12)o(])g(follo)m(ws)f(closely)h(that)g(of)f="" ([10].)45="" b(the)34="" b(alue)33="" ft(e)2777="" fz(\))2870="" fv(\))33="" b(is)g(sho)m(wn)h(to)f(b)s(e)0="" y(the)27="" b(optim)m(um)e(of)i(a)g(certain)f(linear)g(program.)40="" b(p)m(assing)27="" b(to)g(the)h(dual)e(pro)s(duces)i(a)f(follo)m(wing)d="" (result:)244="" fs(\001)g="" fv(inf)940="" fb(p)1033="" fr(\022)1143="" fv(max)1107="" fb(;:::)n(;n)1378="" ft(q)1540="" fb(i)1568="" fv(\))g="" ft(\016)1771="" fz(0)1810="" ft(q)1895="" fb(i)1923="" fs(j)1989="" fr(\023)2079="" ft(;)1519="" fv(\(4\))0="" b(the)f(in\014m)m(um)e(ranges)i(o)m(v)m(er)h(all)c(p)s="" (olynomials)g="" ft(p)i="" fv(of)g(degree)i="" fv(,)k(and)h="" ft(\016)2970="" fz(0)3010="" ft(q)3095="" fb(i)3123="" ft(\016)3335="" fb(;i)3418="" y(in)33="" b(other)g(w)m(ords:)244="" ft(\016)992="" fz(0)1053="" fs(\000)h(p)1222="" fb(k)1265="" fs(k)1315="" fy(1)1389="" ft(;)2209="" fv(\(5\))0="" fv(is)e(the)h(space)h(of)e(p)s="" (olynomials)e(of)i(degree)h="" fv(on)c(1)p="" b(q)t(;)g(:)g(:)g(:)f(;)h(q)2754="" fb(n)2800="" y([12])48="" b(then)h(observ)m(es)h(that)d(the)i="" (second)g(step)g(of)e([10])h(fails)e(in)h(this)h(case,)53="" b(namely)47="" b(for)g(an)m(y)0="" y(1)36="" fs(\024)d="" ft(n)h="" fv(a)f(scaled)h(cheb)m(yshev)j(p)s(olynomial)34="" b(of)k(degree)g="" fv(pro)m(vides)e(only)e(a)g(w)m(eak)i(\(b)s="" (ounded)0="" y(b)s(elo)m(w)32="" b(b)m(y)i(a)e(constan)m(t)i="" ft(="">)27 b Fv(0\))32 b(appro)m(ximation)f(of)h Ft(\016)1914 4825 y Fz(0)1953 4810 y Fv(.)146 4980 y(No)m(w)24 b(to)e(the)h (description)f(of)g(our)h(results.)40 b(There)24 b(are)f(t)m(w)m(o)g(p) s(oin)m(ts)f(w)m(e)i(w)m(ould)f(lik)m(e)e(to)i(mak)m(e.)40 b(The)0 5100 y(\014rst)c(is)f(an)g(easy)i(generalization)c(of)i(the)h (notion)e(of)h(\\appro)m(ximate)f(M\177)-49 b(obius)36 b(in)m(v)m(ersion",)g(namely)1851 5349 y(4)p eop %%Page: 5 5 5 4 bop 0 100 a Fv(the)44 b(question)g(ho)m(w)g(w)m(ell)f(M\177)-49 b(obius)43 b(in)m(v)m(ersion)h(w)m(orks)g(giv)m(en)g(partial)d (information,)i(to)g(a)h(general)0 220 y(class)34 b(of)f(graded)h(p)s (osets.)49 b(In)34 b(our)g(opinion)e(the)i(linear)e(programming)f (approac)m(h)k(of)e([10])h(is)f(easier)0 340 y(and)g(more)f(natural)g (to)h(apply)g(at)f(this)h(lev)m(el)g(of)f(generalit)m(y)-8 b(.)44 b(It)33 b(turns)h(out)f(that)g(the)g(b)s(est)h(p)s(ossible)0 461 y(appro)m(ximation)25 b(for)i(suc)m(h)i(a)e(p)s(oset)g Ft(P)41 b Fv(equals)28 b(the)f(distance)h(\(in)e(the)i(suprem)m(um)f (norm\))g(b)s(et)m(w)m(een)i(a)0 581 y(c)m(haracteristic)f(function)g (of)f(the)i(zero)f(elemen)m(t)g(of)g Ft(P)41 b Fv(and)29 b(a)f(subspace)i(spanned)f(b)m(y)g(c)m(haracteristic)0 702 y(functions)37 b(of)f(a)g(certain)g(family)e(of)i(up)m(w)m (ards-monotone)i(subsets)g(of)e Ft(P)14 b Fv(.)55 b(This)37 b(includes)g(\(2\))f(and)0 822 y(\(5\))c(as)h(sp)s(ecial)f(cases.)146 987 y(Our)40 b(second)h(p)s(oin)m(t)d(is)h(that)h(one)g(can)g(essen)m (tially)f(\014nd)h(this)f(distance)h(for)f(the)h(lattice)e(of)h(all)0 1107 y(subsets)33 b(of)d(an)g Ft(n)p Fv(-set)h(and)g(the)g(lattice)e (of)h(all)f(subspaces)k(of)d(an)h Ft(n)p Fv(-dimensional)c(v)m(ector)32 b(space)g(o)m(v)m(er)0 1228 y(a)g(\014nite)h(\014eld.)146 1393 y(Let)22 b Ft(P)36 b Fv(b)s(e)22 b(a)g Fp(gr)-5 b(ade)g(d)24 b(p)-5 b(oset)1131 1356 y Fz(2)1192 1393 y Fv(with)22 b(a)f(minim)m(um)1900 1371 y(^)1900 1393 y(0,)j(and)e(let)f Ft(P)2372 1408 y FB(i)2422 1393 y Fv(denote)i(the)g(set)f(of)g(the)g(elemen)m(ts)g(of)0 1513 y Ft(P)39 b Fv(of)25 b Fp(r)-5 b(ank)26 b Ft(i)p Fv(,)h(for)e(0)j Fs(\024)g Ft(i)g Fs(\024)g Ft(n)p Fv(,)f(where)g Ft(n)f Fv(is)f(the)i Fp(r)-5 b(ank)25 b Fv(of)g Ft(P)14 b Fv(.)41 b(F)-8 b(or)25 b(a)g(real)g(v)-5 b(alued)25 b(function)g Ft(f)39 b Fv(:)28 b Ft(P)41 b Fs(!)27 b Fj(R)5 b Fv(,)0 1633 y(let)36 b Ft(F)48 b Fv(:)35 b Ft(P)48 b Fs(!)34 b Fj(R)48 b Fv(denote)37 b(the)g Fp(zeta)i(tr)-5 b(ansform)36 b Fv(of)g Ft(f)47 b Fv(de\014ned)38 b(b)m(y)g Ft(F)14 b Fv(\()p Ft(x)p Fv(\))34 b(=)2861 1559 y Fr(P)2966 1662 y FB(y)r Fy(\027)p FB(x)3118 1633 y Ft(f)11 b Fv(\()p Ft(y)t Fv(\).)55 b(Giv)m(en)36 b Ft(F)0 1754 y Fv(w)m(e)h(can)f (reconstruct)i Ft(f)46 b Fv(through)36 b(the)g(M\177)-49 b(obius)36 b(in)m(v)m(ersion)g(form)m(ula:)49 b Ft(f)11 b Fv(\()p Ft(x)p Fv(\))33 b(=)2977 1679 y Fr(P)3082 1783 y FB(y)r Fy(\027)p FB(x)3234 1754 y Ft(\026)p Fv(\()p Ft(x;)17 b(y)t Fv(\))p Ft(F)d Fv(\()p Ft(y)t Fv(\))p Ft(;)0 1874 y Fv(where)46 b Ft(\026)i Fv(:)g Ft(P)c Fs(\002)30 b Ft(P)62 b Fs(!)48 b Fj(R)55 b Fv(is)44 b(the)h(M\177)-49 b(obius)45 b(function)f(of)g Ft(P)14 b Fv(.)79 b(The)45 b(question)g(is,)j(ho)m(w)d(w)m(ell)f(can)0 1994 y(w)m(e)k(reconstruct) g Ft(f)11 b Fv(,)50 b(giv)m(en)c(only)h(a)f(partial)e(information)g(on) i Ft(F)14 b Fv(,)50 b(sa)m(y)e(the)f(v)-5 b(alues)47 b(of)f Ft(F)14 b Fv(\()p Ft(x)p Fv(\))46 b(for)0 2115 y Ft(x)28 b Fs(2)g Ft(P)240 2130 y Fz(0)302 2115 y Fs([)22 b Ft(P)453 2130 y Fz(1)509 2115 y Ft(:)17 b(:)g(:)22 b Fs([)g Ft(P)797 2130 y FB(k)840 2115 y Fv(,)32 b(for)h(some)f(0)27 b Fs(\024)i Ft(k)h Fs(\024)e Ft(n)p Fv(.)0 2347 y Fq(De\014nition)36 b(1.1)o(:)1263 2467 y Ft(E)1335 2482 y FB(P)1394 2467 y Fv(\()p Ft(k)s(;)17 b(n)p Fv(\))28 b(=)f(sup)q(\()p Ft(f)11 b Fv(\(0\))21 b Fs(\000)i Ft(g)t Fv(\(0\)\))p Ft(;)0 2634 y Fv(where)46 b(the)f(suprem)m(um)g(ranges)g(o)m(v)m(er)g (all)e Fp(nonne)-5 b(gative)43 b Fv(functions)i Ft(f)5 b(;)17 b(g)51 b Fv(:)d Ft(P)62 b Fs(!)47 b Fj(R)5 b Fv(,)54 b(suc)m(h)46 b(that:)0 2679 y Fr(P)105 2783 y FB(x)166 2754 y Ft(f)11 b Fv(\()p Ft(x)p Fv(\))27 b(=)487 2679 y Fr(P)592 2783 y FB(y)650 2754 y Ft(g)t Fv(\()p Ft(y)t Fv(\))f(=)i(1)j(and)h Ft(F)14 b Fv(\()p Ft(x)p Fv(\))27 b(=)h Ft(G)p Fv(\()p Ft(x)p Fv(\))k(for)f(all)f Ft(x)e Fs(2)g Ft(P)2330 2769 y Fz(0)2389 2754 y Fs([)21 b Ft(P)2539 2769 y Fz(1)2595 2754 y Ft(:)c(:)g(:)j Fs([)h Ft(P)2880 2769 y FB(k)2954 2754 y Fv(where)33 b Ft(F)s(;)17 b(G)31 b Fv(are)h(the)0 2875 y(zeta)h(transforms)f(of)g Ft(f)43 b Fv(and)33 b Ft(g)j Fv(corresp)s(ondingly)-8 b(.)p 1902 2883 34 67 v 0 3107 a(It)36 b(migh)m(t)f(not)h(b)s(e)h(immediately)c (ob)m(vious)j(that)g(this)g(de\014nition)f(indeed)i(extends)h(the)e (de\014nitions)0 3227 y(that)27 b(w)m(e)h(had)f(for)f Ft(E)6 b Fv(\()p Ft(k)s(;)17 b(n)p Fv(\))27 b(\(1\))g(and)g(for)f Ft(E)1565 3191 y Fz(\()p FB(q)r Fz(\))1658 3227 y Fv(\()p Ft(k)s(;)17 b(n)p Fv(\))27 b(\(3\),)h(but)f(this)f(is)h(actually)f (just)h(a)g(reform)m(ulation)0 3347 y(in)39 b(the)h(language)e(of)h (functions)g(rather)h(than)f(subsets)j(and)d(subspaces.)67 b(W)-8 b(e)40 b(p)s(oin)m(t)e(that)h(out)h(in)0 3468 y(section)33 b(3.)146 3633 y(Set)27 b Ft(h)g Fv(=)h Ft(f)19 b Fs(\000)8 b Ft(g)30 b Fv(and)c(note,)h(that)f(since)g(zeta)g (transform)f(is)g(a)h(linear)e(transformation,)h(determin-)0 3753 y(ing)30 b Ft(E)233 3768 y FB(P)291 3753 y Fv(\()p Ft(k)s(;)17 b(n)p Fv(\))31 b(amoun)m(ts)f(to)g(\014nding)g(a)h(norm)e (of)h(a)g(linear)f(functional)g Ft(\036)p Fv(\()p Ft(h)p Fv(\))f(=)f Ft(h)p Fv(\(0\))j(on)h(a)f(subspace)0 3873 y(of)h(all)e(functions)i Ft(h)g Fv(suc)m(h)i(that)e(the)h(zeta)f (transform)f(of)h Ft(h)g Fv(v)-5 b(anishes)32 b(on)f Ft(P)2772 3888 y Fz(0)2831 3873 y Fs([)20 b Ft(P)2980 3888 y Fz(1)3035 3873 y Ft(:)d(:)g(:)i Fs([)h Ft(P)3318 3888 y FB(k)3361 3873 y Fv(.)43 b(P)m(assing)0 3994 y(to)32 b(the)h(dual)f(one)h(obtains)f(the)h(follo)m(wing)d(c)m (haracterization)h(of)h Ft(E)2500 4009 y FB(P)2559 3994 y Fv(\()p Ft(k)s(;)17 b(n)p Fv(\):)0 4226 y Fq(Prop)s(osition)36 b(1.2)o(:)244 4458 y Ft(E)316 4473 y FB(P)375 4458 y Fv(\()p Ft(k)s(;)17 b(n)p Fv(\))27 b(=)h(2)22 b Fs(\001)g(k)p Ft(\016)952 4473 y Fz(0)1013 4458 y Fs(\000)h(U)1175 4473 y FB(k)1218 4458 y Fs(k)1268 4473 y Fy(1)1342 4458 y Ft(;)2256 b Fv(\(6\))0 4690 y Fp(wher)-5 b(e)36 b Ft(\016)320 4705 y Fz(0)390 4690 y Fv(:)31 b Ft(P)44 b Fs(!)30 b Fj(R)47 b Fp(is)37 b(the)f(char)-5 b(acteristic)36 b(function)g(of)2171 4669 y Fv(^)2171 4690 y(0)p Fp(,)h(namely)f Ft(\016)2668 4705 y Fz(0)2707 4690 y Fv(\()p Ft(x)p Fv(\))31 b(=)g Ft(\016)3019 4716 y FB(x;)3079 4702 y Fz(^)3079 4716 y(0)3118 4690 y Fp(,)36 b(and)g Fs(U)3437 4705 y FB(k)3517 4690 y Fp(is)g(the)0 4811 y(sp)-5 b(ac)g(e)36 b(of)h(functions)f(fr)-5 b(om)37 b Ft(P)50 b Fp(to)37 b Fj(R)48 b Fp(sp)-5 b(anne)g(d)36 b(by)h(the)g(char)-5 b(acteristic)36 b(functions)h Fv(1)3118 4826 y Fy(f)p FB(y)g Fz(:)d FB(y)r Fy(\027)p FB(x)p Fy(g)3488 4811 y Fp(for)i(al)5 b(l)0 4931 y Ft(x)28 b Fs(2)g Ft(P)240 4946 y Fz(0)302 4931 y Fs([)22 b Ft(P)453 4946 y Fz(1)509 4931 y Ft(:)17 b(:)g(:)22 b Fs([)g Ft(P)797 4946 y FB(k)840 4931 y Fp(.)p 0 5009 1500 4 v 112 5070 a Fl(2)149 5100 y Fw(See)28 b(next)g(section)f(for)g(more)g(information)g(on)g(p)r (osets)g(and)h(the)g(M\177)-42 b(obius)27 b(in)n(v)n(ersion)f(form)n (ula.)1851 5349 y Fv(5)p eop %%Page: 6 6 6 5 bop 0 100 a Fq(Remark)37 b(1.3)-6 b(:)42 b Fv(This)27 b(claim)e(is)h(not)h(v)m(ery)h(surprising.)41 b(Indeed,)29 b(b)m(y)f(a)f(basic)g(theorem)f(of)h(functional)0 220 y(analysis,)34 b(a)g(norm)g(of)g(a)g(linear)f(functional)g(on)h(a)g (subspace)j Ft(M)45 b Fv(of)34 b(a)g(Banac)m(h)h(space)g Ft(X)43 b Fv(equals)34 b(to)0 340 y(the)k(distance)h(in)e(the)h(dual)g (space)h Ft(X)1429 304 y Fy(\003)1506 340 y Fv(b)s(et)m(w)m(een)h(this) e(functional)e(and)i(the)h(subspace)h Ft(M)3433 304 y Fy(?)3530 340 y Fv(of)e(all)0 461 y(functionals)31 b(whic)m(h)j(are)e (iden)m(tically)f(zero)i(on)f Ft(M)43 b Fv(-)32 b(see)i(section)f(2.)p 2556 469 34 67 v 146 727 a(Therefore,)i(to)f(\014nd)g Ft(E)1005 742 y FB(P)1064 727 y Fv(\()p Ft(k)s(;)17 b(n)p Fv(\))33 b(w)m(e)i(ha)m(v)m(e)g(to)f(solv)m(e)g(an)f(appro)m(ximation)f (question)i(in)f(the)h(space)0 847 y(of)g(real-v)-5 b(alued)32 b(functions)i(on)h Ft(P)47 b Fv(endo)m(w)m(ed)36 b(with)e(the)h(suprem) m(um)f(norm.)48 b(In)34 b(full)f(generalit)m(y)g(this)0 967 y(seems)48 b(to)e(b)s(e)h(a)g(v)m(ery)h(hard)f(question.)87 b(More)47 b(can)g(b)s(e)g(said)g(if)f(the)h(p)s(oset)g Ft(P)60 b Fv(satis\014es)48 b(strong)0 1088 y(regularit)m(y)31 b(conditions.)42 b(W)-8 b(e)33 b(will)d(call)g Ft(P)46 b Fp(r)-5 b(e)g(gular)32 b Fv(if)f(for)g(an)m(y)i(0)27 b Fs(\024)i Ft(i)f(<)f(j)34 b Fs(\024)28 b Ft(n)p Fv(,)k(for)g(an)m(y)h Ft(x)3359 1103 y Fz(1)3399 1088 y Ft(;)17 b(x)3498 1103 y Fz(2)3565 1088 y Fs(2)28 b Ft(P)3722 1103 y FB(i)0 1208 y Fv(and)33 b(for)f(an)m(y)h Ft(y)571 1223 y Fz(1)610 1208 y Ft(;)17 b(y)702 1223 y Fz(2)768 1208 y Fs(2)28 b Ft(P)925 1223 y FB(j)994 1208 y Fv(holds:)945 1420 y Fs(jf)p Ft(z)k Fs(2)c Ft(P)1257 1435 y FB(j)1354 1420 y Fv(:)60 b Ft(z)32 b Fs(\027)c Ft(x)1678 1435 y Fz(1)1718 1420 y Fs(gj)g Fv(=)f Fs(jf)p Ft(z)32 b Fs(2)c Ft(P)2239 1435 y FB(j)2336 1420 y Fv(:)60 b Ft(z)32 b Fs(\027)d Ft(x)2661 1435 y Fz(2)2700 1420 y Fs(gj)p Ft(;)0 1631 y Fv(and)916 1751 y Fs(jf)p Ft(w)g Fs(2)g Ft(P)1251 1766 y FB(i)1339 1751 y Fv(:)60 b Ft(w)30 b Fs(\026)e Ft(y)1679 1766 y Fz(1)1718 1751 y Fs(gj)g Fv(=)f Fs(jf)p Ft(w)j Fs(2)e Ft(P)2262 1766 y FB(i)2350 1751 y Fv(:)60 b Ft(w)30 b Fs(\026)f Ft(y)2691 1766 y Fz(2)2730 1751 y Fs(gj)p Ft(:)0 1922 y Fv(Namely)-8 b(,)35 b Ft(P)48 b Fv(is)35 b(regular)f(i\013)g(for)g(an)m(y)i(0)31 b Fs(\024)i Ft(i)f(<)f(j)38 b Fs(\024)32 b Ft(n)k Fv(the)f(bi-partite)e(graph)i(on)g Ft(P)3111 1937 y FB(i)3163 1922 y Fs([)24 b Ft(P)3316 1937 y FB(j)3387 1922 y Fv(in)34 b(whic)m(h)0 2042 y Ft(x)28 b Fs(2)g Ft(P)240 2057 y FB(i)301 2042 y Fv(and)k Ft(y)f Fs(2)d Ft(P)726 2057 y FB(j)795 2042 y Fv(are)33 b(connected)h(i\013)e(comparable)f(is)h(regular.)0 2286 y Fq(Prop)s(osition)k(1.4)l(:)44 b Fp(L)-5 b(et)32 b Ft(P)46 b Fp(b)-5 b(e)31 b(a)h(r)-5 b(e)g(gular)32 b(gr)-5 b(ade)g(d)32 b(p)-5 b(oset)32 b(of)f(height)h Ft(n)p Fp(.)44 b(F)-7 b(or)31 b(any)h Fv(0)c Fs(\024)g Ft(i;)17 b(j)34 b Fs(\024)28 b Ft(n)k Fp(take)0 2406 y Ft(x)c Fs(2)g Ft(P)240 2421 y FB(j)311 2406 y Fp(and)35 b(de\014ne)f Ft(f)833 2421 y FB(j)869 2406 y Fv(\()p Ft(i)p Fv(\))28 b(=)1120 2359 y Fy(jf)p FB(z)s Fy(2)p FB(P)1303 2369 y Fo(i)1363 2359 y Fz(:)35 b FB(z)s Fy(\027)p FB(x)p Fy(gj)p 1120 2383 484 4 v 1306 2441 a(j)p FB(P)1371 2451 y Fo(i)1397 2441 y Fy(j)1613 2406 y Fp(.)44 b(Then)1312 2635 y Ft(E)1384 2650 y FB(P)1443 2635 y Fv(\()p Ft(k)s(;)17 b(n)p Fv(\))28 b(=)f(2)22 b Fs(\001)g(k)p Ft(\016)2024 2593 y Fy(0)2020 2659 y Fz(0)2082 2635 y Fs(\000)g(U)2253 2593 y Fy(0)2243 2659 y FB(k)2286 2635 y Fs(k)2336 2650 y Fy(1)2411 2635 y Ft(;)0 2846 y Fp(wher)-5 b(e)37 b Ft(\016)325 2810 y Fy(0)321 2871 y Fz(0)360 2846 y Fv(\()p Ft(i)p Fv(\))c(=)f Ft(\016)653 2861 y Fz(0)p FB(;i)736 2846 y Fp(,)38 b(for)f Ft(i)c Fv(=)f(0)p Ft(;)17 b(:)g(:)g(:)f(;)h(n)p Fp(,)38 b(and)e Fs(U)1793 2810 y Fy(0)1783 2872 y FB(k)1864 2846 y Fp(is)h(the)g(sp)-5 b(ac)g(e)37 b(of)g(functions)g(fr)-5 b(om)37 b Fs(f)p Fv(0)p Ft(;)17 b(:)g(:)g(:)e(;)i(n)p Fs(g)75 b Fp(to)0 2966 y Fj(R)46 b Fp(sp)-5 b(anne)g(d)33 b(by)i Ft(f)650 2981 y Fz(0)690 2966 y Ft(;)17 b(:)g(:)g(:)f(;)h(f)957 2981 y FB(k)999 2966 y Fp(.)0 3210 y Fv(Clearly)43 b(the)h(lattice)e (of)h(all)e(subsets)46 b(of)d(an)g Ft(n)p Fv(-set)h(and)g(the)f (lattice)f(of)h(all)f(subspaces)k(of)d(an)g Ft(n)p Fv(-)0 3330 y(dimensional)30 b(v)m(ector)k(space)f(o)m(v)m(er)h(a)e(\014nite)h (\014eld)f(are)h(regular.)2372 3294 y Fz(3)0 3636 y Fq(Remark)k(1.5)s (:)53 b Fv(If)36 b Ft(P)50 b Fv(is)37 b(the)g(lattice)e(of)h(all)f (subsets)k(of)d(an)h Ft(n)p Fv(-set)g(then)h Ft(f)2820 3651 y FB(j)2856 3636 y Fv(\()p Ft(i)p Fv(\))d(=)3121 3578 y(\()3159 3539 y Fo(n)p Fn(\000)p Fo(j)3167 3596 y(i)p Fn(\000)p Fo(j)3273 3578 y Fv(\))p 3121 3613 191 4 v 3159 3692 a(\()3197 3653 y Fo(n)3205 3710 y(i)3235 3692 y Fv(\))3321 3636 y(,)j(and)f(if)f Ft(P)0 3795 y Fv(is)f(the)h(lattice)e(of)h(all)e(subspaces)38 b(of)d(an)g Ft(n)p Fv(-dimensional)e(v)m(ector)j(space)h(o)m(v)m(er)g(a)e(\014nite) g(\014eld)g(with)g Ft(q)0 3969 y Fv(elemen)m(ts,)j(then)f Ft(f)705 3984 y FB(j)742 3969 y Fv(\()p Ft(i)p Fv(\))e(=)1006 3897 y([)1044 3858 y Fo(n)p Fn(\000)p Fo(j)1052 3915 y(i)p Fn(\000)p Fo(j)1168 3897 y Fv(])1195 3929 y Fo(q)p 1006 3946 224 4 v 1045 4025 a Fv([)1082 3986 y Fo(n)1090 4043 y(i)1130 4025 y Fv(])1157 4054 y Fo(q)1240 3969 y Fv(,)i(where)1590 3888 y Fr(\002)1642 3925 y FB(m)1654 4003 y(k)1714 3888 y Fr(\003)1756 4008 y FB(q)1828 3969 y Fv(=)1949 3922 y Fz(\()p FB(q)2010 3898 y Fo(m)2069 3922 y Fy(\000)p Fz(1\)\()p FB(q)2247 3898 y Fo(m)p Fn(\000)p Fm(1)2385 3922 y Fy(\000)p Fz(1\))p FB(:::)o Fz(\()p FB(q)2622 3898 y Fo(m)p Fn(\000)p Fo(k)q Fm(+1)2840 3922 y Fy(\000)p Fz(1\))p 1949 3946 1009 4 v 2108 4004 a(\()p FB(q)2169 3985 y Fo(k)2207 4004 y Fy(\000)p Fz(1\)\()p FB(q)2385 3985 y Fo(k)q Fn(\000)p Fm(1)2503 4004 y Fy(\000)p Fz(1\)\()p FB(q)r Fy(\000)p Fz(1\))3005 3969 y Fv(is)f(the)h Ft(q)t Fv(-)p Fp(Gaussian)0 4147 y(c)-5 b(o)g(e\016cient)32 b Fv([19)o(].)146 4374 y(No)m(w,)410 4315 y(\()448 4277 y Fo(n)p Fn(\000)p Fo(j)456 4334 y(i)p Fn(\000)p Fo(j)563 4315 y Fv(\))p 410 4351 191 4 v 448 4430 a(\()486 4391 y Fo(n)494 4448 y(i)524 4430 y Fv(\))647 4374 y(is)j(a)h(p)s(olynomial) d(of)i(degree)i Ft(j)42 b Fv(in)36 b Ft(i)g Fv(and)2234 4302 y([)2271 4263 y Fo(n)p Fn(\000)p Fo(j)2279 4320 y(i)p Fn(\000)p Fo(j)2396 4302 y Fv(])2423 4334 y Fo(q)p 2234 4351 224 4 v 2272 4430 a Fv([)2309 4391 y Fo(n)2318 4448 y(i)2358 4430 y Fv(])2385 4459 y Fo(q)2503 4374 y Fv(is)g(a)g(a)g(p)s(olynomial)c(of)k(degree)h Ft(j)0 4557 y Fv(in)d Ft(q)163 4521 y FB(i)191 4557 y Fv(.)49 b(Therefore,)36 b(for)e(the)h(lattice)e(of)h(subsets,)j Fs(U)1911 4521 y Fy(0)1901 4583 y FB(k)1979 4557 y Fv(is)d(the)h(space) g(of)g(p)s(olynomials)c(of)j(degree)h Fs(\024)d Ft(k)0 4677 y Fv(on)38 b(0)p Ft(;)17 b Fv(1)p Ft(;)g(:)g(:)g(:)e(;)i(n)p Fv(.)61 b(Similarly)-8 b(,)36 b(for)i(the)h(lattice)e(of)h(subspaces,)k Fs(U)2390 4641 y Fy(0)2380 4703 y FB(k)2462 4677 y Fv(is)c(the)h(space) g(of)f(p)s(olynomials)d(of)0 4798 y(degree)41 b Fs(\024)h Ft(k)i Fv(on)c(1)p Ft(;)17 b(q)t(;)g(:)g(:)g(:)e(;)i(q)1073 4762 y FB(n)1119 4798 y Fv(.)68 b(This)40 b(immediately)e(implies)g (the)j(dual)e(c)m(haracterizations)h(\(2\))g(of)0 4918 y Ft(E)6 b Fv(\()p Ft(k)s(;)17 b(n)p Fv(\))32 b(and)h(\(5\))f(of)g Ft(E)878 4882 y Fz(\()p FB(q)r Fz(\))971 4918 y Fv(\()p Ft(k)s(;)17 b(n)p Fv(\).)p 1274 4926 34 67 v 0 5009 1500 4 v 112 5070 a Fl(3)149 5100 y Fw(It)28 b(is)g(probably)e(a)i(go)r(o)r (d)e(place)i(to)f(admit)h(that)g(w)n(e)f(are)g(not)g(a)n(w)n(are)f(of)h (an)n(y)g(other)g Fk(inter)l(esting)g Fw(regular)f(p)r(osets.)1851 5349 y Fv(6)p eop %%Page: 7 7 7 6 bop 146 100 a Fv(Let)39 b(us)g(no)m(w)g(return)g(to)f(the)h (lattices)e(of)h(subsets)j(and)d(subspaces.)64 b(W)-8 b(e)38 b(w)m(ould)h(lik)m(e)e(to)i(solv)m(e)0 220 y(the)47 b(p)s(olynomial)d(appro)m(ximation)h(questions)j(\(2\))e(and)i(\(5\).) 86 b(It)47 b(turns)h(out)f(that)g(there)g(is)g(NO)0 340 y(appro)m(ximate)35 b(inclusion-exclusion)f(in)h(the)h(lattice)e(of)h (subspaces,)40 b(and)35 b(this)h(can)g(b)s(e)g(established)0 461 y(quite)d(straigh)m(tforw)m(ardly)f(b)m(y)i(the)f(lo)m(w)m(er)g(b)s (ound)g(metho)s(d)f(dev)m(elop)s(ed)i(in)e([8].)44 b(More)34 b(precisely)-8 b(,)33 b(w)m(e)0 581 y(ha)m(v)m(e)h(the)f(follo)m(wing)d (prop)s(osition:)0 834 y Fq(Prop)s(osition)36 b(1.6)t(:)56 b Fp(Ther)-5 b(e)40 b(exists)g(an)g(absolute)g(c)-5 b(onstant)40 b Ft(c)2358 849 y Fz(0)2438 834 y Fp(\(gr)-5 b(e)g(ater)40 b(than)g Fv(1)p Ft(=)p Fv(100)p Fp(\))f(such)i(that)0 955 y(for)35 b(any)f(prime)h(p)-5 b(ower)34 b Ft(q)39 b Fp(and)34 b(for)h(any)f(inte)-5 b(ger)35 b Ft(n)1466 1175 y(E)1544 1134 y Fz(\()p FB(q)r Fz(\))1637 1175 y Fv(\()p Ft(n)23 b Fs(\000)f Fv(1)p Ft(;)17 b(n)p Fv(\))28 b Ft(>)f(c)2217 1190 y Fz(0)2257 1175 y Ft(:)0 1445 y Fv(Note)39 b(that)f(ob)m(viously)g(for)g(an)m(y)h Ft(q)j Fv(and)d Ft(n)g Fv(w)m(e)g(ha)m(v)m(e)h Ft(E)2077 1408 y Fz(\()p FB(q)r Fz(\))2170 1445 y Fv(\()p Ft(n;)17 b(n)p Fv(\))38 b(=)f(0,)j(whic)m(h)f(is)f(just)h(to)f(sa)m(y)h(once)0 1565 y(again)31 b(that)i(M\177)-49 b(obius)32 b(in)m(v)m(ersion)h(w)m (orks)h(with)e(full)f(information,)e(and)k(therefore)g(the)g(statemen)m (t)g(of)0 1685 y(the)g(prop)s(osition)e(has)i(the)g(strongest)g(p)s (ossible)f(form.)146 1856 y(But)h(the)f(main)f(goal)f(of)i(this)g(pap)s (er)g(is)g(to)g(determine)g(ho)m(w)g(w)m(ell)g(the)g(\\original")d (appro)m(ximate)0 1976 y(inclusion-exclusion)22 b(w)m(orks)j(for)f(the) g(lattice)e(of)i(the)g(subsets.)43 b(It)24 b(turns)h(out)e(that)h(a)g (v)m(ery)h(con)m(v)m(enien)m(t)0 2096 y(w)m(a)m(y)35 b(to)e(deal)h(with)f(this)g(question)i(is)e(using)g Fp(ortho)-5 b(gonal)35 b(p)-5 b(olynomials)p Fv(.)46 b(W)-8 b(e)34 b(will)e(sa)m(y)i(more)f(ab)s(out)0 2217 y(orthogonal)c(p)s(olynomials) e(in)j(section)g(2)g(but)h(here)g(let)f(us)h(just)g(sa)m(y)g(that)f (orthogonal)f(p)s(olynomials)0 2337 y(asso)s(ciated)24 b(with)g(a)f(measure)i(on)f(a)f(set)i(of)e(p)s(oin)m(ts)h(are)g(in)m (trinsically)d(related)j(to)f(the)i Ft(l)3137 2352 y Fz(2)3200 2337 y Fv(norm)f(de\014ned)0 2457 y(b)m(y)h(this)f(measure.) 