(original) (raw)
%!PS-Adobe-2.0 %%Creator: dvips 5.58 Copyright 1986, 1994 Radical Eye Software %%Title: INT.dvi %%CreationDate: Sat Sep 11 11:21:26 1999 %%Pages: 26 %%PageOrder: Ascend %%BoundingBox: 0 0 596 842 %%EndComments %DVIPSCommandLine: C:\EMTEX\BIN\dvips32.exe -pj=tmp.mfj -K INT %DVIPSParameters: dpi=600, compressed, comments removed %DVIPSSource: TeX output 1999.09.11:1121 %%BeginProcSet: texc.pro /TeXDict 250 dict def TeXDict begin /N{def}def /B{bind def}N /S{exch}N /X{S N}B /TR{translate}N /isls false N /vsize 11 72 mul N /hsize 8.5 72 mul N /landplus90{false}def /@rigin{isls{[0 landplus90{1 -1}{-1 1} ifelse 0 0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize mul 0}ifelse TR}if Resolution VResolution vsize -72 div 1 add mul TR[matrix currentmatrix{dup dup round sub abs 0.00001 lt{round}if} forall round exch round exch]setmatrix}N /@landscape{/isls true N}B /@manualfeed{statusdict /manualfeed true put}B /@copies{/#copies X}B /FMat[1 0 0 -1 0 0]N /FBB[0 0 0 0]N /nn 0 N /IE 0 N /ctr 0 N /df-tail{ /nn 8 dict N nn begin /FontType 3 N /FontMatrix fntrx N /FontBBox FBB N string /base X array /BitMaps X /BuildChar{CharBuilder}N /Encoding IE N end dup{/foo setfont}2 array copy cvx N load 0 nn put /ctr 0 N[}B /df{ /sf 1 N /fntrx FMat N df-tail}B /dfs{div /sf X /fntrx[sf 0 0 sf neg 0 0] N df-tail}B /E{pop nn dup definefont setfont}B /ch-width{ch-data dup length 5 sub get}B /ch-height{ch-data dup length 4 sub get}B /ch-xoff{ 128 ch-data dup length 3 sub get sub}B /ch-yoff{ch-data dup length 2 sub get 127 sub}B /ch-dx{ch-data dup length 1 sub get}B /ch-image{ch-data dup type /stringtype ne{ctr get /ctr ctr 1 add N}if}B /id 0 N /rw 0 N /rc 0 N /gp 0 N /cp 0 N /G 0 N /sf 0 N /CharBuilder{save 3 1 roll S dup /base get 2 index get S /BitMaps get S get /ch-data X pop /ctr 0 N ch-dx 0 ch-xoff ch-yoff ch-height sub ch-xoff ch-width add ch-yoff setcachedevice ch-width ch-height true[1 0 0 -1 -.1 ch-xoff sub ch-yoff .1 sub]/id ch-image N /rw ch-width 7 add 8 idiv string N /rc 0 N /gp 0 N /cp 0 N{rc 0 ne{rc 1 sub /rc X rw}{G}ifelse}imagemask restore}B /G{{id gp get /gp gp 1 add N dup 18 mod S 18 idiv pl S get exec}loop}B /adv{cp add /cp X}B /chg{rw cp id gp 4 index getinterval putinterval dup gp add /gp X adv}B /nd{/cp 0 N rw exit}B /lsh{rw cp 2 copy get dup 0 eq{pop 1}{ dup 255 eq{pop 254}{dup dup add 255 and S 1 and or}ifelse}ifelse put 1 adv}B /rsh{rw cp 2 copy get dup 0 eq{pop 128}{dup 255 eq{pop 127}{dup 2 idiv S 128 and or}ifelse}ifelse put 1 adv}B /clr{rw cp 2 index string putinterval adv}B /set{rw cp fillstr 0 4 index getinterval putinterval adv}B /fillstr 18 string 0 1 17{2 copy 255 put pop}for N /pl[{adv 1 chg} {adv 1 chg nd}{1 add chg}{1 add chg nd}{adv lsh}{adv lsh nd}{adv rsh}{ adv rsh nd}{1 add adv}{/rc X nd}{1 add set}{1 add clr}{adv 2 chg}{adv 2 chg nd}{pop nd}]dup{bind pop}forall N /D{/cc X dup type /stringtype ne{] }if nn /base get cc ctr put nn /BitMaps get S ctr S sf 1 ne{dup dup length 1 sub dup 2 index S get sf div put}if put /ctr ctr 1 add N}B /I{ cc 1 add D}B /bop{userdict /bop-hook known{bop-hook}if /SI save N @rigin 0 0 moveto /V matrix currentmatrix dup 1 get dup mul exch 0 get dup mul add .99 lt{/QV}{/RV}ifelse load def pop pop}N /eop{SI restore showpage userdict /eop-hook known{eop-hook}if}N /@start{userdict /start-hook known{start-hook}if pop /VResolution X /Resolution X 1000 div /DVImag X /IE 256 array N 0 1 255{IE S 1 string dup 0 3 index put cvn put}for 65781.76 div /vsize X 65781.76 div /hsize X}N /p{show}N /RMat[1 0 0 -1 0 0]N /BDot 260 string N /rulex 0 N /ruley 0 N /v{/ruley X /rulex X V}B /V {}B /RV statusdict begin /product where{pop product dup length 7 ge{0 7 getinterval dup(Display)eq exch 0 4 getinterval(NeXT)eq or}{pop false} ifelse}{false}ifelse end{{gsave TR -.1 .1 TR 1 1 scale rulex ruley false RMat{BDot}imagemask grestore}}{{gsave TR -.1 .1 TR rulex ruley scale 1 1 false RMat{BDot}imagemask grestore}}ifelse B /QV{gsave newpath transform round exch round exch itransform moveto rulex 0 rlineto 0 ruley neg rlineto rulex neg 0 rlineto fill grestore}B /a{moveto}B /delta 0 N /tail {dup /delta X 0 rmoveto}B /M{S p delta add tail}B /b{S p tail}B /c{-4 M} B /d{-3 M}B /e{-2 M}B /f{-1 M}B /g{0 M}B /h{1 M}B /i{2 M}B /j{3 M}B /k{ 4 M}B /w{0 rmoveto}B /l{p -4 w}B /m{p -3 w}B /n{p -2 w}B /o{p -1 w}B /q{ p 1 w}B /r{p 2 w}B /s{p 3 w}B /t{p 4 w}B /x{0 S rmoveto}B /y{3 2 roll p a}B /bos{/SS save N}B /eos{SS restore}B end %%EndProcSet TeXDict begin 39158280 55380996 1000 600 600 (/WORK/CACHE/INT.dvi) @start /Fa 29 123 df<1378EA01FE1203EA07FFA25AA4EA07FEEA01EEEA000E131E13 1CA2133C13381378137013F0EA01E0EA03C0A2EA0780EA0F00121E5A5A5A1260101E798A 1F>44 D46 D65 D<94B912E0A31DC00500D90001EBC0004E5D6099C7FC17016062631703601A070507 5D60A2050F140F4E5CA2171F4E131F63173F95C7FC1A3F4D5D177EA205FE147F4D5D1601 5F040315FF4D5DA216074D5B040F93C8FC5F161F4D5B043F5D94C7FC5E04FE14074C5D15 015E0303150F4C5D15074B5A4C141F031F5E4B5A4BC8FC037E153F03FE5E4A5A4A48157F 1407021FED03FF017FBA12E0A363D9FFE0C9120102808291CB127F4848183F5B4848181F 5B4848180F4848180748488500FECCEA01F800F819005B5082C34C>68 D<91B912E0A31AC002009038C00003F0007F193F4C141F190FA24A178093C8FCA35C5D1A 00A214075DA261020F161E4B92C7FCA3141F5DA3143F5DA3147F5DA314FF5DA35B92CBFC A35B5CA313075CA3130F5CA3131F5CA2133FA2137FB612FCA443447AC341>71 D<91B600F090B612F0A4020001E0C8EBE0004C5E614C4A5BA2614A5E93C84890C7FC6161 4A16FB4BEDF3FEF001E3F003C7020715074B91380F87FCF01F07F03E0F020F153C4B0278 5B18F00501131F021FEC03E04BD907C05BEF0F80F0003F023F141E4B495C177C4D137F02 7F495A4B48485C5F4C4813FF02FF49C7FC4B485D163E4C5B495C4B4892C8FC4B5A4B485B 4913074A48485C4BC7FC033E14070107133C4A485D5D02FD150F49B45A4B5D5D92C8121F 495A4A5EA24948153F5C017F167FB600F090B612F0A454447AC34F>73 D<91B500F093381FFFFC63A26302009538FFF800705F6203F760F203DFF207BF140103E7 93380F3FC0A2F21E7F0203173C03C760DBC3FC15781BFF02075F03834B4890C7FCA2F103 C1140F030392380781FEF10F011A034A6C6C141E021E60193CF17807143E023C04F05BA2 953801E00F027CED03C0027860F007806F6C151F02F8ED0F004A031E5CA24E133F13014A 4B5C601A7F01034B5A4AD97F815DEF83C01AFF0107ED87804A028FC790C8FCA2059E5B13 0F91C701BC5C17F81903496E5A011E60013E5D4D130713FF000301C04A130FB500FE031F B512FC1700163E161E5E447AC359>77 D<91B6D8F01FB512FEA4020001E0C7381FFC004C 5DA24C5DA2193F5C93C85BA2197F5C4B5EA219FF14074B5EA260140F4B93C7FCA260141F 4B5DA21807143F92B75AA35C03C0C7EA0FF8A2181F14FF4B5DA2183F5B92C85BA2187F5B 4A5EA218FF13074A5EA25F130F4A93C8FCA25F131F4A5DA2013F1507A2017F150FB6D8F0 1FB512FEA44F447AC34A>I<91B712FCF0FF8019E019F802009039C0001FFCF007FEF001 FF4C6D1380197F4A17C0A293C8FC1AE05CA25DA21407F1FFC05DA2020F1780604B1600A2 