Аннигиляция - Физическая энциклопедия (original) (raw)
аннигиляция
АННИГИЛЯЦИЯ пары частица-античастица (от позднелат. annihilatio - уничтожение, исчезновение) - один из видов взаимопревращения элементарных частиц. Термином "А." первоначально наз. эл--магн. процесс превращения электрона и его античастицы - позитрона при их столкновении в эл--магн. излучение (в фотоны, или g-кванты). Однако этот термин неудачен, т. к. в процессах А. материя не уничтожается, а лишь превращается из одной формы в другую.
Возможность А. была предсказана П. Дираком (Р. А. М. Dirac) на основе развитой им квантовомеха-нич. релятивистской теории электрона (см. Дырок теория Дирака ).В 1932 в космич. лучах были обнаружены первые античастицы - позитроны, в 1933 зарегистрированы случаи А. пар электрон-позитрон.
В процессе А. и при суммарном спине сталкивающихся частиц _J_=0 испускается (вследствие закона сохранения зарядовой чётности в эл--магн. взаимодействии) чётное число -квантов (практически два), а при _J_=1 - нечётное (практически три; А. в один фотон запрещена законом сохранения энергии-импульса). Образование большого числа-квантов подавлено из-за малости константы , характеризующей интенсивность протекания эл--магн. процессов. Если относит. скорость е+ и е- невелика, А. с большой вероятностью происходит через образование промежуточного связанного состояния - позитрония.
Столкновение любой частицы с её античастицей может приводить к их А., причём не только за счёт эл--магн. взаимодействия. Так, А. протонов и антипротонов в p-мезоны (преим. в 5-6 -мезонов) вызывается сильным взаимодействием. При малой относит. скорости р и их А. может происходить через связанное промежуточное состояние антипротонного атома (см. Адронные атомы)или, возможно, через барионий.
В отличие от А при низких энергиях сталкивающихся частиц, когда в процессе А. пара частица-античастица превращается в более лёгкие частицы, при высоких энергиях лёгкие частицы могут аннигилировать с образованием более тяжёлых частиц (при условии, что полная энергия аннигилирующих частиц превышает порог рождения тяжёлых частиц, равный в системе центра инерции сумме их энергий покоя).
В экспериментах на установках со встречными пучками е+ о- высокой энергии наблюдаются процессы А.:
(1), (2)
В низшем порядке теории возмущений квантовой электродинамики процесс (1) описывается аннигиляцион-ной Фейнмана диаграммой с виртуальным фотоном (см. Виртуальные частицы)в промежуточном состоянии (рис., а). Процесс (2) происходит также через виртуальный фотон (рис., б); по совр. представлениям, в этом случае переходит в пару быстрых кварка (q)и антикварка (рис., в), к-рые, испуская при взаимодействии с вакуумом пары кварк-антикварк, превращаются в адроны. При высоких энергиях столкновения образующиеся адроны сохраняют направление движения первичных кварка и антикварка, и в конечном состоянии наблюдаются две адронные струи.
Сечение таких процессов уменьшается обратно пропорционально квадрату 4-импульса виртуального фотона (Q2)(см. Партоны, Квантовая хромодинамика). Эксклюзивный процесс прямого перехода в адрон и его античастицу (напр., в пару , К+ К-, барион-антибарион) дополнительно подавлен формфактором адрона (уменьшающимся с ростом Q2). Согласно квантовой хромодинамике, возможен также процесс А. е+е- в пару с испусканием глюона (g)высокой энергии (рис., г); в этом случае в конечном состоянии должны наблюдаться трёхструйные события.
Отношения (R)сечений процессов электрон-позитронной А. (2) и (1) равно сумме квадратов электрич. зарядов всех образующихся при А. кварков. Когда энергия пары становится выше порога рождения частиц нового сорта - тяжёлых лептонов или частиц, в состав к-рых входят тяжёлые кварки с, b, значение R возрастает на величину, соответствующую вкладу новых фундам. частиц. В экспериментах по-А. наблюдается резонансное образование кваркониев - тяжёлых истинно нейтральных мезонов и др., интерпретируемых как связанные состояния соответственно . Такие мезоны должны распадаться за счёт А. кварка и антикварка в два или три глюона (в зависимости от их полного углового момента). В процессах А. в адроны образуются преим. мезоны. Однако с ростом энергии сталкивающихся частиц наблюдается значит. повышение выхода пар ба-рион-антибарион в инклюзивных процессах ба-рион-антибарион+адроны.
В столкновениях антинуклонов с нуклонами с относит. вероятностью 10-4 могут происходить процессы эл--магн. А. антикварков антинуклона с кварками нуклона. В результате такой А. образуется виртуальный фотон, распадающийся на пару лептонов е+е- или . Процесс рождения лептонных пар в столкновениях адронов описывается в рамках кварк-партонной модели, причём расчёт эл--магн. А. кварков и антикварков позволяет в рамках этой модели получить согласующееся с наблюдениями описание характеристик лептонных пар с большой энергией (в системе центра инерции), рождающихся в столкновениях адронов.