42 b(And)25 b(the)f(Euclidean)g(norm)g(en)m(ters)i(through)e(the)h (follo)m(wing)d(simple)h(idea,)i(whic)m(h)0 2578 y(seems)30 b(to)e(w)m(ork)h(rather)g(w)m(ell)f(in)g(this)g(setting:)41 b(\014nding)28 b Ft(E)6 b Fv(\()p Ft(k)s(;)17 b(n)p Fv(\))29 b(amoun)m(ts)f(to)h(solving)e(an)i(extremal)0 2698 y(question)23 b(ab)s(out)f(p)s(olynomials)e(of)i(b)s(ounded)h(degree,)j(view)m(ed)e (as)e(p)s(oin)m(ts)h(in)e(a)i(normed)f(v)m(ector)i(space.)0 2819 y(The)39 b(relev)-5 b(an)m(t)39 b(norms)e(are)i(the)f Ft(l)1250 2834 y Fz(1)1328 2819 y Fv(norm)g(and)g(the)h Ft(l)1987 2834 y Fy(1)2100 2819 y Fv(norm.)60 b(No)m(w,)40 b(if)d(w)m(e)j(can,)g(without)e(giving)0 2939 y(a)m(w)m(a)m(y)j(to)s(o) d(m)m(uc)m(h,)k(w)m(ork)e(with)f(an)g(appropriate)f(Euclidean)h(norm)f (instead,)j(P)m(arsev)-5 b(al's)40 b(iden)m(tit)m(y)0 3059 y(will)29 b(mak)m(e)i(our)g(life)f(m)m(uc)m(h)h(easier.)43 b(In)32 b(fact,)f(it)f(is)h(p)s(ossible)g(to)f(solv)m(e)i(the)g (corresp)s(onding)f(extremal)0 3180 y(questions)j(for)e(the)h (Euclidean)f(norm,)g(using)g(appropriate)g(families)e(of)i(orthogonal)f (p)s(olynomials.)0 3300 y(This)i(leads)f(to)g(go)s(o)s(d)g(upp)s(er)h (and)g(lo)m(w)m(er)f(b)s(ounds)i(on)e Ft(E)6 b Fv(\()p Ft(k)s(;)17 b(n)p Fv(\).)146 3470 y(With)32 b(the)h(help)g(of)f(this)g (\\philosoph)m(y")g(w)m(e)h(pro)m(v)m(e)h(the)f(follo)m(wing)d(fact:)0 3724 y Fq(Theorem)37 b(1.7)o(:)45 b Fp(F)-7 b(or)34 b(any)h(inte)-5 b(gers)34 b Ft(n)h Fp(and)g Fv(1)27 b Fs(\024)h Ft(k)j Fs(\024)d Ft(n)p Fp(:)322 4031 y Fv(1)p 254 4075 186 4 v 254 4167 a(2)303 4138 y FB(n)p Fy(\000)p Fz(1)478 3929 y Fo(n)p Fn(\000)p Fo(k)p 478 3942 121 3 v 523 3983 a Fm(2)466 4004 y Fr(X)481 4214 y FB(i)p Fz(=0)627 3958 y Fr(\022)700 4031 y Ft(n)713 4167 y(i)758 3958 y Fr(\023)859 4098 y Fs(\024)h Ft(E)6 b Fv(\()p Ft(k)s(;)17 b(n)p Fv(\))27 b Fs(\024)h Ft(O)1501 3928 y Fr( )1580 4098 y Fv(\()p Ft(n)1676 4057 y Fz(2)1738 4098 y Fs(\000)22 b Ft(k)1891 4057 y Fz(2)1931 4098 y Fv(\))1979 4030 y Fm(1)p 1979 4042 31 3 v 1979 4083 a(4)2046 4098 y Fs(\001)2105 3918 y Fr(\000)2200 3955 y FB(n)2161 4005 y Fo(n)p Fn(\000)p Fo(k)p 2161 4018 121 3 v 2206 4059 a Fm(2)2291 3918 y Fr(\001)p 2105 4075 232 4 v 2173 4167 a Fv(2)2222 4138 y FB(n)2347 3928 y Fr(!)2442 4098 y Ft(:)1156 b Fv(\(7\))0 4434 y(W)-8 b(e)39 b(presen)m(t)h(t)m(w)m(o)f(pro)s(ofs.)62 b(The)39 b(\\dual")e(pro)s(of)h(is)g(a)g(natural)g(con)m(tin)m(uation)f (of)h(the)h(approac)m(h)g(of)0 4554 y([10])g(and)g([8].)64 b(It)39 b(uses)i(the)f(dual)e(c)m(haracterization)g(\(2\))h(of)g Ft(E)6 b Fv(\()p Ft(k)s(;)17 b(n)p Fv(\))39 b(and)h(constructs)g(an)g (almost)0 4675 y(optimal)28 b(p)s(olynomial)g(appro)m(ximation)h(to)i Ft(\016)1669 4690 y Fz(0)1740 4675 y Fv(with)g(the)h(help)f(of)g(a)g (family)d(of)j Fp(Discr)-5 b(ete)33 b(Chebyshev)0 4795 y(p)-5 b(olynomials)p Fv(,)29 b(attaining)e(the)j(upp)s(er)g(b)s(ound)g (in)e(\(7\))1970 4759 y Fz(4)2010 4795 y Fv(.)42 b(This)30 b(b)s(ound)g(is)f(sho)m(wn)h(to)f(b)s(e)h(rather)g(tigh)m(t,)p 0 4888 1500 4 v 112 4949 a Fl(4)149 4979 y Fw(After)i(this)f(w)n(ork)f (w)n(as)f(completed)i(w)n(e)g(learned,)g(that)g(Discrete)g(Cheb)n (yshev)f(p)r(olynomials)g(w)n(ere)g(already)g(ap-)0 5079 y(plied,)e(in)g(a)f(quite)h(similar)f(manner,)g(in)h(co)r(ding)f (theory)g([5)o(].)1851 5349 y Fv(7)p eop %%Page: 8 8 8 7 bop 0 152 a Fv(namely)28 b Ft(E)6 b Fv(\()p Ft(k)s(;)17 b(n)p Fv(\))27 b Fs(\025)h Fv(\012)864 11 y Fr(\022)938 41 y(\020)997 152 y Fv(1)22 b Fs(\000)1180 112 y FB(k)1219 89 y Fm(2)p 1178 129 78 4 v 1178 186 a FB(n)1221 167 y Fm(2)1265 41 y Fr(\021)1335 36 y Fm(1)p 1335 48 31 3 v 1335 89 a(4)1401 152 y Fs(\001)1461 74 y Fv(\()1550 31 y Fo(n)1509 75 y(n)p Fn(\000)p Fo(k)p 1509 87 121 3 v 1554 121 a Fm(2)1639 74 y Fv(\))p 1461 129 217 4 v 1530 186 a Fz(2)1565 167 y Fo(n)1687 11 y Fr(\023)1760 152 y Fv(.)43 b(Note,)29 b(that)f(it)g(is)g(sligh)m(tly)f(w)m(eak)m(er) j(than)f(the)g(lo)m(w)m(er)0 329 y(b)s(ound)k(in)f(\(7\).)146 500 y(The)44 b(\\primal")c(pro)s(of)h(do)s(es)j(not)e(rely)h(up)s(on)g (either)f(theorem)h(2.2)f(or)g(the)h(dualit)m(y)f(theorem)0 620 y(of)j(linear)f(programming.)80 b(The)46 b(main)e(to)s(ol)g(is)h (the)h(discrete)g(F)-8 b(ourier)45 b(analysis)g(on)g Fj(Z)3379 584 y FB(n)3379 645 y Fz(2)3424 620 y Fv(.)82 b(Once)0 740 y(again,)35 b Ft(E)6 b Fv(\()p Ft(k)s(;)17 b(n)p Fv(\))35 b(is)g(sho)m(wn)i(to)f(b)s(e)f(the)h(solution)e(of)i(an) f(extremal)g(problem)f(\(13\))h(for)g(p)s(olynomials)0 861 y(on)d(0)p Ft(;)17 b Fv(1)p Ft(;)g(:)g(:)g(:)f(;)h(n)p Fv(.)146 1031 y(W)-8 b(e)33 b(p)s(oin)m(t)f(out)g(a)g(connection,)h (through)f(this)g(extremal)g(problem,)f(b)s(et)m(w)m(een)k Ft(E)6 b Fv(\()p Ft(k)s(;)17 b(n)p Fv(\))32 b(and)h(the)0 1151 y Fp(L\177)-50 b(ovasz)33 b(theta)h(function)d Fv([11])h(of)f(a)g (certain)g(family)e(of)i(graphs)h(whic)m(h)g(o)s(ccurs)g(naturally)e (in)h(co)s(ding)0 1272 y(theory)-8 b(.)45 b(These)35 b(graphs)f Ft(G)1013 1287 y FB(n;k)1151 1272 y Fv(are)f(de\014ned)h(b)m (y)g(t)m(w)m(o)g(in)m(teger)f(parameters)g Ft(n)g Fv(and)g(0)28 b Fs(\024)h Ft(k)j Fs(\024)d Ft(n)p Fv(.)45 b(The)0 1392 y(v)m(ertex)c(set)e(of)f(the)h(graph)g Ft(G)1111 1407 y FB(n;k)1255 1392 y Fv(is)f Fs(f)p Fv(0)p Ft(;)17 b Fv(1)p Fs(g)1601 1356 y FB(n)1685 1392 y Fv(and)39 b(t)m(w)m(o)h(v)m (ertices)g Ft(x)f Fv(and)f Ft(y)k Fv(are)d(connected)h(i\013)e(they)0 1530 y(di\013er)28 b(in)g(at)h(least)f Ft(k)18 b Fv(+)d(1)28 b(places.)42 b(It)29 b(turns)h(out)f([15)o(])g(that)g Ft(E)6 b Fv(\()p Ft(k)s(;)17 b(n)p Fv(\))27 b Fs(\031)2624 1478 y FB(\022)r Fz(\()p FB(G)2741 1490 y Fo(n;n)p Fn(\000)p Fo(k)2922 1478 y Fz(\))p 2624 1507 327 4 v 2748 1565 a(2)2783 1546 y Fo(n)2960 1530 y Fv(,)j(the)f Fs(\031)g Fv(sign)f(hiding)0 1651 y(an)k Ft(O)s Fv(\()251 1579 y Fs(p)p 334 1579 59 4 v 72 x Ft(n)p Fv(\))g(factor.)43 b(\(W)-8 b(e)33 b(sp)s(eculate)g(that)g(these)g(t)m(w)m(o)h(v)-5 b(alues)32 b(migh)m(t)f(actually)h(b)s(e)g(equal.\))146 1821 y(The)38 b(extremal)f(problem)f(\(13\))g(is)h(essen)m(tially)g (solv)m(ed)h(in)e([15])h(in)f(order)i(to)f(get)g(tigh)m(t)f(b)s(ounds)0 1941 y(on)e Ft(\022)s Fv(\()p Ft(G)300 1956 y FB(n;k)406 1941 y Fv(\).)49 b(F)-8 b(or)34 b(completeness)h(sak)m(e)h(w)m(e)f (presen)m(t)i(the)d(easy)i(solution)d(here.)50 b(The)36 b(upp)s(er)f(b)s(ound)0 2062 y(in)d(\(7\))g(is)g(obtained)g(with)g(the) h(help)g(of)f(an)g(orthogonal)f(family)f(of)i Fp(Hahn)j(p)-5 b(olynomials)p Fv(.)0 2182 y(The)35 b(lo)m(w)m(er)e(b)s(ound)h(in)f (\(7\))h(follo)m(ws)e(from)g(an)i(ob)m(vious)g(lo)m(w)m(er)g(b)s(ound)g (on)f Ft(\022)s Fv(\()p Ft(G)2933 2197 y FB(n;n)p Fy(\000)p FB(k)3136 2182 y Fv(\),)h(whic)m(h)g(is)g(the)0 2302 y(size)f(of)f(the)h(maximal)c(indep)s(enden)m(t)34 b(set)f(in)f Ft(G)1758 2317 y FB(n;n)p Fy(\000)p FB(k)1961 2302 y Fv(.)0 2685 y Fu(2)161 b(Preliminaries)0 2954 y Fv(This)38 b(section)g(con)m(tains)h(necessary)h(de\014nitions,)f(terminology)d (and)i(references)i(as)e(w)m(ell)g(as)g(some)0 3074 y(of)32 b(the)h(facts)g(that)f(are)h(required)g(later)f(on.)146 3244 y Fi(P)l(artially)47 b(ordered)e(sets)34 b Fv([17)o(])0 3365 y(Let)d Ft(P)44 b Fv(b)s(e)31 b(a)g(\014nite)g(partially)d (ordered)j(set)h(\(p)s(oset)f(in)f(short\).)43 b(W)-8 b(e)32 b(sa)m(y)g(that)e Ft(P)45 b Fv(has)31 b(a)f Fp(minimum)3701 3344 y Fv(^)3701 3365 y(0)0 3485 y(i\013)119 3464 y(^)119 3485 y(0)h Fs(\026)i Ft(x)i Fv(for)f(all)f Ft(x)f Fs(2)g Ft(P)14 b Fv(.)50 b(A)35 b Fp(chain)f Fv(in)g Ft(P)49 b Fv(is)34 b(a)h(subset)h(of)f(elemen)m(ts)g(of)f Ft(P)49 b Fv(an)m(y)35 b(t)m(w)m(o)h(of)e(whic)m(h)i(are)0 3606 y(comparable.)0 3726 y(A)43 b(p)s(oset)g Ft(P)56 b Fv(with)42 b(a)g(minim)m(um)1273 3705 y(^)1273 3726 y(0)g(is)g(said)g(to)h(b)s(e)g Fp(gr)-5 b(ade)g(d)41 b Fv(if)h(for)g(ev)m(ery)i(elemen)m(t)f Ft(x)i Fs(2)g Ft(P)14 b Fv(,)45 b(ev)m(ery)0 3846 y(maximal)34 b(c)m(hain)k(from)901 3825 y(^)901 3846 y(0)f(to)g Ft(x)h Fv(has)g(the)g(same)f(length.)58 b(This)38 b(common)e(length)h(is)g (de\014ned)i(to)e(b)s(e)0 3967 y(the)c Fp(r)-5 b(ank)32 b Fv(of)g Ft(x)p Fv(.)44 b(The)34 b Fp(r)-5 b(ank)34 b(of)67 b Ft(P)46 b Fv(is)32 b(the)h(maximal)c(rank)k(of)f Ft(x)d Fs(2)f Ft(P)14 b Fv(.)0 4087 y(Consider)44 b(matrices)e(whose)j (ro)m(ws)f(and)f(columns)g(are)g(indexed)h(b)m(y)g(elemen)m(ts)g(of)f Ft(P)14 b Fv(.)75 b(One)43 b(suc)m(h)0 4207 y(matrix)f(is)g Ft(\020)8 b Fv(,)45 b Fp(the)g(zeta)g(function)f(of)g Ft(P)14 b Fv(,)46 b(de\014ned)e(b)m(y)h Ft(\020)8 b Fv(\()p Ft(x;)17 b(y)t Fv(\))44 b(=)h(1)e(if)f Ft(x)47 b Fs(\026)f Ft(y)g Fv(and)d Ft(\020)8 b Fv(\()p Ft(x;)17 b(y)t Fv(\))45 b(=)g(0)0 4328 y(otherwise.)e(It)31 b(turns)g(out)f(that)g Ft(\020)38 b Fv(is)30 b(alw)m(a)m(ys)h(an)f(in)m(v)m(ertible)g(matrix.) 41 b(Let)31 b Ft(\026)f Fv(denote)h(the)g(in)m(v)m(erse)g(of)0 4448 y Ft(\020)8 b Fv(.)43 b(This)32 b(matrix)f(is)h(the)h Fp(M\177)-50 b(obius)35 b(function)e Fv(of)f Ft(P)14 b Fv(,)32 b(and)g(w)m(e)i(ha)m(v)m(e)0 4569 y Fp(The)j(M\177)-50 b(obius)37 b(inversion)f(formula)p Fv(:)48 b(Let)36 b Ft(f)43 b Fv(:)32 b Ft(P)45 b Fs(!)32 b Fj(R)46 b Fv(and)35 b(let)g Ft(F)46 b Fv(=)32 b Ft(\020)f Fs(\001)23 b Ft(f)46 b Fv(b)s(e)36 b(the)f(zeta)h(transform)0 4689 y(of)c Ft(f)11 b Fv(,)32 b(i.e.)43 b Ft(F)14 b Fv(\()p Ft(x)p Fv(\))28 b(=)737 4614 y Fr(P)842 4718 y FB(y)r Fy(\027)p FB(x)994 4689 y Ft(f)11 b Fv(\()p Ft(y)t Fv(\))p Ft(:)32 b Fv(Then)813 4944 y Ft(f)38 b Fv(=)28 b Ft(\026)22 b Fs(\001)g Ft(F)s(;)276 b Fv(namely)455 b Ft(f)11 b Fv(\()p Ft(x)p Fv(\))27 b(=)2586 4849 y Fr(X)2592 5059 y FB(y)r Fy(\027)p FB(x)2746 4944 y Ft(\026)p Fv(\()p Ft(x;)17 b(y)t Fv(\))p Ft(F)d Fv(\()p Ft(y)t Fv(\))p Ft(:)1851 5349 y Fv(8)p eop %%Page: 9 9 9 8 bop 0 100 a Fv(The)29 b(M\177)-49 b(obius)29 b(function)e(is)h(kno) m(wn)i(for)e(some)g(common)f(partially)e(ordered)k(sets.)44 b(W)-8 b(e)28 b(will)e(need)k(the)0 220 y(follo)m(wing)g(fact:)0 340 y(F)-8 b(or)36 b(the)h(lattice)f(of)g(all)f(subsets)j(of)f(an)f Ft(n)p Fv(-set,)j Ft(\026)p Fv(\()p Ft(x;)17 b(y)t Fv(\))34 b(=)g(\()p Fs(\000)p Fv(1\))2413 304 y Fy(j)p FB(y)r Fy(j\000j)p FB(x)p Fy(j)2665 340 y Fv(if)h Ft(x)h Fs(\022)f Ft(y)t Fv(,)i(and)g Ft(\026)p Fv(\()p Ft(x;)17 b(y)t Fv(\))33 b(=)i(0)0 461 y(otherwise.)44 b(Here)33 b Fs(j)p Ft(x)p Fs(j)g Fv(denotes)g(the)g(size)g(of)f(the)h(set)h Ft(x)p Fv(.)146 751 y Fi(Orthogonal)46 b(p)t(olynomials)79 b Fv([18])0 872 y(Let)34 b Ft(\026)f Fv(b)s(e)h(a)g(\014nite)f(measure) h(on)g(an)f(in)m(terv)-5 b(al)33 b([)p Ft(a;)17 b(b)p Fv(].)47 b(It)34 b(de\014nes)h(a)f(natural)e(inner)i(pro)s(duct)g(on)g (the)0 1005 y(space)40 b(of)f(real-v)-5 b(alued)38 b(functions)h(on)g (the)h(in)m(terv)-5 b(al,)39 b(namely)g Ft(<)g(f)5 b(;)17 b(g)42 b(>)p Fv(=)2857 925 y Fr(R)2923 951 y FB(b)2904 1040 y(a)2974 1005 y Ft(f)11 b Fv(\()p Ft(x)p Fv(\))p Ft(g)t Fv(\()p Ft(x)p Fv(\))p Ft(d\026)p Fv(\()p Ft(x)p Fv(\).)63 b(A)0 1125 y(sequence)43 b Ft(p)461 1140 y Fz(0)500 1125 y Ft(;)17 b(p)593 1140 y Fz(1)632 1125 y Ft(;)g(:)g(:)g(:)f(p)856 1140 y FB(n)920 1125 y Ft(:)h(:)g(:)39 b Fv(of)h(p)s(olynomials)d(are)j(the)h Fp(ortho)-5 b(gonal)41 b(p)-5 b(olynomials)40 b(asso)-5 b(ciate)g(d)41 b(with)0 1246 y(me)-5 b(asur)g(e)32 b Ft(\026)g Fv(if:)0 1416 y(\(1\))g(F)-8 b(or)32 b Ft(i)c Fv(=)f(0)p Ft(;)17 b Fv(1)p Ft(;)g(:)g(:)g(:)o Fv(,)32 b(deg\()p Ft(p)1088 1431 y FB(i)1117 1416 y Fv(\))27 b(=)h Ft(i)p Fv(.)0 1536 y(\(2\))k(F)-8 b(or)32 b Ft(i)c Fs(6)p Fv(=)f Ft(j)6 b Fv(,)33 b(the)g(p)s(olynomials)c Ft(p)1361 1551 y FB(i)1422 1536 y Fv(and)k Ft(p)1661 1551 y FB(j)1730 1536 y Fv(are)f(orthogonal)f (:)44 b Ft(<)27 b(p)2603 1551 y FB(i)2631 1536 y Ft(;)17 b(p)2724 1551 y FB(j)2788 1536 y Ft(>)p Fv(=)28 b(0.)0 1657 y(One)33 b(can)g(c)m(ho)s(ose)g(di\013eren)m(t)g(normalizations)c (of)j(p)s(olynomials)e Fs(f)p Ft(p)2488 1672 y FB(i)2516 1657 y Fs(g)p Fv(.)43 b(W)-8 b(e)33 b(will)d(require)j(also:)0 1777 y(\(3\))f Ft(<)c(p)310 1792 y FB(i)338 1777 y Ft(;)17 b(p)431 1792 y FB(i)486 1777 y Ft(>)p Fv(=)28 b(1,)k(for)g(all)f Ft(i)d Fv(=)f(0)p Ft(;)17 b Fv(1)p Ft(;)g(:)g(:)g(:)o Fv(.)146 1947 y(Giv)m(en)37 b(a)f(measure,)h(it)e(seems,)k(in)c (general,)i(quite)f(hard)h(to)f(obtain)f(an)h(explicit)f(construction)0 2068 y(of)i(the)h(asso)s(ciated)f(orthogonal)e(p)s(olynomials,)h(or)h (to)g(decide)h(whether)h(these)f(p)s(olynomials)d(ha)m(v)m(e)0 2188 y(some)g(sp)s(eci\014c)i(prop)s(ert)m(y)-8 b(.)53 b(F)-8 b(ortunately)g(,)35 b(for)g(some)h(measures)g Ft(\026)f Fv(the)h(corresp)s(onding)g(orthogonal)0 2308 y(p)s(olynomials)e(are)i(su\016cien)m(tly)i(w)m(ell-kno)m(wn.)55 b(W)-8 b(e)37 b(are)g(going)e(to)h(deal)g(with)h(t)m(w)m(o)g(suc)m(h)h (measures,)0 2429 y(b)s(oth)32 b(of)g(them)h(discrete)g(and)f(supp)s (orted)i(on)e(the)h(in)m(teger)g(p)s(oin)m(ts)f(0)p Ft(;)17 b Fv(1)p Ft(;)g(:)g(:)g(:)e(;)i(n)p Fv(.)43 b(Note,)33 b(that)g(in)e(this)0 2549 y(case)f(there)f(are)g(only)f Ft(n)14 b Fv(+)g(1)29 b(orthogonal)d(p)s(olynomials,)h(since)i(the)g (space)h(of)e(real-v)-5 b(alued)27 b(functions)0 2670 y(on)32 b(0)p Ft(;)17 b Fv(1)p Ft(;)g(:)g(:)g(:)f(;)h(n)32 b Fv(is)g Ft(n)22 b Fv(+)g(1)33 b(dimensional.)146 2840 y(The)h(\014rst)f(is)e(the)i(uniform)e(measure,)i(giving)d(a)j(unit)e (w)m(eigh)m(t)i(to)f(all)e(the)j(p)s(oin)m(ts)f(0)p Ft(;)17 b(:)g(:)g(:)f(;)h(n)p Fv(.)43 b(The)0 2960 y(asso)s(ciated)32 b(orthogonal)f(p)s(olynomials)f(are)i(the)h Fp(discr)-5 b(ete)35 b(Chebyshev)e(p)-5 b(olynomials)32 b Fv([18)o(].)0 3081 y(The)26 b(second)g(measure)f(is)g(the)g(squared)h(binomial)c (measure)j(on)g(0)p Ft(;)17 b Fv(1)p Ft(;)g(:)g(:)g(:)e(;)i(n)p Fv(.)41 b(This)25 b(measure)g(endo)m(ws)0 3209 y(the)46 b(p)s(oin)m(t)f Ft(i)h Fv(with)g(w)m(eigh)m(t)1086 3129 y Fr(\000)1132 3165 y FB(n)1141 3244 y(i)1175 3129 y Fr(\001)1220 3151 y Fz(2)1260 3209 y Fv(.)83 b(The)47 b(asso)s(ciated)f(orthogonal)e(p)s(olynomials)f(are)i(a)h(\(sp)s (ecial\))0 3330 y(family)f(of)h Fp(Hahn)i(p)-5 b(olynomials)46 b Fv([3,)h(13)o(].)87 b(W)-8 b(e)48 b(are)f(going)e(to)i(need)h(only)f (one)g(prop)s(ert)m(y)h(of)f(the)0 3450 y(ab)s(o)m(v)m(e-men)m(tioned) 33 b(p)s(olynomials,)c(namely)j(their)g(v)-5 b(alue)32 b(at)g(zero.)0 3703 y Fq(Lemma)37 b(2.1)o(:)0 3824 y Fp(\(1\)L)-5 b(et)35 b Ft(p)347 3839 y FB(i)410 3824 y Fp(b)-5 b(e)34 b(the)h Ft(i)p Fp('th)g(discr)-5 b(ete)35 b(Chebyshev)f(p)-5 b(olynomial,)33 b Ft(i)28 b Fv(=)g(0)p Ft(;)17 b Fv(1)g Ft(:)g(:)g(:)e(;)i(n)p Fp(.)44 b(Then)34 b([18],)g([13])244 4148 y Ft(p)293 4163 y FB(i)321 4148 y Fv(\(0\))27 b(=)797 3994 y Fr(\000)842 4030 y FB(n)852 4109 y(i)885 3994 y Fr(\001)p 587 4125 554 4 v 587 4145 a(q)p 686 4145 454 4 v 686 4178 a(\000)732 4215 y FB(n)p Fz(+)p FB(i)p Fz(+1)763 4293 y(2)p FB(i)p Fz(+1)944 4178 y Fr(\001\000)1035 4215 y Fz(2)p FB(i)1053 4293 y(i)1095 4178 y Fr(\001)1150 4148 y Ft(:)2448 b Fv(\(8\))0 4536 y Fp(\(2\)L)-5 b(et)35 b Ft(q)341 4551 y FB(i)404 4536 y Fp(b)-5 b(e)35 b(the)f Ft(i)p Fp('th)i(Hahn)e(p)-5 b(olynomial,)34 b Ft(i)28 b Fv(=)f(0)p Ft(;)17 b Fv(1)g Ft(:)g(:)g(:)e(;)i(n)p Fp(.)45 b(Then)34 b([13])244 4893 y Ft(q)287 4908 y FB(i)315 4893 y Fv(\(0\))28 b(=)571 4710 y Fr(s)p 671 4710 517 4 v 681 4733 a(\000)726 4769 y Fz(2)p FB(n)753 4848 y(i)805 4733 y Fr(\001)872 4813 y Fs(\000)972 4733 y Fr(\000)1036 4769 y Fz(2)p FB(n)1018 4848 y(i)p Fy(\000)p Fz(1)1132 4733 y Fr(\001)p 681 4870 497 4 v 844 4889 a(\000)890 4925 y Fz(2)p FB(n)908 5004 y(n)968 4889 y Fr(\001)1187 4893 y Ft(:)2411 b Fv(\(9\))1851 5349 y(9)p eop %%Page: 10 10 10 9 bop 146 100 a Fi(Harmonic)46 b(Analysis)f(on)g Fh(Z)1570 56 y Fg(n)1570 129 y Fw(2)1659 100 y Fv([3,)33 b(6)o(])0 220 y Fj(Z)69 184 y FB(n)69 245 y Fz(2)149 220 y Fv(is)j(a)f(\014nite)h (Ab)s(elian)f(group,)h(therefore)h(its)e(c)m(haracters)i Fs(f)p Ft(W)2423 235 y FB(T)2478 220 y Fs(g)2528 235 y FB(T)10 b Fy(2)p Ff(Z)2676 212 y Fo(n)2676 256 y Fm(2)2753 220 y Fv(constitute)36 b(a)g(group)g(\(the)0 340 y Fp(dual)26 b(gr)-5 b(oup)23 b Fv(whic)m(h)g(is)g(isomorphic)e(to)h Fj(Z)1479 304 y FB(n)1479 365 y Fz(2)1524 340 y Fv(.\))40 b(The)24 b(c)m(haracter)f Ft(W)2327 355 y FB(T)2405 340 y Fv(is)g(a)g(function)f(from)g Fj(Z)3228 304 y FB(n)3228 365 y Fz(2)3295 340 y Fv(to)h Fs(f\000)p Fv(1)p Ft(;)17 b Fv(1)p Fs(g)p Fv(,)0 461 y(de\014ned)34 b(as:)43 b Ft(W)585 476 y FB(T)641 461 y Fv(\()p Ft(S)6 b Fv(\))27 b(=)g(\()p Fs(\000)p Fv(1\))1115 425 y Fy(j)p FB(T)10 b Fy(\\)p FB(S)t Fy(j)1304 461 y Fv(.)43 b(The)33 b(c)m(haracters)h Fs(f)p Ft(W)2180 476 y FB(T)2235 461 y Fs(g)2285 476 y FB(T)10 b Fy(2)p Ff(Z)2433 453 y Fo(n)2433 497 y Fm(2)2506 461 y Fv(form)31 b(an)h(orthonormal)e(basis)j(in)0 581 y(the)c(space)g(of)f(real-v)-5 b(alued)27 b(functions)h(on)h Fj(Z)1636 545 y FB(n)1636 606 y Fz(2)1680 581 y Fv(,)g(equipp)s(ed)h (with)e(uniform)e(probabilit)m(y)h(distribution.)146 751 y(F)-8 b(or)33 b Ft(f)39 b Fv(:)29 b Fj(Z)534 715 y FB(n)534 776 y Fz(2)607 751 y Fs(!)g Fj(R)5 b Fv(,)39 b(de\014ne)1172 725 y(^)1151 751 y Ft(f)g Fv(:)29 b Fj(Z)1363 715 y FB(n)1363 776 y Fz(2)1437 751 y Fs(!)f Fj(R)5 b Fv(,)39 b(as)1839 725 y(^)1818 751 y Ft(f)11 b Fv(\()p Ft(T)j Fv(\))28 b(=)2188 712 y Fz(1)p 2167 728 78 4 v 2167 786 a(2)2202 767 y Fo(n)2271 677 y Fr(P)2376 780 y FB(S)t Fy(2)p FB(G)2546 751 y Ft(f)11 b Fv(\()p Ft(S)6 b Fv(\))p Ft(W)2839 766 y FB(T)2893 751 y Fv(\()p Ft(S)g Fv(\).)45 b(The)35 b(function)3713 725 y(^)3691 751 y Ft(f)0 872 y Fv(is)d(the)h Fp(F)-7 b(ourier)34 b(T)-7 b(r)i(ansform)31 b Fv(of)h Ft(f)11 b Fv(.)43 b(See)34 b([6],)e(for)g(more)g(on)h(the)g(F)-8 b(ourier)31 b(T)-8 b(ransform)32 b(in)g Fj(Z)3357 836 y FB(n)3357 896 y Fz(2)3401 872 y Fv(.)146 1042 y(The)42 b(F)-8 b(ourier)39 b(T)-8 b(ransform)40 b(is)g(a)g(linear)e(transformation)h(on)h(the)h (space)g(of)f(real-v)-5 b(alued)39 b(func-)0 1162 y(tions)c(on)h Fj(Z)450 1126 y FB(n)450 1187 y Fz(2)494 1162 y Fv(.)53 b(It)35 b(comm)m(utes)h(with)f(another)h(linear)e(transformation)f Ft(\031)40 b Fv(on)35 b(this)h(space,)h(giv)m(en)f(b)m(y)0 1283 y(\()p Ft(\031)t(f)11 b Fv(\)\()p Ft(S)6 b Fv(\))27 b(=)536 1243 y Fz(1)p 476 1260 155 4 v 476 1338 a Fv(\()534 1300 y Fo(n)514 1356 y Fn(j)p Fo(S)s Fn(j)592 1338 y Fv(\))657 1208 y Fr(P)762 1312 y Fy(j)p FB(T)10 b Fy(j)p Fz(=)p Fy(j)p FB(S)t Fy(j)1014 1283 y Ft(f)h Fv(\()p Ft(T)j Fv(\).)42 b Ft(\031)33 b Fv(is)d(the)g(\(symmetric\))f(pro)5 b(jection)29 b(on)h(the)g(space)h(of)e Fp(symmetric)0 1446 y(functions)j Fv(on)h Fj(Z)626 1410 y FB(n)626 1471 y Fz(2)670 1446 y Fv(.)146 1616 y(F)-8 b(or)43 b(0)k Fs(\024)g Ft(k)j Fs(\024)d Ft(n)d Fv(de\014ne)h Ft(K)1255 1631 y FB(k)1345 1616 y Fv(:)i Fj(Z)1488 1580 y FB(n)1488 1641 y Fz(2)1579 1616 y Fs(!)f Fj(R)55 b Fv(as)44 b Ft(K)2055 1631 y FB(k)2098 1616 y Fv(\()p Ft(S)6 b Fv(\))46 b(=)2409 1542 y Fr(P)2514 1645 y Fy(j)p FB(T)10 b Fy(j)p Fz(=)p FB(k)2718 1616 y Ft(W)2810 1631 y FB(T)2865 1616 y Fv(\()p Ft(S)c Fv(\).)77 b(Clearly)-8 b(,)46 b Ft(K)3566 1631 y FB(k)3608 1616 y Fv(\()p Ft(S)6 b Fv(\))0 1745 y(dep)s(ends)38 b(only)f(on)f Fs(j)p Ft(S)6 b Fs(j)p