021F4B5AA24B4A5A4E5A023F4B5A4E5A4BEC7F804D48C7FC027FEC1FFC92B65A18C04DC8 FCDAFFC0CAFCA25DA25BA292CBFCA25BA25CA21307A25CA2130FA25CA2131FA25CA2133F A2137FB612F0A443447AC344>82 DI<017FB56C010FB5128090B6FCA293C71500010001E0020113E04B 6E1380027F4CC7FC4E5A616F4A5A023F5E4E5A180F6F4A5A021F93C8FC183E187E6F5C02 0F5D4D5A17034D5A6F5C0207140F4D5A95C9FC6F133E0203147E5F5F6F485A6E13034C5A 5F4C5A6E139F04BFCAFC16BE16FE5E6F5A5EA25E6F5A5EA293CBFCD80FC0133E486C5B00 3F14FC007F495A5D14034848485A01805B49485A00FC131F00F049CCFC143E5C5C387801 F01303387C07C0383E1F806CB4CDFCEA0FFCEA03F0494573C34A>85 D<91B712FEF0FFC019F0850200903980000FFCF003FE727E93C71480841AC04A167F5DA3 14035D19FFA2020717804B5C1A00A2020F4B5A4B1407614E5A021F4B5A4BEC7FE0F0FF80 050390C7FC023FEC0FFC92B612F018C018F8913A7FC00007FE4BEB01FF716C7E8502FF6F 7E92C86C7EA349835C180FA20103161F5CA301075F4A153FA24E5A130F4A4B5A615F011F 4B90C7FC4A4A5A4D5A013FED3FF8EFFFF04948010313C0B9C8FC5F17F0178042447AC346 >I<021EEB1FFCDA1F01B512C0038714F09239DFE00FFC913A3FFF0001FE03F86D7E4BEC 7F8003C015C04A48143F92C813E0147E147C5CA25C187F4A16C091C9FC18FF19804D1300 5F604D5A4D5A4D5AEF7FE0EFFF804C90C7FCEE07FCEE3FF092381FFF8091260FFFFCC8FC 5EEEFF8091C7EA1FE0EE03F8EE01FE707E717E84173F84A284A7177F60A3000E4C5A121E 4C5BA24C90C7FC003E4B5A4C5A003F5EEE3FF0486C4A5A6D4A5A01F0010390C8FC01FFEB 1FFEB712F8D8FC7F14E0D8F81F91C9FC48C613F03B4879C53D>90 D97 DI101 D103 DI<131FD9FFC0EB03C0486DEB07E02603E3F0130FEA0781000F 6D131F010115C0EA1E03123E003C153F1780EA78075C010F147F00F849140012F0EA001F 4A5B5E133F5C1501017F5C1400A21503495C5BA20307131FEEF01E485AA2173E030F133C 16E00000021F137C17786D133F037F13F0017FEBF7E1903A3F83E3F1E0903A1FFFC1FFC0 010701001380D901FCEB3E00302D78AB35>I<01FCEC03E0D803FFEC1FF8486DEB3FFC26 0F8FC0EBF83E903A0FE001E07ED81F07903803C1FE001EEC0781003EEC0F03003C141E01 0F133C007C023813FC0078027013F89238E000F090261FE1C0130000F8EBE38000F049C8 FC000013DEEB3FFC5C14FEECFFC04913F0EC8FFCEC03FEEC00FF496D7EA249133FA20001 167C17785BA2000316F817F04914001601000716E0A249EC03C092381F0780168F499038 0FFF00ED07FCD80380EB01F82F2D78AB33>107 DI<03FEED3F800201167FA2F1 FF0002035DA2606F5D4A1507180FA24AED1DFC033F143D701339187B021FED73F8021E15 E3031F1301023E15C7023C9039C00387F017071807DA7C0FEB0F0F0278020E5B171C02F8 EBE03C02F0EC381F030701705B17F0010103E014F802E001E1013F13F0001FDBF1C01380 D87F83ECF38000FF9026C003F71481050014E0D9878001FEEB7F011903D90F0049013F13 C000FE1401D8F81E4A14074C1580D87C3C93381F8F00D83FF84AEB0FFE6C486D486D5AD8 07C0EE01F0452D79AB4C>I<13FCD803FF1578486D14FC260F8FC01301EB0FE0D81F0714 03001E5E123E123C010F1407007C5E1278A2011F140F00F85E00F05B120049B4131F03E0 5BEDF83F92B5FCEB7F80033F5BEC0007ED003F49147F94C7FC5BA200019238FF03E016FE 4916C0A200031607030114804914FC170F000717001500495D171EEE7E3C49EC3FF8705A D80380EC07C0332D78AB39>II114 DI<01FCD907F8EB03FCD803FFD93FFEEB1FFF486D486C6C4813C03E0F8FC1F81FC0FC0FE0 903D0FE3E00FE1F007F0271F07E7C0EBE3E0001E903BEF8007E7C003003ED9FF00D9FF80 7F003C49150049485C007C495C12784A5C011F020F140700F8494A5C00F0495C1200013F 021F140F624A5CA2017F023F141F6291C75B193F49027F5DA24992C7127F97C7FC00014B ED01F007FF13E0494A14FEA2000302010201130307FC13C0495CF207800007020315F8F2 0F00494A5D1A3E726C5A494AEC7FF8F13FE0D80380D901C0EC0F804C2D78AB51>I118 D122 D E /Fb 38 127 df<38C007FC39F03FFFC06CB512F0B612FC9038F00FFE90398001FF80 90C76C7E00FC6E7E6F7E486E7E4814076F7E4881A26F7EC7EAFF81010313F1497F4901FE 13804990B5FCEA407F0061B7FC007FEBF803ECE001EC80006C90C7FCEA0FFE6C481500D8 01F05BC8FCA200E04A5AA25E6C4A5A150F00784A5A007C4A5A6C4A5A6C49485A270FE00F FEC7FC6CB55A000114F06C6C13C0D90FFCC8FC292D7BAB35>11 D24 D<00071807261FC001B500FCEB1FC0D83FE0EF 3FE0007F19F001F0177F9027700003FEC712776F5A6D17E7001CF0E1C0D80018EFC00001 1C16016D4C5AA26D4CC7FCD90380150E02E0153ED900F815F8027FEC07F06EB65A020F15 804A8191B712F801039039C1FC1FFE90260FFC01903801FF80D91FE09138003FC0D93FC0 6F7ED97F00ED07F0A201FE707EA2491601A400E01938A349160000F1F0FC784B7E267FF0 01B500FCEB7FF0A201E0173FD83FC0EF1FE0000FCBEA0780452D7EAB4A>I<0207B6FC14 7F49B7FC1307903A0FFC007FC0D91FE0EB3F80495A137F5C13FFA6137F6D7EA2EB0FF0EB 07FC0101B6FC6D7E809138FE003F495A495A495AA2495AA3131FA2133FA3EAE07FA24948 EB7FC06C021FB5FC00791380007F1300EA3FFCD80FE090C8FC302C7FAA36>31 D36 D<121FEA3F80EA7FC0EAFFE0A313F0A2127F123FEA1F701200A413F013E0A21201A213C0 120313801207EA0F00121EA25A5A12300C1E768A20>44 DI<12 1FEA3F80EA7FC0EAFFE0A5EA7FC0EA3F80EA1F000B0B768A20>I<167CA216FEA34B7EA3 4B7FA34B7FA392380F3FE0A2031F7FED1E1FA2033E7FED3C0FA2037C7FED7807A203F87F EDF003A24A486C7EA20203814B7EA20207814B137FA2020F8192C7123FA24A81021E141F A24A6E7EA2027C81027FB6FCA291B77EA202F0C712030101824A80A20103834A80A24948 6F7EA2010F8391C9123FA24983181F5B4983497E000701E0ED7FFEB500FE021FB512FEA4 47477CC651>65 D69 D78 DI82 D97 D<1740A317C016011607EE3F80ED3FFF49B61200013F5C90B65A485D4815E048 02FCC7FC4848C9FC13F05B485A5B48CAFC123EA2123C127C1278EC3FE0903801FFFC010F EBFF803A701FE03FC090397F0007F001FE6D7ED8F1FC6D7ED8F3F86D7ED8F7F0147FD8E7 E08000EF1680B448EC1FC0A217E0A249EC0FF0A417F8A9007F16F0A36D141F003F16E0A2 001F16C06D143F000F16806C6CEC7F006C6C14FE6C6C495A6C6C495A017F495A90393FE0 3FE0010FB51280010349C7FC9038003FE02D4779C53A>II<49B712FEA490270003F00190C7FC4B6C5A1401 1403A75DA31407A45D140FA392C7FC5CA2141E143EA25CA25CA2495AA21303D90FF8EB03 FF000FB812FEA401E0C8120349150149150090CA127E183EA2000E171EA248170EA30018 830038830030188048170148EF00603B3B80AA39>II<02081340020C13C002045BEC0601EC0703020390 C8FC158715CFA2EC01FEA36E5AABD90FC0EB0FC0D93FF0EB3FF0D9FFFCEBFFFC3B01FC3E FDF0FE3B03F00FFFC03F00076D01801380D80FE0ED1FC06E130048486C48EB0FE0003F17 F0A2496C481307007F17F8A300FF17FCAF007F17F8A3003F17F06D486C130FA2001F17E0 6C6C486CEB1FC04A1380D807F0ED3F8000034901C013003B01FC3EFDF0FE3B00FFFCFCFF FCD93FF0EB3FF0D90FC0EB0FC090C790C8FCAB4A7EA3EC03CFA21587150302077FEC0601 EC0400020C7F02081340365B79C243>II<3B7FFFF83FFFF0A40001D9 E00F13003A007FC007F8013F14E0011F5C02E05BD90FF090C7FC0107130EECF81E6D6C5A 01011338ECFE786D6C5A6E5AA26E5A6E7EA26E7E81141F4A7EEC39FE1471ECF0FF49486C 7E14C001036D7E49486C7EEC000F4980011E6D7E013E1303017E80D801FE80D80FFF9038 07FF80B5D8C01F13FEA42F2B7DAA37>II<1607B500FCEB1FC0EE3FE017F0167FD803FEC712776C5A16E7 EEE1C0EEC00015014B5AA24BC7FC150E153E15F8EC07F090B55A15808115F89038FC1FFE 913801FF809138003FC06F7EED07F0A26F7EA21501A41738A31500EEFC78487EB500FCEB 7FF0A2163FEE1FE0C9EA07802D2D7EAB32>107 D<90B81280A4903B01FC007FC000D900 F06D5AAA1301A95CA31303A35CEA3C0712FE12FF495AA2131F4848C7FCB54A7E6C48013F B512806C5A6C5AEA07E0312B7BAA3B>II< B5D8FE3FB51280A4000190C7387FC0006C486E5AAE90B7FCA449C7123FAF486C4A7EB5D8 FE3FB51280A4312B7EAA37>IIII<01FEEB7FC000FF903803FFF8020F 13FE91393F00FF800278EB3FC02603FFF0EB1FF0C6496D7E4A6D7E4A130391C77F496E7E