С ростом энергии сталкивающихся частиц сечение А. за счёт сильного и эл--магн. взаимодействий падает, а за счёт слабого взаимодействия - растёт. Поэтому при высоких энергиях в столкновениях адронов могут наблюдаться и процессы слабой А. кварков и антикварков в виртуальный или реальный - или Z°-бозон слабого взаимодействия. Интерференция сильного и слабого взаимодействий адронов определяет эффекты слабого взаимодействия в столкновениях адронов при высоких энергиях (несохранение чётности, одиночное рождение странных и очарованных частиц в столкновениях "обычных" адронов и др.).
А. электронов и позитронов может происходить и через виртуальный Z°-бозон. Интерференция слабого и эл--магн. взаимодействий вызывает нарушение пространств. чётности в этих процессах (проявляющееся, напр., в асимметрии углового распределения пар или адронных струй). При энергии в системе центра инерции пары , равной массе (в знергетич. единицах) Z°-бозона, А. лары должна происходить резонансно- с превращением в реальный Z°-бозон. Двухчастичные лептонные распады псевдоскалярных заряж. мезонов (напр., ) обусловлены А. составляющих мезоны кварков-антикварков () за счёт слабого взаимодействия, а распады нейтральных векторных мезонов (r°,w,j и др.) на лептонные пары (напр.,, ) и распады псевдоскалярных нейтронных мезонов () на два -кванта -А. за счёт эд--магн. взаимодействия. В распадах мезонов, в состав к-рых входит _с_- или _b_-кварк, процессы А. за счёт слабого взаимодействия, напр. (где _l_-лептон, -соответствующие ему нейтрино), могут увеличить вероятность распадов очарованных частиц.
По аналогии с электрон-позитронной А. теоретически обсуждается возможный процесс А. пары лептонов - электронного антинейтрино и электрона адроны), вызываемый слабым взаимодействием.
В естеств. условиях процессы А. могут происходить вблизи космич. источников античастиц (активных ядер галактик, пульсаров) и при взаимодействии космич. антипротонов и позитронов с веществом. Такие процессы космич. А. могут наблюдаться методами g-астрономии по аннигиляц. космич. излучению. Результаты этих наблюдений указывают на отсутствие заметного кол-ва антивещества в окружающей нас части Вселенной вплоть до масштаба скопления галактик и свидетельствуют в пользу барионной асимметрии Вселенной. В соответствии с теорией горячей Вселенной на ранних стадиях эволюции Вселенной процессы А. (и обратные им процессы рождения пар) за счёт эл--магн., сильного и слабого взаимодействий, напр. , , обеспечивали термодинамич. равновесие релятивистской плазмы частиц и античастиц и эл--магн. излучения. При понижении темп-ры расширяющейся Вселенной ниже величины, отвечающей массе частиц данного сорта (используется система единиц, в к-рой ), должна была. происходить А. соответствующих частиц и античастиц в более лёгкие частицы.
Время жизни античастиц (или частиц) относительно их А. с частицами (античастицами) обратно пропорционально концентрации частиц (античастиц). В расширяющейся Вселенной, когда становится больше времени расширения, А. прекращается и происходит т. н. закалка концентрации частиц и античастиц. Представление о "закалке" концентрации массивных метастабильных частиц (магнитных монополей, экзотич. частиц, появляющихся в нек-рых моделях великого объединения и расширенной супергравитации)и анализ их последующего влияния на астрофиз. процессы на более поздних стадиях расширения Вселенной играет важную роль для получения астрофиз. ограничений на параметры моделей, предсказывающих существование таких частиц.
Лит.: Гайтлер В., Квантовая теория излучения, пер. с англ., М., 1956; Дирак П. А. М., Принципы квантовой механики, пер. с англ., 2 изд., М., 1979; Фоломешкин В. Н., Хлопов М. Ю., О возможностях изучения реакций неупругого vее-рассеяния в пучках нейтрино высоких энергий, "ЯФ", 1973, т. 17, в. 4, с. 810; Фейнман Р., Взаимодействие фотонов с адронами, пер. с англ., М., 1975; Долгов А. Д., Зельдович Я. В., Космология и элементарные частицы, "УФН", 1980, т. 130, с. 559. М. Ю. Хлопов.
Аннигиляционное излучение в астрофизике. Наблюдение излучения, возникающего при А. позитронов и электронов, позволяет обнаружить во Вселенной области (объекты), где рождаются античастицы (позитроны), и определить физ. характеристики таких областей.
В астрофиз. условиях позитроны рождаются, как правило, релятивистскими. Когда они попадают в сравнительно холодную среду (с темп-рой = =6*109 К, тс2= 511 кэВ - энергия покоя электрона), то из-за малой вероятности А. по сравнению с вероятностями процессов, приводящих к торможению позитронов (рассеяние на электронах и атомах, возбуждение и ионизация атомов), их большая часть успевает замедлиться до нерелятивистских энергий и лишь затем аннигилирует.