Fv(,)37 b(and)g(can)g(therefore)g (b)s(e)g(view)m(ed)h(as)f(a)f(function)g(on)h(in)m(tegers)g(0)e Fs(\024)g Ft(s)f Fs(\024)i Ft(n)p Fv(.)0 1865 y(With)25 b(some)g(abuse)h(of)f(notation)e(w)m(e)k(ma)m(y)-8 b(,)26 b(therefore,)i(view)d Ft(K)2324 1880 y FB(k)2392 1865 y Fv(as)g Ft(K)2587 1880 y FB(k)2630 1865 y Fv(\()p Ft(x)p Fv(\))j(=)2893 1791 y Fr(P)2998 1817 y FB(n)2998 1894 y(j)t Fz(=0)3124 1865 y Fv(\()p Fs(\000)p Fv(1\))3326 1829 y FB(j)3363 1785 y Fr(\000)3409 1821 y FB(x)3412 1900 y(j)3448 1785 y Fr(\001\000)3540 1821 y FB(n)p Fy(\000)p FB(x)3546 1900 y(k)r Fy(\000)p FB(j)3677 1785 y Fr(\001)3723 1865 y Fv(,)0 1996 y(the)33 b Ft(k)s Fv(-th)f Fp(Kr)-5 b(awchouk)34 b(p)-5 b(olynomial)32 b Fv([9)o(],)h(a)f(real)g(p)s (olynomial)d(of)j(degree)i Ft(k)s Fv(.)146 2166 y Fi(A)45 b(theorem)h(from)f(functional)g(analysis)34 b Fv([14])0 2286 y(Let)k Ft(X)45 b Fv(b)s(e)38 b(a)f(\014nite-dimensional)e(real)i (normed)g(v)m(ector)i(space)f(with)g(norm)e Fs(k)26 b(\001)f(k)3103 2301 y FB(X)3208 2286 y Fv(,)39 b(and)f(let)f(the)0 2407 y(dual)c(space)i Ft(X)569 2371 y Fy(\003)643 2407 y Fv(b)s(e)f(the)h(v) m(ector)g(space)g(of)f(all)e(linear)g(functionals)h(on)h Ft(X)42 b Fv(endo)m(w)m(ed)36 b(with)e(the)g Fp(dual)0 2527 y(norm)28 b Fs(k)15 b(\001)g(k)412 2542 y FB(X)475 2523 y Fn(\003)515 2527 y Fv(,)30 b(namely)e(for)h Ft(\036)e Fs(2)h Ft(X)1321 2491 y Fy(\003)1390 2527 y Fv(w)m(e)i(de\014ne)g Fs(k)p Ft(\036)p Fs(k)1966 2542 y FB(X)2029 2523 y Fn(\003)2097 2527 y Fv(=)d(sup)2347 2551 y FB(x)p Fy(2)p FB(X)q(;)32 b Fy(k)p FB(x)p Fy(k)2655 2562 y Fo(X)2713 2551 y Fy(\024)p Fz(1)2808 2527 y Ft(\036)p Fv(\()p Ft(x)p Fv(\).)42 b(F)-8 b(or)28 b(instance,)j(let)0 2647 y Ft(A)k Fv(b)s(e)g(a)g(\014nite)f (set)i(and)f Ft(X)43 b Fv(b)s(e)35 b(the)g Fs(j)p Ft(A)p Fs(j)p Fv(-dimensional)c(v)m(ector)36 b(space)g(of)f(all)e(real-v)-5 b(alued)33 b(functions)0 2768 y(on)39 b Ft(A)h Fv(with)f(the)h Ft(l)688 2783 y Fz(1)767 2768 y Fv(norm:)57 b(for)39 b Ft(f)50 b Fs(2)40 b Ft(X)47 b Fv(the)40 b(norm)f(is)g Fs(k)p Ft(f)11 b Fs(k)2263 2783 y FB(X)2369 2768 y Fv(=)2484 2693 y Fr(P)2590 2797 y FB(a)p Fy(2)p FB(A)2748 2768 y Fs(j)p Ft(f)g Fv(\()p Ft(a)p Fv(\))p Fs(j)p Fv(.)63 b(Then)41 b Ft(X)3431 2732 y Fy(\003)3509 2768 y Fv(is)f(the)0 2888 y Fs(j)p Ft(A)p Fs(j)p Fv(-dimensional)27 b(real)i(v)m(ector)j (space)f(endo)m(w)m(ed)i(with)d(the)h Fp(supr)-5 b(emum)30 b Fv(\(or)g Ft(l)2861 2903 y Fy(1)2936 2888 y Fv(\))g(norm:)41 b(for)30 b Ft(\036)e Fs(2)g Ft(X)3711 2852 y Fy(\003)0 3009 y Fv(w)m(e)37 b(ha)m(v)m(e)g Fs(k)p Ft(\036)p Fs(k)533 3024 y FB(X)596 3005 y Fn(\003)669 3009 y Fv(=)c(max)960 3024 y FB(a)p Fy(2)p FB(A)1118 3009 y Fs(j)p Ft(\036)p Fv(\()p Ft(a)p Fv(\))p Fs(j)p Fv(.)52 b(\(The)37 b(action)e(of)g Ft(\036)e Fs(2)h Ft(X)2370 2972 y Fy(\003)2445 3009 y Fv(on)i Ft(x)d Fs(2)h Ft(X)43 b Fv(is)36 b(giv)m(en)g(b)m(y)g(an)g (inner)0 3129 y(pro)s(duct:)44 b Ft(\036)p Fv(\()p Ft(x)p Fv(\))27 b(=)p Ft(<)h(\036;)17 b(x)27 b(>)p Fv(=)1164 3054 y Fr(P)1269 3158 y FB(a)p Fy(2)p FB(A)1427 3129 y Ft(\036)p Fv(\()p Ft(a)p Fv(\))p Ft(x)p Fv(\()p Ft(a)p Fv(\).\))146 3299 y(Let)k Ft(M)40 b Fv(b)s(e)31 b(a)e(subspace)j(of)e Ft(X)8 b Fv(.)42 b(It)30 b(is)g(a)g(normed)f(v)m(ector)i(space)h(in)d (it's)g(o)m(wn)i(righ)m(t,)f(and)g(w)m(e)h(ma)m(y)0 3420 y(consider)e(the)g(dual)f(space)h Ft(M)1113 3383 y Fy(\003)1154 3420 y Fv(.)42 b(An)m(y)29 b(linear)e(functional)g Ft(\036)h Fv(on)h Ft(X)36 b Fv(is)28 b(also)g(a)g(functional)f(on)i Ft(M)10 b Fv(,)30 b(and)0 3540 y(so)39 b(ma)m(y)f(b)s(e)h(considered)g (an)f(elemen)m(t)h(of)f Ft(M)1694 3504 y Fy(\003)1772 3540 y Fv(\(This)h(transformation)d Ft(X)2798 3504 y Fy(\003)2875 3540 y Fs(!)i Ft(M)3117 3504 y Fy(\003)3195 3540 y Fv(is)g(not)h(one)f(to)0 3660 y(one,)d Ft(M)312 3624 y Fy(\003)387 3660 y Fv(is)f(actually)f(a)i Fp(quotient)i(sp)-5 b(ac)g(e)33 b Fv(of)h Ft(X)1777 3624 y Fy(\003)1817 3660 y Fv(\).)49 b(W)-8 b(e)35 b(will)d(require)j(an)f(answ)m(er)i(to)f(the) g(follo)m(wing)0 3781 y(question:)42 b(What)29 b(is)g(the)g(norm)f(of)h Ft(\036)f Fv(as)i(an)e Fp(element)j(of)g Ft(M)2219 3745 y Fy(\003)2289 3781 y Fv(?)42 b(The)30 b(answ)m(er)g(is)f(giv)m(en)g(b) m(y)h(follo)m(wing)0 3901 y(theorem:)0 4179 y Fq(Theorem)37 b(2.2)8 b(:)63 b Fp(In)43 b(the)g(notation)h(ab)-5 b(ove,)45 b(let)e Ft(M)1978 4143 y Fy(?)2082 4179 y Fp(b)-5 b(e)43 b(the)h(subsp)-5 b(ac)g(e)43 b(of)g Ft(X)2993 4143 y Fy(\003)3076 4179 y Fp(given)g(by)h(al)5 b(l)43 b(the)0 4300 y(functionals)34 b Ft(\034)39 b Fs(2)28 b Ft(X)762 4263 y Fy(\003)836 4300 y Fp(such)35 b(that)g Ft(\034)1299 4315 y Fy(j)p FB(M)1426 4300 y Fs(\021)28 b Fv(0)p Fp(.)45 b(Then,)34 b(for)g(any)h Ft(\036)28 b Fs(2)g Ft(X)2550 4263 y Fy(\003)2589 4300 y Fp(:)1387 4520 y Fs(k)p Ft(\036)p Fs(k)1545 4535 y FB(M)1620 4516 y Fn(\003)1687 4520 y Fv(=)f Fs(k)p Ft(\036)22 b Fs(\000)g Ft(M)2123 4478 y Fy(?)2183 4520 y Fs(k)2233 4535 y FB(X)2296 4516 y Fn(\003)2336 4520 y Ft(;)0 4740 y Fp(wher)-5 b(e)34 b(the)h(left)g(hand)f(side)g (denotes)h(the)f(distanc)-5 b(e)35 b(fr)-5 b(om)34 b Ft(\036)h Fp(to)g Ft(M)2476 4703 y Fy(?)2570 4740 y Fp(in)g(the)g(dual) f(norm)h(on)f Ft(X)3552 4703 y Fy(\003)3591 4740 y Fp(.)1826 5349 y Fv(10)p eop %%Page: 11 11 11 10 bop 0 100 a Fu(3)161 b(Appro)l(ximate)53 b(M\177)-81 b(obius)53 b(in)l(v)l(ersion)g(on)g(p)t(osets)0 368 y Fv(W)-8 b(e)36 b(start)g(with)g(the)g(pro)s(of)g(that)f(de\014nition)g (1.1)h(of)f Ft(E)2062 383 y FB(P)2121 368 y Fv(\()p Ft(k)s(;)17 b(n)p Fv(\))36 b(indeed)g(generalizes)g(the)h(notion)d(of)0 489 y(\\appro)m(ximate)27 b(inclusion-exclusion",)g(de\014ned)j(in)d (\(1\))h(and)h(in)e(\(3\))h(for)g(the)h(lattice)e(of)g(subsets)k(and)0 609 y(the)i(lattice)e(of)h(subspaces,)j(to)e(a)f(general)g(graded)h(p)s (oset)g Ft(P)14 b Fv(.)0 862 y Fq(Lemma)37 b(3.1)o(:)45 b Fp(1.)g(L)-5 b(et)35 b Ft(P)48 b Fp(b)-5 b(e)34 b(the)h(lattic)-5 b(e)35 b(of)f(al)5 b(l)34 b(subsets)h(of)f(an)h Ft(n)p Fp(-set,)g(then)f Ft(E)2988 877 y FB(P)3047 862 y Fv(\()p Ft(k)s(;)17 b(n)p Fv(\))28 b(=)f Ft(E)6 b Fv(\()p Ft(k)s(;)17 b(n)p Fv(\))p Fp(.)0 983 y(2.)43 b(L)-5 b(et)31 b Ft(P)44 b Fp(b)-5 b(e)31 b(the)g(lattic)-5 b(e)30 b(of)h(al)5 b(l)30 b(subsp)-5 b(ac)g(es)30 b(of)h(an)f Ft(n)p Fp(-dimensional)f(ve) -5 b(ctor)30 b(sp)-5 b(ac)g(e)30 b(over)h(a)f(\014nite)h(\014eld)0 1103 y(with)k Ft(q)j Fp(elements,)c(then)h Ft(E)1013 1118 y FB(P)1072 1103 y Fv(\()p Ft(k)s(;)17 b(n)p Fv(\))27 b(=)h Ft(E)1513 1067 y Fz(\()p FB(q)r Fz(\))1606 1103 y Fv(\()p Ft(k)s(;)17 b(n)p Fv(\))p Fp(.)0 1356 y Fq(Pro)s(of:)56 b Fv(Let)39 b Ft(A)613 1371 y Fz(1)653 1356 y Ft(;)17 b(:)g(:)g(:)f(;)h(A)945 1371 y FB(n)1031 1356 y Fv(and)39 b Ft(B)1301 1371 y Fz(1)1340 1356 y Ft(;)17 b(:)g(:)g(:)f(;)h(B)1633 1371 y FB(n)1719 1356 y Fv(b)s(e)39 b(t)m(w)m(o)h(families)c(of)j(ev)m (en)m(ts)i(in)d(probabilit)m(y)f(spaces.)0 1477 y(W)-8 b(e)31 b(de\014ne)g(t)m(w)m(o)g(functions)f Ft(f)41 b Fv(and)31 b Ft(g)i Fv(on)d(the)h(lattice)e Ft(P)43 b Fv(of)30 b(all)e(subsets)33 b(of)d(an)g Ft(n)p Fv(-set,)h(whic)m(h)g (will)d(b)s(e)0 1597 y(con)m(v)m(enien)m(t)33 b(also)e(to)g(view)h(as)g Fs(f)p Fv(0)p Ft(;)17 b Fv(1)p Fs(g)1379 1561 y FB(n)1425 1597 y Fv(,)31 b(the)h(set)h(of)e(all)e(zero-one)j(v)m(ectors)h(of)e (length)g Ft(n)p Fv(.)44 b(F)-8 b(or)30 b Ft(x)e Fs(2)g Ft(P)14 b Fv(,)0 1718 y(set)31 b Ft(f)11 b Fv(\()p Ft(x)p Fv(\))28 b(=)f Ft(P)14 b(r)611 1637 y Fr(\000)657 1643 y(T)740 1747 y FB(i)p Fz(:)p FB(x)824 1757 y Fo(i)849 1747 y Fz(=1)960 1718 y Ft(A)1033 1733 y FB(i)1084 1718 y Fs(\\)1172 1643 y Fr(T)1255 1747 y FB(i)p Fz(:)p FB(x)1339 1757 y Fo(i)1365 1747 y Fz(=0)1476 1718 y Ft(A)1549 1681 y FB(c)1549 1742 y(i)1584 1637 y Fr(\001)1646 1718 y Ft(:)31 b Fv(The)g(function)f Ft(g)k Fv(is)c(de\014ned)h(in)f(the)h (same)f(w)m(a)m(y)-8 b(,)32 b(using)0 1838 y(the)h(family)d Ft(B)540 1853 y Fz(1)580 1838 y Ft(;)17 b(:)g(:)g(:)e(;)i(B)872 1853 y FB(n)919 1838 y Fv(.)44 b(Note)32 b(that)h Fs(j)p Ft(P)14 b(r)s Fv(\()p Fs([)1693 1853 y FB(i)1720 1838 y Ft(A)1793 1853 y FB(i)1821 1838 y Fv(\))22 b Fs(\000)h Ft(P)14 b(r)s Fv(\()p Fs([)2209 1853 y FB(j)2245 1838 y Ft(B)2319 1853 y FB(j)2356 1838 y Fv(\))p Fs(j)27 b Fv(=)g Fs(j)p Ft(f)11 b Fv(\(0\))22 b Fs(\000)g Ft(g)t Fv(\(0\))p Fs(j)p Fv(.)146 2008 y(The)34 b(follo)m(wing)c(claims)g(are) j(immediate:)0 2129 y(1.)43 b(The)34 b(functions)e Ft(f)44 b Fv(and)32 b Ft(g)k Fv(are)d(nonnegativ)m(e)g(and)f(sum)h(to)f(1.)0 2249 y(2.)46 b(The)35 b(set)f(families)c Ft(A)906 2264 y Fz(1)946 2249 y Ft(;)17 b(:)g(:)g(:)f(;)h(A)1238 2264 y FB(n)1318 2249 y Fv(and)34 b Ft(B)1583 2264 y Fz(1)1622 2249 y Ft(;)17 b(:)g(:)g(:)f(;)h(B)1915 2264 y FB(n)1995 2249 y Fv(satisfy)34 b Ft(P)14 b(r)19 b Fv(\()p Fs(\\)2545 2264 y FB(i)p Fy(2)p FB(S)2667 2249 y Ft(A)2740 2264 y FB(i)2768 2249 y Fv(\))29 b(=)h Ft(P)14 b(r)k Fv(\()p Fs(\\)3184 2264 y FB(j)t Fy(2)p FB(S)3315 2249 y Ft(B)3389 2264 y FB(j)3426 2249 y Fv(\))33 b(for)g(all)0 2369 y Ft(S)41 b Fs(\032)35 b Fv([)p Ft(n)p Fv(],)k(suc)m(h)f(that)f Fs(j)p Ft(S)6 b Fs(j)34 b(\024)h Ft(k)s Fv(,)j(if)e(and)h(only)g(if)e Ft(F)14 b Fv(\()p Ft(x)p Fv(\))35 b(=)g Ft(G)p Fv(\()p Ft(x)p Fv(\))i(for)g(all)d(sets)k Ft(x)g Fv(of)e(size)h Fs(\024)f Ft(k)s Fv(.)56 b(Here)0 2490 y Ft(F)s(;)17 b(G)32 b Fv(are)h(zeta)g(transforms)f(of)g Ft(f)43 b Fv(and)33 b Ft(g)t Fv(.)0 2610 y(Consequen)m(tly)-8 b(,)31 b(for)c(an)m(y)h(t)m(w)m(o)g(families)d(of)i(sets)h(satisfying)f(the)h (conditions)e(of)i(de\014nition)e(\(1\),)i(there)0 2730 y(are)43 b(t)m(w)m(o)g(functions)g(satisfying)f(the)i(conditions)e(of)g (de\014nition)g(1.1.)74 b(This)43 b(implies)d Ft(E)3336 2745 y FB(P)3395 2730 y Fv(\()p Ft(k)s(;)17 b(n)p Fv(\))46 b Fs(\025)0 2851 y Ft(E)6 b Fv(\()p Ft(k)s(;)17 b(n)p Fv(\).)146 3021 y(Con)m(v)m(ersely)-8 b(,)34 b(tak)m(e)f(t)m(w)m(o)f (functions)g Ft(f)43 b Fv(and)31 b Ft(g)k Fv(from)c Fs(f)p Fv(0)p Ft(;)17 b Fv(1)p Fs(g)2305 2985 y FB(n)2382 3021 y Fv(to)32 b Fj(R)43 b Fv(satisfying)30 b(the)j(conditions)d(of)0 3141 y(de\014nition)35 b(1.1.)51 b(Since)36 b Ft(f)46 b Fv(and)36 b Ft(g)j Fv(are)c(nonnegativ)m(e)h(and)g(sum)f(to)g(1)h (they)g(de\014ne)h(t)m(w)m(o)f(probabilit)m(y)0 3262 y(distributions)41 b(on)h Fs(f)p Fv(0)p Ft(;)17 b Fv(1)p Fs(g)967 3226 y FB(n)1013 3262 y Fv(.)72 b(Consider)42 b(t)m(w)m(o)h(probabilit)m(y)d(spaces)k(\012)2609 3277 y Fz(1)2693 3262 y Fv(=)g(\()p Fs(f)p Fv(0)p Ft(;)17 b Fv(1)p Fs(g)3093 3226 y FB(n)3139 3262 y Ft(;)g(f)11 b Fv(\))41 b(and)h(\012)3590 3277 y Fz(2)3674 3262 y Fv(=)0 3382 y(\()p Fs(f)p Fv(0)p Ft(;)17 b Fv(1)p Fs(g)280 3346 y FB(n)326 3382 y Ft(;)g(g)t Fv(\))o(.)44 b(Let)33 b Ft(A)777 3397 y Fz(1)816 3382 y Ft(;)17 b(:)g(:)g(:)f(;)h(A)1108 3397 y FB(n)1183 3382 y Fs(\022)28 b Fv(\012)1358 3397 y Fz(1)1431 3382 y Fv(b)s(e)33 b(de\014ned)h(b)m(y)f Ft(A)2108 3397 y FB(i)2165 3382 y Fv(=)27 b Fs(f)p Ft(x)i Fv(:)f Ft(x)2512 3397 y FB(i)2568 3382 y Fv(=)g(1)p Fs(g)p Fv(.)44 b(Let)33 b(Let)f Ft(B)3265 3397 y Fz(1)3305 3382 y Ft(;)17 b(:)g(:)g(:)f(;)h(B)3598 3397 y FB(n)3673 3382 y Fs(\022)0 3503 y Fv(\012)70 3518 y Fz(2)142 3503 y Fv(b)s(e)33 b(de\014ned)g(in)f(the)h(same)f(w)m(a)m(y)-8 b(.)44 b(It)33 b(is)f(immediate)d(to)j(c)m(hec)m(k,)j(that)d Fs(j)p Ft(P)14 b(r)s Fv(\()p Fs([)2919 3518 y FB(i)2946 3503 y Ft(A)3019 3518 y FB(i)3048 3503 y Fv(\))21 b Fs(\000)h Ft(P)14 b(r)s Fv(\()p Fs([)3434 3518 y FB(j)3470 3503 y Ft(B)3544 3518 y FB(j)3581 3503 y Fv(\))p Fs(j)27 b Fv(=)0 3623 y Fs(j)p Ft(f)11 b Fv(\(0\))s Fs(\000)s Ft(g)t Fv(\(0\))p Fs(j)21 b Fv(and)j(the)f(families)d Ft(A)1278 3638 y Fz(1)1318 3623 y Ft(;)d(:)g(:)g(:)f(;)h(A)1610 3638 y FB(n)1680 3623 y Fv(and)23 b Ft(B)1934 3638 y Fz(1)1973 3623 y Ft(;)17 b(:)g(:)g(:)f(;)h(B)2266 3638 y FB(n)2336 3623 y Fv(satisfy)23 b(the)h(conditions)e(of)h (de\014nition)0 3743 y(\(1\).)146 3914 y(This)33 b(pro)m(v)m(es)h(the)f (\014rst)g(half)f(of)g(the)h(lemma.)41 b(The)34 b(second)g(half)d(is)h (pro)m(v)m(en)i(similarly)-8 b(.)p 3415 3922 34 67 v 146 4084 a(Our)26 b(main)e(goal)g(in)h(this)h(section)g(is)f(to)g(pro)m (v)m(e)i(the)g(dual)e(c)m(haracterization)g(of)g Ft(E)3099 4099 y FB(P)3158 4084 y Fv(\()p Ft(k)s(;)17 b(n)p Fv(\),)27 b(namely)0 4204 y(prop)s(osition)k(1.2.)0 4457 y Fq(Remark)37 b(3.2)o(:)46 b Fv(Observ)m(e,)35 b(that)d(although)g(the)h(follo)m (wing)d(pro)s(of)i(relies)g(hea)m(vily)h(on)g(theorem)f(2.2,)0 4578 y(it)j(is,)i(essen)m(tially)-8 b(,)36 b(just)h(a)f(reform)m (ulation)d(of)j(the)g(linear)f(programming)e(pro)s(ofs)j(of)f([10])h (and)g([12].)0 4698 y(In)29 b(fact,)h(these)g(pro)s(ofs)e(simply)g (repro)m(v)m(e)i(theorem)f(2.2)f(for)g(\014nite-dimensional)e(v)m (ector)k(spaces)g(with)0 4818 y(the)j Ft(l)197 4833 y Fz(1)270 4818 y Fv(norm.)43 b(W)-8 b(e)33 b(prefer)h(to)e(use)i (theorem)f(2.2,)f(since)h(it)f(highligh)m(ts)f(the)i(not)g(quite)g(ob)m (vious)g(fact)0 4939 y(that)d Ft(E)281 4954 y FB(P)340 4939 y Fv(\()p Ft(k)s(;)17 b(n)p Fv(\))29 b(measures)i(a)e(distance)i (b)s(et)m(w)m(een)g(a)f(p)s(oin)m(t)f(and)h(a)f(subspace)j(in)d(the)i (v)m(ector)f(space)h(of)0 5059 y(real-v)-5 b(alues)31 b(functions)i(on)f Ft(P)14 b Fv(.)43 b(\(And)33 b(b)s(esides,)h Fp(it's)g(alr)-5 b(e)g(ady)35 b(ther)-5 b(e)p Fv(.\))p 2612 5067 V 1826 5349 a(11)p eop %%Page: 12 12 12 11 bop 0 100 a Fq(Pro)s(of:)43 b(of)38 b(prop)s(osition)e(1.2)0 220 y Fv(Let)41 b Ft(f)51 b Fv(and)41 b Ft(g)j Fv(b)s(e)d(t)m(w)m(o)h (functions)f(on)f Ft(P)54 b Fv(satisfying)40 b(the)h(conditions)f(of)h (de\014nition)e(1.1,)k(namely)0 340 y(they)37 b(are)g(nonnegativ)m(e,)h (sum)f(to)f(1)g(and)h Ft(F)14 b Fv(\()p Ft(x)p Fv(\))34 b(=)g Ft(G)p Fv(\()p Ft(x)p Fv(\))j(for)f(all)f Ft(x)i Fv(of)f(rank)h(at)f(most)g Ft(k)s Fv(,)i(where)f Ft(F)0 461 y Fv(and)d Ft(G)h Fv(are)f(zeta)g(transforms)g(of)g Ft(f)45 b Fv(and)34 b Ft(g)k Fv(corresp)s(ondingly)-8 b(.)48 b(Set)35 b Ft(h)30 b Fv(=)h Ft(f)j Fs(\000)24 b Ft(g)t Fv(,)34 b(and)g(consider)h(the)0 581 y(set)40 b Fs(H)f Fv(:=)g Fs(f)p Ft(h)g Fv(=)f Ft(f)g Fs(\000)27 b Ft(g)t Fs(g)38 b Fv(of)g(all)f(functions)i(obtainable)e(in)i(this)f (w)m(a)m(y)-8 b(.)64 b(Clearly)-8 b(,)40 b Fs(H)g Fv(in)m(terests)g (us,)0 702 y(since)d Ft(E)315 717 y FB(P)374 702 y Fv(\()p Ft(k)s(;)17 b(n)p Fv(\))36 b(is)g(just)g(the)h(maxim)m(um)d(of)i(a)g (linear)f(functional)f Ft(\036)g Fv(:)g Ft(h)g Fs(!)g Ft(h)p Fv(\(0\))i(on)g Fs(H)q Fv(.)55 b(What)36 b(is)0 822 y Fs(H)q Fv(?)0 1032 y Fq(Lemma)h(3.3)o(:)244 1241 y Fs(H)29 b Fv(=)e Fs(f)p Ft(h)h Fv(:)g Fs(k)p Ft(h)p Fs(k)805 1256 y Fz(1)871 1241 y Fs(\024)h Fv(2)p Ft(;)51 b(H)8 b Fv(\()p Ft(x)p Fv(\))28 b(=)f(0)p Ft(;)86 b Fp(for)35 b(al)5 b(l)69 b Ft(x)28 b Fs(2)g Ft(P)2187 1256 y Fz(0)2249 1241 y Fs([)22 b Ft(P)2400 1256 y Fz(1)2456 1241 y Ft(:)17 b(:)g(:)22 b Fs([)h Ft(P)2745 1256 y FB(k)2787 1241 y Fs(g)17 b Ft(;)696 b Fv(\(10\))0 1451 y Fp(wher)-5 b(e)37 b Ft(H)45 b Fp(is)37 b(the)g(zeta)g(tr)-5 b(ansform)37 b(of)g Ft(h)p Fp(,)h(and)f(r)-5 b(e)g(c)g(al)5 b(l)37 b(that)h Ft(P)2286 1466 y FB(i)2351 1451 y Fp(is)f(the)g(set)h(of)f(al) 5 b(l)37 b(elements)f(of)i Ft(P)50 b Fp(of)0 1571 y(r)-5 b(ank)34 b Ft(i)p Fp(.)0 1781 y Fq(Pro)s(of:)44 b Fv(Let)33 b Ft(h)c Fs(2)g(H)q Ft(;)17 b(h)28 b Fv(=)h Ft(f)k Fs(\000)23 b Ft(g)t Fv(.)44 b(Since)33 b Fs(k)p Ft(f)11 b Fs(k)1737 1796 y Fz(1)1804 1781 y Fv(=)29 b Fs(k)p Ft(g)t Fs(k)2060 1796 y Fz(1)2126 1781 y Fv(=)g(1,)k(w)m(e)h(ha)m(v)m(e)g Fs(k)p Ft(h)p Fs(k)2865 1796 y Fz(1)2933 1781 y Fs(\024)29 b Fv(2)j(b)m(y)i(the)g(triangle)0 1901 y(inequalit)m(y)-8 b(.)44 b(Since)33 b Ft(F)14 b Fv(\()p Ft(x)p Fv(\))28 b(=)h Ft(G)p Fv(\()p Ft(x)p Fv(\))k(for)f Ft(x)d Fs(2)g Ft(P)1712 1916 y Fz(0)1774 1901 y Fs([)22 b Ft(P)1925 1916 y Fz(1)1981 1901 y Ft(:)17 b(:)g(:)22 b Fs([)h Ft(P)2270 1916 y FB(k)2313 1901 y Fv(,)33 b(and)g(the)g(zeta)h(transform)e(is)g (linear,)0 2022 y(w)m(e)i(ha)m(v)m(e)g Ft(H)8 b Fv(\()p Ft(x)p Fv(\))27 b(=)h Ft(F)14 b Fv(\()p Ft(x)p Fv(\))22 b Fs(\000)g Ft(G)p Fv(\()p Ft(x)p Fv(\))28 b(=)g(0)k(for)g Ft(x)h Fv(of)f(rank)h Fs(\024)28 b Ft(k)s Fv(.)0 2142 y(Con)m(v)m(ersely)-8 b(,)51 b(let)44 b Ft(h)i Fv(b)s(elong)e(to)h(the) h(RHS)g(of)f(\(10\).)81 b(Let)46 b Fs(k)p Ft(h)p Fs(k)2416 2157 y Fz(1)2504 2142 y Fv(=)k(2)p Ft(a)p Fv(.)82 b(Set)3041 2116 y(~)3019 2142 y Ft(f)61 b Fv(=)49 b Ft(h)3309 2157 y Fz(+)3368 2142 y Fv(,)g(namely)21 2236 y(~)0 2262 y Ft(f)11 b Fv(\()p Ft(x)p Fv(\))37 b(=)f Ft(h)p Fv(\()p Ft(x)p Fv(\))i(if)f Ft(h)p Fv(\()p Ft(x)p Fv(\))g Fs(\025)g Fv(0,)i(and)1329 2236 y(~)1307 2262 y Ft(f)11 b Fv(\()p Ft(x)p Fv(\))37 b(=)g(0)g(otherwise.)60 b(Similarly)-8 b(,)35 b(set)42 b(~)-52 b Ft(g)40 b Fv(=)c Ft(h)3074 2277 y Fy(\000)3133 2262 y Fv(,)k(whic)m(h)e(means)3 2383 y(~)-52 b Ft(g)s Fv(\()p Ft(x)p Fv(\))36 b(=)g Fs(\000)p Ft(h)p Fv(\()p Ft(x)p Fv(\))j(if)d Ft(h)p Fv(\()p Ft(x)p Fv(\))g Fs(\024)g Fv(0,)j(and)i(~)-53 b Ft(g)t Fv(\()p Ft(x)p Fv(\))36 b(=)g(0)h(otherwise.)58 b(These)39 b(functions)f(are,)h (b)m(y)f(de\014nition,)0 2503 y(nonnegativ)m(e)43 b(and)g Ft(h)h Fv(=)994 2477 y(~)973 2503 y Ft(f)c Fs(\000)33 b Fv(~)-53 b Ft(g)s Fv(.)74 b(Therefore,)46 b(taking)c(the)h(zeta)g (transform:)3032 2478 y(~)3009 2503 y Ft(F)14 b Fv(\()p Ft(x)p Fv(\))45 b(=)3405 2478 y(~)3383 2503 y Ft(G)p Fv(\()p Ft(x)p Fv(\))d(for)0 2623 y Ft(x)28 b Fs(2)g Ft(P)240 2638 y Fz(0)298 2623 y Fs([)19 b Ft(P)446 2638 y Fz(1)502 2623 y Ft(:)e(:)g(:)i Fs([)g Ft(P)784 2638 y FB(k)826 2623 y Fv(.)43 b(Note,)32 b(that)1367 2549 y Fr(P)1473 2652 y FB(x)1533 2623 y Ft(h)p Fv(\()p Ft(x)p Fv(\))c(=)g Ft(H)8 b Fv(\()1979 2602 y(^)1979 2623 y(0)o(\))28 b(=)f(0)k(implies)2605 2549 y Fr(P)2710 2652 y FB(x)2792 2597 y Fv(~)2771 2623 y Ft(f)11 b Fv(\()p Ft(x)p Fv(\))28 b(=)3092 2549 y Fr(P)3197 2652 y FB(y)3259 2623 y Fv(~)-53 b Ft(g)t Fv(\()p Ft(y)t Fv(\))26 b(=)i Ft(a)p Fv(.)43 b(If)0 2766 y Ft(a)28 b Fv(=)f(1)k(w)m(e)h(conclude)g(b)m(y)f(setting)g Ft(f)38 b Fv(=)1467 2740 y(~)1446 2766 y Ft(f)k Fv(and)31 b Ft(g)g Fv(=)g(~)-53 b Ft(g)s Fv(.)43 b(If)31 b(not,)g(let)g Ft(f)11 b Fv(\()p Ft(x)p Fv(\))27 b(=)2802 2740 y(~)2781 2766 y Ft(f)11 b Fv(\()p Ft(x)p Fv(\))31 b(for)f(all)f Ft(x)j Fv(except)3674 2745 y(^)3674 2766 y(0,)0 2887 y(and)h(tak)m(e)g Ft(f)11 b Fv(\()498 2865 y(^)498 2887 y(0)o(\))28 b(=)737 2860 y(~)716 2887 y Ft(f)10 b Fv(\()812 2865 y(^)812 2887 y(0\))22 b(+)g(\(1)g Fs(\000)h Ft(a)p Fv(\).)43 b(The)34 b(function)e Ft(g)k Fv(is)c(de\014ned)i(similarly)-8 b(,)29 b(and)j(w)m(e)i(are)e(done.)p 3671 2895 34 67 v 146 3046 a(Let)43 b Ft(X)51 b Fv(denote)44 b(the)f(v)m(ector)h(space) g(of)f(real-v)-5 b(alued)41 b(functions)i(on)g Ft(P)56 b Fv(endo)m(w)m(ed)45 b(with)e(the)h Ft(l)3711 3061 y Fz(1)0 3166 y Fv(norm,)k(and)e(let)f Ft(M)60 b Fe(@)51 b Ft(X)i Fv(b)s(e)46 b(the)g(subspace)h(of)e(all)f(functions)h Ft(h)50 b Fs(2)g Ft(X)k Fv(with)45 b(zeta)h(transform)0 3287 y Ft(H)d Fv(=)36 b Ft(\020)8 b(h)36 b Fv(v)-5 b(anishing)36 b(on)h Ft(P)1018 3302 y Fz(0)1083 3287 y Fs([)26 b Ft(P)1238 3302 y