A2701380A2EF7FC0A318E0173FA9177F18C0A3EFFF80A24C13007F4C5A6E495A6E5C6E49 5A496CEB3FE00278495A91263F01FFC7FC91381FFFFC020713F00200138092C9FCAD487E B512FEA4333F7CAB3D>II<007FB712F0A4903900 3FE007007C90381FC001007815000070167000F01678A3481638A5C71500B3A3EC7FF090 B612F8A42D2A7DA935>IIII121 D<38380FFC393E7FFF80 003FB512F09038F00FF890388003FE496C7E003E7F003C15801238A21210C8FC5C16005C 4A5A4A5AEC1FF049B45A90B5C7FC14FCECFFC09038000FF0EC03FC6E7E6E7EED7F8016C0 ED3FE0A6124000E0EC7FC0A2EDFF806C4913006C5BB4EB0FFC90B55A15E000FB148026E0 7FFCC7FC232D7CAB2D>I126 D E /Fc 1 78 df<1C7EDA3FE04DB47E902601FFFC05077F010701FF DA0FE0011F7F011F02C0D97FF85B017F9127E001FFFE90B5FC90B66C48913901F07FF026 01F01FD9F80F9039FF03C01F2603C0034ADA8F007F4848C69026FC3E0F019E130F48C727 7FFE780313FC48023F496C82003E6E6C486C49903807FE044D6D48ECFFFC007E6E4918F8 6F4C6D13E0B493C7003F16806F6D18006DF201FC6D726D5A6F19706D636C6C051F4A5A6C 6C1A036D505A6C6C6D180F1C1F6C6C50C7FC6C636C7F6C63A26C63137F91C75E94C7FC01 7E19015B5B485A485A48484A15C0001FC8FC001E14011208C8491580A34CEC3F001503A2 4C143EA24B4883614B5A0778814BC812F8017C013E4B8101FF49010F49161000036D4890 263FC1C0EDE0F048D9E1F090267FF380EDF7E0DAF3E090B56EEBFFC048D9FFC092C81400 48DA0001496F5A484949496F5A263C3FFC494916F026700FF890260F8FF06F5A486C48D9 0E03178026C001E090260C01E06FC7FCC7008090C748150E66477DC469>77 D E /Fd 1 116 df115 D E /Fe 1 11 df10 D E /Ff 1 73 df72 D E /Fg 1 111 df<3907801FC0390FE07FF03918 F0E0F83930F1807CEBFB00D860FE133C5B5B00C1147C5B1201A248485BA34A5AEA07C016 60EC03E0A23A0F8007C0C0A2EDC180913803C300D81F0013C7EC01FE000EEB00F8231B7D 9929>110 D E /Fh 2 51 df<13381378EA01F8121F12FF12FE12E01200B3AAB512F8A3 15267BA521>49 D<13FF000313E0000F7F381E07F8383801FC486C7E0078137F00FC7F6C 1480A2141FA2127CC7123F1500A2147EA25C5C495A495AEB078049C7FC131E13385B9038 E00180EA01C0EA03803907000300120C5A003FB5FC5AB55AA319267DA521>I E /Fi 2 91 df<007FB712C0B812FCEFFF806C17E02800F807F00F13F8DBC00113FE0178 90398000FCFF94387C3F8094383E0FC0727E94381E03F0EF1F011800717FA21978A519F8 A24D5B1801EF1E034E5A94383E0FC094387E3F80DDFDFFC7FC933807FFFE92B612F818E0 95C8FC17F0ED87C1EEC0F8923883E0FC177C923881F03EA2923880F81F84EE7C0F717E16 3E93383F03E0041F7FEE0F81EF80F8EE07C0187C933803E07E183E706C7E85706C6C7E18 0794387C03E0057E7F94383E01F8716C7E197C01F86D6D6C7EF13F80007FB66C6CB512E0 B700C015F0836C4B6C14E044447EC33D>82 D<0003B812FE4883A301879039000F803ED9 8FF0011F137ED9BFC0EC007C01FFC7003E5B13FC48484A485A49ECFC034902F85B4B4848 5A5B494948485A0307131F04C090C7FC90C7380F803EA24B485A00064A13FCC8003E5B4B 485AA24B485A0201130703F05B4A48485AA24A4848C8FC5E91380F803E021F5B1500023E 5B1501027C5B9138FC03E014F84948485AA24948485A0107011F156002C090C812F09038 0F803EA249484814014913FC013E5B494848EC03E0A249484814070001130701F049140F 48484848141FA2484848C8EA3FC0000F49157FD9803E15FF484848EC01FBEF07F3003E49 EC0FE7D87E01ED7F87007C49903903FF0780BAFCA36C18003C447DC345>90 D E /Fj 25 112 df<12F0B3B3B2043674811C>12 D<151E153E157C15F8EC01F0EC03E0 1407EC0FC0EC1F8015005C147E5CA2495A495AA2495AA2495AA2495AA249C7FCA2137EA2 13FE5B12015BA212035BA21207A25B120FA35B121FA45B123FA548C8FCA912FEB3A8127F A96C7EA5121F7FA4120F7FA312077FA21203A27F1201A27F12007F137EA27FA26D7EA26D 7EA26D7EA26D7EA26D7E6D7EA2147E80801580EC0FC0EC07E01403EC01F0EC00F8157C15 3E151E1F94718232>16 D<12F07E127C7E7E6C7E7F6C7E6C7E12017F6C7E137EA27F6D7E A26D7EA26D7EA26D7EA26D7EA26D7EA280147E147F80A21580141FA215C0A2140F15E0A3 140715F0A4140315F8A5EC01FCA9EC00FEB3A8EC01FCA9EC03F8A515F01407A415E0140F A315C0141FA21580A2143F1500A25C147E14FE5CA2495AA2495AA2495AA2495AA2495AA2 49C7FC137EA25B485A5B1203485A485A5B48C8FC123E5A5A5A1F947D8232>I<160F161F 163E167C16F8ED01F0ED03E0ED07C0150FED1F801600153E157E5D4A5A5D14034A5A5D14 0F4A5AA24AC7FC143E147E5CA2495AA2495AA2495AA2130F5CA2495AA2133F91C8FCA25B 137E13FEA25B1201A25B1203A35B1207A35B120FA35BA2121FA45B123FA690C9FC5AAA12 FEB3AC127FAA7E7FA6121F7FA4120FA27FA312077FA312037FA312017FA212007FA2137E 137F7FA280131FA26D7EA2801307A26D7EA26D7EA26D7EA2147E143E143F6E7EA26E7E14 07816E7E1401816E7E157E153E811680ED0FC01507ED03E0ED01F0ED00F8167C163E161F 160F28C66E823D>I<12F07E127C7E7E6C7E6C7E6C7E7F6C7E1200137C137E7F6D7E130F 806D7E1303806D7EA26D7E147C147E80A26E7EA26E7EA26E7EA2811403A26E7EA2811400 A281157E157FA2811680A2151F16C0A3150F16E0A3150716F0A31503A216F8A4150116FC A6150016FEAA167FB3AC16FEAA16FC1501A616F81503A416F0A21507A316E0150FA316C0 151FA31680153FA216005DA2157E15FE5DA214015DA24A5AA214075DA24A5AA24A5AA24A C7FCA2147E147C14FC495AA2495A5C1307495A5C131F49C8FC137E137C5B1201485A5B48 5A485A48C9FC123E5A5A5A28C67E823D>I32 D<12F07E127C7E123F7E6C7E6C7E7F6C 7E12017F6C7E137EA27F6D7EA26D7E801307806D7E130180130080147E147FA26E7EA26E 7EA26E7EA2811407A26E7EA2811401A281140081A28182A36F7EA36F7EA46F7EA4821507 A382A21503A382A21501A482A381A31780A6167FA217C0AC163F17E0B3B3A217C0167FAC 1780A216FFA61700A35DA35EA41503A25EA31507A25EA3150F5EA44B5AA44B5AA34B5AA3 93C7FC5DA25D14015DA214035DA24A5AA2140F5DA24A5AA24A5AA24AC8FCA2147E14FE5C 13015C1303495A5C130F5C495AA249C9FC137EA25B485A5B1203485A5B485A48CAFC5A12 3E5A5A5A2BF87E8242>I40 D<12F012FCB4FC7FEA3FE06C7EEA0FFCEA03FE6C7E6C7F6D7E6D7EA26D7E6D7EA26D7E6D 7EA2807FA26D7FA46E7EB3B3B3B281143FA46E7EA2140F8114078114038114016E7E8215 7F6F7E6F7E6F7E6F7E6F7EED00FEEE7F80EE3FC0160FA2163FEE7F80EEFE00ED03FC4B5A 4B5A4B5A4B5A4B5A15FF93C7FC4A5A14035D14075D140F5D141FA24A5AA4147F5DB3B3B3 B24A5AA44990C8FCA25B5CA2495A495AA2495A495AA2495A495A4890C9FC485AEA0FFCEA 1FF0485AEAFF8090CAFC12FC12F02AF8748243>I<177C17FCEE01F8A2EE03F0EE07E0EE 0FC0A2EE1F80163FEE7F00167E16FE4B5A5E15034B5AA24B5AA24B5A153F5E157F93C7FC 5D5D14015D14035D14075D140FA24A5AA24A5AA34A5AA24AC8FCA3495AA213035CA21307 5CA2130FA25C131FA25C133FA35C137FA4495AA44890C9FCA45A5BA41207A25BA4120FA3 5BA3121FA55BA3123FA75BA3127FAD5BA212FFB3A62E95688149>48 D<12F87E127EA27E6C7E6C7EA26C7E7F6C7E12017F6C7E137E137F6D7EA26D7EA26D7E80 1307801303801301801300808081143F81A26E7EA26E7EA36E7EA26E7EA36E7EA28180A2 82157FA282A2153F82A2151F82A3150F82A46F7EA46F7EA48281A41780A281A417C0A316 7FA317E0A5163FA317F0A7161FA317F8AD160FA217FCB3A62E957E8149>I64 DIII80 D<0078EF078000FCEF0FC0B3B3B3A46C171F007E1880A2007F173F6C1800A26D5E001F17 7E6D16FE6C6C4B5A6D15036C6C4B5A6C6C4B5A6C6C4B5A6C6C6CEC7FC06D6C4A5AD93FF8 010790C7FC6DB4EB3FFE6D90B55A010315F06D5D6D6C1480020F01FCC8FC020113E03A53 7B7F45>83 D<913801FFE0020F13FC027FEBFF8049B612E04981010F15FC499038003FFE D93FF8EB07FFD97FC001007F49486E7E4848C8EA1FE048486F7E48486F7E48486F7E4915 0148486F7E49167E003F177F90CA7EA2481880007E171FA200FE18C048170FB3B3B3A400 78EF07803A537B7F45>I<150E151F5DA24B7EA34B7EA34A7FA34A7F15F3A202077F15E1 A2020F7F15C0A2021F7FED807EA2023F137F4B7EA24A80027E131FA202FE804A130FA201 