При двухфотонной А. нерелятивистских е+ и е-(наиб. распространённой в астрофиз. условиях) энергии образующихся фотонов близки к энергии покоя электрона, т. е. спектр аннигиляц. излучения (АИ) имеет вид линии (аннигиляц. линия - АЛ). Это позволяет выделять АИ на фоне непрерывного спектра, возникающего при др. процессах. Смещение энергии аннигиляц. фотонов от значения mс2 вызвана эффектом Доплера из-за движения центра масс аннигилирующей пары: I, где V - проекция скорости центра масс на направление вылета фотона. Разброс скоростей V приводит к доплеровскому уширению АЛ. При А. термализов. позитронов с энергией со свободными электронами плазмы (как прямой, так и с предварит. образованием позитрония Ps)разброс V является тепловым и ширина АЛ (на половине максимума) = 0,011 Т1/2кэВ.
В отличие от двухфотонного, трёхфотонное АИ, возникающее при А. ортопозитрония 3Ps (образующегося в тех же процессах, что и парапозитроний 1Ps), имеет непрерывный спектр, лежащий ниже 511 кэВ. Регистрация этого спектра (вместе с АЛ) позволяет оценить долю позитронов, аннигилирующих с образованием позитрония Ps, и тем самым физ. характеристики области аннигиляции.
Спектр однофотонного АИ, существенного при наличии сверхсильного магн. поля (когда е+ и е- находятся на основном Ландау уровне, см. Циклотронная частота ),имеет вид асимметричной линии с резким обрывом в сторону меньших энергий от максимума при , где - угол между направлением АИ и магн. полем. Угловое распределение излучения сильно вытянуто в плоскости, перпендикулярной магн. полю. Сильное магн. поле меняет также характеристики двухфотонного АИ. С увеличением поля (при1012 Гс) мощность и высота АЛ уменьшаются, линия становится асимметричной, сдвигается в сторону более высоких энергий и уширяется (превращаясь при1013 Гс в непрерывный спектр, лежащий ниже , а направления вылета фотонов концентрируются к плоскости, перпендикулярной магн. полю.
АИ обнаружено в спектрах вспышек на Солнце, в излучении галактического центра и космич. гамма-всплесках.
Основные характеристики наблюдавшегося космического аннигиляционного излучения
Источник | Солнечные вспышки | Центр Галактики | n- всплески |
---|---|---|---|
Максимальная интенсивность, фотон/(см2*с) | 5*10-1 | 2*10-3 | 1 |
Светимость источника в аннигиляционной линии, эрг/с | 2*1021 | 2*10'' | 1038 (D */1 кпк)2 |
Характерные времена, с | 102- 103 | 107-108 | 0, 1-10 |
Ширина аннигиляционной линии, кэВ | <20 | <3 | ~100 |
D * - расстояние до источника, кпк. |
АИ солнечных вспышек наблюдалось на спутниках OSO-7 (США, 1972) и SMM (США, 1980, 1982). Аннигилирующие позитроны образуются, по-видимому, при распаде радиоакт. ядер и -мезонов, возникающих при ядерных взаимодействиях ускоренных во вспышке ионов с солнечным веществом. Ширина АЛ (<20 кэВ) соответствует темп-ре в области аннигиляции Т<3*106 К, а зависимость АЛ от времени показывает, что плотность вещества в области аннигиляции <1014см-3.
АИ из области центра Галактики наблюдалось начиная с 1968 (аппаратурой, поднятой на баллонах на высоту ~40 км), затем на спутнике НЕАО-3 (США, с 1979). Интенсивность АЛ практически не менялась до нач. 1980, после чего менее чем за год упала ниже порога чувствительности детекторов. Малая ширина АЛ (2,5 кэВ в последних наблюдениях) означает, что АИ образуется термализов. позитронами в среде с 5*104 К.
Переменность АИ накладывает ограничения на размер области аннигиляции (<1018 см) и концентрацию частиц N в ней (N<106 см-3). В отд. измерениях наряду с АЛ наблюдался, по-видимому, непрерывный спектр трёхфотонной аннигиляции 3Ps. Источник позитронов неизвестен. Предположительно позитроны генерируются в окрестности массивной аккрецирующей чёрной дыры, возможно имеющейся в центре Галактики.
Эмиссионные линии с максимумами при 350- 450 кэВ были обнаружены в спектрах неск. g-всплесков на АМС "Венера-11" - "Венера-14" (1978-83). Они интерпретируются как АЛ двухфотонного АИ, сдвинутые на 50-150 кэВ из-за гравитац. красного смещения в поле силы тяжести нейтронной звезды - источника g-всплеска. Сравнительная узость линий накладывает ограничения на темп-ры (кТ<50 кэВ) и магн. поля (В<1013 Гс) в области аннигиляции. Механизм образования позитронов неясен.
Лит.: Берестецкий В. Б., Лифшиц Е. М., Питаевский Л. П., Квантовая электродинамика, 2 изд., М., 1980; Positron-Electron Pairs in Astrophysics, ed. by M. L. Burns, A. K. Harding, B. Ramaty, N. Y., 1983. Г. Г. Павлов.