Fz(1)1294 3287 y Ft(:)17 b(:)g(:)24 b Fs([)i Ft(P)1588 3302 y FB(k)1631 3287 y Fv(.)57 b(Then)38 b(the)g(lemma)d(\(see)j(the)g (de\014nition)e(of)h(the)h(dual)0 3407 y(norm)32 b(of)g(a)g(linear)f (functional)g(in)h(section)h(2\))f(implies:)634 3589 y Ft(E)706 3604 y FB(P)765 3589 y Fv(\()p Ft(k)s(;)17 b(n)p Fv(\))27 b(=)h(2)22 b Fs(\001)g(k)p Ft(\036)p Fs(k)1407 3604 y FB(M)1482 3585 y Fn(\003)1549 3589 y Fv(=)27 b(2)22 b Fs(\001)g(k)p Ft(\036)g Fs(\000)g Ft(M)2106 3548 y Fy(?)2166 3589 y Fs(k)2216 3604 y FB(X)2279 3585 y Fn(\003)2347 3589 y Fv(=)28 b(2)21 b Fs(\001)h(k)p Ft(\036)g Fs(\000)h Ft(M)2905 3548 y Fy(?)2964 3589 y Fs(k)3014 3604 y Fy(1)3089 3589 y Ft(:)0 3771 y Fv(The)39 b(second)g(equalit)m(y)e(follo)m(ws)g (from)f(theorem)i(2.2.)59 b(Therefore,)40 b(to)e(conclude)g(the)g(pro)s (of)f(of)h(the)0 3891 y(prop)s(osition,)33 b(w)m(e)j(only)e(ha)m(v)m(e) i(to)f(sho)m(w)h Ft(M)1601 3855 y Fy(?)1692 3891 y Fv(=)31 b(Span)2027 3810 y Fr(\010)2085 3891 y Fv(1)2134 3907 y Fy(f)p FB(y)r Fz(:)p FB(y)r Fy(\027)p FB(x)p Fy(g)2458 3891 y Fv(:)60 b Ft(x)28 b Fs(2)g Ft(P)2785 3906 y Fz(0)2846 3891 y Fs([)23 b Ft(P)2998 3906 y Fz(1)3054 3891 y Ft(:)17 b(:)g(:)22 b Fs([)g Ft(P)3342 3906 y FB(k)3385 3810 y Fr(\011)3443 3891 y Fv(.)50 b(Note,)0 4011 y(that)34 b(since)g Ft(\020)41 b Fv(is)34 b(an)g(in)m(v)m(ertible)f(matrix.)46 b(the)35 b(image)d Ft(M)2112 4026 y Fz(1)2186 4011 y Fv(of)h Ft(M)45 b Fv(under)35 b Ft(\020)41 b Fv(is)34 b(just)g(the)g(subspace)i(of)0 4132 y(all)30 b(the)j(functions)g(v)-5 b(anishing)31 b(on)i Ft(P)1354 4147 y Fz(0)1415 4132 y Fs([)23 b Ft(P)1567 4147 y Fz(1)1623 4132 y Ft(:)17 b(:)g(:)k Fs([)i Ft(P)1911 4147 y FB(k)1954 4132 y Fv(,)32 b(and)h(therefore)g Ft(M)2716 4096 y Fy(?)2706 4156 y Fz(1)2808 4132 y Fv(is)f(easy)i(to)e(\014nd:)102 4314 y Ft(M)206 4273 y Fy(?)196 4338 y Fz(1)294 4314 y Fv(=)27 b Fs(f)p Ft(f)38 b Fs(2)28 b Ft(X)716 4273 y Fy(\003)816 4314 y Fv(:)60 b Ft(f)11 b Fv(\()p Ft(x)p Fv(\))28 b(=)f(0)p Ft(;)82 b Fv(for)32 b(all)63 b Ft(x)28 b Fs(2)g Ft(P)1939 4329 y FB(k)r Fz(+1)2094 4314 y Fs([)23 b Ft(:)17 b(:)g(:)k Fs([)i Ft(P)2471 4329 y FB(n)2518 4314 y Fs(g)k Fv(=)h(Span)2910 4337 y FB(x)p Fy(2)p FB(P)3042 4346 y Fm(0)3076 4337 y Fy([)p FB(P)3168 4346 y Fm(1)3202 4337 y FB(:::)o Fy([)p FB(P)3353 4349 y Fo(k)3412 4314 y Fs(f)p Fv(1)3511 4329 y FB(x)3554 4314 y Fs(g)17 b Ft(:)0 4496 y Fv(No)m(w,)33 b(let)f Ft(\034)39 b Fs(2)28 b Ft(M)669 4459 y Fy(?)729 4496 y Fv(.)44 b(This)32 b(means,)h(that)f(for)h(an)m(y)g Ft(h)28 b Fs(2)g Ft(M)10 b Fv(:)0 4616 y(0)41 b(=)p Ft(<)g(\034)6 b(;)17 b(h)41 b(>)p Fv(=)p Ft(<)g(\034)6 b(;)17 b(\020)884 4580 y Fy(\000)p Fz(1)1005 4616 y Fs(\001)27 b Ft(\020)8 b(h)40 b(>)p Fv(=)p Ft(<)h Fv(\()p Ft(\020)1565 4580 y Fy(\000)p Fz(1)1659 4616 y Fv(\))1697 4580 y FB(t)1726 4616 y Ft(\034)6 b(;)17 b(\020)8 b(h)41 b(>)p Fv(.)67 b(Consequen)m(tly)-8 b(,)44 b Ft(\034)53 b Fs(2)42 b Ft(M)3076 4580 y Fy(?)3176 4616 y Fv(if)d(and)i(only)f(if)0 4736 y(\()p Ft(\020)89 4700 y Fy(\000)p Fz(1)182 4736 y Fv(\))220 4700 y FB(t)250 4736 y Ft(\034)f Fs(2)28 b Ft(M)529 4700 y Fy(?)519 4761 y Fz(1)589 4736 y Fv(,)33 b(namely)e Ft(M)1091 4700 y Fy(?)1179 4736 y Fv(=)c Ft(\020)1333 4700 y FB(t)1362 4736 y Ft(M)1466 4700 y Fy(?)1456 4761 y Fz(1)1526 4736 y Fv(.)43 b(In)33 b(other)g(w)m(ords,)317 4918 y Ft(M)421 4877 y Fy(?)509 4918 y Fv(=)27 b(Span)824 4942 y FB(x)p Fy(2)p FB(P)956 4951 y Fm(0)990 4942 y Fy([)p FB(P)1082 4951 y Fm(1)1116 4942 y FB(:::)o Fy([)p FB(P)1267 4954 y Fo(k)1325 4837 y Fr(\010)1384 4918 y Ft(\020)1435 4877 y FB(t)1463 4918 y Fv(1)1512 4933 y FB(x)1556 4837 y Fr(\011)1642 4918 y Fv(=)g(Span)1973 4837 y Fr(\010)2031 4918 y Fv(1)2080 4934 y Fy(f)p FB(y)r Fz(:)p FB(y)r Fy(\027)p FB(x)p Fy(g)2404 4918 y Fv(:)60 b Ft(x)28 b Fs(2)g Ft(P)2731 4933 y Fz(0)2793 4918 y Fs([)22 b Ft(P)2944 4933 y Fz(1)3000 4918 y Ft(:)17 b(:)g(:)22 b Fs([)g Ft(P)3288 4933 y FB(k)3331 4837 y Fr(\011)3406 4918 y Ft(;)0 5100 y Fv(and)33 b(w)m(e)g(are)g(done.)p 767 5108 V 1826 5349 a(12)p eop %%Page: 13 13 13 12 bop 0 100 a Fi(3.1)135 b(Regular)32 b(p)t(osets)e(and)g (symmetrization)h(-)f(pro)t(of)g(of)g(prop)t(osition)h(1.4)0 324 y Fv(Let)k Ft(P)48 b Fv(b)s(e)35 b(a)f(graded)h(p)s(oset)g(of)f (rank)h Ft(n)p Fv(.)50 b(Prop)s(osition)33 b(1.2)h(tells)g(us)h(that)f (to)h(\014nd)g Ft(E)3189 339 y FB(P)3248 324 y Fv(\()p Ft(k)s(;)17 b(n)p Fv(\))34 b(is)h(the)0 444 y(same)i(as)g(to)f(\014nd)i (the)f(distance)g(of)g(a)g(function)f Ft(\016)1883 459 y Fz(0)1959 444 y Fv(to)h(a)g(subspace)i Fs(U)2643 459 y FB(k)2722 444 y Fv(of)e(functions)g(spanned)h(b)m(y)0 484 y Fr(\010)58 565 y Fv(1)107 580 y Fy(f)p FB(y)r Fz(:)p FB(y)r Fy(\027)p FB(x)p Fy(g)431 565 y Fv(:)60 b Ft(x)28 b Fs(2)g Ft(P)758 580 y Fz(0)819 565 y Fs([)23 b Ft(P)971 580 y Fz(1)1027 565 y Ft(:)17 b(:)g(:)22 b Fs([)g Ft(P)1315 580 y FB(k)1358 484 y Fr(\011)1416 565 y Fv(.)43 b(The)31 b(next)h(question)f(is,)g(what)g(can)f(w)m(e)i(really)d(do)i(with)f (this)0 685 y(observ)-5 b(ation,)41 b(in)e(terms)h(of)f(computing)g Ft(E)1634 700 y FB(P)1693 685 y Fv(\()p Ft(k)s(;)17 b(n)p Fv(\).)64 b(The)41 b(structure)g(of)e(the)i(space)f Fs(U)3272 700 y FB(k)3355 685 y Fv(seems,)j(in)0 805 y(general,)29 b(to)g(b)s(e)h(rather)f(complex.)42 b(Ho)m(w)m(ev)m(er,)32 b(the)e(function)e Ft(\016)2317 820 y Fz(0)2386 805 y Fv(is)h(quite)g(sp)s(ecial.)41 b(It)30 b(ob)m(viously)f(has)0 926 y(a)34 b(lot)f(of)h(nice)h(prop)s(erties,)g(from)e(whic)m(h)i(w)m (e)g(exploit)e(the)i(follo)m(wing:)45 b Ft(\016)2684 941 y Fz(0)2758 926 y Fv(is)34 b(constan)m(t)h(on)f(the)h(lev)m(el)0 1046 y(sets)f Ft(P)254 1061 y Fz(0)293 1046 y Ft(;)17 b(:)g(:)g(:)f(;)h(P)575 1061 y FB(n)621 1046 y Fv(.)44 b(Let)33 b(us)g(capture)g(this)f(prop)s(ert)m(y)i(of)e Ft(\016)2087 1061 y Fz(0)2159 1046 y Fv(in)g(a)g(de\014nition:)0 1258 y Fq(De\014nition)k(3.4)o(:)45 b Fv(A)33 b(function)f Ft(f)71 b Fv(:)60 b Ft(P)42 b Fs(!)27 b Fj(R)43 b Fv(is)33 b(a)f Fp(symmetric)i(function)f Fv(if)e Ft(f)43 b Fv(is)33 b(constan)m(t)g(on)g(the)0 1378 y(lev)m(el)f(sets)i Ft(P)476 1393 y Fz(0)515 1378 y Ft(;)17 b(:)g(:)g(:)f(;)h(P)797 1393 y FB(n)844 1378 y Fv(.)p 914 1386 34 67 v 0 1590 a(A)38 b(space)h Ft(S)k Fv(of)37 b(symmetric)g(functions)h(is)f(an)h Ft(n)p Fv(-dimensional)d(subspace)40 b(of)d(the)h Fs(j)p Ft(P)14 b Fs(j)p Fv(-dimensional)0 1711 y(space)24 b Ft(X)30 b Fv(of)22 b(real-v)-5 b(alued)21 b(functions)i(on)f Ft(P)14 b Fv(,)24 b(and)f(it)f(comes)g(with)h(a)f(natural)f(pro)5 b(jection)23 b Ft(\031)54 b Fv(:)c Ft(X)36 b Fs(!)27 b Ft(S)6 b Fv(,)0 1831 y(giv)m(en)29 b(b)m(y:)43 b(\()p Ft(\031)t(f)11 b Fv(\)\()p Ft(x)p Fv(\))27 b(=)926 1792 y Fz(1)p 889 1808 111 4 v 889 1866 a Fy(j)p FB(P)954 1876 y Fo(i)980 1866 y Fy(j)1026 1756 y Fr(P)1131 1860 y FB(y)r Fy(2)p FB(P)1260 1870 y Fo(i)1307 1831 y Ft(f)11 b Fv(\()p Ft(y)t Fv(\),)29 b(where)h Ft(i)f Fv(is)g(the)h(rank)f(of)g Ft(x)p Fv(.)43 b(W)-8 b(e)29 b(need)h(a)f(follo)m(wing)d(simple)0 1965 y(fact:)42 b Ft(\031)33 b Fv(is)c(a)g(con)m(traction)f(in)h(the)h Ft(l)1303 1980 y Fy(1)1407 1965 y Fv(norm)e(\(in)h(fact,)g(in)g(an)m(y) h Ft(l)2344 1980 y FB(p)2413 1965 y Fv(norm\),)f(namely)f(for)h(an)m(y) h Ft(f)5 b(;)17 b(g)31 b Fs(2)d Ft(X)0 2086 y Fv(holds)37 b Fs(k)p Ft(\031)t(f)e Fs(\000)26 b Ft(\031)t(g)t Fs(k)715 2101 y Fy(1)824 2086 y Fs(\024)36 b(k)p Ft(f)f Fs(\000)26 b Ft(g)t Fs(k)1274 2101 y Fy(1)1348 2086 y Fv(.)57 b(This)37 b(leads)g(to)f(the)i(follo)m(wing)c(observ)-5 b(ation:)52 b(Let)37 b Ft(s)e Fs(2)h Ft(S)43 b Fv(b)s(e)0 2206 y(a)37 b(symmetric)f(function,)i(and)f(let)g Ft(M)46 b Fs(v)36 b Ft(X)45 b Fv(b)s(e)37 b(a)g(subspace)i(suc)m(h)g(that)e Ft(\031)76 b Fv(:)d Ft(M)46 b Fs(!)35 b Ft(M)10 b Fv(,)40 b(i.e,)e(the)0 2326 y(image)d(of)h Ft(M)47 b Fv(under)38 b Ft(\031)i Fv(is)c(con)m(tained)h(in)f Ft(M)10 b Fv(.)56 b(Then:)d Fs(k)p Ft(s)24 b Fs(\000)i Ft(M)10 b Fs(k)2449 2341 y Fy(1)2558 2326 y Fv(=)35 b Fs(k)p Ft(s)24 b Fs(\000)i Ft(\031)t(M)10 b Fs(k)3105 2341 y Fy(1)3180 2326 y Fv(.)56 b(This)36 b(mak)m(es)0 2447 y(our)d(life)e(easier,)j(narro)m(wing)e (the)i(searc)m(h)h(for)d(the)i(p)s(oin)m(t)e(of)h Ft(M)44 b Fv(closest)33 b(to)g Ft(s)p Fv(,)g(to)g(a)g(small)e(subspace)0 2567 y Ft(\031)t(M)10 b Fv(.)234 2531 y Fz(5)146 2727 y Fv(Accordingly)-8 b(,)26 b(w)m(e)g(w)m(ould)f(lik)m(e)f(to)h (establish)f(prop)s(erties)h(of)f(p)s(oset)i Ft(P)38 b Fv(whic)m(h)25 b(will)e(imply)g(that)i(the)0 2847 y(image)20 b(of)h Fs(U)433 2862 y FB(k)498 2847 y Fv(under)h Ft(\031)k Fv(is)21 b(con)m(tained)h(in)f Fs(U)1527 2862 y FB(k)1570 2847 y Fv(.)40 b(Since)22 b Fs(U)1943 2862 y FB(k)2014 2847 y Fv(=)27 b(Span)2345 2767 y Fr(\010)2403 2847 y Fv(1)2452 2863 y Fy(f)p FB(y)r Fz(:)p FB(y)r Fy(\027)p FB(x)p Fy(g)2776 2847 y Fv(:)60 b Ft(x)28 b Fs(2)g Ft(P)3103 2862 y Fz(0)3165 2847 y Fs([)22 b Ft(P)3316 2862 y Fz(1)3372 2847 y Ft(:)17 b(:)g(:)22 b Fs([)g Ft(P)3660 2862 y FB(k)3703 2767 y Fr(\011)3761 2847 y Fv(,)0 2968 y(the)31 b(pro)5 b(jection)30 b Ft(\031)t Fs(U)748 2983 y FB(k)821 2968 y Fv(is)g(spanned)i(b)m(y)1428 2887 y Fr(\010)1486 2968 y Ft(\031)t Fv(1)1594 2983 y Fy(f)p FB(y)r Fz(:)p FB(y)r Fy(\027)p FB(x)p Fy(g)1917 2968 y Fv(:)61 b Ft(x)28 b Fs(2)g Ft(P)2245 2983 y Fz(0)2306 2968 y Fs([)23 b Ft(P)2458 2983 y Fz(1)2514 2968 y Ft(:)17 b(:)g(:)k Fs([)i Ft(P)2802 2983 y FB(k)2844 2887 y Fr(\011)2903 2968 y Fv(.)42 b(Let)31 b Ft(P)43 b Fv(b)s(e)31 b(a)f Fp(r)-5 b(e)g(gular)0 3088 y Fv(\(see)36 b(In)m(tro)s(duction\))e(p)s(oset.)49 b(Then)36 b(for)e(an)m(y)h(t)m(w)m(o)g(elemen)m(ts)g Ft(x;)17 b(x)2440 3052 y Fy(0)2495 3088 y Fs(2)31 b Ft(P)48 b Fv(of)34 b(the)h(same)g(rank)g Ft(i)f Fv(holds)0 3208 y Ft(\031)t Fv(1)108 3224 y Fy(f)p FB(y)r Fz(:)p FB(y)r Fy(\027)p FB(x)p Fy(g)399 3208 y Fv(=)27 b Ft(\031)t Fv(1)610 3224 y Fy(f)p FB(y)r Fz(:)p FB(y)r Fy(\027)p FB(x)834 3205 y Fn(0)856 3224 y Fy(g)896 3208 y Fv(,)33 b(and)f(therefore)261 3487 y Ft(\031)t Fv(1)369 3502 y Fy(f)p FB(y)r Fz(:)p FB(y)r Fy(\027)p FB(x)p Fy(g)660 3487 y Fv(=)823 3419 y(1)p 774 3464 147 4 v 774 3555 a Fs(j)p Ft(P)865 3570 y FB(i)892 3555 y Fs(j)965 3392 y Fr(X)947 3605 y FB(x)987 3586 y Fn(0)1009 3605 y Fy(2)p FB(P)1101 3615 y Fo(i)1144 3487 y Ft(\031)t Fv(1)1252 3502 y Fy(f)p FB(y)r Fz(:)p FB(y)r Fy(\027)p FB(x)1476 3483 y Fn(0)1498 3502 y Fy(g)1565 3487 y Fv(=)27 b Ft(\031)1744 3316 y Fr( )1881 3419 y Fv(1)p 1833 3464 V 1833 3555 a Fs(j)p Ft(P)1924 3570 y FB(i)1951 3555 y Fs(j)2024 3392 y Fr(X)2006 3605 y FB(x)2046 3586 y Fn(0)2068 3605 y Fy(2)p FB(P)2160 3615 y Fo(i)2202 3487 y Fv(1)2251 3502 y Fy(f)p FB(y)r Fz(:)p FB(y)r Fy(\027)p FB(x)2475 3483 y Fn(0)2498 3502 y Fy(g)2537 3316 y Fr(!)2644 3487 y Fv(=)2806 3419 y(1)p 2757 3464 V 2757 3555 a Fs(j)p Ft(P)2848 3570 y FB(i)2876 3555 y Fs(j)2948 3392 y Fr(X)2930 3605 y FB(x)2970 3586 y Fn(0)2992 3605 y Fy(2)p FB(P)3084 3615 y Fo(i)3127 3487 y Fv(1)3176 3502 y Fy(f)p FB(y)r Fz(:)p FB(y)r Fy(\027)p FB(x)3400 3483 y Fn(0)3422 3502 y Fy(g)3461 3487 y Ft(;)0 3766 y Fv(since)33 b(the)g(last)f(function)g(is)g(symmetric.)146 3926 y(Therefore)40 b Ft(\031)t Fs(U)715 3941 y FB(k)795 3926 y Fs(v)e(U)972 3941 y FB(k)1053 3926 y Fv(and)g(it)g(is)f(spanned) j(b)m(y)2003 3899 y(~)1982 3926 y Ft(f)2030 3941 y FB(i)2096 3926 y Fv(=)2256 3887 y Fz(1)p 2219 3903 111 4 v 2219 3960 a Fy(j)p FB(P)2284 3970 y Fo(i)2309 3960 y Fy(j)2356 3851 y Fr(P)2461 3955 y FB(x)2501 3936 y Fn(0)2523 3955 y Fy(2)p FB(P)2615 3965 y Fo(i)2662 3926 y Fv(1)2711 3941 y Fy(f)p FB(y)r Fz(:)p FB(y)r Fy(\027)p FB(x)2935 3922 y Fn(0)2957 3941 y Fy(g)2996 3926 y Fv(,)g(for)e Ft(i)f Fv(=)h(0)p Ft(;)17 b(:)g(:)g(:)e(;)i(k)s Fv(.)0 4077 y(W)-8 b(e)43 b(are)g(in)m(terested)h(in)e Fs(k)p Ft(\016)1026 4092 y Fz(0)1094 4077 y Fs(\000)30 b(U)1263 4092 y FB(k)1306 4077 y Fs(k)1356 4092 y Fy(1)1475 4077 y Fv(=)45 b Fs(k)p Ft(\016)1689 4092 y Fz(0)1758 4077 y Fs(\000)29 b Ft(\031)t Fs(U)1985 4092 y FB(k)2028 4077 y Fs(k)2078 4092 y Fy(1)2198 4077 y Fv(=)44 b Fs(k)p Ft(\016)2411 4092 y Fz(0)2480 4077 y Fs(\000)29 b Fv(Span)q Fs(f)2869 4051 y Fv(~)2848 4077 y Ft(f)2896 4092 y Fz(0)2935 4077 y Ft(;)17 b(:)g(:)g(:)f(;)3175 4051 y Fv(~)3154 4077 y Ft(f)3202 4092 y FB(k)3244 4077 y Fs(gk)3344 4092 y Fy(1)3419 4077 y Fv(.)74 b(Note,)0 4198 y(that)36 b(instead)g(of)g(w) m(orking)g(in)g(the)g(space)i(of)d(symmetric)h(functions)g(on)g Ft(P)14 b Fv(,)37 b(w)m(e)g(ma)m(y)f(w)m(ork)h(in)f(the)0 4318 y(space)42 b(of)e(real-v)-5 b(alued)38 b(functions)j(on)f(0)p Ft(;)17 b Fv(1)p Ft(;)g(:)g(:)g(:)e(;)i(n)p Fv(,)43 b(since)d(there)i (is)e(a)g(natural)f(isometry)h(b)s(et)m(w)m(een)0 4439 y(the)d(t)m(w)m(o)g(spaces:)53 b(A)36 b(function)g Ft(h)h Fv(on)f Fs(f)p Fv(0)p Ft(;)17 b Fv(1)g Ft(:)g(:)g(:)e(;)i(n)p Fs(g)36 b Fv(\\lifts")e(to)i(a)g(symmetric)g(function)3327 4412 y(~)3326 4439 y Ft(h)p Fv(,)i(de\014ned)0 4559 y(b)m(y)140 4533 y(~)139 4559 y Ft(h)p Fv(\()p Ft(x)p Fv(\))c(=)f Ft(h)p Fv(\()p Ft(r)s(ank)s Fv(\()p Ft(x)p Fv(\)\).)55 b(W)-8 b(e)36 b(conclude)h(the)f(pro)s(of)f(of)h(prop)s(osition)e(1.4)i (b)m(y)g(observing)h(that)f(the)0 4689 y(symmetric)23 b(function)860 4663 y(~)839 4689 y Ft(f)887 4704 y FB(j)947 4689 y Fv(corresp)s(onds)i(to)e(a)g(function)g Ft(f)2076 4704 y FB(j)2113 4689 y Fv(\()p Ft(i)p Fv(\))28 b(:=)2390 4642 y Fy(jf)p FB(z)s Fy(2)p FB(P)2573 4652 y Fo(i)2632 4642 y Fz(:)k FB(z)s Fy(\027)p FB(x)p Fy(gj)p 2390 4667 479 4 v 2575 4724 a(j)p FB(P)2640 4734 y Fo(i)2665 4724 y Fy(j)2902 4689 y Fv(on)24 b(0)p Ft(;)17 b Fv(1)p Ft(;)g(:)g(:)g(:)e (;)i(n)p Fv(.)40 b(\(Here)0 4823 y Ft(x)33 b Fv(is)f Fp(any)g Fv(elemen)m(t)h(of)f Ft(P)905 4838 y FB(j)941 4823 y Fv(.\))p 1050 4831 34 67 v 0 4909 1500 4 v 112 4970 a Fl(5)149 5000 y Fw(Let)h(us)f(emphasize)g(that)g(this)h (symmetric)f(pro)5 b(jection)31 b(had)h(already)f(b)r(een)i(used)f(in)g ([10)o(])h(and)f([12)o(].)51 b(W)-7 b(e)32 b(just)0 5100 y(apply)27 b(it)h(in)g(a)f(more)g(general)f(setting.)1826 5349 y Fv(13)p eop %%Page: 14 14 14 13 bop 0 100 a Fu(4)161 b(Tigh)l(t)36 b(estimates)e(for)i(appro)l (ximate)f(inclusion-exclusion)242 282 y(using)53 b(dualit)l(y)0 551 y Fv(In)46 b(this)g(section)g(essen)m(tially)g(tigh)m(t)f (estimates)h(for)g Ft(E)2086 566 y FB(P)2145 551 y Fv(\()p Ft(k)s(;)17 b(n)p Fv(\))45 b(are)i(giv)m(en)f(for)f(the)i(lattice)d(of) i(all)0 672 y(subsets)35 b(of)d(an)h Ft(n)p Fv(-set,)g(and)g(for)f(the) i(lattice)d(of)h(all)f(subspaces)k(of)d(an)h Ft(n)p Fv(-dimensional)d (v)m(ector)k(space)0 792 y(o)m(v)m(er)40 b(a)e(\014nite)h(\014eld.)62 b(W)-8 b(e)39 b(use)h(the)f(dual)f(c)m(haracterization)g(\(6\))g(of)g Ft(E)2643 807 y FB(P)2702 792 y Fv(\()p Ft(k)s(;)17 b(n)p Fv(\).)62 b(In)39 b(the)g(\014rst)h(short)0 912 y(subsection)h(w)m(e)h (sho)m(w)f(that)f(prop)s(osition)f(1.6)h(is)g(a)g(straigh)m(tforw)m (ard)g(consequence)j(of)d(the)h(lo)m(w)m(er)0 1033 y(b)s(ound)25 b(metho)s(d)g(of)f([8].)41 b(In)25 b(the)h(second)g(subsection)g(w)m(e) g(pro)m(v)m(e)g(a)f(statemen)m(t)g(whic)m(h)h(is)e(only)h(sligh)m(tly)0 1153 y(w)m(eak)m(er)34 b(than)f(theorem)f(1.7.)0 1492 y Fi(4.1)135 b(No)46 b Fd(q)t Fi(-analog)g(for)f(appro)l(ximate)h (inclusion-exclusion)0 1726 y Fv(W)-8 b(e)36 b(do)f(not)h(rep)s(eat)g (the)g(argumen)m(t)f(of)g([8])h(itself,)f(and)g(only)g(state)h(a)g (lemma)d(whic)m(h)j(is)f(a)h(sligh)m(tly)0 1847 y(mo)s(di\014ed)31 b(extraction)i(from)e(the)i(\\lo)m(w)m(er)g(b)s(ound)f(part")g(of)h (theorem)f(2.1)g(of)g([8])0 2100 y Fq(Lemma)37 b(4.1)n(:)44 b Fp(Assume)34 b(that)g(we)f(c)-5 b(an)33 b(\014nd)g(distinct)g(p)-5 b(oints)33 b Ft(x)2375 2115 y Fz(1)2415 2100 y Ft(;)17 b(:)g(:)g(:)f(;)h(x)2689 2115 y FB(k)r Fz(+1)2855 2100 y Fp(in)33 b Fs(f)p Ft(q)t(;)17 b(q)3161 2064 y Fz(2)3200 2100 y Ft(;)g(:)g(:)g(:)f(;)h(q)3466 2064 y FB(n)3512 2100 y Fs(g)34 b Fp(and)0 2220 y(an)g Ft(\013)29 b(>)e Fv(0)35 b Fp(such)g(that)1415 2287 y FB(k)r Fz(+1)1408 2317 y Fr(X)1418 2527 y FB(j)t Fz(=1)1568 2412 y Fs(j)1613 2317 y Fr(Y)1621 2529 y FB(i)p Fy(6)p Fz(=)p FB(j)1873 2344 y Ft(x)1928 2359 y FB(i)p 1766 2389 298 4 v 1766 2480 a Ft(x)1821 2495 y FB(i)1872 2480 y Fs(\000)23 b Ft(x)2027 2495 y FB(j)2074 2412 y Fs(j)k Ft(<)2249 2344 y Fv(1)p 2243 2389 63 4 v 2243 2480 a Ft(\013)2315 2412 y(:)0 2700 y Fp(Then)34 b Ft(E)332 2664 y Fz(\()p FB(q)r Fz(\))425 2700 y Fv(\()p Ft(k)s(;)17 b(n)p Fv(\))28 b Ft(>)f(\013)q Fp(.)0 2954 y Fv(T)-8 b(o)35 b(pro)m(v)m(e)h(prop)s (osition)d(1.6)i(w)m(e)h(ha)m(v)m(e)g(no)f(c)m(hoice)h(but)f(to)g(tak)m (e)g Ft(x)2461 2969 y Fz(1)2533 2954 y Fv(=)d Ft(q)t Fv(,)j Ft(x)2805 2969 y Fz(2)2877 2954 y Fv(=)d Ft(q)3032 2917 y Fz(2)3071 2954 y Fv(,...,)p Ft(x)3261 2969 y FB(n)3341 2954 y Fv(=)f Ft(q)3495 2917 y FB(n)3542 2954 y Fv(.)51 b(So,)0 3074 y(w)m(e)35 b(ha)m(v)m(e)g(to)e(estimate)883 2999 y Fr(P)988 3026 y FB(n)988 3103 y(j)t Fz(=1)1132 3074 y Fs(j)1177 2999 y Fr(Q)1270 3103 y FB(i)p Fy(6)p Fz(=)p FB(j)1473 3030 y(q)1507 3007 y Fo(i)p 1412 3051 182 4 v 1412 3108 a FB(q)1446 3089 y Fo(i)1472 3108 y Fy(\000)p FB(q)1561 3089 y Fo(j)1603 3074 y Fs(j)p Fv(.)47 b(Consider)34 b(a)g(summand)f Fs(j)2687 2999 y Fr(Q)2780 3103 y FB(i)p Fy(6)p Fz(=)p FB(j)2983 3030 y(q)3017 3007 y Fo(i)p 2922 3051 V 2922 3108 a FB(q)2956 3089 y Fo(i)2982 3108 y Fy(\000)p FB(q)3071 3089 y Fo(j)3113 3074 y Fs(j)p Fv(.)47 b(F)-8 b(or)33 b Ft(i)d(<)f(j)40 b Fv(w)m(e)0 3237 y(ha)m(v)m(e)34 b Fs(j)323 3193 y FB(q)357 3170 y Fo(i)p 263 3214 V 263 3272 a FB(q)297 3253 y Fo(i)323 3272 y Fy(\000)p FB(q)412 3253 y Fo(j)454 3237 y Fs(j)27 b Fv(=)719 3198 y Fz(1)p 623 3214 227 4 v 623 3272 a FB(q)657 3253 y Fo(j)s Fn(\000)p Fo(i)759 3272 y Fy(\000)p Fz(1)887 3237 y Fs(\024)1092 3198 y Fz(1)p 1002 3214 215 4 v 1002 3272 a FB(q)1036 3253 y Fo(j)s Fn(\000)p Fo(i)p Fn(\000)p Fm(1)1227 3237 y Fv(.)44 b(F)-8 b(ollo)m(wing)29 b(this)k(up,)g(w)m(e)g(get)g Fs(j)2445 3163 y Fr(Q)2538 3189 y FB(j)t Fy(\000)p Fz(1)2538 3266 y FB(i)p Fz(=1)2752 3193 y FB(q)2786 3170 y Fo(i)p 2691 3214 182 4 v 2691 3272 a FB(q)2725 3253 y Fo(i)2752 3272 y Fy(\000)p FB(q)2841 3253 y Fo(j)2883 3237 y Fs(j)27 b(\024)h Ft(q)3090 3200 y Fy(\000)3155 3167 y Fo(j)s Fm(\()p Fo(j)s Fn(\000)p Fm(1\))p 3155 3185 184 3 v 3231 3227 a(2)3352 3237 y Fv(.)146 3407 y(F)-8 b(or)32 b Ft(i)c(>)g(j)6 b Fv(,)32 b(w)m(e)i(ha)m(v)m(e:)507 3682 y Fs(j)552 3588 y Fr(Y)560 3798 y FB(i>j)808 3615 y Ft(q)855 3579 y FB(i)p 706 3659 281 4 v 706 3751 a Ft(q)753 3722 y FB(i)803 3751 y Fs(\000)22 b Ft(q)949 3722 y FB(j)996 3682 y Fs(j)27 b Fv(=)1155 3588 y Fr(Y)1163 3798 y FB(i>j)1394 3615 y Ft(q)1441 3579 y FB(i)p Fy(\000)p FB(j)p 1308 3659 333 4 v 1308 3751 a Ft(q)1355 3722 y FB(i)p Fy(\000)p FB(j)1493 3751 y Fs(\000)22 b Fv(1)1679 3682 y Fs(\024)1784 3588 y Fr(Y)1792 3798 y FB(i>j)1928 3542 y Fr(\022)2001 3682 y Fv(1)g(+)2237 3615 y(2)p 2180 3659 163 4 v 2180 3751 a Ft(q)2227 3722 y FB(i)p Fy(\000)p FB(j)2352 3542 y Fr(\023)2453 3682 y Fs(\024)2559 3588 y Fr(Y)2567 3798 y FB(i>j)2702 3682 y Ft(e)2809 3599 y Fm(2)p 