01814A1307A20103814A1303A20107814A1301010F814A1300A2011F814A147EA2013F15 7F91C87EA24982017E151FA201FE8249150FA2000183491507A2000383491503A2000783 491501A2000F83491500A2001F8349167EA2003F177F90CA7EA2481880007E171FA200FE 18C048170FA24817070078EF03803A537B7F45>86 D<0078EF038000F8EF07C06C170FA2 6C171F007E1880A2007F173F6C1800A26D5E001F177EA26D16FE000F5FA26D150100075F A26D150300035FA26D150700015FA26D150F00005FA26D151F017E5EA2017F153F6D93C7 FCA26E5C011F157EA26E14FE010F5DA26E130101075D6E130301035DA26E130701015DA2 6E130F01005DA26E131F027E5CA2027F133F6E91C8FCA26F5A021F137EA2EDC0FE020F5B A215E102075BA215F302035BA215FF6E5BA36E5BA36F5AA36FC9FCA281150E3A537B7F45 >II94 D<007C1A0F6300FEF23F80A26C1A7FA26C1B006D61A2003F626D1801A2001F62 6D1803A2000F626D1807A20007626D180FA20003626D181FA20001626D183FA20000626D 187FA26D6C4DC7FCA2013F606E1601A2011F606E1603A2010F606E1607A20107606E160F A20103606E161FA20101606E163FA20100606E167FA26E94C8FC6F5DA2023F5E6F1401A2 021F5E6F1403A2020F5E6F1407A202075E6F140FA202035E6F141FA202015E6F143FA202 005E6F147FA26F92C9FC705BA2033F5CEEC001A2031F5CEEE003A26F6C485AA203075CEE F80FA203035CEEFC1FA203015CEEFE3FA203005CEEFF7FA2047F90CAFC5FA2705AA3705A A3705AA3705AA2705A160151747B7F5C>I110 D<12F012FE6C7E13E0EA3FF0EA0F FCEA03FE6C7E6C6C7E6D7E6D7EA26D7E1307A2801303B3B3A76D7EA28013008080816E7E 6E7E6E7E6E7EEC01FC6EB4FCED3FC0150FA2153FEDFF00EC01FCEC07F84A5A4A5A4A5A4A 5A92C7FC5C5C13015CA2495AB3B3A713075CA2130F495AA2495A495A4848C8FC485AEA0F FCEA3FF0B45A138048C9FC12F02294768237>I E /Fk 6 111 df<121C127FEAFF80A213 C0A3127F121C1200A412011380A2120313005A1206120E5A5A5A12600A19798817>59 D<150C151E153EA2153C157CA2157815F8A215F01401A215E01403A215C01407A2158014 0FA215005CA2141E143EA2143C147CA2147814F8A25C1301A25C1303A2495AA25C130FA2 91C7FC5BA2131E133EA2133C137CA2137813F8A25B1201A25B1203A25B1207A25B120FA2 90C8FC5AA2121E123EA2123C127CA2127812F8A25A12601F537BBD2A>61 D<9339FF8001C0030FEBE003037F9038F80780913A01FF807E0F913A07FC001F1FDA1FE0 EB07BF4A48ECFF0002FFC77E494880495A49486E5A495A4948157E495A4948157C13FF48 90C9FC5B000317785B1207485A1870485A95C7FCA2485AA3127F5BA312FF5BA41707A25F 170EA2007F161E171C173C1738003F16786D5D4C5A001F4B5A6C6C4A5A6D4AC8FC000715 1E6C6C5CD801FE14F86C6CEB03F090393FE01FC0010FB5C9FC010313FC9038007FC03A3D 7CBA3B>67 D102 DI110 D E /Fl 7 114 df14 D<190F6161A24F7EA219FF60A260A26060A26086183D183C6018F8604D5AA24D5A170760 4D487FA2051E137F173E173C5FA25F16015F4C5A864C5A040F143F94C7FC5E161E5EA25E 16F85E4B4881A24B48141F15075E4BC8FC93B7FC5D5DA20378C8EA1FFCA25D0201160F5D 14035D4A5A140F92C9FC5C021E835CA24A160714F85C1301495A1307130F011F84D97FF0 5E2603FFFC047F13C0007FD9FFC0023FB61280B619C0A26C1B8052567CD55A>65 D<942601FFC014E0053F13F84CB500FE1301040F9139FF8003C0043F9039003FC007DCFF F0903807E00F03030180903801F01FDB0FFEC838F83F80DB1FF8ED7C7FDB7FF0ED3EFFDB FFC0810203496F13004A90C9FCDA0FFC824A5A4A485F4A4816034A5A495B49725A4990CA FC495A5C011F61495A137F5C01FF61485B5C5A63485BA24890CBFC97C8FCA2485AA2123F 5BA3127F5BA312FF5BA55BA21A38A31A781A70A21AF062007F1801626D170362003F1807 4FC8FC6D171E121F616C6C5F616C6C4C5A6C6C4C5A4E5A6C6D4BC9FC6C6D153E6D6C5DD9 3FF84A5A6D6CEC07E0902607FF80EB3F806D9026F001FFCAFC010090B512FC023F14E002 0714809126007FF8CBFC535879D455>67 D<0207B500C0037FB512E04A6E92B6FCA21EC0 DA00036D0303EBF8006F050013C07170C7FC4B183E04DF173CEE9FFC048F173803076D16 781C701607834B6C17F0725D150E82031E6E1401705F031C80A2033C017F1503725D0338 133F840378011F15077292C8FC1570170F03F06E5C0507150E4B80A202016E151E73131C 4B7F850203183C7115384B81187F02077013781B7092C8123F854A031F14F0735B020E15 0F85021E170106075C021C16FF84023C1783630238811AC302786F13C708E7C9FC147019 7F02F017FF735A5CA20101171F624A160FA21303735A13071903130FD93FE0705A3801FF FC007FEBFFE0B66C1500626C4A166063527BD160>78 D<0207B812E04A17FE747E1BE0DA 00079026C0000113F80301499038003FFCF20FFE4B707E8694C86C13801CC0864B18E05E A3150F5EA3031F5E5EA3033F4C13C05E1C8062037F18005E505A6303FF4C5A4C4B5A505A 505A4A4C5B4C4A90C7FCF10FFCF17FF84A923803FFE093B7128007FCC8FC4A16E093CCFC 5DA2140FA25DA2141FA25DA2143FA25DA2147FA25DA214FFA25DA25BA25DA25BA292CDFC A25BA2013F7F007FB612C0B77EA26C5D53527BD14D>80 D<90BCFC1C805AA29126F00001 9026C0000F13004890C74A130101FC4A6F7E01F085484893C87E5B49191E000F5D90C85B A2121E160F001C4C151C123CA20038151F00785E00701A3C1B3800F0153F485EA2481A30 C9007F93C7FC5FA316FF5FA35D5FA35D94CBFCA35D5EA3150F5EA3151F5EA3153F5EA315 7F5EA315FF5EA35C5EA35C93CCFCA25C5C027F13E0000FB712FE4882A26C5E51517DD046 >84 D<037F1303913A03FFC00780020FEBF00F913A3FC1F81F009139FF007C3FD901FCEB 3C7FD907F86D5A4948EB0EFE4948130F49481307137F4A5C49C712035A484814075F1207 5B000F150F495D121FA2003F151F495DA3007F153F495DA3167F48485DA316FF94C7FC5B A2007F5C5E1503A2003F14076D495A151F001F143F6C6C137F913801F7F83907F003E739 03FC0FC7C6B5120FD93FFC5BEB0FE090C7FC151F5EA3153F5EA3157F5EA315FF93C8FCA2 5C02077F0103B6FC4981A294C7FC314B7CB335>113 D E /Fm 10 112 df10 D<130C1338137013E0EA01C0EA0380A2EA07005A120E121E121C123CA2 12381278A412F85AA97E1278A41238123CA2121C121E120E120F7EEA0380A2EA01C0EA00 E013701338130C0E317AA418>40 D<12C012707E7E7E7EA2EA038013C0120113E0120013 F0A213701378A4137C133CA9137C1378A4137013F0A213E0120113C012031380EA0700A2 120E5A5A5A12C00E317CA418>I<1438B2B712FEA3C70038C7FCB227277C9F2F>43 D<137013F0120712FF12F91201B3A7487EB512E0A213217AA01E>49 DI<13FF000713C0380F03E0381C00F014F800 3E13FC147CA2001C13FCC7FC14F8A2EB01F0EB03E0EB0FC03801FF00A2380003E0EB00F0 1478147C143E143F1220127012F8A248133E0060137E147C003813F8381F03F03807FFC0 C6130018227DA01E>I<3801F83F3907FEFF80381E07E3391C038300383801C000787FA5 00385B6C485AEA1E07D83FFEC7FCEA31F80030C8FC1238A2383FFF806C13F06C7F487F38 38007E0078131E487FA50078131E6C5B381F81F83807FFE0C690C7FC19227D951E>103 D108 D<137E3803FFC0380781E0 380F00F0001E137848133CA248131EA200F8131FA70078131E007C133E003C133C003E13 7C6C13F8380F81F03803FFC0C6130018187D961E>111 D E /Fn 12 122 df15 D<3903C001C0007FEB03E0A2120F 90388007C0A2EC0F80A2391F001F00A2143E5C003E5B495A495A495A4848C7FC133E13F8 EA7FE048C8FC12F81B167D951F>23 D<127812FCA212FEA2127E1206A3120CA2121C1218 12301260124007107A8513>59 D<140C141C143C1438A21478147014F014E0130114C0A2 1303148013071400A25B130E131E131CA2133C13381378137013F05BA212015B12035BA2 120790C7FC5A120EA2121E121C123C123812781270A212F05AA216317CA420>61 D<91380FF0039138FFFE06903903F8070E90390FC0019E013FC712FE017C147C5B484814 3C485A48481438485A121F90C8FC481530123E007E1500A25AA516C0A2ED0180A2007CEC 0300A2003C1406003E5C6C5C6C6C13706C6C5B3903F807802600FFFEC7FCEB1FF028247C A22C>67 D79 D<137CEA0FF8A21200A2485AA4485AA43807 C3F8EBCFFEEBDC1FEBF00FD80FE0138013C01380A2391F001F00A3143E123EA2EC7C1015 1848143014F81560A248EB78C0EC3F800070EB1F001D247DA224>104 