2758 3611 133 3 v 2758 3662 a Fo(q)2788 3647 y(i)p Fn(\000)p Fo(j)2932 3682 y Fs(\024)29 b Ft(e)3132 3609 y Fm(2)p 3093 3621 109 3 v 3093 3662 a Fo(q)r Fn(\000)p Fm(1)3215 3682 y Ft(:)0 3998 y Fv(Therefore,)993 4064 y FB(n)943 4094 y Fr(X)953 4304 y FB(j)t Fz(=1)1103 4188 y Fs(j)1148 4094 y Fr(Y)1155 4306 y FB(i)p Fy(6)p Fz(=)p FB(j)1404 4121 y Ft(q)1451 4085 y FB(i)p 1301 4165 281 4 v 1301 4257 a Ft(q)1348 4228 y FB(i)1398 4257 y Fs(\000)23 b Ft(q)1545 4228 y FB(j)1591 4188 y Fs(j)28 b(\024)g Ft(e)1846 4115 y Fm(2)p 1807 4127 109 3 v 1807 4168 a Fo(q)r Fn(\000)p Fm(1)1952 4188 y Fs(\001)2002 4094 y Fr(X)2057 4304 y FB(j)2162 4188 y Ft(q)2209 4147 y Fy(\000)2274 4114 y Fo(j)s Fm(\()p Fo(j)s Fn(\000)p Fm(1\))p 2274 4132 184 3 v 2350 4173 a(2)2499 4188 y Ft(<)f(e)2697 4115 y Fm(4)p 2658 4127 109 3 v 2658 4168 a Fo(q)r Fn(\000)p Fm(1)2780 4188 y Ft(:)0 4497 y Fv(Using)g(the)i (lemma,)d(w)m(e)j(conclude)f(that)g(for)f(an)m(y)i Ft(n)f Fv(and)g Ft(q)t Fv(:)40 b Ft(E)6 b Fv(\()p Ft(n)12 b Fs(\000)g Fv(1)p Ft(;)17 b(n)p Fv(\))29 b Ft(>)f(e)2863 4450 y Fy(\000)2967 4423 y Fm(4)p 2928 4435 V 2928 4476 a Fo(q)r Fn(\000)p Fm(1)3078 4497 y Fs(\025)g Ft(e)3228 4461 y Fy(\000)p Fz(4)3323 4497 y Fv(,)h(implying)0 4617 y(the)k(claim)d(of)i(prop)s(osition)f(1.6)h(with)g Ft(c)1473 4632 y Fz(0)1540 4617 y Fv(=)c Ft(e)1689 4581 y Fy(\000)p Fz(4)1783 4617 y Fv(.)1826 5349 y(14)p eop %%Page: 15 15 15 14 bop 0 100 a Fi(4.2)135 b(A)45 b(\\dual")h(pro)t(of)e(of)i (theorem)g(1.7)0 331 y Fv(The)35 b(Setting:)46 b(W)-8 b(e)34 b(w)m(ork)h(in)e(the)i Ft(n)23 b Fv(+)g(1-dimensional)31 b(v)m(ector)k(space)g Ft(X)42 b Fv(of)34 b(real-v)-5 b(alued)32 b(functions)0 452 y(on)k(0)p Ft(;)17 b Fv(1)g Ft(:)g(:)g(:)e(;)i(n)p Fv(.)56 b(The)37 b(function)f Ft(\016)1246 467 y Fz(0)1322 452 y Fv(is)g(1)h(at)f(zero,)i(and)e(0)h (ev)m(erywhere)i(else.)56 b(The)37 b(space)h Fs(P)3433 467 y FB(k)3512 452 y Fv(is)f(the)0 572 y Ft(k)25 b Fv(+)d (1-dimensional)30 b(space)j(of)f(p)s(olynomials)e(of)i(degree)h Fs(\024)c Ft(k)35 b Fv(on)e(0)p Ft(;)17 b Fv(1)g Ft(:)g(:)g(:)e(;)i(n)p Fv(.)43 b(W)-8 b(e)33 b(w)m(an)m(t)g(to)g(sho)m(w:)244 904 y(\012)331 734 y Fr( )410 764 y(\022)483 904 y Fv(1)22 b Fs(\000)666 837 y Ft(k)720 801 y Fz(2)p 664 881 98 4 v 664 973 a Ft(n)722 944 y Fz(2)771 764 y Fr(\023)855 757 y Fm(1)p 855 769 31 3 v 855 810 a(4)921 904 y Fs(\001)981 724 y Fr(\000)1075 761 y FB(n)1037 811 y Fo(n)p Fn(\000)p Fo(k)p 1037 824 121 3 v 1082 865 a Fm(2)1167 724 y Fr(\001)p 981 881 232 4 v 1049 973 a Fv(2)1098 944 y FB(n)1223 734 y Fr(!)1329 904 y Fs(\024)28 b Ft(E)6 b Fv(\()p Ft(k)s(;)17 b(n)p Fv(\))28 b(=)f Fs(k)p Ft(\016)1968 919 y Fz(0)2030 904 y Fs(\000)c(P)2199 919 y FB(k)2242 904 y Fs(k)2292 919 y Fy(1)2394 904 y Fs(\024)28 b Ft(O)2593 734 y Fr( )2672 904 y Fv(\()p Ft(n)2768 863 y Fz(2)2829 904 y Fs(\000)23 b Ft(k)2983 863 y Fz(2)3023 904 y Fv(\))3071 836 y Fm(1)p 3070 848 31 3 v 3070 889 a(4)3137 904 y Fs(\001)3197 724 y Fr(\000)3291 761 y FB(n)3253 811 y Fo(n)p Fn(\000)p Fo(k)p 3253 824 121 3 v 3297 865 a Fm(2)3383 724 y Fr(\001)p 3197 881 232 4 v 3265 973 a Fv(2)3314 944 y FB(n)3438 734 y Fr(!)3534 904 y Ft(:)16 b Fv(\(11\))0 1232 y(using)32 b(the)h(dual)f(\(2\))g(c)m(haracterization)g(of)g Ft(E)6 b Fv(\()p Ft(k)s(;)17 b(n)p Fv(\).)146 1400 y(Things)33 b(b)s(ecome)g(m)m(uc)m(h)g(easier,)f(if)g(w)m(e)h(switc)m(h)h(to)e(the) h(Euclidean)f(norm.)0 1641 y Fq(Lemma)37 b(4.2)o(:)1093 1833 y Fs(k)p Ft(\016)1186 1848 y Fz(0)1247 1833 y Fs(\000)23 b(P)1416 1848 y FB(k)1459 1833 y Fs(k)1509 1848 y Fz(2)1576 1833 y Fv(=)k(\002)1772 1722 y Fr(\020)1831 1833 y Fv(\()p Ft(n)1927 1792 y Fz(2)1989 1833 y Fs(\000)c Ft(k)2143 1792 y Fz(2)2182 1833 y Fv(\))2230 1765 y Fm(1)p 2230 1777 31 3 v 2230 1818 a(4)2275 1722 y Fr(\021)2356 1833 y Fs(\001)2416 1653 y Fr(\000)2510 1689 y FB(n)2472 1740 y Fo(n)p Fn(\000)p Fo(k)p 2472 1753 121 3 v 2516 1794 a Fm(2)2602 1653 y Fr(\001)p 2416 1810 232 4 v 2484 1901 a Fv(2)2533 1872 y FB(n)0 2099 y Fq(Pro)s(of:)51 b Fv(Finding)34 b(the)j(distance)g(from)e(a)h(p)s(oin)m(t)g Ft(\016)1896 2114 y Fz(0)1971 2099 y Fv(to)g(a)h(subspace)h Fs(P)2660 2114 y FB(k)2739 2099 y Fv(in)e(a)g(Euclidean)g(space)h Ft(X)0 2220 y Fv(is)31 b(easy)-8 b(,)33 b(giv)m(en)e(an)h(orthonormal)d (basis)i Ft(v)1560 2235 y Fz(0)1600 2220 y Ft(;)17 b(:)g(:)g(:)e(;)i(v) 1865 2235 y FB(n)1944 2220 y Fv(of)31 b Ft(X)39 b Fv(suc)m(h)33 b(that)e Ft(v)2650 2235 y Fz(0)2690 2220 y Ft(;)17 b(:)g(:)g(:)e(;)i(v) 2955 2235 y FB(k)3029 2220 y Fv(span)32 b Fs(P)3325 2235 y FB(k)3368 2220 y Fv(.)43 b(Indeed,)0 2340 y(expand)32 b Ft(\016)380 2355 y Fz(0)450 2340 y Fv(as)f(a)g(linear)e(com)m (bination)g(of)h Fs(f)p Ft(v)1677 2355 y FB(i)1705 2340 y Fs(g)p Fv(,)h(namely)f Ft(\016)2193 2355 y Fz(0)2260 2340 y Fv(=)2364 2265 y Fr(P)2469 2292 y FB(n)2469 2369 y(i)p Fz(=0)2604 2340 y Ft(a)2655 2355 y FB(s)2692 2340 y Ft(v)2739 2355 y FB(s)2776 2340 y Fv(,)h(where)h Ft(a)3165 2355 y FB(s)3230 2340 y Fv(=)p Ft(<)27 b(\016)3452 2355 y Fz(0)3492 2340 y Ft(;)17 b(v)3583 2355 y FB(s)3647 2340 y Ft(>)p Fv(.)0 2472 y(F)-8 b(or)48 b(an)m(y)h(p)s(oin)m(t)f Ft(p)55 b Fv(=)897 2397 y Fr(P)1002 2424 y FB(k)1002 2501 y(i)p Fz(=0)1137 2472 y Ft(b)1178 2487 y FB(s)1215 2472 y Ft(v)1262 2487 y FB(s)1354 2472 y Fs(2)g(P)1544 2487 y FB(k)1636 2472 y Fv(w)m(e)49 b(ha)m(v)m(e,)54 b(b)m(y)c(the)f(P)m(arsev)-5 b(al)49 b(iden)m(tit)m(y)-8 b(,)52 b Fs(k)p Ft(\016)3298 2487 y Fz(0)3370 2472 y Fs(\000)34 b Ft(p)p Fs(k)3580 2436 y Fz(2)3580 2497 y(2)3674 2472 y Fv(=)0 2529 y Fr(P)105 2556 y FB(k)105 2633 y(i)p Fz(=0)224 2604 y Fv(\()p Ft(a)313 2619 y FB(s)377 2604 y Fs(\000)27 b Ft(b)522 2619 y FB(s)559 2604 y Fv(\))597 2568 y Fz(2)664 2604 y Fv(+)767 2529 y Fr(P)872 2556 y FB(n)872 2633 y(s)p Fz(=)p FB(k)r Fz(+1)1109 2604 y Ft(a)1160 2568 y Fz(2)1160 2629 y FB(s)1200 2604 y Fv(.)65 b(Therefore,)43 b(the)d(p)s(oin)m(t)f(in)g Fs(P)2397 2619 y FB(k)2480 2604 y Fv(closest)h(to)g Ft(\016)2967 2619 y Fz(0)3046 2604 y Fv(is)f(its)h(orthogonal)0 2767 y(pro)5 b(jection)32 b Ft(p)512 2731 y Fz(\()p FB(k)r Fz(\))638 2767 y Fv(=)741 2692 y Fr(P)846 2718 y FB(k)846 2796 y(i)p Fz(=0)981 2767 y Ft(a)1032 2782 y FB(s)1069 2767 y Ft(v)1116 2782 y FB(s)1153 2767 y Fv(,)h(and)f Fs(k)p Ft(\016)1495 2782 y Fz(0)1557 2767 y Fs(\000)23 b(P)1726 2782 y FB(k)1769 2767 y Fs(k)1819 2782 y Fz(2)1886 2767 y Fv(=)1989 2656 y Fr(q)p 2089 2656 433 4 v 36 x(P)2194 2718 y FB(n)2194 2796 y(s)p Fz(=)p FB(k)r Fz(+1)2431 2767 y Ft(a)2482 2738 y Fz(2)2482 2792 y FB(s)2521 2767 y Fv(.)146 2964 y(Ho)m(w)m(ev)m(er,)47 b(w)m(e)42 b(do)g(ha)m(v)m(e)h (suc)m(h)g(a)e(basis)g(for)h(the)g(inner)f(pro)s(duct)h Ft(<)h(f)5 b(;)17 b(g)46 b(>)p Fv(=)3149 2889 y Fr(P)3254 2915 y FB(n)3254 2993 y(s)p Fz(=0)3397 2964 y Ft(f)11 b Fv(\()p Ft(s)p Fv(\))p Ft(g)t Fv(\()p Ft(s)p Fv(\))0 3084 y(!)80 b(This)45 b(basis)f(is)h(giv)m(en)f(b)m(y)i(the)f Fp(discr)-5 b(ete)46 b(Chebyshev)f(p)-5 b(olynomials)43 b Ft(p)2738 3099 y Fz(1)2777 3084 y Ft(;)17 b(:)g(:)g(:)f(;)h(p)3045 3099 y FB(n)3092 3084 y Fv(,)47 b(see)f(section)f(2.)0 3204 y(Plugging)31 b(them)h(in,)g(w)m(e)i(get:)338 3534 y Fs(k)p Ft(\016)431 3549 y Fz(0)492 3534 y Fs(\000)23 b(P)661 3549 y FB(k)704 3534 y Fs(k)754 3549 y Fz(2)821 3534 y Fv(=)924 3335 y Fr(v)924 3391 y(u)924 3451 y(u)924 3510 y(t)p 1029 3335 703 4 v 1116 3410 a FB(n)1066 3439 y Fr(X)1029 3652 y FB(s)p Fz(=)p FB(k)r Fz(+1)1273 3534 y Ft(<)28 b(\016)1420 3549 y Fz(0)1459 3534 y Ft(;)17 b(p)1552 3549 y FB(s)1617 3534 y Ft(>)1693 3505 y Fz(2)1760 3534 y Fv(=)1863 3335 y Fr(v)1863 3391 y(u)1863 3451 y(u)1863 3510 y(t)p 1968 3335 466 4 v 2051 3410 a FB(n)2000 3439 y Fr(X)1968 3652 y FB(i)p Fz(=)p FB(k)r Fz(+1)2192 3534 y Ft(p)2241 3549 y FB(i)2270 3534 y Fv(\(0\))2395 3505 y Fz(2)2461 3534 y Fv(=)2565 3329 y Fr(v)2565 3385 y(u)2565 3445 y(u)2565 3504 y(t)p 2670 3329 716 4 v 2752 3410 a FB(n)2702 3439 y Fr(X)2670 3652 y FB(i)p Fz(=)p FB(k)r Fz(+1)3053 3380 y Fr(\000)3099 3416 y FB(n)3104 3495 y(s)3141 3380 y Fr(\001)3187 3402 y Fz(2)p 2904 3511 472 4 v 2904 3529 a Fr(\000)2950 3566 y FB(n)p Fz(+)p FB(s)p Fz(+1)2981 3644 y(2)p FB(s)p Fz(+1)3170 3529 y Fr(\001\000)3262 3566 y Fz(2)p FB(s)3279 3644 y(s)3330 3529 y Fr(\001)3385 3534 y Ft(:)0 3856 y Fv(The)34 b(last)d(equalit)m (y)i(follo)m(ws)e(from)g(lemma)f(2.1.)146 4023 y(The)35 b(rest)g(is)e(a)h(simple)f(computation)f(with)i(binomial)c(co)s (e\016cien)m(ts.)49 b(Sh)m(u\017ing)34 b(the)h(factorials,)0 4193 y(one)27 b(gets:)546 4137 y(\()584 4099 y Fo(n)588 4155 y(s)622 4137 y Fv(\))660 4083 y Fm(2)p 419 4170 403 4 v 419 4249 a Fv(\()457 4210 y Fo(n)p Fm(+)p Fo(s)p Fm(+1)484 4267 y(2)p Fo(s)p Fm(+1)648 4249 y Fv(\)\()724 4210 y Fm(2)p Fo(s)739 4267 y(s)783 4249 y Fv(\))859 4193 y(=)1160 4154 y Fz(1)p 973 4170 410 4 v 973 4241 a(\()p FB(n)p Fz(+1\))1160 4249 y Fv(\()1198 4210 y Fm(2)p Fo(n)p Fm(+1)1252 4267 y Fo(n)1344 4249 y Fv(\))1392 4112 y Fr(\000)1464 4149 y Fz(2)p FB(n)p Fz(+1)1438 4227 y FB(n)p Fz(+)p FB(s)p Fz(+1)1658 4112 y Fr(\001)1714 4193 y Fs(\001)10 b Fv(\(2)p Ft(s)g Fv(+)g(1\).)41 b(The)28 b(follo)m(wing)c(requires)j(no)g(explanation:)87 4496 y FB(n)36 4526 y Fr(X)0 4738 y FB(s)p Fz(=)p FB(k)r Fz(+1)233 4480 y Fr(\022)365 4553 y Fv(2)p Ft(n)22 b Fv(+)g(1)306 4689 y Ft(n)h Fv(+)f Ft(s)g Fv(+)g(1)699 4480 y Fr(\023)787 4621 y Fs(\001)14 b Fv(\(2)p Ft(s)g Fv(+)g(1\))26 b(=)1369 4496 y FB(n)1319 4526 y Fr(X)1283 4738 y FB(s)p Fz(=)p FB(k)r Fz(+1)1515 4480 y Fr(\022)1647 4553 y Fv(2)p Ft(n)d Fv(+)f(1)1589 4689 y Ft(n)g Fv(+)g Ft(s)g Fv(+)g(1)1982 4480 y Fr(\023)2069 4621 y Fs(\001)14 b Fv(\(2)p Ft(n)g Fv(+)g(2)p Ft(s)g Fv(+)g(1\))g Fs(\000)g Fv(2)p Ft(n)2960 4496 y FB(n)2910 4526 y Fr(X)2875 4738 y FB(s)p Fz(=)p FB(k)r Fz(+1)3107 4480 y Fr(\022)3239 4553 y Fv(2)p Ft(n)22 b Fv(+)g(1)3180 4689 y Ft(n)g Fv(+)g Ft(s)g Fv(+)g(1)3573 4480 y Fr(\023)3674 4621 y Fv(=)828 5015 y(\(4)p Ft(n)g Fv(+)g(2\))1283 4891 y FB(n)1233 4921 y Fr(X)1197 5133 y FB(s)p Fz(=)p FB(k)r Fz(+1)1429 4875 y Fr(\022)1561 4948 y Fv(2)p Ft(n)1503 5084 y(n)g Fv(+)g Ft(s)1727 4875 y Fr(\023)1822 5015 y Fs(\000)h Fv(2)p Ft(n)2132 4891 y FB(n)2082 4921 y Fr(X)2046 5133 y FB(s)p Fz(=)p FB(k)r Fz(+1)2278 4875 y Fr(\022)2410 4948 y Fv(2)p Ft(n)g Fv(+)f(1)2352 5084 y Ft(n)g Fv(+)g Ft(s)g Fv(+)g(1)2745 4875 y Fr(\023)2846 5015 y Fv(=)1826 5349 y(15)p eop %%Page: 16 16 16 15 bop 636 163 a Fv(2)788 39 y FB(n)738 68 y Fr(X)702 281 y FB(s)p Fz(=)p FB(k)r Fz(+1)934 23 y Fr(\022)1066 96 y Fv(2)p Ft(n)1008 231 y(n)22 b Fv(+)g Ft(s)1232 23 y Fr(\023)1328 163 y Fv(+)g(2)p Ft(n)1636 39 y FB(n)1585 68 y Fr(X)1550 281 y FB(s)p Fz(=)p FB(k)r Fz(+1)1782 23 y Fr(\022)1855 163 y Fv(2)1904 23 y Fr(\022)2036 96 y Fv(2)p Ft(n)1977 231 y(n)h Fv(+)f Ft(s)2202 23 y Fr(\023)2297 163 y Fs(\000)2397 23 y Fr(\022)2529 96 y Fv(2)p Ft(n)g Fv(+)g(1)2470 231 y Ft(n)h Fv(+)f Ft(s)g Fv(+)g(1)2864 23 y Fr(\023\023)3038 163 y Fv(=)202 512 y(2)354 387 y FB(n)304 417 y Fr(X)268 629 y FB(s)p Fz(=)p FB(k)r Fz(+1)500 371 y Fr(\022)632 444 y Fv(2)p Ft(n)574 580 y(n)g Fv(+)g Ft(s)798 371 y Fr(\023)894 512 y Fv(+)g(2)p Ft(n)1202 387 y FB(n)1151 417 y Fr(X)1116 629 y FB(s)p Fz(=)p FB(k)r Fz(+1)1348 371 y Fr(\022\022)1553 444 y Fv(2)p Ft(n)1495 580 y(n)g Fv(+)g Ft(s)1719 371 y Fr(\023)1814 512 y Fs(\000)1914 371 y Fr(\022)2131 444 y Fv(2)p Ft(n)1987 580 y(n)h Fv(+)f Ft(s)g Fv(+)g(1)2381 371 y Fr(\023\023)2555 512 y Fv(=)28 b(\002)2752 371 y Fr(\022)2824 512 y Ft(n)2882 371 y Fr(\022)3103 444 y Fv(2)p Ft(n)2956 580 y(n)22 b Fv(+)g Ft(k)k Fv(+)c(1)3357 371 y Fr(\023)q(\023)3521 512 y Ft(:)0 784 y Fv(The)38 b(lemma)e(no)m(w)i(follo)m(ws,)f(when)i(w) m(e)g(recall)1760 748 y Fz(6)1837 784 y Fv(that)e(for)g(an)m(y)h Ft(n)g Fv(and)f(0)f Fs(\024)h Ft(t)f Fs(\024)h Ft(n)h Fv(holds:)3469 703 y Fr(\000)3514 740 y Fz(2)p FB(n)3523 818 y Fz(2)p FB(t)3592 703 y Fr(\001)3674 784 y Fv(=)0 972 y(\002)93 831 y Fr(\022)166 850 y(q)p 265 850 224 4 v 275 924 a FB(t)p Fz(\()p FB(n)p Fy(\000)p FB(t)p Fz(\))p 275 949 204 4 v 356 1006 a FB(n)489 831 y Fr(\023)584 972 y Fs(\001)634 891 y Fr(\000)680 928 y FB(n)689 1006 y(t)723 891 y Fr(\001)768 913 y Fz(2)808 972 y Fv(.)p 878 980 34 67 v 146 1199 a(T)-8 b(o)43 b(conclude)g(the)g(pro)s(of,)h (observ)m(e)g(that)e(for)g(an)m(y)h Ft(n)g Fv(and)g Ft(k)i Fv(w)m(e)f(ha)m(v)m(e:)3036 1160 y Fz(1)p 2957 1176 192 4 v 2957 1186 a Fy(p)p 3016 1186 133 3 v 52 x FB(n)p Fz(+1)3159 1199 y Fs(k)p Ft(\016)3252 1214 y Fz(0)3320 1199 y Fs(\000)30 b(P)3496 1214 y FB(k)3539 1199 y Fs(k)3589 1214 y Fz(2)3673 1199 y Fs(\024)0 1333 y(k)p Ft(\016)93 1348 y Fz(0)155 1333 y Fs(\000)22 b(P)323 1348 y FB(k)366 1333 y Fs(k)416 1348 y Fy(1)518 1333 y Fs(\024)29 b(k)p Ft(\016)717 1348 y Fz(0)778 1333 y Fs(\000)23 b(P)947 1348 y FB(k)990 1333 y Fs(k)1040 1348 y Fz(2)1079 1333 y Fv(.)p 146 1503 34 67 v 146 1658 a(F)-8 b(rom)31 b(the)h (computational)d(p)s(oin)m(t)j(of)f(view,)h(the)h(imp)s(ortan)m(t)d (part)i(of)f(this)h(result)g(is)f(the)h(upp)s(er)0 1837 y(b)s(ound)j Ft(\017)p Fv(\()p Ft(k)s(;)17 b(n)p Fv(\))33 b(:=)f Ft(O)836 1697 y Fr(\022)909 1766 y Fs(p)p 992 1766 59 4 v 71 x Ft(n)22 b Fs(\001)1132 1760 y Fv(\()1221 1717 y Fo(n)1180 1760 y(n)p Fn(\000)p Fo(k)p 1180 1772 121 3 v 1225 1806 a Fm(2)1310 1760 y Fv(\))p 1132 1814 217 4 v 1201 1872 a Fz(2)1236 1853 y Fo(n)1358 1697 y Fr(\023)1467 1837 y Fv(in)34 b(\(11\).)51 b(Giv)m(en)35 b Ft(n)g Fv(ev)m(en)m(ts)j(and)d(the)g(probabilities)e(of)h(their)0 2009 y Ft(j)6 b Fv(-wise)27 b(in)m(tersections,)i Ft(j)34 b Fv(=)28 b(0)p Ft(;)17 b Fv(1)p Ft(;)g(:)g(:)g(:)e(;)i(k)s Fv(,)28 b(w)m(e)h(can)e(no)m(w)h(appro)m(ximate)f(the)h(probabilit)m(y) e(of)h(the)h(union)0 2130 y(e\016cien)m(tly)-8 b(,)33 b(with)f(an)h(error)f(not)h(exceeding)g Ft(\017)p Fv(\()p Ft(k)s(;)17 b(n)p Fv(\).)0 2353 y Fq(Corollary)36 b(4.3)-11 b(:)40 b Fp(F)-7 b(or)24 b(any)h(inte)-5 b(gers)24 b Ft(k)s(;)17 b(n)25 b Fp(ther)-5 b(e)25 b(exist)g(\(explicitly)f (given\))g(c)-5 b(onstants)24 b Ft(\013)3236 2306 y FB(k)r(;n)3235 2378 y Fz(0)3341 2353 y Ft(;)17 b(\013)3448 2306 y FB(k)r(;n)3447 2378 y Fz(2)3553 2353 y Ft(;)g(:)g(:)g(:)f(;)h(\013)3835 2306 y FB(k)r(;n)3834 2381 y(k)3939 2353 y Fp(,)0 2474 y(such)35 b(that)g(for)g(every)f(c)-5 b(ol)5 b(le)-5 b(ction)34 b(of)h(sets)g Ft(A)1645 2489 y Fz(1)1684 2474 y Ft(;)17 b(:)g(:)g(:)f(;)h(A)1976 2489 y FB(n)2058 2474 y Fp(in)34 b(a)h(pr)-5 b(ob)g(ability)34 b(sp)-5 b(ac)g(e)244 2788 y Fs(j)p Ft(P)14 b(r)k Fv(\()p Fs([)515 2747 y FB(n)515 2813 y(i)p Fz(=1)634 2788 y Ft(A)707 2803 y FB(i)735 2788 y Fv(\))k Fs(\000)915 2693 y Fr(X)895 2909 y Fy(j)p FB(T)10 b Fy(j\024)p FB(k)1095 2788 y Ft(\013)1158 2741 y FB(k)r(;n)1157 2819 y Fy(j)p FB(T)g Fy(j)1263 2788 y Ft(P)k(r)19 b Fv(\()o Fs(\\)1506 2803 y FB(i)p Fy(2)p FB(T)1633 2788 y Ft(A)1706 2803 y FB(i)1734 2788 y Fv(\))e Fs(j)27 b(\024)h Ft(O)2043 2618 y Fr( )2122 2711 y Fs(p)p 2205 2711 59 4 v 77 x Ft(n)22 b Fs(\001)2345 2608 y Fr(\000)2440 2645 y FB(n)2401 2695 y Fo(n)p Fn(\000)p Fo(k)p 2401 2708 121 3 v 2446 2749 a Fm(2)2531 2608 y Fr(\001)p 2345 2765 232 4 v 2413 2856 a Fv(2)2462 2828 y FB(n)2587 2618 y Fr(!)2682 2788 y Ft(:)868 b Fv(\(12\))0 3133 y Fq(Pro)s(of:)40 b Fv(The)26 b(pro)s(of)e(of)h(lemma)e(4.2)i(ga)m(v)m(e)h(us)g(a)f(p)s (olynomial)d Ft(p)27 b Fv(=)h Ft(p)2474 3097 y Fz(\()p FB(k)r Fz(\))2599 3133 y Fs(2)g(P)2762 3148 y FB(k)2830 3133 y Fv(suc)m(h)f(that)e Fs(k)p Ft(p)7 b Fs(\000)g Ft(\016)3480 3148 y Fz(0)3520 3133 y Fs(k)3570 3148 y Fy(1)3673 3133 y Fs(\024)0 3253 y Ft(\017)p Fv(\()p Ft(k)s(;)17 b(n)p Fv(\).)146 3416 y(W)-8 b(e)49 b(ha)m(v)m(e)h(t)m(w)m(o)e(bases)i (for)e(the)g(space)i Fs(P)1736 3431 y FB(k)1779 3416 y Fv(.)90 b(One)49 b(of)e(them)h(is)g(the)h(usual)f(monomial)c(basis)0 3536 y(1)p Ft(;)17 b(x;)g(:)g(:)g(:)f(;)h(x)422 3500 y FB(k)465 3536 y Fv(.)69 b(The)43 b(other)e(\(see)i(prop)s(osition)c (1.4)i(and)h(remark)f(1.5\))f(is)h(giv)m(en)h(b)m(y)g(the)g(functions)0 3703 y Ft(f)48 3718 y FB(j)85 3703 y Fv(\()p Ft(i)p Fv(\))27 b(=)335 3644 y(\()373 3606 y Fo(n)p Fn(\000)p Fo(j)381 3662 y(i)p Fn(\000)p Fo(j)488 3644 y Fv(\))p 335 3680 191 4 v 373 3758 a(\()411 3720 y Fo(n)419 3776 y(i)449 3758 y Fv(\))568 3703 y(for)32 b Ft(j)i Fv(=)27 b(0)p Ft(;)17 b(:)g(:)g(:)f(;)h(k)s Fv(.)43 b(Let)33 b Ft(p)27 b Fv(=)1641 3628 y Fr(P)1746 3654 y FB(k)1746 3732 y(s)p Fz(=0)1890 3703 y Ft(a)1941 3718 y FB(s)1978 3703 y Ft(f)2026 3718 y FB(s)2063 3703 y Fv(.)146 3909 y(Lifting)46 b(to)i(the)h(space)g Ft(S)54 b Fv(of)47 b(symmetric)h(functions)g(on)g Fs(f)p Fv(0)p Ft(;)17 b Fv(1)p Fs(g)2635 3873 y FB(n)2729 3909 y Fv(\(see)49 b(subsection)g(3.1\))f(w)m(e)0 4029 y(get:)84 b(~)-58 b Ft(p)55 b Fv(=)467 3954 y Fr(P)572 3981 y FB(k)572 4058 y(s)p Fz(=0)716 4029 y Ft(a)767 4044 y FB(s)825 4003 y Fv(~)804 4029 y Ft(f)852 4044 y FB(s)888 4029 y Fv(,)e(where)1287 4003 y(~)1266 4029 y Ft(f)1314 4044 y FB(i)1397 4029 y Fv(=)1577 3990 y Fz(1)p 1537 4006 115 4 v 1537 4085 a Fv(\()1575 4046 y Fo(n)1584 4103 y(i)1614 4085 y Fv(\))1678 3954 y Fr(P)1783 4058 y FB(x)p Fz(:)p Fy(j)p FB(x)p Fy(j)p Fz(=)p FB(i)2021 4029 y Fv(1)2070 4045 y Fy(f)p FB(y)r Fy(\027)p FB(x)p Fy(g)2277 4029 y Fv(,)f(for)c Ft(i)55 b Fv(=)g(0)p Ft(;)17 b(:)g(:)g(:)f(;)h(k)s Fv(.)91 b(\(F)-8 b(or)47 b(a)i(string)0 4193 y Ft(x)28 b Fs(2)g(f)p Fv(0)p Ft(;)17 b Fv(1)p Fs(g)419 4157 y FB(n)465 4193 y Fv(,)31 b Fs(j)p Ft(x)p Fs(j)g Fv(denotes)h(the)f Fp(Hamming)i(norm)d Fv(of)g Ft(x)p Fv(,)i(namely)e(the)h(n)m(um)m(b)s (er)g(of)g(ones)g(in)f Ft(x)p Fv(.\))44 b(Also)0 4277 y Fz(7)72 4313 y Fs(k)p Ft(p)22 b Fs(\000)g Ft(\016)335 4328 y Fz(0)375 4313 y Fs(k)425 4328 y Fy(1)527 4313 y Fv(=)28 b Fs(k)8 b Fv(~)-57 b Ft(p)22 b Fs(\000)g Ft(\016)894 4328 y Fz(0)934 4313 y Fs(k)984 4328 y Fy(1)1086 4313 y Fs(\024)28 b Ft(\017)p Fv(\()p Ft(k)s(;)17 b(n)p Fv(\).)146 4476 y(Giv)m(en)42 b(sets)h Ft(A)711 4491 y Fz(1)751 4476 y Ft(;)17 b(:)g(:)g(:)e(;)i(A)1042 4491 y FB(n)1089 4476 y Fv(,)44 b(w)m(e)f(de\014ne,)j(as)c(in)f(lemma)e(3.1,)44 b(a)d(function)h Ft(f)54 b Fv(:)43 b Fs(f)p Fv(0)p Ft(;)17 b Fv(1)p Fs(g)3301 4440 y FB(n)3390 4476 y Fs(!)43 b Fj(R)53 b Fv(b)m(y)0 4596 y Ft(f)11 b Fv(\()p Ft(x)p Fv(\))47 b(=)f Ft(P)14 b(r)499 4516 y Fr(\000)545 4522 y(T)628 4625 y FB(i)p Fz(:)p FB(x)712 4635 y Fo(i)737 4625 y Fz(=1)848 4596 y Ft(A)921 4611 y FB(i)972 4596 y Fs(\\)1060 4522 y Fr(T)1143 4625 y FB(i)p Fz(:)p FB(x)1227 4635 y Fo(i)1253 4625 y Fz(=0)1364 4596 y Ft(A)1437 4560 y FB(c)1437 4621 y(i)1472 4516 y Fr(\001)1517 4596 y Fv(.)77 b(W)-8 b(e)44 b(ha)m(v)m(e)h(that)f Fs(k)p Ft(f)11 b Fs(k)2418 4611 y Fz(1)2503 4596 y Fv(=)2626 4522 y Fr(P)2731 4625 y FB(x)2792 4596 y Ft(f)g Fv(\()p Ft(x)p Fv(\))46 b(=)h(1)c(and)h Ft(f)11 b Fv(\(0\))46 b(=)0 4717 y(1)17 b Fs(\000)h Ft(P)c(r)19 b Fv(\()p Fs([)405 4681 y FB(n)405 4741 y(i)p Fz(=1)523 4717 y Ft(A)596 4732 y FB(i)625 4717 y Fv(\).)42 b(Note)31 b(also,)f(that)g(for)f(an)m (y)i Ft(x)d Fs(2)h(f)p Fv(0)p Ft(;)17 b Fv(1)p Fs(g)2144 4681 y FB(n)2220 4717 y Fv(holds)30 b Ft(<)d(f)5 b(;)17 b Fv(1)2722 4732 y Fy(f)p FB(y)r Fy(\027)p FB(x)p Fy(g)2956 4717 y Ft(>)p Fv(=)28 b Ft(P)14 b(r)k Fv(\()p Fs(\\)3379 4732 y FB(i)p Fz(:)p FB(x)3463 4742 y Fo(i)3489 4732 y Fz(=1)3584 4717 y Ft(A)3657 4732 y FB(i)3685 4717 y Fv(\).)p 0 4809 1500 4 v 112 4871 a Fl(6)149 4901 y Fw(This)28 b(is)f(an)h(easy)e(consequence)h(of)h(Stirling's)f(form)n(ula)f(for)i (the)g(factorial.)112 4970 y Fl(7)149 5000 y Fw(Recall)22 b(that)h(\(with)g(m)n(uc)n(h)f(abuse)g(of)g(notation\))g(the)h(sym)n(b) r(ol)f Fg(\016)2129 5012 y Fl(0)2189 5000 y Fw(pla)n(ys)f(a)h(m)n (ultiple)h(role)e(in)i(this)f(pap)r(er,)h(denoting)0 5100 y(in)28 b(particular)e(b)r(oth)i(a)f(function)i(on)e(0)p Fg(;)14 b Fw(1)p Fg(;)g(:)g(:)g(:)e(;)i(n)28 b Fw(giv)n(en)f(b)n(y)g Fg(\016)1937 5112 y Fl(0)1974 5100 y Fw(\()p Fg(i)p Fw(\))c(=)g Fg(\016)2215 5112 y Fl(0)p Fc(;i)2323 5100 y Fw(and)k(its)h(lifting)g (to)g Fg(S)5 b Fw(.)1826 5349 y Fv(16)p eop %%Page: 17 17 17 16 bop 146 100 a Fv(Consider)33 b(the)g(inner)g(pro)s(duct)f Ft(<)c(f)5 b(;)25 b Fv(~)-57 b Ft(p)28 b(>)p Fv(.)43 b(On)33 b(one)f(hand,)h(it)f(is)g(v)m(ery)i(close)f(to)f Ft(f)11 b Fv(\(0\),)32 b(indeed:)0 317 y Fs(j)27 b Ft(<)h(f)5 b(;)25 b Fv(~)-57 b Ft(p)28 b(>)f Fs(\000)p Ft(f)11 b Fv(\(0\))p Fs(j)27 b Fv(=)h Fs(j)f Ft(<)h(f)5 b(;)25 b Fv(~)-57 b Ft(p)27 b(>)h Fs(\000)g Ft(<)g(f)5 b(;)17 b(\016)1641 332 y Fz(0)1708 317 y Ft(>)27 b Fs(j)h Fv(=)f Fs(j)h Ft(<)f(f)5 b(;)25 b Fv(~)-57 b Ft(p)p Fs(\000)p Ft(\016)2395 332 y Fz(0)2463 317 y Ft(>)28 b Fs(j)f(\024)h(k)p Ft(f)11 b Fs(k)2886 332 y Fz(1)2925 317 y Fs(\001k)d Fv(~)-57 b Ft(p)o Fs(\000)p Ft(\016)3171 332 y Fz(0)3211 317 y Fs(k)3261 332 y Fy(1)3364 317 y Fs(\024)28 b Ft(\017)p Fv(\()p Ft(k)s(;)17 b(n)p Fv(\))p Ft(:)0 535 y Fv(On)29 b(the)g(other)g(hand,)h(it)e(can)h(b)s(e)g(written)g(as)g(a)g(linear)e (com)m(bination)g(of)h Ft(P)14 b(r)19 b Fv(\()p Fs(\\)2942 550 y FB(i)p Fy(2)p FB(T)3069 535 y Ft(A)3142 550 y FB(i)3170 535 y Fv(\),)30 b(for)e Fs(j)p Ft(T)14 b Fs(j)27 b(\024)h Ft(k)s Fv(:)212 870 y Ft(<)g(f)5 b(;)25 b Fv(~)-57 b Ft(p)28 b(>)p Fv(=)p Ft(<)f(f)5 b(;)895 745 y FB(k)842 775 y Fr(X)852 984 y FB(s)p Fz(=0)1002 870 y Ft(a)1053 885 y FB(s)1112 843 y Fv(~)1090 870 y Ft(f)1138 885 y FB(s)1203 870 y Ft(>)p Fv(=)1435 745 y FB(k)1382 775 y Fr(X)1393 984 y FB(s)p Fz(=0)1543 870 y Ft(a)1594 885 y FB(s)1658 870 y Ft(<)28 b(f)5 b(;)1880 843 y Fv(~)1859 870 y Ft(f)1907 885 y FB(s)1972 870 y Ft(>)p Fv(=)2204 745 y FB(k)2151 775 y Fr(X)2162 984 y FB(s)p Fz(=0)2345 802 y Ft(a)2396 817 y FB(s)p 2321 847 135 4 v 2321 863 a Fr(\000)2367 899 y FB(n)2372 978 y(s)2410 863 y Fr(\001)2482 670 y(0)2482 849 y(@)2610 775 y(X)2569 991 y FB(x)p Fz(:)p Fy(j)p FB(x)p Fy(j)p Fz(=)p FB(s)2823 870 y Ft(<)27 b(f)5 b(;)17 b Fv(1)3072 885 y FB(y)r Fy(\027)p FB(x)p Fy(g)3271 870 y Ft(>)3347 670 y Fr(1)3347 849 y(A)3462 870 y Fv(=)1266 1210 y FB(k)1213 1239 y Fr(X)1224 1449 y FB(s)p Fz(=0)1407 1267 y Ft(a)1458 1282 y FB(s)p 1384 1311 V 1384 1327 a Fr(\000)1429 1364 y FB(n)1435 1442 y(s)1472 1327 y Fr(\001)1545 1134 y(0)1545 1313 y(@)1684 1239 y(X)1632 1455 y FB(T)10 b Fz(:)p Fy(j)p FB(T)g Fy(j)p Fz(=)p FB(s)1896 1334 y Ft(P)k(r)19 b Fv(\()p Fs(\\)2140 1349 y FB(i)p Fy(2)p FB(T)2267 1334 y Ft(A)2340 1349 y FB(i)2368 1334 y Fv(\))2406 1134 y Fr(1)2406 1313 y(A)2510 1334 y Ft(:)0 1643 y Fv(Note,)45 b(that)e Ft(P)14 b(r)k Fv(\()p Fs(\\)740 1659 y FB(i)p Fy(2;)851 1643 y Ft(A)924 1658 y FB(i)952 1643 y Fv(\))45 b(=)g(1,)f(and)f(therefore)g(w)m(e)h(get)e(\(12\))g(b)m (y)i(setting)e Ft(\013)2976 1596 y FB(k)r(;n)2975 1668 y Fz(0)3125 1643 y Fv(=)j(1)29 b Fs(\000)g Ft(a)3481 1658 y Fz(0)3521 1643 y Fv(,)45 b(and)0 1763 y Ft(\013)63 1716 y FB(k)r(;n)62 1789 y(i)195 1763 y Fv(=)28 b Fs(\000)412 1722 y FB(a)449 1732 y Fo(i)p 386 1741 115 4 v 386 1819 a Fv(\()424 1781 y Fo(n)432 1837 y(i)463 1819 y Fv(\))511 1763 y(,)k(for)g Ft(i)c Fv(=)g(1)p Ft(;)17 b(:)g(:)g(:)e(;)i(k)s Fv(.)146 1971 y(The)53 b(constan)m(ts)h Ft(a)869 1986 y FB(i)949 1971 y Fv(for)e Ft(i)61 b Fv(=)g(0)p Ft(;)17 b(:)g(:)g(:)e(;)i(k)55 b Fv(can)d(b)s(e)h(easily)e(found)h(from)f(the)i (expansion)f Ft(p)61 b Fv(=)0 2016 y Fr(P)105 2043 y FB(k)105 2120 y(s)p Fz(=0)249 2091 y Ft(a)300 2106 y FB(s)337 2091 y Ft(f)385 2106 y FB(s)422 2091 y Fv(,)48 b(b)m(y)e(solving)e(a)g(system)i(of)f(linear)e(equations.)81 b(The)46 b(v)m(ectors)h Fs(f)p Ft(f)2989 2106 y FB(s)3026 2091 y Fs(g)d Fv(are)h(giv)m(en,)k(and)0 2212 y Ft(p)32 b Fv(is)g(a)h(linear)e(com)m(bination)f(with)i(kno)m(wn)i(co)s (e\016cien)m(ts)g(of)e(the)h(discrete)g(Cheb)m(yshev)j(p)s(olynomials)0 2332 y Ft(p)49 2347 y Fz(0)88 2332 y Ft(;)17 b(:)g(:)g(:)f(;)h(p)356 2347 y FB(k)399 2332 y Fv(,)32 b(where)i([18])e Ft(p)973 2347 y FB(s)1010 2332 y Fv(\()p Ft(i)p Fv(\))c(=)1250 2257 y Fr(P)1355 2284 y FB(s)1355 2361 y(j)t Fz(=0)1482 2332 y Fv(\()p Fs(\000)p Fv(1\))1684 2296 y FB(j)1721 2251 y Fr(\000)1766 2288 y FB(s)1767 2366 y(j)1799 2251 y Fr(\001\000)1895 2288 y FB(i)1890 2366 y(j)1923 2251 y Fr(\001)o(\000)2014 2288 y FB(n)p Fy(\000)p FB(i)2015 2366 y(s)p Fy(\000)p FB(j)2136 2251 y Fr(\001)2182 2332 y Fv(.)p 2252 2340 34 67 v 0 2714 a Fu(5)161 b(A)54 b(\\primal")h(pro)t (of)f(of)g(theorem)d(1.7)0 2982 y Fv(In)23 b(this)f(section)h(w)m(e)h (giv)m(e)e(a)h(pro)s(of)f(of)g(theorem)g(1.7)h(whic)m(h)g(do)s(es)g (not)f(rely)h(up)s(on)g(dualit)m(y)e(theory)-8 b(.)41 b(Our)0 3102 y(main)23 b(to)s(ols)h(are)g(the)h(discrete)h(F)-8 b(ourier)23 b(analysis)h(on)h Fj(Z)2015 3066 y FB(n)2015 3127 y Fz(2)2084 3102 y Fv(and)g(a)f(family)f(of)h(orthogonal)f(p)s (olynomials:)0 3222 y(the)j(Hahn)f(p)s(olynomials)e(\(see)j(section)f (2\).)41 b(Elemen)m(ts)26 b(of)f Ft(Z)2206 3186 y FB(n)2199 3247 y Fz(2)2278 3222 y Fv(\(or)g Fs(f)p Fv(0)p Ft(;)17 b Fv(1)p Fs(g)2670 3186 y FB(n)2715 3222 y Fv(\))26 b(will)d(b)s(e)i (view)m(ed)i(as)e(either)0 3343 y(v)m(ectors)34 b(or)e(as)h(subsets)i (of)d Fs(f)p Fv(1)p Ft(;)17 b(:)g(:)g(:)e(;)i(n)p Fs(g)p Fv(.)146 3512 y(Applying)32 b(lemma)e(3.3)i(to)h(the)g(de\014nition)e (1.1)h(of)h Ft(E)6 b Fv(\()p Ft(k)s(;)17 b(n)p Fv(\),)32 b(w)m(e)i(obtain:)247 3730 y Ft(E)6 b Fv(\()p Ft(k)s(;)17 b(n)p Fv(\))27 b(=)h(sup)17 b Fs(f)p Ft(h)p Fv(\(0\))33 b Fs(j)f Ft(h)c Fv(:)f Fs(f)p Fv(0)p Ft(;)17 b Fv(1)p Fs(g)1555 3689 y FB(n)1629 3730 y Fs(!)27 b Fj(R)5 b Fv(;)55 b Fs(k)p Ft(h)p Fs(k)2060 3745 y Fz(1)2127 3730 y Fs(\024)28 b Fv(2)p Ft(;)49 b Fv(\()p Ft(\020)8 b(h)p Fv(\)\()p Ft(x)p Fv(\))28 b(=)f(0)p Ft(;)49 b(f)11 b(or)35 b Fs(j)p Ft(x)p Fs(j)27 b(\024)i Ft(k)s Fs(g)16 b Ft(:)146 3997 y Fv(No)m(w)50 b(w)m(e)g(are)f(going)e(to)i(\\pla)m(y")f(with)g (this)h(de\014nition,)j(mo)s(difying)46 b(it)i(un)m(til)g(w)m(e)h (obtain)f(a)0 4117 y(con)m(v)m(enien)m(t)27 b(c)m(haracterization)e (\(13\),)i(for)e(whic)m(h)h(w)m(e)h(will)c(b)s(e)j(able)f(to)g(pro)m (vide)h(tigh)m(t)f(b)s(ounds.)42 b(First,)0 4238 y(let)f(us)h (translate)f(the)h(zeta)g(transform)f(prop)s(erties)g(of)g(a)h (function)f Ft(h)g Fv(to)h(its)f(F)-8 b(ourier)40 b(transform)0 4358 y(prop)s(erties.)0 4609 y Fq(Lemma)d(5.1)5 b(:)57 b Fp(F)-7 b(or)39 b(a)i(function)f Ft(h)f Fv(:)f Fj(Z)1529 4573 y FB(n)1529 4633 y Fz(2)1612 4609 y Fs(!)g Fj(R)5 b Fp(,)48 b(let)41 b Ft(\020)8 b(h)40 b Fp(b)-5 b(e)40 b(the)h(zeta)g(tr)-5 b(ansform)40 b(of)g Ft(h)h Fp(and)3552 4582 y Fv(^)3551 4609 y Ft(h)g Fp(its)0 4729 y(F)-7 b(ourier)34 b(tr)-5 b(ansform.)44 b(Then)34 b Fv(\()p Ft(\020)8 b(h)p Fv(\)\()p Ft(x)p Fv(\))27 b(=)h(0)35 b Fp(for)f Fs(j)p Ft(x)p Fs(j)28 b(\024)g Ft(k)38 b Fp(if)c(and)h(only)f(if)2700 4703 y Fv(^)2699 4729 y Ft(h)p Fv(\()p Ft(x)p Fv(\))28 b(=)g(0)34 b Fp(for)h Fs(j)p Ft(x)p Fs(j)28 b(\024)g Ft(k)s Fp(.)0 4980 y Fq(Pro)s(of:)65 b Fv(In)44 b(the)g(pro)s(of)f(of)g (prop)s(osition)f(1.2)h(w)m(e)i(ha)m(v)m(e)g(sho)m(wn)g(that)e(\()p Ft(\020)8 b(h)p Fv(\)\()p Ft(x)p Fv(\))46 b(=)g(0)e(for)f Fs(j)p Ft(x)p Fs(j)j(\024)h Ft(k)0 5100 y Fv(i\013)37 b Ft(h)h Fv(is)f(orthogonal)f(to)h(Span)1164 5019 y Fr(\010)1222 5100 y Fv(1)1271 5115 y Fy(f)p FB(y)r Fz(:)p FB(y)r Fy(\027)p FB(x)p Fy(g)1595 5100 y Fv(:)60 b Fs(j)p Ft(x)p Fs(j)27 b(\024)i Ft(k)1980 5019 y Fr(\011)2038 5100 y Fv(.)59 b(Therefore,)40 b(w)m(e)f(need)g(only)e(to)g(sho)m(w)i(that)1826 5349 y(17)p eop %%Page: 18 18 18 17 bop 0 100 a Fv(Span)228 19 y Fr(\010)286 100 y Fv(1)335 115 y Fy(f)p FB(y)r Fz(:)p FB(y)r Fy(\027)p FB(x)p Fy(g)659 100 y Fv(:)60 b Fs(j)p Ft(x)p Fs(j)27 b(\024)h Ft(k)1043 19 y Fr(\011)1139 100 y Fv(=)38 b(Span)17 b Fs(f)p Ft(W)1623 115 y FB(x)1727 100 y Fv(:)60 b Fs(j)p Ft(x)p Fs(j)28 b(\024)g Ft(k)s Fs(g)16 b Ft(:)39 b Fv(\(Recall,)f(that) g Fs(f)p Ft(W)2969 115 y FB(x)3013 100 y Fs(g)g Fv(are)h(the)g(c)m (harac-)0 220 y(ters)33 b(of)f Fj(Z)370 184 y FB(n)370 245 y Fz(2)415 220 y Fv(,)g(see)i(section)f(2.\))146 382 y(Note,)40 b(that)f(b)s(oth)f(these)h(spanning)g(sets)g(are)g (linearly)d(indep)s(enden)m(t,)41 b(and)d(of)g(the)h(same)f(car-)0 502 y(dinalit)m(y)-8 b(.)73 b(Therefore,)48 b(it)42 b(su\016ces)j(to)e (pro)m(v)m(e)i(that)e(if)f Fs(j)p Ft(x)p Fs(j)j(\024)i Ft(k)f Fv(then)e Ft(f)2736 517 y FB(x)2825 502 y Fv(=)i(1)2996 518 y Fy(f)p FB(y)r Fz(:)p FB(y)r Fy(\027)p FB(x)p Fy(g)3303 502 y Fv(b)s(elongs)c(to)0 623 y(Span)17 b Fs(f)p Ft(W)370 638 y FB(x)474 623 y Fv(:)60 b Fs(j)p Ft(x)p Fs(j)28 b(\024)g Ft(k)s Fs(g)16 b Ft(:)146 785 y Fv(Let)45 b(us,)k(for)44 b(this)g(purp)s(ose,)49 b(compute)44 b(the)h(F)-8 b(ourier)44 b(expansion)h(of)f Ft(f)2846 800 y FB(x)2890 785 y Fv(.)80 b(Let)45 b Fs(j)p Ft(x)p Fs(j)j Fv(=)g Ft(a)p Fv(,)g(and)0 905 y(w.l.o.g.)e(assume)35 b(that)e(the)h(last)f Ft(a)h Fv(bits)g(of)f Ft(x)h Fv(are)g(1.)47 b(Set)34 b Ft(m)c Fv(=)f Ft(n)24 b Fs(\000)f Ft(a)p Fv(,)34 b(and)g(for)f Ft(s)d Fs(2)g(f)p Fv(0)p Ft(;)17 b Fv(1)p Fs(g)3459 869 y FB(n)3539 905 y Fv(let)33 b Ft(s)3727 869 y Fy(0)0 1025 y Fv(b)s(e)g(the)g(restriction)e(of)h Ft(s)h Fv(to)f(the)h (\014rst)g Ft(m)g Fv(co)s(ordinates.)43 b(Then:)774 1236 y Ft(<)28 b(f)926 1251 y FB(x)970 1236 y Ft(;)17 b(W)1106 1251 y FB(s)1170 1236 y Ft(>)p Fv(=)1383 1169 y(1)p 1359 1213 96 4 v 1359 1305 a(2)1408 1276 y FB(n)1482 1142 y Fr(X)1488 1352 y FB(y)r Fy(\027)p FB(x)1626 1236 y Fv(\()p Fs(\000)p Fv(1\))1828 1195 y FB(y)r Fy(\\)p FB(s)1976 1236 y Fv(=)2113 1169 y(1)p 2090 1213 V 2090 1305 a(2)2139 1276 y FB(n)2212 1142 y Fr(X)2218 1352 y FB(y)r Fy(\027)p FB(x)2356 1236 y Fv(\()p Fs(\000)p Fv(1\))2558 1145 y Fb(P)2633 1166 y Fo(n)2633 1216 y(i)p Fm(=1)2748 1195 y FB(y)2783 1205 y Fo(i)2809 1195 y FB(s)2842 1205 y Fo(i)2900 1236 y Fv(=)370 1546 y(1)p 347 1590 V 347 1682 a(2)396 1653 y FB(n)548 1519 y Fr(X)469 1735 y FB(z)s Fy(2f)p Fz(0)p FB(;)p Fz(1)p Fy(g)712 1716 y Fo(m)771 1613 y Fv(\()p Fs(\000)p Fv(1\))973 1522 y Fb(P)1048 1543 y Fo(m)1048 1593 y(i)p Fm(=1)1163 1572 y FB(z)1196 1582 y Fo(i)1222 1572 y FB(s)1255 1582 y Fo(i)1281 1572 y Fz(+)1336 1522 y Fb(P)1410 1543 y Fo(n)1410 1593 y(j)s Fm(=)p Fo(m)p Fm(+1)1633 1572 y FB(s)1666 1582 y Fo(j)1730 1613 y Fv(=)1843 1546 y(\()p Fs(\000)p Fv(1\))2045 1455 y Fb(P)2120 1476 y Fo(n)2120 1526 y(j)s Fm(=)p Fo(m)p Fm(+1)2342 1505 y FB(s)2375 1515 y Fo(j)p 1843 1590 569 4 v 2080 1682 a Fv(2)2129 1653 y FB(n)2444 1613 y Fs(\001)2573 1519 y Fr(X)2494 1735 y FB(z)s Fy(2f)p Fz(0)p FB(;)p Fz(1)p Fy(g)2737 1716 y Fo(m)2796 1613 y Fv(\()p Fs(\000)p Fv(1\))2998 1522 y Fb(P)3072 1543 y Fo(m)3072 1593 y(i)p Fm(=1)3187 1572 y FB(z)3220 1582 y Fo(i)3247 1572 y FB(s)3280 1549 y Fn(0)3280 1594 y Fo(i)3337 1613 y Fv(=)1406 1815 y Fr(\()1538 1888 y Fz(\()p Fy(\000)p Fz(1\))1682 1865 y Fn(j)p Fo(s)p Fn(j)p 1538 1913 217 4 v 1590 1974 a Fz(2)1625 1954 y Fn(j)p Fo(x)p Fn(j)1847 1935 y Ft(s)1893 1899 y Fy(0)1944 1935 y Fv(=)28 b(0)1528 2058 y(0)270 b(otherwise)2317 1985 y Ft(:)0 2268 y Fv(Clearly)-8 b(,)23 b Ft(s)395 2232 y Fy(0)446 2268 y Fv(=)k(0)22 b(if)f(and)g(only)h(if)e Ft(s)28 b Fs(\026)g Ft(x)p Fv(.)40 b(Consequen)m(tly)24 b Ft(f)2102 2283 y FB(x)2174 2268 y Fv(=)2277 2194 y Fr(P)2383 2297 y FB(s)p Fy(\026)p FB(x)2540 2221 y Fz(\()p Fy(\000)p Fz(1\))2684 2197 y Fn(j)p Fo(s)p Fn(j)p 2540 2245 V 2593 2306 a Fz(2)2628 2287 y Fn(j)p Fo(x)p Fn(j)2767 2268 y Ft(W)2859 2283 y FB(s)2923 2268 y Fs(2)k Fv(Span)17 b Fs(f)p Ft(W)3387 2283 y FB(x)3491 2268 y Fv(:)60 b Fs(j)p Ft(x)p Fs(j)28 b(\024)g Ft(k)s Fs(g)p Fv(,)0 2389 y(and)33 b(w)m(e)g(are)g(done.)p 767 2397 34 67 v 146 2551 a(In)g(other)g(w)m(ords,)476 2764 y Ft(E)6 b Fv(\()p Ft(k)s(;)17 b(n)p Fv(\))28 b(=)f(sup)1081 2653 y Fr(n)1147 2764 y Ft(h)p Fv(\(0\))33 b Fs(j)64 b(k)p Ft(h)p Fs(k)1609 2779 y Fz(1)1676 2764 y Fs(\024)28 b Fv(2)p Ft(;)1907 2737 y Fv(^)1906 2764 y Ft(h)q Fv(\()p Ft(x)p Fv(\))g(=)f(0)p Ft(;)49 b(f)11 b(or)35 b Fs(j)p Ft(x)p Fs(j)27 b Fv(=)h(0)p Ft(;)17 b Fv(1)g Ft(:)g(:)g(:)e(;)i(k)3164 2653 y Fr(o)3247 2764 y Ft(:)0 2977 y Fv(W)-8 b(e)33 b(w)m(ould)g(lik)m(e,)f(for)g(a)h (reason)g(whic)m(h)h(will)c(b)s(ecome)j(clear)f(in)g(a)h(momen)m(t,)f (to)g(mo)m(v)m(e)h(the)h(zero)s(es)f(of)0 3097 y(the)38 b(F)-8 b(ourier)37 b(transform)g(of)h Ft(h)g Fv(from)f(the)h(lo)m(w)m (er)g(lev)m(els)g(of)g Fs(f)p Fv(0)p Ft(;)17 b Fv(1)p Fs(g)2474 3061 y FB(n)2558 3097 y Fv(to)38 b(the)g(upp)s(er)g(ones.)61 b(F)-8 b(or)37 b(this)0 3236 y(purp)s(ose,)29 b(observ)m(e)h(that)d (for)g(an)m(y)h Ft(f)39 b Fv(:)28 b Fj(Z)1472 3199 y FB(n)1472 3260 y Fz(2)1544 3236 y Fs(!)f Fj(R)5 b Fv(,)34 b(and)28 b(for)f(an)m(y)h Ft(s)g Fs(2)g Fj(Z)2543 3199 y FB(n)2543 3260 y Fz(2)2615 3236 y Fv(holds)2879 3213 y Fj(\\)2865 3236 y Ft(f)33 b Fs(\001)22 b Ft(W)3088 3251 y FB(s)3125 3236 y Fv(\()p Ft(x)p Fv(\))28 b(=)3409 3209 y(^)3387 3236 y Ft(f)11 b Fv(\()p Ft(x)h Fv(+)g Ft(s)p Fv(\).)0 3356 y(Let)31 b Ft(s)d Fv(=)350 3335 y(\026)350 3356 y(1)j(b)s(e)g(the)g(v)m(ector)h(of)e(all)f(ones.)44 b(Multiplying)28 b(ev)m(ery)k(function)f Ft(h)g Fv(b)m(y)g Ft(W)2993 3360 y Fz(\026)2993 3374 y(1)3033 3356 y Fv(\()p Ft(x)p Fv(\))d(=)f(\()p Fs(\000)p Fv(1\))3497 3320 y Fy(j)p FB(x)p Fy(j)3581 3356 y Fv(,)k(w)m(e)0 3476 y(get)191 3690 y Ft(E)6 b Fv(\()p Ft(k)s(;)17 b(n)p Fv(\))27 b(=)h(sup)796 3579 y Fr(n)862 3690 y Ft(h)p Fv(\(0\))k Fs(j)65 b(k)p Ft(h)p Fs(k)1324 3705 y Fz(1)1391 3690 y Fs(\024)28 b Fv(2)p Ft(;)1622 3663 y Fv(^)1621 3690 y Ft(h)p Fv(\()p Ft(x)p Fv(\))g(=)g(0)p Ft(;)49 b(f)11 b(or)34 b Fs(j)p Ft(x)p Fs(j)28 b Fv(=)f Ft(n)c Fs(\000)f Ft(k)s(;)17 b(n)23 b Fs(\000)f Ft(k)j Fv(+)d(1)p Ft(;)17 b(:)g(:)g(:)f(;)h(n)3449 3579 y Fr(o)3532 3690 y Ft(:)0 3908 y Fv(Let)49 b Ft(\031)j Fv(b)s(e)d(the)g(pro)5 b(jection)48 b(on)g(the)h(space)h(of)e (symmetric)g(functions)g(on)h Fs(f)p Fv(0)p Ft(;)17 b Fv(1)p Fs(g)3170 3872 y FB(n)3216 3908 y Fv(,)52 b(de\014ned)e(b)m(y)0 4029 y(\()p Ft(\031)t(f)11 b Fv(\)\()p Ft(x)p Fv(\))27 b(=)505 3989 y Fz(1)p 466 4006 115 4 v 466 4084 a Fv(\()504 4046 y Fo(n)512 4102 y(i)542 4084 y Fv(\))607 3954 y Fr(P)712 4058 y Fy(j)p FB(y)r Fy(j)p Fz(=)p Fy(j)p FB(x)p Fy(j)943 4029 y Ft(f)11 b Fv(\()p Ft(y)t Fv(\))29 b(\(see)i(subsection) g(3.1)f(and)g(section)g(2\).)42 b(Since)31 b Ft(\031)j Fv(is)29 b(a)h(con)m(traction)g(in)0 4187 y(the)37 b Ft(l)201 4202 y Fz(1)276 4187 y Fv(norm)f(and)g(comm)m(utes)g(with)g(F) -8 b(ourier)35 b(transform,)h(for)g(an)m(y)h(function)e Ft(h)i Fv(in)e(our)h(set,)i Ft(\031)t(h)e Fv(is)0 4307 y(also)c(in)h(the)h(set)g(and)g Ft(h)p Fv(\(0\))29 b(=)g(\()p Ft(\031)t(h)p Fv(\)\(0\).)45 b(That)34 b(means,)g(that)f(without)g(an)m (y)h(loss)f(w)m(e)h(ma)m(y)g(consider)0 4427 y(only)e(symmetric)g (functions,)g(and)0 4641 y Ft(E)6 b Fv(\()p Ft(k)s(;)17 b(n)p Fv(\))28 b(=)f(sup)605 4530 y Fr(n)671 4641 y Ft(h)p Fv(\(0\))32 b Fs(j)h Ft(h)f Fv(symmetric)o Ft(;)17 b Fs(k)p Ft(h)p Fs(k)1675 4656 y Fz(1)1742 4641 y Fs(\024)28 b Fv(2)p Ft(;)1973 4614 y Fv(^)1972 4641 y Ft(h)p Fv(\()p Ft(x)p Fv(\))g(=)g(0)p Ft(;)49 b(f)11 b(or)35 b Fs(j)p Ft(x)p Fs(j)27 b Fv(=)h Ft(n)22 b Fs(\000)h Ft(k)s(;)17 b(n)22 b Fs(\000)g Ft(k)k Fv(+)c(1)p Ft(;)17 b(:)g(:)g(:)e(;)i(n)3800 4530 y Fr(o)3883 4641 y Ft(:)0 4859 y Fv(Our)30 b(next)h(step)h(is)d (to)h(express)j Ft(E)6 b Fv(\()p Ft(k)s(;)17 b(n)p Fv(\))30 b(as)g(a)g(solution)f(of)h(an)g(extremal)f(problem)g(for)h(p)s (olynomials)0 4980 y(on)37 b(0)p Ft(;)17 b Fv(1)p Ft(;)g(:)g(:)g(:)e(;) i(n)p Fv(.)56 b(Recall)35 b(that)i(an)m(y)g(function)g Ft(f)47 b Fv(on)37 b(0)p Ft(;)17 b Fv(1)p Ft(;)g(:)g(:)g(:)e(;)i(n)37 b Fv(lifts)e(to)h(a)h(symmetric)f(function)3713 4953 y(~)3691 4980 y Ft(f)0 5100 y Fv(on)c Fs(f)p Fv(0)p Ft(;)17 b Fv(1)p Fs(g)377 5064 y FB(n)423 5100 y Fv(,)33 b(b)m(y)g(setting)960 5074 y(~)939 5100 y Ft(f)10 b Fv(\()p Ft(x)p Fv(\))28 b(=)g Ft(f)11 b Fv(\()p Fs(j)p Ft(x)p Fs(j)p Fv(\).)1826 5349 y(18)p eop %%Page: 19 19 19 18 bop 146 100 a Fv(Let)30 b Ft(h)g Fv(b)s(e)h(a)e(symmetric)g (function)h(on)f Fs(f)p Fv(0)p Ft(;)17 b Fv(1)p Fs(g)1839 63 y FB(n)1885 100 y Fv(,)31 b(and)f(let)2269 73 y(^)2268 100 y Ft(h)g Fv(b)s(e)g(its)g(\(symmetric\))e(F)-8 b(ourier)29 b(trans-)0 220 y(form.)56 b(Let)37 b Ft(a)f Fv(=)f Ft(a)710 235 y FB(h)792 220 y Fv(b)s(e)j(a)e(function)h(on)g(0)p Ft(;)17 b Fv(1)p Ft(;)g(:)g(:)g(:)e(;)i(n)37 b Fv(lifting)d(to)j Ft(h)p Fv(,)h(and)g Ft(b)e Fv(=)f Ft(b)2955 235 y FB(h)3037 220 y Fv(b)s(e)j(a)e(function)h(on)0 340 y(0)p Ft(;)17 b Fv(1)p Ft(;)g(:)g(:)g(:)e(;)i(n)42 b Fv(lifting)d(to)884 314 y(^)883 340 y Ft(h)p Fv(.)72 b(Then)43 b(w)m(e)g(claim)c(that)j Ft(a)i Fv(=)2160 266 y Fr(P)2265 292 y FB(n)2265 369 y(s)p Fz(=0)2408 340 y Ft(b)p Fv(\()p Ft(s)p Fv(\))p Ft(K)2654 355 y FB(s)2691 340 y Fv(,)h(where)e Fs(f)p Ft(K)3187 355 y FB(s)3224 340 y Fs(g)3274 304 y FB(n)3274 365 y(s)p Fz(=0)3442 340 y Fv(are)g(the)0 461 y(Kra)m(w)m(c)m(houk)e(p) s(olynomials)36 b(\(see)41 b(section)e(2\).)63 b(Indeed,)43 b(for)38 b Ft(x)i Fs(2)f(f)p Fv(0)p Ft(;)17 b Fv(1)p Fs(g)2727 425 y FB(n)2812 461 y Fv(with)39 b Fs(j)p Ft(x)p Fs(j)g Fv(=)g Ft(i)p Fv(,)i(w)m(e)g(ha)m(v)m(e)0 581 y Ft(a)p Fv(\()p Ft(i)p Fv(\))28 b(=)g Ft(h)p Fv(\()p Ft(x)p Fv(\))g(=)610 506 y Fr(P)715 610 y FB(y)r Fy(2f)p Fz(0)p FB(;)p Fz(1)p Fy(g)959 591 y Fo(n)1025 555 y Fv(^)1024 581 y Ft(h)p Fv(\()p Ft(y)t Fv(\))p Ft(W)1300 596 y FB(y)1340 581 y Fv(\()p Ft(x)p Fv(\))g(=)1603 506 y Fr(P)1708 533 y FB(n)1708 610 y(s)p Fz(=0)1852 581 y Ft(b)p Fv(\()p Ft(s)p Fv(\))22 b Fs(\001)2087 506 y Fr(P)2192 610 y FB(y)r Fz(:)p Fy(j)p FB(y)r Fy(j)p Fz(=)p FB(s)2434 581 y Ft(W)2526 596 y FB(y)2567 581 y Fv(\()p Ft(x)p Fv(\))28 b(=)2830 506 y Fr(P)2935 533 y FB(n)2935 610 y(s)p Fz(=0)3078 581 y Ft(b)p Fv(\()p Ft(s)p Fv(\))p Ft(K)3324 596 y FB(s)3361 581 y Fv(\()p Ft(i)p Fv(\).)146 751 y(Since)46 b Ft(K)497 766 y FB(s)580 751 y Fv(is)f(a)h(p)s(olynomial)c(of)k(degree)h Ft(s)p Fv(,)i(it)c(follo)m(ws)g(that)g(symmetric)g(functions)h Ft(h)g Fv(with)1 845 y(^)0 872 y Ft(h)p Fv(\()p Ft(x)p Fv(\))c(=)f(0)g(for)f Fs(j)p Ft(x)p Fs(j)h Fv(=)h Ft(n)28 b Fs(\000)g Ft(k)s(;)17 b(n)28 b Fs(\000)g Ft(k)i Fv(+)e(1)p Ft(;)17 b(:)g(:)g(:)f(;)h(n)40 b Fv(are)h(exactly)g(the)g(functions)g (for)f(whic)m(h)h Ft(a)3509 887 y FB(h)3595 872 y Fv(is)f(a)0 992 y(p)s(olynomial)26 b(of)k(degree)g Ft(<)e(n)17 b Fs(\000)g Ft(k)s Fv(.)42 b(Plugging)28 b(this)i(in,)g(w)m(e)g(obtain)f (a)h(\\primal")d(c)m(haracterization)h(of)0 1112 y Ft(E)6 b Fv(\()p Ft(n;)17 b(k)s Fv(\))32 b(in)g(terms)h(of)f(p)s(olynomials)d (of)j(a)h(single)e(v)-5 b(ariable:)244 1453 y Ft(E)6 b Fv(\()p Ft(k)s(;)17 b(n)p Fv(\))27 b(=)h(sup)848 1283 y Fr(\()929 1453 y Ft(f)11 b Fv(\(0\))32 b Fs(j)g Ft(f)71 b Fv(:)28 b(0)p Ft(;)17 b Fv(1)g Ft(:)g(:)g(:)d(;)j(n)28 b Fs(!)f Fj(R)5 b Fv(;)2140 1328 y FB(n)2089 1358 y Fr(X)2104 1568 y FB(i)p Fz(=0)2250 1312 y Fr(\022)2323 1385 y Ft(n)2335 1521 y(i)2381 1312 y Fr(\023)2455 1453 y Fs(j)p Ft(f)11 b Fv(\()p Ft(i)p Fv(\))p Fs(j)26 b(\024)j Fv(2)p Ft(;)49 b Fv(degree)33 b(of)f Ft(f)39 b(<)27 b(n)c Fs(\000)f Ft(k)3774 1283 y Fr(\))3871 1453 y Ft(:)p Fv(\(13\))0 1794 y(It)j(turns)h(out,)h(that)e(essen)m(tially)g(tigh)m(t)f(b)s (ounds)i(on)g(the)f(suprem)m(um)h(in)e(\(13\))h(w)m(ere)i(already)d (obtained)0 1914 y(in)31 b([15])h(in)g(the)g(con)m(text)i(of)d(lo)s (oking)f(for)i(tigh)m(t)f(b)s(ounds)i(on)f(the)h(L\177)-49 b(ov)-5 b(asz)32 b Ft(\022)k Fv(function)31 b(of)h(a)g(family)d(of)0 2035 y(graphs)g Ft(G)388 2050 y FB(n;k)493 2035 y Fv(.)42 b(\(The)29 b(graphs)f Ft(G)1183 2050 y FB(n;k)1288 2035 y Fv(are)h(de\014ned)g(in)f(the)g(in)m(tro)s(duction.