D<1338137CA2137813701300A7EA0780EA1FE01239EA31F0126112C1A2EAC3E01203EA07 C0A3EA0F80A2EA1F041306130C123E1318A2EA1E70EA0FE0EA07800F237DA116>I<137C EA0FF8A21200A2485AA4485AA43807C00FEC3F8014E1EBC183380F8307EB860F139C9038 B00700D81FE0C7FC13F813FFEB3F80383E07C0800103138015C0397C07C180A21500EB03 C300F813C6EB01FC387000781A247DA221>107 D<001F13FE393F83FF803933C707C038 63EC03D843F813E0EAC3F013E0A23907C007C0A3EC0F80EA0F80A2EC1F041506D81F0013 0C143E1518A2003EEB1E30EC0FE0001CEB07C01F177D9526>110 DI121 D E /Fo 3 49 df0 D<136013F0A30060136000F013F0EAFC63EAFE67383FFFC03807FE00EA01F8EA07FE383F FFC038FE67F0EAFC63EAF0F00060136000001300A3136014157B9620>3 D48 D E /Fp 41 123 df39 D<12F07E127E7E6C7E6C7E6C7E7F6C7E6C7EA26C7E13 7F80133F806D7EA26D7EA26D7EA2801303A2801301A280A36D1380A415C0147FA515E0B2 15C0A514FF1580A4491300A35CA213035CA213075CA2495AA2495AA2495A5C137F91C7FC 13FE485AA2485A485A5B485A485A48C8FC127E12F85A1B647ACA2C>41 D45 DI49 DI< ECFFE0010713FE011FEBFFC0017F14F0D9FF807F3A03FC003FFE01F06D7E48487FD80FF8 158013FE486C15C081A3148014005D7E491580EA03FCD800F049130090C7FC4B5A5E4B5A 4B5A4A5B020F1380902607FFFEC7FC15F815FF16C090C713F0ED3FFC6F7E6F7E17806F13 C017E0A26F13F0A217F8A2EA0FE0EA3FF8487EA2487EA317F0A25D4915E0127F494913C0 EA3FE049491380D81FF0491300D80FFEEBFFFE0003B612F86C5D6C6C14C0010F49C7FC01 0113E02D427BC038>I<163F5E5EA25D5D5D5DA25D5D5D92B5FCA2EC01F71403EC07E7EC 0FC71587EC1F07143F147E14FC14F8EB01F01303EB07E0EB0FC01480EB1F005B137E5B5B 485A1203485A485A5B48C7FC5A127E5AB91280A5C8000F90C7FCAC027FB61280A531417D C038>I<0007150301E0143F01FFEB07FF91B6FC5E5E5E5E5E5E93C7FC5D15F015C002FC C8FC01C0C9FCA9EC3FF001C1B5FC01C714C001DF14F09039FFE03FFC49C66C7E01F86D7E 496D1380496D13C05B6C4815E0C87E17F0A317F8A4EA0F80EA3FE0487E487EA417F0A249 5B007F16E013C090C714C06C5C6D4913806C6C491300D80FF0495AD807FEEBFFFC6CB612 F0C615C06D91C7FC010F13FC010113C02D427BC038>I<4AB47E021F13F0027F13FC49B6 FC01079038807F8090390FFC001FD93FF014C04948137F4948EBFFE048495A5A1400485A 120FA248486D13C0EE7F80EE1E00003F92C7FCA25B127FA2EC07FC91381FFF8000FF017F 13E091B512F89039F9F01FFC9039FBC007FE9039FF8003FF17804A6C13C05B6F13E0A249 15F0A317F85BA4127FA5123FA217F07F121FA2000F4A13E0A26C6C15C06D4913806C0180 14006C6D485A6C9038E01FFC6DB55A011F5C010714C0010191C7FC9038003FF02D427BC0 38>I58 D67 D72 D76 D78 D80 D83 D<003FBA12E0A59026FE000FEBC003D87FF09338007F F049173F0180170F190790C7FC007E1803A3007C1801A400FC19F8481800A5C81700B3B3 A20107B87EA545437CC24E>II<903801FFE0011F13FE017F6D7E48B612E0489038007FF8D807FCEB1FFC 6D6D7E486C6D7EA26F7FA36F7F6C5A6C5AEA00F090C7FCA40203B5FC91B6FC1307013F13 F19038FFFC01000313E0000F1380381FFE00485A5B127F5B12FF5BA35DA26D5B6C6C5B4B 13F0D83FFE013EEBFFC03A1FFF80FC7F0007EBFFF86CECE01FC66CEB8007D90FFCC9FC32 2F7DAD36>97 DII101 DIII<137C48B4FC4813804813C0A24813E0A56C13C0A2 6C13806C1300EA007C90C7FCAAEB7FC0EA7FFFA512037EB3AFB6FCA518467CC520>I107 DI<90277F8007FEEC0FFCB590 263FFFC090387FFF8092B5D8F001B512E002816E4880913D87F01FFC0FE03FF8913D8FC0 0FFE1F801FFC0003D99F009026FF3E007F6C019E6D013C130F02BC5D02F86D496D7EA24A 5D4A5DA34A5DB3A7B60081B60003B512FEA5572D7CAC5E>I<90397F8007FEB590383FFF 8092B512E0028114F8913987F03FFC91388F801F000390399F000FFE6C139E14BC02F86D 7E5CA25CA35CB3A7B60083B512FEA5372D7CAC3E>II<90397FC00FF8B590B57E02C314E002CF14F89139FFC03FFC92 38001FFE000301FCEB07FF6C496D13804A15C04A6D13E05C7013F0A2EF7FF8A4EF3FFCAC EF7FF8A318F017FFA24C13E06E15C06E5B6E4913806E4913006E495A9139FFC07FFC02CF B512F002C714C002C191C7FC9138C01FF092C9FCADB67EA536407DAC3E>I<90387F807F B53881FFE0028313F0028F13F8ED8FFC91389F1FFE000313BE6C13BC14F8A214F0ED0FFC 9138E007F8ED01E092C7FCA35CB3A5B612E0A5272D7DAC2E>114 D<90391FFC038090B5128F000314FF120F381FF007383FC00049137F48C7123F127E00FE 141FA2150F7EA27F01E090C7FC13FE387FFFF014FF6C14C015F06C14FC6C800003806C15 806C7E010F14C0EB003F020313E0140000F8143FA26C141F150FA27EA26C15C0151F7F6D EB3F806DEB7F009038FC03FE90B55A00FC5CD8F03F13E026E007FEC7FC232F7CAD2C>I< EB03E0A61307A3130FA3131FA2133F137F13FF5A5A001F90B51280B7FCA4C601E0C7FCB3 A3ED03E0AA9138F007C0137F150FD93FF8138090391FFC1F0090380FFFFE6D5B01015B90 38003FC023407EBE2C>III120 DI<001FB71280A49026FE001F130001 F0495A5B49495A49495A4848485BA24A5B4A5B003E495BA24A90C7FC4A5A4A5AC7FC4A5A 495B495BA2495B499038800F80491300A2495A4948131F49481400A2485B485B48495BA2 48495B4890C75A48485B15074848EB3FFEB7FCA4292C7DAB32>I E /Fq 7 113 df0 D<123C127E12FFA4127E123C08087A9414> I<130C131EA50060EB01800078130739FC0C0FC0007FEB3F80393F8C7F003807CCF83801 FFE038007F80011EC7FCEB7F803801FFE03807CCF8383F8C7F397F0C3F8000FCEB0FC039 781E078000601301000090C7FCA5130C1A1D7C9E23>3 D<137813FE1201A3120313FCA3 EA07F8A313F0A2EA0FE0A313C0121F1380A3EA3F00A3123E127E127CA35AA35A0F227EA4 13>48 D<91B512C01307131FD97F80C7FC01FCC8FCEA01F0EA03C0485A48C9FC120E121E 5A123812781270A212F05AA3B712C0A300E0C9FCA37E1270A212781238123C7E120E120F 6C7E6C7EEA01F0EA00FCEB7F80011FB512C013071300222B7AA52F>50 D<12E0B3B3B3AD034378B114>106 D<18031807180F180E181E181C183C183818781870 18F018E01701EF03C01880170718005F170E171E171C173C17381778177017F05F16015F 16035F160701C092C7FC486C5C0007151E486C141C003F153CD873F8143800E31578D801 FC147016F06C6C5C1501017F5C1503D93F805B1507D91FC090C8FC5D90380FE00E151E90 3807F01C153C903803F83815786D6C5A5DEB00FF5D147F5D143F92C9FC80141E140E3842 7C823B>112 D E /Fr 7 122 df83 D98 DI<17FF040713E0041F13F04C13F893387FC1FC9338FF83FE4B13 074B130F171FED07FEA2150F18FC18F8031FEB0FF0EF07E094C7FCA2153F5EA5157F5E01 0FB712E018F05BA26D16E090C701F0C7FCA45C5EA45C5EA55C5EA45C93C8FCA55C5DA55D 143FA35DA3147F5DA3D807C05BEA1FE0383FF0FF486C5BA25DEAFFF901F190C9FC5C495A 6C485AEB0FF06CB45A6C5B6C5BD801FCCAFC375A7AC539>102 D<913803FF80021F13F0 027F13FC49B57E4948C67ED907F0EB3F80494814C04948137F4A13FF133FA2017F491380 A26F130002E0137E02FC1338DAFFE0C7FC15FE6F7E16E06D80826D806D8013037FD9001F 7F1400D807C0130FD80FF01303001F80486C5C007F1400A24B5A485A5E6C48130349495A 90C7485A6C6CEB3FC03A1FF801FF806CB6C7FC6C14FC000114F0D8001F90C8FC2A2E7BAC 35>115 D120 DI E /Fs 27 122 df15 D23 D<160E486C143F487E491580120748C8121F120E001EED0F00121C123C0038130E141E00 78013E130E1270A2161E00F049131C5A163C027813386C15784A5B1501496C485AD8F807 495A397C0FFC0F007FB65A6C013F90C7FC01FE13FC391FF81FF83907E007E0291F7F9D2C >33 D<123C127EB4FCA21380A2127F123D1201A312031300A25A1206120E5A5A5A126009 157A8714>59 D<15C0140114031580A214071500A25C140EA2141E141CA2143C14381478 1470A214F05CA213015CA213035C130791C7FCA25B130EA2131E131CA2133C1338A21378 137013F05BA212015BA212035BA2120790C8FC5A120EA2121E121CA2123C1238A2127812 70A212F05AA21A437CB123>61 D<12E012F812FEEA3F80EA0FE0EA03F8EA00FEEB3F80EB 0FE0EB03F8EB00FC143FEC0FC0EC07F0EC01FCEC007FED1FC0ED07F0ED01FCED007FEE1F C01607161FEE7F00ED01FCED07F0ED1FC0037FC7FCEC01FCEC07F0EC0FC0023FC8FC14FC