\))41 b(The)29 b(details)e(regarding)h(the)0 2155 y(computation)33 b(of)h Ft(\022)s Fv(\()p Ft(G)847 2170 y FB(n;k)952 2155 y Fv(\))g(are)h(pro)m(vided)g(in)e([15].)49 b(Here)35 b(let)f(us)h(only)f(sa)m(y)h(that,)g(using)f(one)h(of)f(the)0 2276 y(man)m(y)h(prop)s(erties)f(of)g(the)h Ft(\022)s Fv(-function,)g(sp)s(eci\014cally)f(the)h(fact)f(that)h(for)f Fp(sub)-5 b(gr)g(aphs)36 b(of)g(asso)-5 b(ciation)0 2396 y(schemes)31 b Fv(this)i(function)f(has)h(a)f(con)m(v)m(enien)m(t)i (represen)m(tation)g(as)f(an)f(optim)m(um)f(of)h(a)g(certain)h(linear)0 2516 y(program)e([16],)i(it)e(is)h(quite)h(straigh)m(tforw)m(ard)f ([15])g(to)g(obtain:)0 2823 y Ft(\022)s Fv(\()p Ft(G)163 2838 y FB(n;n)p Fy(\000)p FB(k)366 2823 y Fv(\))27 b(=)h(2)584 2782 y FB(n)631 2823 y Fs(\001)p Fv(sup)822 2653 y Fr(\()902 2823 y Ft(f)11 b Fv(\(0\))32 b Fs(j)g Ft(f)71 b Fv(:)28 b(0)p Ft(;)17 b Fv(1)g Ft(:)g(:)g(:)e(;)i(n)27 b Fs(!)h Fj(R)5 b Fv(;)55 b Ft(f)38 b Fs(\025)28 b Fv(0)p Ft(;)2430 2699 y FB(n)2379 2729 y Fr(X)2394 2939 y FB(i)p Fz(=0)2540 2683 y Fr(\022)2613 2756 y Ft(n)2625 2892 y(i)2671 2683 y Fr(\023)2744 2823 y Ft(f)11 b Fv(\()p Ft(i)p Fv(\))28 b Fs(\024)g Fv(1)p Ft(;)49 b Fv(degree)34 b(of)e Ft(f)38 b(<)28 b(n)22 b Fs(\000)h Ft(k)4009 2653 y Fr(\))4106 2823 y Ft(:)0 3159 y Fv(Therefore)34 b Ft(E)6 b Fv(\()p Ft(k)s(;)17 b(n)p Fv(\))27 b Fs(\025)894 3106 y FB(\022)r Fz(\()p FB(G)1011 3118 y Fo(n;n)p Fn(\000)p Fo(k)1193 3106 y Fz(\))p 894 3136 327 4 v 980 3193 a(2)1015 3174 y Fo(n)p Fn(\000)p Fm(1)1231 3159 y Fv(.)146 3353 y(In)33 b(fact,)g Ft(E)6 b Fv(\()p Ft(k)s(;)17 b(n)p Fv(\))32 b(is)g(not)h(m)m(uc)m(h)g(greater)f(than)1930 3301 y FB(\022)r Fz(\()p FB(G)2047 3313 y Fo(n;n)p Fn(\000)p Fo(k)2229 3301 y Fz(\))p 1930 3330 V 2015 3388 a(2)2050 3369 y Fo(n)p Fn(\000)p Fm(1)2266 3353 y Fv(.)44 b(More)33 b(precisely)g([15)o(]:)254 3604 y Ft(\022)s Fv(\()p Ft(G)417 3619 y FB(n;n)p Fy(\000)p FB(k)620 3604 y Fv(\))p 254 3648 404 4 v 363 3739 a(2)412 3711 y FB(n)p Fy(\000)p Fz(1)695 3671 y Fs(\024)28 b Ft(E)6 b Fv(\()p Ft(k)s(;)17 b(n)p Fv(\))28 b Fs(\024)1243 3594 y(p)p 1326 3594 59 4 v 77 x Ft(n)23 b Fs(\001)1466 3604 y Ft(\022)s Fv(\()p Ft(G)1629 3619 y FB(n;n)p Fy(\000)p FB(k)1832 3604 y Fv(\))p 1466 3648 404 4 v 1575 3739 a(2)1624 3711 y FB(n)p Fy(\000)p Fz(1)1880 3671 y Ft(:)1670 b Fv(\(14\))0 3955 y(The)35 b(appro)m(ximate)d(equalit)m(y)h(in)g(\(14\))g(leads)g(one)h (to)g(sp)s(eculate)f(that,)h(in)f(fact,)h(a)f(precise)h(equalit)m(y)0 4076 y(migh)m(t)d(hold)h(here.)44 b(So)33 b(here)g(is)f(a)0 4196 y Fq(Question)0 4326 y Fv(Is)d(it)e(true)i(that)f Ft(E)6 b Fv(\()p Ft(k)s(;)17 b(n)p Fv(\))28 b(=)1055 4273 y FB(\022)r Fz(\()p FB(G)1172 4285 y Fo(n;k)1268 4273 y Fz(\))p 1055 4303 241 4 v 1097 4360 a(2)1132 4341 y Fo(n)p Fn(\000)p Fm(1)1305 4326 y Fv(,)i(and)e(if)f(y)m(es,)k(is)d (there)h(a)f(straigh)m(tforw)m(ard)g(com)m(binatorial)d(pro)s(of)0 4446 y(for)32 b(this)g(fact?)146 4616 y(W)-8 b(e)37 b(con)m(tin)m(ue)g (the)f(pro)s(of)f(of)h(theorem)g(1.7)g(b)m(y)h(rep)s(eating)e(the)i (argumen)m(t)e(from)g([15].)54 b(In)37 b(\(13\))0 4737 y(w)m(e)g(ha)m(v)m(e)g(to)e(solv)m(e)i(an)e(extremal)g(question)i(ab)s (out)e(p)s(olynomials)e(on)j(0)p Ft(;)17 b Fv(1)p Ft(;)g(:)g(:)g(:)e(;) i(n)p Fv(,)36 b(and)g(one)g(of)g(the)0 4857 y(conditions)k(on)g(the)i (p)s(olynomials)37 b(in)j(question)h(is)g(giv)m(en)g(in)f(terms)g(of)g (their)h Fp(weighte)-5 b(d)40 b Ft(l)3421 4872 y Fz(1)3501 4857 y Fv(norm:)0 4977 y Fs(k)p Ft(f)11 b Fs(k)159 4992 y Fz(1)228 4977 y Fv(:=)360 4903 y Fr(P)465 4929 y FB(n)465 5006 y(i)p Fz(=0)600 4897 y Fr(\000)646 4933 y FB(n)655 5012 y(i)689 4897 y Fr(\001)735 4977 y Fs(j)p Ft(f)g Fv(\()p Ft(i)p Fv(\))p Fs(j)29 b(\024)h Fv(2.)47 b(It)34 b(turns)g(out,)g(that)g(the)g(question)g(b)s(ecomes)h(m)m(uc)m(h)f (simpler)e(if)h(w)m(e)0 5098 y(switc)m(h)g(to)g(the)g(appropriate)e (Euclidean)h(norm)g(\(compare)g(subsection)i(4.2\).)1826 5349 y(19)p eop %%Page: 20 20 20 19 bop 146 131 a Fv(Consider)40 b(the)h(follo)m(wing)c(Euclidean)i (norm:)57 b Fs(k)p Ft(f)11 b Fs(k)2079 146 y Fz(2)2158 131 y Fv(=)2273 8 y Fr(q)p 2373 8 622 4 v 49 x(P)2478 83 y FB(n)2478 160 y(i)p Fz(=0)2613 51 y Fr(\000)2659 87 y FB(n)2668 166 y(i)2701 51 y Fr(\001)2747 73 y Fz(2)2787 131 y Ft(f)2846 103 y Fz(2)2885 131 y Fv(\()p Ft(i)p Fv(\).)65 b(Clearly)39 b(it)f(is)i(al-)0 285 y(most)35 b(equiv)-5 b(alen)m(t)35 b(to)f(the)i Ft(l)1029 300 y Fz(1)1104 285 y Fv(norm)e(describ)s(ed)i(ab)s(o)m(v)m(e,)h(namely)d Fs(k)p Ft(f)11 b Fs(k)2602 300 y Fz(2)2673 285 y Fs(\024)33 b(k)p Ft(f)11 b Fs(k)2942 300 y Fz(1)3013 285 y Fs(\024)3122 200 y Fr(p)p 3222 200 304 4 v 85 x Fv(\()p Ft(n)22 b Fv(+)g(1\))p Fs(k)p Ft(f)11 b Fs(k)3684 300 y Fz(2)3723 285 y Ft(:)0 405 y Fv(Consequen)m(tly)-8 b(,)35 b(if)c(w)m(e)j(agree)f (to)f(an)g(uncertain)m(t)m(y)i(of)e(a)2076 333 y Fs(p)p 2159 333 59 4 v 72 x Ft(n)h Fv(magnitude,)e(it)h(su\016ces)j(to)d (\014nd)440 697 y(~)417 723 y Ft(E)6 b Fv(\()p Ft(k)s(;)17 b(n)p Fv(\))28 b(=)g(sup)1022 518 y Fr(8)1022 608 y(<)1022 787 y(:)1111 723 y Ft(f)11 b Fv(\(0\))31 b Fs(j)1387 519 y Fr(v)1387 575 y(u)1387 634 y(u)1387 694 y(t)p 1492 519 613 4 v 1542 598 a FB(n)1492 628 y Fr(X)1507 838 y FB(i)p Fz(=0)1652 582 y Fr(\022)1726 655 y Ft(n)1738 791 y(i)1784 582 y Fr(\023)1857 604 y Fz(2)1897 723 y Ft(f)1956 694 y Fz(2)1995 723 y Fv(\()p Ft(i)p Fv(\))d Fs(\024)g Fv(1)p Ft(;)49 b Fv(degree)33 b(of)f Ft(f)39 b(<)27 b(n)c Fs(\000)f Ft(k)3200 518 y Fr(9)3200 608 y(=)3200 787 y(;)3306 723 y Ft(:)0 1050 y Fv(Explicitly)-8 b(,)35 b(the)i(relation)e(b)s(et)m(w)m(een)j(these)g(t)m(w)m(o)f(v)-5 b(alues)36 b(is)g(giv)m(en)h(b)m(y:)2749 1011 y Fz(1)p 2671 1027 192 4 v 2671 1037 a Fy(p)p 2730 1037 133 3 v 52 x FB(n)p Fz(+1)2895 1025 y Fv(~)2873 1050 y Ft(E)6 b Fv(\()p Ft(k)s(;)17 b(n)p Fv(\))34 b Fs(\024)g Ft(E)6 b Fv(\()p Ft(k)s(;)17 b(n)p Fv(\))35 b Fs(\024)23 1175 y Fv(~)0 1200 y Ft(E)6 b Fv(\()p Ft(k)s(;)17 b(n)p Fv(\).)0 1424 y Fq(Lemma)37 b(5.2)o(:)1175 1591 y Fv(~)1152 1616 y Ft(E)6 b Fv(\()p Ft(k)s(;)17 b(n)p Fv(\))27 b(=)h(\002)1686 1505 y Fr(\020)1745 1616 y Fv(\()p Ft(n)1841 1575 y Fz(2)1903 1616 y Fs(\000)22 b Ft(k)2056 1575 y Fz(2)2096 1616 y Fv(\))2144 1548 y Fm(1)p 2144 1560 31 3 v 2144 1601 a(4)2188 1505 y Fr(\021)2270 1616 y Fs(\001)2330 1436 y Fr(\000)2424 1472 y FB(n)2385 1523 y Fo(n)p Fn(\000)p Fo(k)p 2385 1536 121 3 v 2430 1577 a Fm(2)2516 1436 y Fr(\001)p 2330 1593 232 4 v 2398 1684 a Fv(2)2447 1656 y FB(n)2571 1616 y Ft(:)0 1865 y Fq(Pro)s(of:)39 b Fv(Let)25 b Ft(X)32 b Fv(b)s(e)25 b(the)g Ft(n)6 b Fv(+)g(1-dimensional)21 b(v)m(ector)26 b(space)g(of)e(real-v)-5 b(alued)23 b(functions)h(on)h (0)p Ft(;)17 b Fv(1)g Ft(:)g(:)g(:)e(;)i(n)p Fv(,)0 1985 y(and)29 b(let)f Fs(P)392 2000 y FB(n)p Fy(\000)p FB(k)r Fy(\000)p Fz(1)652 1985 y Fv(b)s(e)i(the)f Ft(n)15 b Fs(\000)g Ft(k)s Fv(-dimensional)27 b(subspace)k(of)d(p)s(olynomials)e (of)j(degree)h Ft(<)d(n)15 b Fs(\000)g Ft(k)s Fv(.)43 b(The)0 2106 y(imp)s(ortan)m(t)30 b(ace)j(up)f(our)h(sleev)m(e,)g(whic) m(h)g(justi\014es)g(switc)m(hing)f(to)g(the)g Ft(l)2626 2121 y Fz(2)2698 2106 y Fv(norm,)f(is)h(b)s(eing)g(in)f(p)s(osses-)0 2235 y(sion)k(of)g(an)g(orthonormal)e(\(with)i(resp)s(ect)i(to)e(an)h (inner)f(pro)s(duct)g Ft(<)e(f)5 b(;)17 b(g)36 b(>)p Fv(=)2971 2160 y Fr(P)3076 2186 y FB(n)3076 2264 y(i)p Fz(=0)3211 2154 y Fr(\000)3257 2190 y FB(n)3266 2269 y(i)3300 2154 y Fr(\001)3345 2176 y Fz(2)3385 2235 y Ft(f)11 b Fv(\()p Ft(i)p Fv(\))p Ft(g)t Fv(\()p Ft(i)p Fv(\)\))0 2355 y(basis)34 b Ft(v)288 2370 y Fz(0)328 2355 y Ft(;)17 b(:)g(:)g(:)e(;)i(v)593 2370 y FB(n)674 2355 y Fv(of)34 b Ft(X)42 b Fv(suc)m(h)35 b(that)f Ft(v)1391 2370 y Fz(0)1431 2355 y Ft(;)17 b(:)g(:)g(:)e(;)i(v)1696 2370 y FB(n)p Fy(\000)p FB(k)r Fy(\000)p Fz(1)1961 2355 y Fv(span)34 b Fs(P)2259 2370 y FB(n)p Fy(\000)p FB(k)r Fy(\000)p Fz(1)2490 2355 y Fv(.)48 b(This)34 b(basis)g(is)g(giv)m(en)g (b)m(y)h Fp(Hahn)0 2475 y(p)-5 b(olynomials)31 b Fs(f)p Ft(q)621 2490 y FB(s)658 2475 y Fs(g)p Fv(,)h(see)i(section)f(2.)146 2638 y(Expanding)28 b Ft(f)39 b Fs(2)28 b(P)883 2653 y FB(n)p Fy(\000)p FB(k)r Fy(\000)p Fz(1)1142 2638 y Fv(as)g(a)f(linear)g(com)m(bination)f(of)h Fs(f)p Ft(q)2350 2653 y FB(s)2387 2638 y Fs(g)p Fv(,)i(namely)e Ft(f)38 b Fv(=)3017 2563 y Fr(P)3122 2590 y FB(n)p Fy(\000)p FB(k)r Fy(\000)p Fz(1)3122 2667 y FB(s)p Fz(=0)3369 2638 y Ft(a)3420 2653 y FB(s)3457 2638 y Ft(q)3500 2653 y FB(s)3537 2638 y Fv(,)29 b(and)0 2777 y(using)37 b(the)h(P)m(arsev)-5 b(al)38 b(iden)m(tit)m(y)-8 b(,)38 b(w)m(e)h(see)f(that:)53 b Ft(f)11 b Fv(\(0\))36 b(=)2112 2702 y Fr(P)2217 2728 y FB(n)p Fy(\000)p FB(k)r Fy(\000)p Fz(1)2217 2806 y FB(s)p Fz(=0)2464 2777 y Ft(a)2515 2792 y FB(s)2552 2777 y Ft(q)2595 2792 y FB(s)2632 2777 y Fv(\(0\),)i(and)3017 2702 y Fr(P)3122 2728 y FB(n)3122 2806 y(i)p Fz(=0)3257 2696 y Fr(\000)3303 2732 y FB(n)3312 2811 y(i)3346 2696 y Fr(\001)3391 2718 y Fz(2)3431 2777 y Ft(f)3490 2740 y Fz(2)3529 2777 y Fv(\()p Ft(i)p Fv(\))e(=)0 2914 y Fs(k)p Ft(f)11 b Fs(k)159 2878 y Fz(2)159 2939 y(2)225 2914 y Fv(=)329 2840 y Fr(P)434 2866 y FB(n)p Fy(\000)p FB(k)r Fy(\000)p Fz(1)434 2943 y FB(s)p Fz(=0)681 2914 y Ft(a)732 2878 y Fz(2)732 2939 y FB(s)772 2914 y Fv(.)146 3077 y(Consider)41 b(the)h(space)f Ft(V)1126 3049 y Fs(\030)1127 3081 y Fv(=)1245 3077 y Fj(R)1311 3041 y FB(n)p Fy(\000)p FB(k)1498 3077 y Fv(of)g(the)g(co)s(e\016cien)m(ts)h Ft(a)2347 3092 y Fz(0)2386 3077 y Ft(;)17 b(:)g(:)g(:)f(;)h(a)2656 3092 y FB(n)p Fy(\000)p FB(k)r Fy(\000)p Fz(1)2927 3077 y Fv(with)40 b(the)i(usual)e(Eu-)0 3238 y(clidean)49 b(norm)g Fs(k)p Ft(a)p Fs(k)771 3253 y Fz(2)867 3238 y Fv(=)1000 3115 y Fr(q)p 1099 3115 443 4 v 1099 3163 a(P)1204 3190 y FB(n)p Fy(\000)p FB(k)r Fy(\000)p Fz(1)1204 3267 y FB(i)p Fz(=0)1452 3238 y Ft(a)1503 3204 y Fz(2)1503 3264 y FB(i)1542 3238 y Fv(.)95 b(T)-8 b(o)50 b(\014nd)2060 3213 y(~)2037 3238 y Ft(E)6 b Fv(\()p Ft(k)s(;)17 b(n)p Fv(\))50 b(w)m(e)h(ha)m(v)m(e)g(to)e(maximize,)j(o)m(v)m(er)f(all)0 3374 y(v)m(ectors)j Ft(a)60 b Fv(=)h(\()p Ft(a)688 3389 y Fz(0)728 3374 y Ft(;)17 b(:)g(:)g(:)e(;)i(a)997 3389 y FB(n)p Fy(\000)p FB(k)r Fy(\000)p Fz(1)1228 3374 y Fv(\))52 b(of)f(length)h(1,)k(the)d(inner)e(pro)s(duct)i Ft(<)60 b(a;)17 b(q)65 b(>)p Fv(,)56 b(where)e Ft(q)64 b Fv(:=)0 3494 y(\()p Ft(q)81 3509 y Fz(0)121 3494 y Fv(\(0\))p Ft(;)17 b(:)g(:)g(:)e(;)i(q)507 3509 y FB(n)p Fy(\000)p FB(k)r Fy(\000)p Fz(1)738 3494 y Fv(\(0\)\).)42 b(This)33 b(maxim)m(um)d(is)h(clearly)g(attained)h(at)g Ft(a)c Fv(=)2805 3450 y FB(q)p 2752 3471 140 4 v 2752 3528 a Fy(k)p FB(q)r Fy(k)2856 3537 y Fm(2)2933 3494 y Fv(implying)3359 3469 y(~)3337 3494 y Ft(E)6 b Fv(\()p Ft(k)s(;)17 b(n)p Fv(\))27 b(=)0 3706 y Fs(k)p Ft(q)t Fs(k)147 3721 y Fz(2)245 3706 y Fv(=)381 3583 y Fr(q)p 480 3583 564 4 v 480 3631 a(P)585 3658 y FB(n)p Fy(\000)p FB(k)r Fy(\000)p Fz(1)585 3735 y FB(s)p Fz(=0)833 3706 y Ft(q)880 3677 y Fz(2)876 3731 y FB(s)919 3706 y Fv(\(0\).)99 b(Recall,)54 b(that)d(w)m(e)i(kno)m(w)f Ft(q)2223 3721 y FB(s)2260 3706 y Fv(\(0\))59 b(=)2580 3561 y Fr(r)p 2679 3561 403 4 v 2689 3650 a Fv(\()2727 3612 y Fm(2)p Fo(n)2747 3668 y(s)2796 3650 y Fv(\))2834 3642 y Fy(\000)2889 3650 y Fv(\()2946 3612 y Fm(2)p Fo(n)2927 3668 y(s)p Fn(\000)p Fm(1)3034 3650 y Fv(\))p 2689 3683 383 4 v 2808 3762 a(\()2846 3723 y Fm(2)p Fo(n)2861 3780 y(n)2915 3762 y Fv(\))3082 3706 y(,)d(and)51 b(therefore)23 3932 y(~)0 3958 y Ft(E)6 b Fv(\()p Ft(k)s(;)17 b(n)p Fv(\))28 b(=)441 3813 y Fr(r)p 541 3813 295 4 v 551 3901 a Fv(\()654 3863 y Fm(2)p Fo(n)589 3919 y(n)p Fn(\000)p Fo(k)q Fn(\000)p Fm(1)787 3901 y Fv(\))p 551 3935 275 4 v 616 4013 a(\()654 3975 y Fm(2)p Fo(n)669 4031 y(n)722 4013 y Fv(\))835 3958 y(.)146 4173 y(W)-8 b(e)34 b(\014nish)f(the)h(pro)s(of)f(of)f(the) i(lemma)d(b)m(y)j(once)g(again)e(\(see)i(previous)g(section\))f(using)g (the)h(fact)0 4351 y(that)e(for)g(an)m(y)i Ft(n)e Fv(and)h(0)28 b Fs(\024)g Ft(t)g Fs(\024)g Ft(n)k Fv(holds:)1559 4270 y Fr(\000)1604 4307 y Fz(2)p FB(n)1613 4385 y Fz(2)p FB(t)1682 4270 y Fr(\001)1756 4351 y Fv(=)27 b(\002)1952 4210 y Fr(\022)2025 4229 y(q)p 2125 4229 224 4 v 2135 4303 a FB(t)p Fz(\()p FB(n)p Fy(\000)p FB(t)p Fz(\))p 2135 4328 204 4 v 2215 4385 a FB(n)2348 4210 y Fr(\023)2444 4351 y Fs(\001)2494 4270 y Fr(\000)2539 4307 y FB(n)2548 4385 y(t)2582 4270 y Fr(\001)2628 4292 y Fz(2)2667 4351 y Fv(.)p 2738 4359 34 67 v 146 4565 a(No)m(w)f(w)m(e)h(are)e(in)g(the)g (same)h(p)s(osition)d(as)j(at)f(the)h(end)g(of)f(the)g(dual)g(pro)s(of) f(presen)m(ted)k(in)d(the)g(previ-)0 4745 y(ous)d(section,)i(namely)d (w)m(e)i(kno)m(w)g(that)e(\012)1499 4604 y Fr(\022)1573 4634 y(\020)1632 4745 y Fv(1)h Fs(\000)1815 4705 y FB(k)1854 4682 y Fm(2)p 1813 4722 78 4 v 1813 4779 a FB(n)1856 4760 y Fm(2)1900 4634 y Fr(\021)1970 4629 y Fm(1)p 1970 4641 31 3 v 1970 4682 a(4)2036 4745 y Fs(\001)2096 4667 y Fv(\()2185 4624 y Fo(n)2144 4667 y(n)p Fn(\000)p Fo(k)p 2144 4679 121 3 v 2189 4714 a Fm(2)2274 4667 y Fv(\))p 2096 4722 217 4 v 2165 4779 a Fz(2)2200 4760 y Fo(n)2322 4604 y Fr(\023)2423 4745 y Fs(\024)28 b Ft(E)6 b Fv(\()p Ft(k)s(;)17 b(n)p Fv(\))28 b Fs(\024)g Ft(O)3065 4604 y Fr(\022)3138 4745 y Fv(\()p Ft(n)3234 4708 y Fz(2)3296 4745 y Fs(\000)23 b Ft(k)3450 4708 y Fz(2)3489 4745 y Fv(\))3537 4681 y Fm(1)p 3537 4693 31 3 v 3537 4734 a(4)3604 4745 y Fs(\001)3663 4667 y Fv(\()3752 4624 y Fo(n)3711 4667 y(n)p Fn(\000)p Fo(k)p 3711 4679 121 3 v 3756 4714 a Fm(2)3842 4667 y Fv(\))p 3663 4722 217 4 v 3733 4779 a Fz(2)3768 4760 y Fo(n)3889 4604 y Fr(\023)3963 4745 y Fv(.)146 4965 y(Here,)38 b(ho)m(w)m(ev)m(er,)h(w)m(e)d(can)g(do)g(a)g (bit)e(b)s(etter.)54 b(T)-8 b(o)36 b(pro)m(v)m(e)h(the)f(lo)m(w)m(er)g (b)s(ound)g(in)f(\(7\),)h(recall)e(that)0 5100 y Ft(E)6 b Fv(\()p Ft(k)s(;)17 b(n)p Fv(\))37 b Fs(\025)471 5048 y FB(\022)r Fz(\()p FB(G)588 5060 y Fo(n;n)p Fn(\000)p Fo(k)770 5048 y Fz(\))p 471 5077 327 4 v 556 5134 a(2)591 5115 y Fo(n)p Fn(\000)p Fm(1)808 5100 y Fv(.)59 b(W)-8 b(e)39 b(use)g(the)f(basic)g(prop)s(ert)m(y)h(of)f(the)g Ft(\022)s Fv(-function)f(of)h(a)f(graph,)j(namely)d(it)1826 5349 y(20)p eop %%Page: 21 21 21 20 bop 0 100 a Fv(b)s(eing)26 b(an)g(upp)s(er)h(b)s(ound)f(on)h(the) g(size)f(of)g(the)h(maximal)c(indep)s(enden)m(t)28 b(set)f(of)f(this)g (graph.)41 b(Maximal)0 220 y(indep)s(enden)m(t)e(sets)g(in)e Ft(G)950 235 y FB(n;n)p Fy(\000)p FB(k)1190 220 y Fv(are)h(w)m(ell-kno) m(wn)g([7].)59 b(These)40 b(are)d(the)h(Hamming)e(balls)g(of)h(radius) 10 340 y FB(n)p Fy(\000)p FB(k)p 10 356 137 4 v 60 413 a Fz(2)156 379 y Fv(,)c(i.e.)43 b(of)32 b(size)680 304 y Fr(P)795 291 y Fo(n)p Fn(\000)p Fo(k)p 795 304 121 3 v 840 345 a Fm(2)785 405 y FB(i)p Fz(=0)946 298 y Fr(\000)991 335 y FB(n)1001 413 y(i)1034 298 y Fr(\001)1080 379 y Fv(,)h(and)f(w)m(e)i(are)e(done.)p 1906 387 34 67 v 146 549 a(Let)47 b(us)f(compare)g(the)g(b)s(ounds)h(of)f(theorem)g(1.7)f (to)h(these)h(obtained)f(in)f([10])h(and)g([8])g(\(see)0 670 y(In)m(tro)s(duction\).)52 b(Note,)37 b(that)f(the)g(upp)s(er)g (and)g(the)g(lo)m(w)m(er)g(b)s(ound)g(in)e(\(7\))i(di\013er)f(b)m(y)h (a)g(factor)f(of)g(at)0 790 y(most)g Ft(O)s Fv(\()358 718 y Fs(p)p 440 718 59 4 v 440 790 a Ft(n)p Fv(\),)h(and)f(actually)f (b)m(y)i(only)f(a)g(constan)m(t)h(factor)f(when)h Ft(k)g Fv(=)c Ft(O)s Fv(\()2850 718 y Fs(p)p 2932 718 V 2932 790 a Ft(n)p Fv(\).)52 b(Note)35 b(also,)g(that)10 898 y(\()99 854 y Fo(n)58 898 y(n)p Fn(\000)p Fo(k)p 58 910 121 3 v 103 944 a Fm(2)188 898 y Fv(\))p 10 952 217 4 v 79 1009 a Fz(2)114 990 y Fo(n)264 975 y Fv(=)27 b Ft(exp)p Fs(f\000)p Fv(\002)736 864 y Fr(\020)806 936 y FB(k)845 912 y Fm(2)p 806 952 74 4 v 821 1009 a FB(n)889 864 y Fr(\021)949 975 y Fs(g)p Fv(.)43 b(These)34 b(facts)f(imply)d(that)j (our)f(b)s(ounds)h(here)g(impro)m(v)m(e)g(the)g(b)s(ounds)g(in)0 1128 y([10])f(and)h([8])f(for)g Ft(k)f Fv(=)d(\012\()952 1056 y Fs(p)p 1035 1056 59 4 v 72 x Ft(n)p Fv(\).)146 1298 y(In)m(terestingly)46 b(enough,)k(the)c(tigh)m(t)f(answ)m(er)j (for)d(the)h(remaining)e(range)h(of)h Ft(k)s Fv(,)j(namely)c Ft(k)53 b Fv(=)0 1418 y Ft(o)p Fv(\()85 1347 y Fs(p)p 168 1347 V 71 x Ft(n)p Fv(\),)e(whic)m(h)d(is)f(obtained)g(in)f([10],) 51 b(seems,)h(so)47 b(far,)k(to)c(b)s(e)g(out)h(of)e(reac)m(h)j(for)d (the)i(metho)s(ds)0 1566 y(presen)m(ted)35 b(here.)46 b(Namely)-8 b(,)32 b(for)g(these)i(v)-5 b(alues)33 b(of)g Ft(k)s Fv(,)g(\(7\))f(giv)m(es)i(only)e(1)22 b Fs(\000)h Fv(\002)2856 1456 y Fr(\020)2957 1527 y FB(k)p 2925 1543 102 4 v 2925 1553 a Fy(p)p 2984 1553 43 3 v 48 x FB(n)3037 1456 y Fr(\021)3124 1566 y Fs(\024)29 b Ft(E)6 b Fv(\()p Ft(k)s(;)17 b(n)p Fv(\))28 b Fs(\024)h Fv(1,)0 1754 y(while)j(w)m(e)h (kno)m(w)h(the)f(correct)g(answ)m(er)h(from)e([10)o(]:)44 b Ft(E)6 b Fv(\()p Ft(k)s(;)17 b(n)p Fv(\))27 b(=)h(1)22 b Fs(\000)g Fv(\002)2626 1643 y Fr(\020)2695 1715 y FB(k)2734 1691 y Fm(2)p 2695 1731 74 4 v 2711 1788 a FB(n)2778 1643 y Fr(\021)2838 1754 y Fv(.)146 1951 y(In)33 b(conclusion:)43 b(to)31 b(obtain)h(the)g(b)s(est)h(kno)m(wn)h(b)s(ounds)e(on)h Ft(E)6 b Fv(\()p Ft(k)s(;)17 b(n)p Fv(\))32 b(for)f(the)i(whole)f (range)g(of)g Ft(k)s Fv(,)0 2072 y(one)h(m)m(ust)g(use)g([10])f(for)g Ft(k)f Fv(=)d Ft(o)p Fv(\()1193 2000 y Fs(p)p 1276 2000 59 4 v 72 x Ft(n)p Fv(\))k(and)h(\(7\))f(for)g Ft(k)f Fv(=)c(\012\()2193 2000 y Fs(p)p 2277 2000 V 2277 2072 a Ft(n)p Fv(\).)0 2454 y Fu(6)161 b(The)53 b(Bo)t(ole)h(problem)f(and)h (further)e(questions)0 2723 y