EB03F8EB0FE0EB3F8001FEC9FCEA03F8EA0FE0EA3F8000FECAFC12F812E02A2B7AA537> I<013FB6FC17C017F0903A00FE0007F84AEB01FCEE00FE1301177E4A147FA21303177E5C 17FE010715FCEE01F84AEB03F0EE07E0010FEC1FC0EE7F009138C003FC91B55A4914FE91 39C0003F804AEB0FC017E0013F140717F091C71203A25BA2017E1407A201FE15E0160F49 EC1FC0A20001ED3F80EEFF0049495A0003EC0FF8B75A16C003FCC7FC302D7CAC35>66 D<92387FC003913903FFF807021FEBFE0F91397FC03F1F903A01FE0007BFD907F8EB03FE D90FE01301495A49481300017EC812FC49157C1201485A48481578120F5B485A17704848 1500A2127F90CAFCA35A5AA5EE038016071700A2007E5D160E007F151E6C5D6D5C6C6C5C 000F4A5AD807F0EB07C06C6CEB1F806CB401FEC7FC39007FFFF8011F13E0D903FEC8FC30 2F7CAD32>I<013FB7FCA3D900FEC7FC4A143F171F0101151E170E5CA21303A25C167001 07ECF01EEEE01C4A14001501130F4B5AECC00791B5FC5B5EEC800F1507133F93C7FC1400 A2495B150E017E90C8FCA213FEA25BA21201A25B1203B512F8A25C302D7DAC2D>70 D78 DI<913807F00691383FFE0E91B5129E903903F80FFE903807E00390390FC001 FC90381F800049C7FC013E147C491478A313FC1670A216007F7F6D7E14F86DB47E15F06D 13FC01077F01007F141F02011380EC003F151FA2150FA2121CA3151F003C1500A2153E00 3E147E007E5C007F495A9038C003F0397BF00FE000F1B5128026E07FFEC7FC38C00FF027 2F7CAD2B>83 D<140FEC3F80EC79C014F1EB01E1EB03C1A2EB0781148390380F0380131F A2EB3E071500A2495A140E141EEBF81C143C5C00011370EBF0F0EBF1E05CEA03F3495A01 EFC7FC13FEA25B485A5B5B5BA2120F121F123F12FB00F3EB01C000E31303000113079038 E00F00143E3800F0F8EB7FE0EB1F801A307FAE1D>96 D<151FEC03FF5CA2EC003F153EA2 157EA2157CA215FCA215F8A21401EB07E190381FF9F0EB7C3DEBF81F3801F00F3903E007 E0EA07C0120FEA1F8015C0EA3F00140F5A007E1480A2141F12FE481400A2EC3F06150E14 3E5AEC7E1E007CEBFE1CEB01FC0103133C393E07BE38391F0F1E78390FFC0FF03903F003 C0202F7DAD24>100 D<157CEC01FE913807C780EC0F87151FEC1F3FA2143F023E130015 1E92C7FCA2147E147CA414FC90383FFFF85BA2D900F8C7FCA213015CA413035CA413075C A5130F5CA4131F91C8FCA4133EA2121CEA7E3CEAFE7CA21378EAFCF8485AEA71E0EA3FC0 6CC9FC213D7CAE22>102 D<147E903801FF80903807C3CE90380F80FEEB1F00013E137E 5B13FC485A157C485A15FC12074913F8A21401120F01C013F0A21403A215E01407000713 0FA20003EB1FC0EBE03F3801F0FF38007FCF90381F0F801300141FA21500A2003C5B007E 133E00FE137E147C5C38FC03F038F807C0D87FFFC7FCEA0FFC1F2C7F9D22>I105 D<15E0EC03F01407A315E0EC03C091C7FC A814FCEB03FE9038078F80EB0E07131E013C13C01338EB700F158013F013E0EBC01F1300 1500A25CA2143EA2147EA2147CA214FCA25CA21301A25CA21303A25CA2EA3C07007E5BEA FE0F5C49C7FCEAFC3EEAF0F8EA7FF0EA1F801C3B81AC1D>I<131FEA03FF5AA2EA003F13 3EA2137EA2137CA213FCA25BA2120115F89038F003FCEC0F0E0003EB1C3EEC387E9038E0 70FE14E03807E1C09038E380FC9038C7007001CE1300EA0FDC13F8A2EBFF80381F9FE0EB 83F0EB01F8130048140C151C123EA2007E143C1538007C13F0ECF87012FCEC78E048EB3F C00070EB0F801F2F7DAD25>I<3907C007E0391FE03FF8391CF8783E393879E01E39787B C01F38707F801400EAF0FE485AA25B00C15C0001143E5BA20003147E157C5B15FC0007EC F8181638EBC00115F0000F1578913803E070018014F016E0001F903801E1C015E390C7EA FF00000E143E251F7E9D2B>110 DI<90387C01F83901FE07FE9038CF8F0F3A0387BC078002F813C0380707F09138 E003E0380F0FC0120E1480A2D80C1F130712001400A249130F16C0133EA2017EEB1F80A2 017C14005D01FC133E5D6D13FC4A5A3901FF03E0EC87C0D9F3FFC7FCEBF0FC000390C8FC A25BA21207A25BA2120FEAFFFEA25B232B829D24>I115 D<130E131FA25BA2133EA2137EA2137CA213FCA2B512F8 A33801F8005BA21203A25BA21207A25BA2120FA25BA2001F13301470130014F014E01301 001E13C0EB0380381F0700EA0F1EEA07FCEA01F0152B7EA919>I118 DI121 D E /Ft 35 123 df12 D45 DI<151E153F 15FF1403140F147F0107B5FC0003B6FCB7FCA314BFEBF83FEAFC00C7FCB3B3B3A4007FB8 1280A6314E76CD45>49 DI<9138 0FFFC091B512FE0107ECFFC0011F15F04915FC90267FF8077F9026FFC0007F4848C76C13 8048486E13C0486C6E13E0486C6C15F08082486D15F8A380A25CA26C5D4A15F06C5B6C90 C7FCC64816E090C85A18C04C138018004C5A4B5B4B5B030F5B037F13C0027FB55A04FCC7 FC16F016FEEEFFC0DA000713F0030113FC6F6CB4FC7013807013C018E07013F018F818FC A27013FEA3D801E016FFEA0FFC487E487E487FA2B57EA318FEA25E18FC6C5B18F891C75A 6C4816F0D81FF84A13E06D4A13C06CB449B512806CD9F00714006C90B65AC616F8013F15 E0010F1580010102FCC7FCD9001F13C0384F7ACD45>I<173F4D7E17FF5E5EA25E5E5E5E A25E93B5FC5D5DA25D5DED1FDFED3F9FED7F1FA215FEEC01FCEC03F8EC07F0A2EC0FE0EC 1FC0EC3F80EC7F00A214FE495A495A495A5C130F495A495A49C7FC13FEA2485A485A485A 485AA2485A485A48C8FC12FEBA12F0A6C9003FEB8000AE0207B712F0A63C4E7CCD45>I< D80380ED0380D807F0151F01FEEC01FFD9FFF0133F91B7FC18005F5F5F5F5F5F5F4CC7FC 5E16F016C04BC8FC15F001F0CAFCAA913807FFC0023F13FC01F1B6FC01F315C090B712F0 DAFC037FDAC0007F91C7EA3FFE496E7E491680496E13C04916E06C5AC914F082A218F8A3 18FCA3EA07E0EA1FF8487E487EA2B5FCA318F8A3494A13F0A26C5A4916E0D83FE04A13C0 13806C6C4A138001F04A13006C6C4A5A6CB401035B6CD9E01F5B6C90B65A6C16C0013F92 C7FC010F14FC010314E09026003FFEC8FC364F79CD45>I<923807FF80037F13F00203B5 12FC021F14FF027F158091B5000113C001039039F8003FE04901E0130F490180EB3FF049 90C712FF49485B494815F849485B5A5C5A485BA2486F13F05C486F13E0EF3F8094C7FC5A A25C5AA2ED3FF80281B57E028314E0B5008714F8028F80DA9FC07F9139BF001FFF02FC6D 13807013C04A6D13E04A15F018F84A7F18FCA24A15FEA44A15FFA37EA67EA46C17FE80A2 6C17FCA26C4B13F8806C17F06C6D15E06C5D6E4913C0D97FFE4913806D6C6CB512006D90 B512FC01075D6D5D010015C0021F49C7FC020313E0384F7ACD45>I58 D76 D78 D80 D<91383FFFC00107B512FC 011FECFF80017F15E090B77E48D9E0077F48D9800013FE486DEB3FFF82486D81707F8284 A2707F6C5BA26C5BC648C7FC90C8FCA44BB5FC4AB6FC143F49B7FC130F013FEBFE0390B5 12E0000314004813FC4813F0485B485B5C4890C7FCA2B5FC5BA35EA27F6C5D5E6E497F6C 6D017E13FE6C6D4848EBFFF86C9026FC0FF814FC6C90B5487E0001EDC03F6C6CEC800F01 1F9026FE000313F8010101E090C8FC3E387CB643>97 DI<913803FFF0023FEBFF8091B612 E0010315F8010F81499038C01FFE903A7FFE0007FF4948491380485B48494913C05C5A48 5BA2485B7013805A70130048ED01FC91CAFCA3B5FCAD7E80A27EA2EF07E06C7F170F6C6D 15C06C161F6E15806C6D143F6C6DEC7F006C6D14FE903A7FFF8003FC6D9038F01FF8010F 90B55A6D5D01011580D9003F49C7FC020313E033387BB63D>I<943801FFC00407B5FCA6 EE001F1707B3A3913803FFC0023F13FC49B6FC010715C74915F7013FD9E03FB5FC49EB00 07D9FFFC130148496D7E484980484980484980A25A5C5AA25A91C8FCA3B5FCAD7EA46C7F A27EA26C6D5CA26C6D5C6C5E6C6D49B5FC6C6D4914F0D97FFE010FECFFC0903A3FFF807F EF6D90B512CF0107158F6DECFE0FD9007F13F00207018049C7FC42547BD24C>I<913803 FFE0023F13FE91B612C0010381010F15F84901C07F903A7FFE001FFE49486D7E48496D13 8048496D13C0484915E048814A15F048815C48EE7FF8A25A91C8FC18FC173FB5FCA391B7 FCA418F891CAFCA57EA3807EA218786C6D15FC17016C7F6CEE03F86C6D14076E15F06C6D EC1FE06C6C6C143F6D6C6CEBFFC06DD9F0071300010790B55A010115F86D6C14E0021F14 80020001F8C7FC36387CB63F>II<91261FFF 80EB3FC049B539F803FFE00107DAFE0F13F0011FDAFFBF13F8017F92B512FC9026FFFC03 14CF48D9F000EBFC1F4801C0013F130F4816FE4849D91FFF13F8F007F04890C76CEB81E0 F08000A24883A86C5FA36C6D4990C7FCA26C6D495A6C5E6C01F0EBFFF86CD9FC035B4890 B65A1780D803E74AC8FC01E114F82607E01F138091CBFC120FA37FA27F13FE90B712C06C 16FCEFFF8018E06C17F8846C836C836D178048B912C012074818E04848C8FCD83FF8150F 4848030313F01700485A187FA56D16FF007F18E06D5D6C6C4B13C06C6C4B13806C6C6C02 1F13006C01F0ECFFFE6C01FF010F5BC691B612F0013F16C0010F93C7FC010115F8D90007 49C8FC3E4F7CB545>II<137F3801FFC0487F487F487FA2487FA76C5B A26C5B6C5B6C5B6C6CC7FC90C8FCABEB1FF8B5FCA612017EB3B3A4B612F0A61C547BD326 >I107 DIIIII<90393FF001FFB5010F13E04B13F84B7F4B7F9238FF1FFFECF1FC 00039026F3F03F1380C6EBF7E015C0ECFF80A215007013005C705AEE03F84A90C8FCA45C B3A9B612FEA631367CB539>114 D<903A01FFF00780011FEBFF1F90B7FC5A120748EB00 1FD81FF8130701E0130148487F007F157F49143FA200FF151FA27FA27F01F891C7FC13FF 14F06CEBFFC015FE6F7E6C15E06C15F86C816C816C816C16806C6C15C0011F15E01303D9 001F14F01400030713F81501007CEC007F00FC153F161F7E160F7EA26D15F0A26D141F6D 15E06D143F6DEC7FC001FE903801FF809026FFC00F130091B55A01BF5CD8FE1F14F0D8FC 0714C027F0007FFCC7FC2D387CB636>I<143FA65CA45CA25BA35B5BA25B5B5B90B5FC5A 000F91B5FCB8FCA5D8003F90C8FCB3A8EE07E0AB6DEC0FC01580161F6D01C01380163F6D 9038F07F006DEBFFFE6D5C6D6C5B021F13E0020313802B4D7ECB35>II119 D121 D<001FB8128018C0A4DAC000148049C7140001F85B49495B49495B495D003F5C49495B4B 5B5F5D90C7B55A4A91C7FC5E5C4A5B4A5BC75C5C4A5B4A5B5E91B5FC4991C8FC4949EB0F C05D5B495B495B4B131F491680495B90B55A92C7FC48163F485B4849147F5C4816FF4849 5B48495B4A130F4892B51200B9FCA47E32357CB43D>I E /Fu 26 111 df<007FB912E0BA12F0A26C18E03C04789A4D>0 D<121FEA3F80EA7FC0EAFFE0A5EA 7FC0EA3F80EA1F000B0B789E1C>I<147014F8A81470007815F0007C1401B4EC07F8D87F 80EB0FF0D83FE0EB3FE0D80FF0EB7F80D803F8EBFE003900FE73F890383F77E090380FFF 80D903FEC7FCEB00F8EB03FE90380FFF8090383F77E09038FE73F83903F870FED80FF0EB 7F80D83FE0EB3FE0D87F80EB0FF0D8FF00EB07F8007CEC01F000781400C7140014F8A814 70252B7AAD32>3 D8 D<49B4FC010F13E0013F13F8497F3901FF01FF3A03F8003F80D807E0EB0FC04848EB07E0 4848EB03F090C71201003EEC00F8007E15FC007C157C0078153C00F8153EA248151EA66C 153EA20078153C007C157C007E15FC003E15F86CEC01F06D13036C6CEB07E06C6CEB0FC0 D803F8EB3F803A01FF01FF0039007FFFFC6D5B010F13E0010190C7FC27267BAB32>14 D<49B4FC010F13E0013F13F8497F48B6FC4815804815C04815E04815F0A24815F84815FC A3B712FEAA6C15FCA36C15F86C15F0A26C15E06C15C06C15806C15006C6C13FC6D5B010F 13E0010190C7FC27267BAB32>I<007FBA1280BB12C0A26C1980CEFCB0007FBA1280BB12 C0A26C1980CEFCB0007FBA1280BB12C0A26C1980422C7BAE4D>17 D<037FB612E00207B712F0143F91B812E0010301C0C9FCD907FCCAFCEB0FE0EB3F8049CB FC13FC485A485A485A5B485A121F90CCFC123EA2123C127CA2127812F8A25AA87EA21278 127CA2123C123EA27E7F120F6C7E7F6C7E6C7E6C7E137E6D7EEB1FE0EB07FC6DB47E0100 90B712E0023F16F01407020016E092CAFCB0001FB912E04818F0A26C18E03C4E78BE4D> I<007FB612F0B712FEEEFFC06C16F0C9EA1FFCEE03FE9338007F80EF1FC0EF07E0717E71 7E717E187E183E841980180FF007C0A2180319E0A2180119F0A21800A81801A219E01803 A219C01807A2F00F80181F1900183E187E604D5A4D5AEF0FE04D5A057FC7FCEE03FEEE3F FC007FB712F0B812C04CC8FC6C15E0CDFCB0007FB91280BA12C0A26C18803C4E78BE4D> I<19E0F003F0180FF03FE0F0FF80943803FE00EF0FF8EF3FE0EFFF80DC03FEC7FCEE0FF8 EE3FE0EEFF80DB03FEC8FCED1FF8ED7FE0913801FF80DA07FEC9FCEC1FF0EC7FC04948CA FCEB07FCEB1FF0EB7FC04848CBFCEA07FCEA1FF0EA7FC048CCFCA2EA7FC0EA1FF0EA07FC EA01FF38007FC0EB1FF0EB07FCEB01FF9038007FC0EC1FF0EC07FC913801FF809138007F E0ED1FF8ED07FE923800FF80EE3FE0EE0FF8EE03FE933800FF80EF3FE0EF0FF8EF03FE94 3800FF80F03FE0F00FF01803F000E01900B0007FB912E0BA12F0A26C18E03C4E78BE4D> I<127012FCB4FCEA7FC0EA1FF0EA07FCEA01FF38007FC0EB1FF0EB07FCEB01FF9038007F C0EC1FF0EC07FC913801FF809138007FE0ED1FF8ED07FE923800FF80EE3FE0EE0FF8EE03 FE933800FF80EF3FE0EF0FF8EF03FE943800FF80F03FE0F00FF0A2F03FE0F0FF80943803 FE00EF0FF8EF3FE0EFFF80DC03FEC7FCEE0FF8EE3FE0EEFF80DB03FEC8FCED1FF8ED7FE0 913801FF80DA07FEC9FCEC1FF0EC7FC04948CAFCEB07FCEB1FF0EB7FC04848CBFCEA07FC EA1FF0EA7FC048CCFC12FC1270CDFCB0007FB912E0BA12F0A26C18E03C4E78BE4D>I<00 604A7E00F8EC03E000FE15F8D87F80EB01FED83FE06D6C7ED80FF8EC3FE0D803FCEC0FF0 C6B4EC03FCD93FC0EB00FFD90FF0EC3FC0D907FCEC1FF0D901FFEC07FC6D6C6CEB01FEDA 1FE09038007F80DA07F8EC1FE0DA01FEEC07F86E6C6CEB03FEDB3FE0903800FF80DB0FF0 EC3FC0DB03FCEC0FF0DB00FFEC03FCDC3FC0EB00FFDC1FF0EC7FC0DC07FCEC1FF0DC01FE EC07F89326007F80EB01FEDD1FE09038007F80DD07F8EC1FE0DD03FEEC0FF8942600FF80 EB03FEDE3FC0EB00FFDE0FE0EC3F80A2DE3FC0ECFF00DEFF80EB03FEDD03FEC7EA0FF8DD 07F8EC1FE0DD1FE0EC7F80DD7F80D901FEC7FCDC01FEC7EA07F8DC07FCEC1FF0DC1FF0EC 7FC0DC3FC04AC8FC04FFC7EA03FCDB03FCEC0FF0DB0FF0EC3FC0DB3FE0ECFF80DBFF80D9 03FEC9FC4A48C7EA07F8DA07F8EC1FE0DA1FE0EC7F80DA7F80D901FECAFC4948C7EA07FC D907FCEC1FF0D90FF0EC3FC0D93FC002FFCBFC01FFC7EA03FCD803FCEC0FF0D80FF8EC3F E0D83FE0ECFF80D87F804948CCFC00FEC7EA03F800F815E00060EC018059407BB864>29 D<1AF0A3861A78A21A7C1A3CA21A3E1A1E1A1F747EA2747E747E87747E747E1B7E87757E F30FE0F303F8007FBC12FEBE1280A26CF3FE00CEEA03F8F30FE0F31F8051C7FC1B7E6350 5A505A63505A505AA250C8FC1A1E1A3E1A3CA21A7C1A78A21AF862A359347BB264>33 D<92B6FC02071580143F91B7120001030180C8FCD907FCC9FCEB1FE0EB3F80017ECAFC5B 485A485A485A5B485A121F90CBFC123EA2123C127CA2127812F8A25AA2B9FC1880A21800 00F0CBFCA27EA21278127CA2123C123EA27E7F120F6C7E7F6C7E6C7E6C7E137E6D7EEB1F E0EB07FC6DB47E010090B6FC023F1580140702001500313A78B542>50 D<1706170F171FA2173EA2177CA217F8A2EE01F0A2EE03E0A2EE07C0A2EE0F80A2EE1F00 A2163EA25EA25EA24B5AA24B5AA24B5AA24B5AA24BC7FCA2153EA25DA25DA24A5AA24A5A A24A5AA24A5AA24AC8FCA2143EA25CA25CA2495AA2495AA2495AA2495AA249C9FCA2133E A25BA25BA2485AA2485AA2485AA2485AA248CAFCA2123EA25AA25AA25A1260305C72C600 >54 D<007FB812FCB912FEA27ECB121EB3A4180C371B7BA342>58 D<4B7E4B7EA21507A25EECFF8F010313EF010F01FFC7FCEB3F8090387E003F496D7ED801 F0804848497EA24848EB3DF0A24848EB7CF8A2001FEC78FC90C7EAF87C48157E15F0A214 0148157F007E4A7E1403A215C0A200FE01071480A21580140FA21500A25CA2141E143EA2 143CA2147CA21478A214F8A25C1301A2007E491400A21303A2007F495B1307003F157E5C A2130FD81F8F5C91C7FCD80F9F5CA201DE130100075DD803FE495A15076C48495A00004A 5A017E49C7FC90387F80FEECFFF801FB13E001F8138049C9FC1201A25BA26C5A29557CCC 32>I<913807FFC0027F13FC0103B67E010F15E0903A3FFC007FF8D97FC0EB07FCD801FE C8B4FCD803F8ED3F80D807E0ED0FC04848ED07E04848ED03F090C91201003EEE00F8007E 17FC007C177C0078173C00F8173EA248171EB3B3A60060170C373D7BBA42>92 D<1538157CA215FEA24A7EA215EF02037FA2913807C7C0A291380F83E0A291381F01F0A2 EC1E00023E7FA24A137CA24A7FA249487FA24A7F010381A249486D7EA249486D7EA249C7 6C7EA2011E1400013E81A249157CA24981A2484881A24848ED0F80A2491507000717C0A2 4848ED03E0A248C9EA01F0A2003EEE00F8A2003C1778007C177CA248173EA248171E0060 170C373D7BBA42>94 D<0060170C00F0171E6C173EA2007C177CA2003C1778003E17F8A2 6CEE01F0A26C6CED03E0A26C6CED07C0A2000317806D150FA26C6CED1F00A26C6C153EA2 017C5DA26D5DA2011E5D011F1401A26D6C495AA26D6C495AA26D6C495AA2010192C7FC6E 