Fv(A)m(ttempts)41 b(to)f(appro)m(ximate)f (the)h(probabilit)m(y)f(of)g(the)i(union)e(of)h(a)g(family)e(of)h Ft(n)i Fv(sets,)i(giv)m(en)e(the)0 2844 y(probabilities)32 b(of)h(the)i(in)m(tersection)g(for)e(some)i(of)e(the)i(subfamilies,)e (ha)m(v)m(e)j(a)e(long)f(history)-8 b(.)48 b(In)35 b(fact)0 2964 y(in)29 b(1854,)g(Bo)s(ole)f([1])h(ask)m(ed)i(ho)m(w)g(w)m(ell)d (can)i(w)m(e)g(appro)m(ximate)f(the)h(probabilit)m(y)d(of)i(the)h (union,)g(giv)m(en)0 3084 y(the)k(only)e(the)i(probabilities)c(of)j (the)h(individual)c(sets)35 b(and)e(of)g(their)f(pairwise)h(in)m (tersections.)46 b(This)0 3205 y(question,)38 b(kno)m(wn)f([4])g(as)f Fp(the)i(Bo)-5 b(ole)38 b(pr)-5 b(oblem)p Fv(,)36 b(in)f(our)h (language)g(translates)g(simply)f(to:)50 b(\\What)0 3325 y(is)32 b Ft(E)6 b Fv(\(2)p Ft(;)17 b(n)p Fv(\)?")146 3495 y(In)31 b(this)g(sense,)h(the)f(question)h(\(1\))e(of)g(\014nding) g Ft(E)6 b Fv(\()p Ft(k)s(;)17 b(n)p Fv(\))31 b(for)f Ft(k)g Fv(=)e(0)p Ft(;)17 b(:)g(:)g(:)f(;)h(n)30 b Fv(is)g(a)h(natural) e(general-)0 3616 y(ization)d(of)h(the)h(Bo)s(ole)f(problem.)41 b(And)28 b(for)f(this)g(question)i(w)m(e)f(ha)m(v)m(e)h(essen)m(tially) f(tigh)m(t)f(answ)m(ers)i(\(7\).)0 3736 y(Ho)m(w)m(ev)m(er,)34 b(one)e(can)f(generalize)g(ev)m(en)i(further,)f(and)g(our)f (understanding)h(of)f(the)g(problem)g(tak)m(es)h(a)0 3856 y(dramatic)f(plunge.)43 b(F)-8 b(or)32 b(a)g(family)e Fs(F)42 b Fv(of)32 b(subsets)j(of)d Fs(f)p Fv(0)p Ft(;)17 b Fv(1)p Fs(g)2234 3820 y FB(n)2280 3856 y Fv(,)33 b(let)244 4110 y Ft(E)6 b Fv(\()p Fs(F)k Ft(;)17 b(n)p Fv(\))27 b(=)g(sup)876 4029 y Fr(\000)922 4110 y Ft(P)14 b(r)s Fv(\()p Fs([)1150 4069 y FB(n)1150 4134 y(i)p Fz(=1)1267 4110 y Ft(A)1340 4125 y FB(i)1369 4110 y Fv(\))22 b Fs(\000)g Ft(P)14 b(r)s Fv(\()p Fs([)1756 4069 y FB(n)1756 4134 y(j)t Fz(=1)1883 4110 y Ft(B)1957 4125 y FB(j)1993 4110 y Fv(\))2031 4029 y Fr(\001)3577 4110 y Fv(\(15\))0 4363 y(where)33 b(the)f(suprem)m(um)g(ranges)h(o)m(v)m(er)f(all)e(families)f (of)i(ev)m(en)m(ts)j Ft(A)2401 4378 y Fz(1)2441 4363 y Ft(;)17 b(:)g(:)g(:)f(;)h(A)2733 4378 y FB(n)2811 4363 y Fv(and)32 b Ft(B)3074 4378 y Fz(1)3114 4363 y Ft(;)17 b(:)g(:)g(:)f(;)h(B)3407 4378 y FB(n)3485 4363 y Fv(in)31 b(an)m(y)0 4483 y(probabilit)m(y)g(spaces,)j(that)e(satisfy:)1312 4703 y Ft(P)14 b(r)s Fv(\()p Fs(\\)1540 4718 y FB(i)p Fy(2)p FB(S)1661 4703 y Ft(A)1734 4718 y FB(i)1763 4703 y Fv(\))27 b(=)h Ft(P)14 b(r)s Fv(\()p Fs(\\)2160 4718 y FB(j)t Fy(2)p FB(S)2289 4703 y Ft(B)2363 4718 y FB(j)2400 4703 y Fv(\))0 4923 y(for)32 b(all)f Ft(S)i Fs(2)28 b(F)10 b Fv(.)43 b(What)33 b(is)f Ft(E)6 b Fv(\()p Fs(F)k Ft(;)17 b(n)p Fv(\)?)p 624 4964 756 4 v 1826 5349 a(21)p eop %%Page: 22 22 22 21 bop 146 100 a Fv(This)30 b(is,)f(of)g(course,)j(a)d (generalization)e(of)i(\(1\),)g(since)h Ft(E)6 b Fv(\()p Ft(k)s(;)17 b(n)p Fv(\))28 b(=)f Ft(E)c Fv(\()p Fs(f)p Ft(S)33 b Fs(\022)28 b Fv([)p Ft(n)p Fv(])61 b(:)f Fs(j)p Ft(S)6 b Fs(j)27 b(\024)h Ft(k)s Fs(g)p Ft(;)17 b(n)p Fv(\).)0 220 y(A)32 b(straigh)m(tforw)m(ard)g(mo)s(di\014cation)e(of)h (the)i(pro)s(of)e(of)h(prop)s(osition)e(1.2)i(leads)g(to)g(a)g(dual)g (c)m(haracter-)0 340 y(ization)f(of)h Ft(E)6 b Fv(\()p Fs(F)k Ft(;)17 b(n)p Fv(\):)244 594 y Ft(E)6 b Fv(\()p Fs(F)k Ft(;)17 b(n)p Fv(\))27 b(=)g(2)22 b Fs(\001)g(k)p Ft(\016)926 609 y Fz(0)988 594 y Fs(\000)g(U)1149 609 y Fy(F)1211 594 y Fs(k)1261 609 y Fy(1)1335 594 y Ft(;)2215 b Fv(\(16\))0 847 y(where)44 b Ft(\016)335 862 y Fz(0)421 847 y Fv(:)i Fs(f)p Fv(0)p Ft(;)17 b Fv(1)p Fs(g)736 811 y FB(n)827 847 y Fs(!)46 b Fj(R)54 b Fv(is)42 b(the)i(c)m (haracteristic)f(function)g(of)g(zero,)j(and)d Fs(U)3008 862 y Fy(F)3113 847 y Fv(is)f(the)i(space)g(of)0 967 y(functions)k(from)g Fs(f)p Fv(0)p Ft(;)17 b Fv(1)p Fs(g)925 931 y FB(n)1019 967 y Fv(to)48 b Fj(R)59 b Fv(spanned)50 b(b)m(y)f(the)g(c)m(haracteristic)f(functions)h(1)3106 983 y Fy(f)p FB(y)34 b Fz(:)f FB(y)r Fy(\027)p FB(x)p Fy(g)3482 967 y Fv(for)48 b(all)0 1088 y Ft(x)28 b Fs(2)g(F)10 b Fv(.)146 1258 y(Ho)m(w)m(ev)m(er,)33 b(since)d(the)f(space)i Fs(U)1284 1273 y Fy(F)1375 1258 y Fv(is,)e(in)g(general,)h(not)f(in)m (v)-5 b(arian)m(t)28 b(under)i(the)g(symmetric)f(pro)5 b(jec-)0 1378 y(tion)37 b Ft(\031)t Fv(,)i(w)m(e)g(do)e(not)h(ha)m(v)m (e)h(an)f(equiv)-5 b(alen)m(t)37 b(of)h(prop)s(osition)e(1.4.)58 b(Consequen)m(tly)-8 b(,)42 b(the)c(problem)e(of)0 1499 y(\014nding)c Ft(E)6 b Fv(\()p Fs(F)k Ft(;)17 b(n)p Fv(\))32 b(seems)i(m)m(uc)m(h)f(harder.)146 1669 y Fq(Question)38 b(1)p Fv(:)43 b(Giv)m(en)32 b(a)h(family)d Fs(F)37 b(\022)28 b(f)p Fv(0)p Ft(;)17 b Fv(1)p Fs(g)1863 1633 y FB(n)1909 1669 y Fv(,)33 b(\014nd)g(go)s(o)s(d)e(estimates)h(on)h Ft(E)6 b Fv(\()p Fs(F)k Ft(;)17 b(n)p Fv(\).)146 1839 y(The)34 b(follo)m(wing)c(question)j(seems)g(to)f(b)s(e)h(natural)f (from)f(the)i(computational)d(p)s(oin)m(t)i(of)g(view:)146 2009 y Fq(Question)38 b(2)p Fv(:)43 b(Ho)m(w)33 b(large)f(should)g(the) h(family)d Fs(F)42 b Fv(b)s(e,)33 b(so)g(that)f Ft(E)6 b Fv(\()p Fs(F)k Ft(;)17 b(n)p Fv(\))27 b Fs(!)3051 2024 y FB(n)p Fy(!1)3267 2009 y Fv(0)32 b(?)146 2179 y(One)g(can)f(ev)m(en)i (en)m(tertain)e(a)g(hop)s(e)g(to)g(\014nd)h(suc)m(h)g(a)f(family)e Fs(F)40 b Fv(of)31 b(p)s(olynomial)d(size,)j(but)h(this)e(is)0 2300 y(sho)m(wn)k(to)e(b)s(e)h(imp)s(ossible)d(in)i(the)h(follo)m(wing) d(lemma.)0 2553 y Fq(Lemma)37 b(6.1)o(:)1390 2792 y Fs(jF)10 b(j)27 b(\025)1660 2638 y Fy(b)p Fz(log)1782 2646 y Fv(\()1916 2610 y Fm(1)p 1830 2622 202 3 v 1830 2664 a Fo(E)s Fm(\()p Fn(F)5 b Fo(;n)p Fm(\))2042 2646 y Fv(\))2080 2638 y Fy(c)1814 2697 y Fr(X)1828 2907 y FB(i)p Fz(=0)2128 2651 y Fr(\022)2201 2724 y Ft(n)2214 2860 y(i)2259 2651 y Fr(\023)2333 2792 y Ft(:)0 3133 y Fq(Pro)s(of:)39 b Fv(W)-8 b(e)24 b(use)g(the)h(dual)d(c)m(haracterization)h(\(16\))g(of)g Ft(E)6 b Fv(\()p Fs(F)k Ft(;)17 b(n)p Fv(\).)40 b(Let)24 b Ft(f)38 b Fv(=)2791 3058 y Fr(P)2896 3162 y FB(x)p Fy(2F)3061 3133 y Ft(a)p Fv(\()p Ft(x)p Fv(\))t Fs(\001)t Fv(1)3328 3148 y Fy(f)p FB(y)c Fz(:)f FB(y)r Fy(\027)p FB(x)p Fy(g)3684 3133 y Fs(2)0 3253 y(U)62 3268 y Fy(F)172 3253 y Fv(suc)m(h)50 b(that)e Fs(k)p Ft(f)c Fs(\000)33 b Ft(\016)930 3268 y Fz(0)970 3253 y Fs(k)1020 3268 y Fy(1)1149 3253 y Fv(=)54 b Ft(E)6 b Fv(\()p Fs(F)k Ft(;)17 b(n)p Fv(\).)91 b(Extend)50 b Ft(a)e Fv(to)h(a)f(function)g Ft(b)55 b Fv(:)g Fs(f)p Fv(0)p Ft(;)17 b Fv(1)p Fs(g)3241 3217 y FB(n)3341 3253 y Fs(!)55 b Fj(R)5 b Fv(,)58 b(b)m(y)0 3374 y(setting)38 b Ft(b)p Fv(\()p Ft(x)p Fv(\))g(=)f Ft(a)p Fv(\()p Ft(x)p Fv(\))i(if)e Ft(x)h Fs(2)g(F)48 b Fv(and)38 b Ft(b)p Fv(\()p Ft(x)p Fv(\))g(=)f(0)h(otherwise.)62 b(Then,)41 b(for)c(an)m(y)i Ft(z)j Fs(2)c(f)p Fv(0)p Ft(;)17 b Fv(1)p Fs(g)3443 3338 y FB(n)3527 3374 y Fv(holds)0 3494 y Ft(f)11 b Fv(\()p Ft(z)t Fv(\))36 b(=)332 3419 y Fr(P)437 3523 y FB(x)p Fy(\026)p FB(z)588 3494 y Ft(b)p Fv(\()p Ft(x)p Fv(\),)k(namely)d Ft(f)48 b Fv(is)37 b(the)h(\(transp)s (osed\))g(zeta)g(transform)e(of)h Ft(b)p Fv(.)59 b(W)-8 b(e)38 b(reconstruct)h Ft(b)0 3614 y Fv(from)28 b Ft(f)41 b Fv(using)29 b(the)h(M\177)-49 b(obius)30 b(in)m(v)m(ersion)g(form)m (ula)e(for)h(the)h(b)s(o)s(olean)e(lattice)g Fs(f)p Fv(0)p Ft(;)17 b Fv(1)p Fs(g)3045 3578 y FB(n)3121 3614 y Fv(\(see)30 b(section)g(2\):)144 3852 y Ft(b)p Fv(\()p Ft(x)p Fv(\))f(=)448 3757 y Fr(X)455 3968 y FB(z)s Fy(\026)p FB(x)609 3852 y Ft(\026)p Fv(\()p Ft(z)t(;)17 b(x)p Fv(\))p Ft(f)11 b Fv(\()p Ft(z)t Fv(\))28 b(=)1208 3757 y Fr(X)1215 3968 y FB(z)s Fy(\026)p FB(x)1352 3852 y Fv(\()p Fs(\000)p Fv(1\))1554 3811 y Fy(j)p FB(x)p Fy(j\000j)p FB(z)s Fy(j)1767 3852 y Ft(f)11 b Fv(\()p Ft(z)t Fv(\))28 b(=)f(\()p Fs(\000)p Fv(1\))2284 3811 y Fy(j)p FB(x)p Fy(j)2368 3852 y Ft(f)11 b Fv(\(0\))21 b(+)2753 3757 y Fr(X)2671 3969 y FB(z)s Fy(\026)p FB(x;)31 b(z)s Fy(6)p Fz(=0)2979 3852 y Fv(\()p Fs(\000)p Fv(1\))3181 3811 y Fy(j)p FB(x)p Fy(j\000j)p FB(z)s Fy(j)3394 3852 y Ft(f)11 b Fv(\()p Ft(z)t Fv(\))p Ft(:)0 4186 y Fv(Since)34 b Fs(k)p Ft(f)f Fs(\000)23 b Ft(\016)530 4201 y Fz(0)570 4186 y Fs(k)620 4201 y Fy(1)724 4186 y Fv(=)29 b Ft(E)6 b Fv(\()p Fs(F)k Ft(;)17 b(n)p Fv(\),)33 b(w)m(e)i(ha)m(v)m(e)g Fs(j)p Fv(\()p Fs(\000)p Fv(1\))1828 4150 y Fy(j)p FB(x)p Fy(j)1910 4186 y Ft(f)11 b Fv(\(0\))23 b(+)2215 4111 y Fr(P)2320 4215 y FB(z)s Fy(\026)p FB(x;)32 b(z)s Fy(6)p Fz(=0)2633 4186 y Fv(\()p Fs(\000)p Fv(1\))2835 4150 y Fy(j)p FB(x)p Fy(j\000j)p FB(z)s Fy(j)3048 4186 y Ft(f)11 b Fv(\()p Ft(z)t Fv(\))p Fs(j)29 b(\025)h Fv(1)22 b Fs(\000)i Fv(2)3617 4150 y Fy(j)p FB(x)p Fy(j)3722 4186 y Fs(\001)0 4351 y Ft(E)6 b Fv(\()p Fs(F)k Ft(;)17 b(n)p Fv(\).)57 b(Therefore,)40 b(if)c Fs(j)p Ft(x)p Fs(j)g Ft(<)g Fv(log)1393 4240 y Fr(\020)1559 4312 y Fz(1)p 1462 4328 230 4 v 1462 4385 a FB(E)t Fz(\()p Fy(F)7 b FB(;n)p Fz(\))1702 4240 y Fr(\021)1799 4351 y Fv(then)38 b Ft(b)p Fv(\()p Ft(x)p Fv(\))e Ft(>)g Fv(0)h(implying)e Ft(x)h Fs(2)h(F)10 b Fv(.)57 b(The)38 b(claim)d(of)0 4493 y(the)e(lemma)d(follo)m(ws.)p 841 4501 34 67 v 146 4663 a(Our)37 b(next)g(t)m(w)m(o)g(questions)g(deal)f (with)f(un\014nished)j(business)f(from)f(previous)g(sections:)52 b(First,)0 4784 y(let)32 b(us)h(rep)s(eat)g(the)g(question)g(from)e (section)i(5:)146 4963 y Fq(Question)42 b(3)p Fv(:)51 b(Is)38 b(it)d(true)i(that)f Ft(E)6 b Fv(\()p Ft(k)s(;)17 b(n)p Fv(\))35 b(=)1859 4911 y FB(\022)r Fz(\()p FB(G)1976 4923 y Fo(n;k)2072 4911 y Fz(\))p 1859 4941 241 4 v 1901 4998 a(2)1936 4979 y Fo(n)p Fn(\000)p Fm(1)2109 4963 y Fv(,)j(and)e(if)g(y)m(es,)j(is)d(there)h(a)f(straigh)m(tforw)m(ard)0 5084 y(com)m(binatorial)29 b(pro)s(of)j(for)g(this)g(fact?)1826 5349 y(22)p eop %%Page: 23 23 23 22 bop 146 100 a Fv(Going)32 b(bac)m(k)i(to)e(the)h(b)s(ounds)h (\(11\))e(and)h(\(7\),)g(w)m(e)h(still)c(ha)m(v)m(e)35 b(a)d(gap)h(of)f(order)3063 28 y Fs(p)p 3146 28 59 4 v 72 x Ft(n)i Fv(b)s(et)m(w)m(een)h(the)0 220 y(upp)s(er)e(and)f(the)h (lo)m(w)m(er)f(b)s(ounds)h(for)f Ft(E)6 b Fv(\()p Ft(k)s(;)17 b(n)p Fv(\).)43 b(This)32 b(gap,)h(although)e(small,)f(is)i(rather)g (frustrating.)0 340 y(The)37 b(b)s(ounds)g(\(11\))f(and)g(\(7\))g(are)g (obtained)f(similarly:)47 b(an)37 b(extremal)e(problem)g(\(2\))h (\(corresp)s(ond-)0 461 y(ingly)j(\(13\)\))g(is)h(mo)s(di\014ed)f(b)m (y)i(replacing)e Ft(l)1609 476 y Fy(1)1724 461 y Fv(\(corresp)s (ondingly)h Ft(l)2504 476 y Fz(1)2543 461 y Fv(\))g(norm)g(with)g(an)g (appropriate)0 581 y(Euclidean)k(norm.)76 b(The)45 b(solution)e(to)g (the)i(mo)s(di\014ed)d(problem)h(is)h(sho)m(wn)h(to)f(appro)m(ximate)f (the)0 702 y(solution)c(to)h(the)h(original)c(problem)i(b)m(y)i(a)f (factor)g(of)g Ft(O)s Fv(\()2181 630 y Fs(p)p 2263 630 V 2263 702 a Ft(n)p Fv(\).)67 b(The)41 b(mo)s(di\014ed)e(problem)g(is)h (then)0 822 y(solv)m(ed.)146 991 y(W)-8 b(e)32 b(p)s(oin)m(t)e(out,)h (that)g(the)g(solution)f(to)g(the)h(mo)s(di\014ed)f(problem)g(migh)m(t) f(actually)h(giv)m(e)h(a)g(b)s(etter)0 1111 y(appro)m(ximation)38 b(than)h Ft(O)s Fv(\()1008 1039 y Fs(p)p 1091 1039 V 72 x Ft(n)p Fv(\).)65 b(Supp)s(ose,)42 b(for)e(instance,)i(that)d(the)h (p)s(olynomial)d Ft(p)3224 1075 y Fz(\()p FB(k)r Fz(\))3361 1111 y Fv(on)i(whic)m(h)0 1232 y(the)44 b(distance)f Fs(k)p Ft(\016)662 1247 y Fz(0)731 1232 y Fs(\000)30 b(P)907 1247 y FB(k)950 1232 y Fs(k)1000 1247 y Fz(2)1082 1232 y Fv(\(see)45 b(subsection)f(4.2\))f(is)g(obtained,)i(has)f(the)f (follo)m(wing)e(prop)s(ert)m(y)j(:)0 1379 y Fs(k)p Ft(p)99 1343 y Fz(\()p FB(k)r Fz(\))196 1379 y Fs(k)246 1394 y Fy(1)350 1379 y Fv(=)30 b(\002)549 1269 y Fr(\020)651 1340 y Fz(1)p 618 1356 102 4 v 618 1366 a Fy(p)p 677 1366 43 3 v 48 x FB(n)729 1269 y Fr(\021)806 1379 y Fs(k)p Ft(p)905 1343 y Fz(\()p FB(k)r Fz(\))1002 1379 y Fs(k)1052 1394 y Fz(2)1091 1379 y Fv(.)47 b(Then)35 b(it)e(is)g(not)g(hard)h(to)g (see)g(that)g Fs(k)p Ft(\016)2607 1394 y Fz(0)2669 1379 y Fs(\000)24 b(P)2839 1394 y FB(k)2882 1379 y Fs(k)2932 1394 y Fz(2)3000 1379 y Fv(=)30 b(\002\()p Fs(k)p Ft(\016)3313 1394 y Fz(0)3375 1379 y Fs(\000)24 b(P)3545 1394 y FB(k)3588 1379 y Fs(k)3638 1394 y Fy(1)3712 1379 y Fv(\))0 1604 y(and)i Ft(E)6 b Fv(\()p Ft(k)s(;)17 b(n)p Fv(\))28 b(=)f(\002)717 1464 y Fr(\022)790 1604 y Fv(\()p Ft(n)886 1568 y Fz(2)948 1604 y Fs(\000)c Ft(k)1102 1568 y Fz(2)1141 1604 y Fv(\))1189 1540 y Fm(1)p 1189 1552 31 3 v 1189 1593 a(4)1256 1604 y Fs(\001)1316 1527 y Fv(\()1404 1483 y Fo(n)1363 1527 y(n)p Fn(\000)p Fo(k)p 1363 1539 121 3 v 1408 1573 a Fm(2)1494 1527 y Fv(\))p 1316 1581 217 4 v 1385 1639 a Fz(2)1420 1620 y Fo(n)1542 1464 y Fr(\023)1615 1604 y Fv(.)41 b(Note,)28 b(that)e Ft(p)2195 1568 y Fz(\()p FB(k)r Fz(\))2319 1604 y Fv(is)f(a)h(linear)f(com)m(bination)f(of)i (Discrete)0 1776 y(Cheb)m(yshev)36 b(p)s(olynomials)29 b(with)k(kno)m(wn)h(co)s(e\016cien)m(ts.)146 1945 y(Similarly)-8 b(,)29 b(denote)k(b)m(y)g Ft(q)1076 1909 y Fz(\()p FB(k)r Fz(\))1205 1945 y Fv(the)g(p)s(olynomial)c(on)j(whic)m(h)2314 1920 y(~)2291 1945 y Ft(E)6 b Fv(\()p Ft(k)s(;)17 b(n)p Fv(\))32 b(is)g(attained)f(\(see)j(section)e(5\).)0 2066 y(This)e(p)s(olynomial)d(is)j(a)g(linear)e(com)m(bination)g(of)i(Hahn)h (p)s(olynomials)c(with)j(kno)m(wn)h(co)s(e\016cien)m(ts.)44 b(If)0 2245 y Fs(k)p Ft(q)97 2209 y Fz(\()p FB(k)r Fz(\))194 2245 y Fs(k)244 2260 y Fz(1)311 2245 y Fv(=)28 b(\002\()529 2173 y Fs(p)p 611 2173 59 4 v 611 2245 a Ft(n)q Fv(\))p Fs(k)p Ft(q)805 2209 y Fz(\()p FB(k)r Fz(\))902 2245 y Fs(k)952 2260 y Fz(2)991 2245 y Fv(,)33 b(then)g Ft(E)6 b Fv(\()p Ft(k)s(;)17 b(n)p Fv(\))28 b(=)f(\002)1807 2104 y Fr(\022)1880 2134 y(\020)1939 2245 y Fv(1)22 b Fs(\000)2122 2206 y FB(k)2161 2182 y Fm(2)p 2120 2222 78 4 v 2120 2279 a FB(n)2163 2260 y Fm(2)2207 2134 y Fr(\021)2277 2130 y Fm(1)p 2277 2142 31 3 v 2277 2183 a(4)2343 2245 y Fs(\001)2403 2168 y Fv(\()2492 2124 y Fo(n)2451 2168 y(n)p Fn(\000)p Fo(k)p 2451 2180 121 3 v 2496 2214 a Fm(2)2581 2168 y Fv(\))p 2403 2222 217 4 v 2472 2279 a Fz(2)2507 2260 y Fo(n)2629 2104 y Fr(\023)2703 2245 y Fv(.)146 2482 y Fq(Question)33 b(4)p Fv(:)41 b(Can)29 b(a)f(b)s(etter)h(analysis)e(of)h(either)g Ft(p)2093 2446 y Fz(\()p FB(k)r Fz(\))2219 2482 y Fv(or)g Ft(q)2381 2446 y Fz(\()p FB(k)r Fz(\))2507 2482 y Fv(\(or)g(b)s(oth)g(of)g(them)g (together\(?\)\))0 2603 y(lead)k(to)g(asymptotically)e(tigh)m(t)i(b)s (ounds)h(on)g Ft(E)6 b Fv(\()p Ft(k)s(;)17 b(n)p Fv(\))32 b(?)0 2983 y Fu(7)161 b(Ac)l(kno)l(wledgemen)l(t)0 3251 y Fv(I)34 b(am)e(grateful)h(to)g(Nathan)g(Linial,)e(Simon)h(Litsyn)i (and)g(Mic)m(hael)f(Kriv)m(elevic)m(h)g(for)g(v)-5 b(aluable)32 b(con-)0 3371 y(v)m(ersations.)0 3752 y Fu(References)49 4012 y Fv([1])49 b(G.)25 b(Bo)s(ole,)i Fq(An)i(in)m(v)m(estigation)f (of)j(the)f(la)m(ws)f(of)i(though)m(t)f(on)g(whic)m(h)f(are)i(founded)g (the)201 4132 y(mathematical)k(theories)h(of)i(logic)e(and)i (probabilities)p Fv(,)30 b(Do)m(v)m(er)j(1st)g(prin)m(ting,)e(1854.)49 4335 y([2])49 b(W.)29 b(Chen)h(and)f(G.-C.)f(Rota,)h Ft(q)t Fv(-Analogs)f(of)g(the)h(inclusion-exclusion)e(principle)h(and)h (p)s(erm)m(u-)201 4455 y(tations)i(with)h(restricted)i(p)s(osition,)c Fa(Discrete)j(Mathematics)p Fv(,)f(104\(1992\),)f(7-22.)49 4657 y([3])49 b(Ph.)44 b(Delsarte,)i Fa(An)e(algebraic)e(approac)m(h)i (to)f(the)h(asso)s(ciation)e(sc)m(heme)j(of)e(co)s(ding)g(theory)p Fv(,)201 4777 y(Philips)31 b(Res.)i(Rep.,)g(Suppl.,)f(v)m(ol.)h(10,)f (1973.)49 4980 y([4])49 b(M.)34 b(M.)h(Deza)f(and)g(M.)g(Lauren)m(t,)h Fq(Geometry)k(of)g(Cuts)g(and)h(Metrics)p Fv(,)34 b(Springer-V)-8 b(erlag,)201 5100 y(1997.)1826 5349 y(23)p eop %%Page: 24 24 24 23 bop 49 100 a Fv([5])49 b(I.)32 b(Honk)-5 b(ala,)31 b(T.)i(Laihonen)f(and)g(S.)h(Litsyn,)f(On)g(co)m(v)m(ering)h(radius)f (and)g(Discrete)h(Cheb)m(yshev)201 220 y(p)s(olynomials,)f(Applicable)h (Algebra)g(in)h(Engineering,)h(Comm)m(unication)d(and)i(Computing)g(,) 201 340 y(v)m(ol.8,)e(1997,)f(pp.395{401.)49 544 y([6])49 b(J.)39 b(Kahn,)h(G.)f(Kalai)e(and)i(N.)g(Linial,)f(The)i(in\015uence)g (of)f(v)-5 b(ariables)37 b(on)i(b)s(o)s(olean)f(functions,)201 664 y Fa(29th)33 b(Symp)s(osium)g(on)h(the)g(F)-8 b(oundations)33 b(of)h(Computer)g(Science)p Fv(,)h(White)f(Planes,)h(1988,)e(68)201 785 y(-)f(80.)49 988 y([7])49 b(D.)34 b(J.)g(Kleitman,)f Fa(On)h(a)g(com)m(binatorial)d(conjecture)36 b(of)e(Erdo)-5 b(\177)-44 b(s)p Fv(,)36 b(Journal)d(of)h(Com)m(b.)h(Theory)201 1108 y(1,)d(1966,)g(209-214.)49 1312 y([8])49 b(J.)37 b(Kahn,)h(N.)f(Linial)e(and)i(A.)g(Samoro)s(dnitsky)-8 b(,)38 b(Inclusion-exclusion:)52 b(exact)37 b(and)h(appro)m(xi-)201 1432 y(mate,)31 b Fa(Com)m(binatorica)p Fv(,)g(v)m(ol.)h(16\(1996\))f (.)49 1636 y([9])49 b(V.)28 b(Lev)m(ensh)m(tein,)j Fa(Kra)m(w)m(c)m (houk)e(p)s(olynomials)c(and)j(univ)m(ersal)g(b)s(ounds)g(for)g(co)s (des)g(and)g(designs)201 1756 y(in)j(Hamming)f(spaces)p Fv(,)35 b(IEEE)e(T)-8 b(rans.)34 b(Inform.)e(Theory)-8 b(,)33 b(v)m(ol.)g(IT-41,)f(1995,)g(1303-1321.)0 1959 y([10])49 b(N.)34 b(Linial)e(and)j(N.)g(Nisan,)g(Appro)m(ximate)f (inclusion-exclusion,)f Fa(Com)m(binatorica)p Fv(,)g(10\(1990\))201 2080 y(349-365.)0 2283 y([11])49 b(L.)36 b(Lo)m(v)-5 b(asz,)37 b Fa(On)g(the)f(Shannon)h(capacit)m(y)f(of)g(a)g(graph)p Fv(,)g(IEEE)i(T)-8 b(rans.)37 b(Inform.)e(Theory)-8 b(,)38 b(v)m(ol.)201 2403 y(IT-25,)32 b(1979,)g(1-7.)0 2607 y([12])49 b(M.)40 b(Ma)m(vronicolas,)i(A)e Ft(q)t Fv(-analog)e(of)i (appro)m(ximate)f(inclusion-exclusion,)h Fa(Adv)-5 b(ances)42 b(in)e(ap-)201 2727 y(plied)31 b(mathematics)p Fv(,)g(v)m(ol.)h (20\(1998\))f(108-129.)0 2931 y([13])49 b(R.)22 b(J.)h(McEliece,)i(E.)e (R.)f(Ro)s(demic)m(h,)i(H.)f(Rumsey)-8 b(,)25 b(Jr.,)g(and)d(L.)h(R.)g (W)-8 b(elc)m(h,)25 b Fa(New)e(upp)s(er)g(b)s(ounds)201 3051 y(on)h(the)h(rate)f(of)g(a)g(co)s(de)g(via)g(the)h (Delsarte-MacWilliams)20 b(inequalities)p Fv(,)k(IEEE)i(T)-8 b(rans.)25 b(Inform.)201 3171 y(Theory)-8 b(,)33 b(v)m(ol.)f(IT-23,)h (1977,)f(157-166.)0 3375 y([14])49 b(W.)32 b(Rudin,)g Fq(F)-9 b(unctional)37 b(Analysis)p Fv(,)32 b(McGra)m(w-Hill,)e(1973.)0 3578 y([15])49 b(A.)43 b(Samoro)s(dnitsky)-8 b(,)45 b(Extremal)d(prop)s (erties)h(of)f(solutions)g(for)h(Delsarte's)g(linear)e(program)201 3699 y(\(1998\),)31 b(preprin)m(t.)0 3902 y([16])49 b(A.)27 b(Sc)m(hrijv)m(er,)j Fa(A)e(comparison)f(of)g(the)h(Delsarte)f(and)h (Lo)m(v)-5 b(asz)29 b(b)s(ounds)p Fv(,)g(IEEE)g(T)-8 b(rans.)29 b(Inform.)201 4022 y(Theory)-8 b(,)33 b(v)m(ol.)f(IT-25,)h (1979,)f(425-429.)0 4226 y([17])49 b(R.)33 b(P)-8 b(.)34 b(Stanley)-8 b(,)33 b Fq(En)m(umerativ)m(e)k(Com)m(binatorics)p Fv(,)32 b(v)m(ol.)h(I,)h(Cam)m(bridge)f(Univ)m(ersit)m(y)h(Press,)201 4346 y(1997.)0 4550 y([18])49 b(G.)32 b(Szego,)h Fq(Orthogonal)k(P)m (olynomials)p Fv(,)30 b(American)i(Mathematical)e(So)s(ciet)m(y)-8 b(,)33 b(1939.)0 4753 y([19])49 b(J.)33 b(H.)g(v)-5 b(an)33 b(Lin)m(t)g(and)g(R.)g(M.)h(Wilson,)e Fq(A)38 b(Course)h(in)e(Com)m (binatorics)p Fv(,)32 b(Cam)m(bridge)g(Uni-)201 4873 y(v)m(ersit)m(y)h(Press,)i(1992.)1826 5349 y(24)p eop %%Trailer end userdict /end-hook known{end-hook}if %%EOF </j)2112>