5BA26D6C133EA2027C5BA26E5BA2021E5BEC1F01A291380F83E0A2913807C7C0A2913803 EF80A2020190C8FC15FFA26E5AA2157CA21538373D7BBA42>I<387FFFFEB6FCA214FE00 F0C7FCB3B3B3B3B3A5126018646FCA2C>100 D<387FFFFEB6FCA27EC7120FB3B3B3B3B3 A5140618647ECA2C>II<12FEEAFFE013F8EA07FEC66C7EEB3FC06D7E6D7E130780A21303 B3AB801301801300806E7EEC1FC0EC0FF0913803FFC0020013E0A2020313C091380FF000 EC1FC0EC7F804AC7FC5C13015C13035CB3AB1307A25C130F495A495AEBFF80D807FEC8FC EAFFF813E048C9FC236479CA32>I<126012F0B3B3B3B3B3A81260046474CA1C>106 D<126012F07EA21278127CA2123C123EA2121E121FA26C7EA212077FA212037FA212017F A26C7EA21378137CA2133C133EA2131E131FA26D7EA2130780A2130380A2130180A26D7E A21478147CA2143C143EA280A28081A2140781A2140381A26E7EA2140081A21578157CA2 153C153EA281A2811680A2150716C0A2150316E0A2ED01F0A2150016F8A21678167CA216 3C163EA2161E160C27647BCA32>110 D E /Fv 53 123 df<4CB414FC040F9039C003FF 80933B3F81F00783C0933B7C00781F01E04C9038F83F03923C01F001FC3E07F003030103 EB7E0F922607E007EB7C1F19FCDB0FC001F814E0943A03F0F80FC0DD01E1EB0780031FD9 000190C7FC5E180361153F93C7FCA21807615D157EA2180F6115FE91B912F0A3DA00FCC7 D81F80C7FC1401A25D183F96C8FCA214035DA260187E14075DA218FE60140F5DA2170160 141F5DA2170360143F92C7FCA21707605C147EA2170F6014FE5CA24D5AA2495A95C9FC5F 5C0103153E177E001CEBE038007F02FE137C26FF07E114FC02C15C4C5AEB0F8100FE9039 01FC03E0D8F81F9038F007C03B701E00E00F80D8783CD9F83ECAFCD81FF0EB3FF8D807C0 EB0FE04C5A83C53C>11 DI14 D<01F013783903F801FC3907FC03FE000F1307A63903CC01E639001C000E 0118130CA20138131C01301318A201701338491370491360000114E04913C00003130139 07000380000EEB070048130E485B485B485B4813601F1D6FC432>34 D<13F0EA03FC1207A2EA0FFEA4EA07FCEA03CCEA000C131C1318A2133813301370136013 E0EA01C013801203EA0700120E5A5A5A5A5A0F1D7A891E>44 D<007FB5FCB6FCA214FEA2 1805789723>I<120FEA3FC0127FA212FFA31380EA7F00123C0A0A76891E>I<16C01501A2 15031507ED0F80151F153F157F913801FF005C140F147F903807FCFEEB0FF0EB0700EB00 015DA314035DA314075DA3140F5DA3141F5DA3143F5DA3147F92C7FCA35C5CA313015CA3 13035CA313075CA2130FA2131F133FB612FCA25D224276C132>49 D57 D65 D<91B712FCF0FF8019E00201903980001FF06E90C7EA07F84A6F7E727E 4B81841A800203167F5DA314075D19FFA2020F17004B5C611803021F5E4B4A5A180F4E5A 023F4B5A4BEC7F804EC7FCEF03FC027FEC0FF84BEBFFC092B6C8FC18E0913AFF800007F8 92C7EA01FC717E187F49834A6F7EA30103835CA313075CA3010F5F4A157FA24E5A131F4A 4A90C7FC601703013F4B5A4A4A5A4D5A017F4B5A4D5A4A4948C8FC01FFEC0FFEB812F817 C04CC9FC41447AC345>II<91B712F818FF19C00201903980003FF06E90C7EA0FF84AED03FCF000FE4B 157FA2F13F800203EE1FC05DF10FE0A214074B16F01907A2140F5D1AF8A2141F5DA2190F 143F5D1AF0A2147F4B151FA302FF17E092C9123FA34918C04A167F1A80A2010317FF4A17 00A24E5A13074A4B5A611807010F5F4A4B5A181F61011F4C5A4A4BC7FC18FE4D5A013F4B 5A4A4A5A4D5A017FED3FC005FFC8FC4AEB03FE01FFEC1FF8B812E094C9FC16F845447AC3 4A>I<91B912C0A30201902680000313806E90C8127F4A163F191F4B150FA30203EE0700 5DA314074B5D190EA2140F4B1307A25F021F020E90C7FC5DA2171E023F141C4B133C177C 17FC027FEB03F892B5FCA39139FF8003F0ED00011600A2495D5CA2160101034B13705C19 F061010791C8FC4A1501611803010F5F4A150796C7FC60131F4A151E183E183C013F167C 4A15FC4D5A017F1503EF0FF04A143F01FF913803FFE0B9FCA26042447AC342>I<91B912 80A30201902680000713006E90C8FC4A163FA24B81A30203160E5DA314074B151E191CA2 140F5D17075F021F020E90C7FC5DA2171E023F141C4B133CA2177C027F5CED800392B5FC A291B65AED00071601A2496E5A5CA2160101035D5CA2160301075D4A90CAFCA3130F5CA3 131F5CA3133F5CA2137FA313FFB612E0A341447AC340>I<91B6D8803FB512E0A3020101 80C7387FE0006E90C86C5A4A167FA24B5EA219FF14034B93C7FCA26014074B5DA2180314 0F4B5DA21807141F4B5DA2180F143F4B5DA2181F147F92B75AA3DAFF80C7123F92C85BA2 187F5B4A5EA218FF13034A93C8FCA25F13074A5DA21703130F4A5DA21707131F4A5DA217 0F133F4A5DA2017F151FA24A5D496C4A7EB6D8803FB512E0A34B447AC348>72 D<027FB512E091B6FCA20200EBE000ED7F8015FFA293C7FCA35C5DA314035DA314075DA3 140F5DA3141F5DA3143F5DA3147F5DA314FF92C8FCA35B5CA313035CA313075CA3130F5C A3131F5CA2133FA25CEBFFE0B612E0A25D2B447BC326>I<031FB512F05DA29239000FFC 005FA35FA2161FA25FA2163FA25FA2167FA25FA216FFA294C7FCA25DA25EA21503A25EA2 1507A25EA2150FA25EA2151FA25EA2153FA25EA2157FA25EEA0F80D83FE013FF93C8FC12 7FA24A5AEAFFC04A5A1300007C495A0070495A4A5A6C5C003C495A6C01FEC9FC380F81F8 3803FFE0C690CAFC344679C333>I<91B612F0A25F020101C0C7FC6E5B4A90C8FCA25DA3 14035DA314075DA3140F5DA3141F5DA3143F5DA3147F5DA314FF92C9FCA35B5CA3010316 104A1538A21878010716705C18F018E0010F15015C18C01703011F15074A1580170FA201 3FED1F004A5C5F017F15FE16034A130F01FFEC7FFCB8FCA25F35447AC33D>76 D<91B56C93387FFFC08298B5FC02014DEBC0006E614A5FA203DF4C6CC7FC1A0E63912603 CFE05D038F5F1A381A711407030FEEE1FCA2F101C3020FEE0383020E60F107036F6C1507 021E160E021C60191CF1380F143C023804705BA2F1E01F0278ED01C091267003F85EF003 801A3F02F0ED070002E0030E5CA24E137F130102C04B91C8FC606201036D6C5B02805F4D 5A943803800113070200DA07005BA2050E1303495D010E606F6C5A1907011E5D011C4B5C A27048130F133C01384B5C017892C7FC191F01F85C486C027E5DD807FE027C4A7EB500F0 0178013FB512C0A216705A447AC357>I<91B56C49B512E0A28202009239000FFC00F107 F0706E5A4A5F15DF705D1907EC03CFDB8FF892C7FCA203875D02077F0303150EA270141E EC0F01020E161C826F153C141E021C6E1338167F1978023C800238013F1470A27113F002 78131F02705E83040F130102F014F84A5E1607EFFC0313014A01035C17FE180701031401 4A02FF90C8FCA2705B0107168F91C8138E177F18DE5B010EED3FDC18FCA2011E151F011C 5EA2170F133C01386F5A1378A201F81503486C5EEA07FEB500F01401A2604B447AC348> II<91B712F018FEF0FF800201903980007FE06E90C7EA1FF04AED07F818034B15FC F001FE1403A24B15FFA21407A25DA2140FF003FE5DA2021F16FC18074B15F8180F023F16 F0F01FE04B15C0F03F80027FED7F0018FE4BEB03FCEF0FF002FFEC7FC092B6C7FC17F892 CAFC5BA25CA21303A25CA21307A25CA2130FA25CA2131FA25CA2133FA25CA2137FA25C49 7EB67EA340447AC342>I<91B77E18F818FE020190398001FF806E90C7EA3FC04AED1FE0 F00FF04BEC07F8180319FC14034B15FEA314075DA3020FED07FC5DA2F00FF8141F4B15F0 F01FE0F03FC0023F16804BEC7F0018FEEF03F8027F4A5A4BEB1FC04CB4C7FC92B512F891 B612E092380003F8EE00FE177F496F7E4A6E7EA28413034A140FA2171F13075CA2173F13 0F5CA24D5A131F5CA3013F170E5CA2017FEE801E191C4A163C496C1638B66C90383FC070 051F13F094380FE1E0CA3803FF80943800FE003F467AC347>82 DI<48B912F85AA2913B0007FC001FF0D807F84A130701 E0010F140349160148485C90C71500A2001E021F15E05E121C123C0038143F4C13010078 18C0127000F0147F485DA3C800FF91C7FC93C9FCA35C5DA314035DA314075DA3140F5DA3 141F5DA3143F5DA3147F5DA314FF92CAFCA35B5CA21303A21307497E007FB612C0A25E3D 446FC346>I<001FB500F090383FFFFCA326003FF0C7000113806D48913800FE00013F16 7C18785C187018F0017F5E5CA2170101FF5E91C8FCA21703485F5BA21707000394C7FC5B A25F0007160E5BA2171E120F49151CA2173C121F491538A21778123F491570A217F0127F 495DA2160100FF5E90C8FCA216035F16074893C8FC5E160E161E5E007E1538007F15785E 6C4A5A6D495A001F4A5A6D49C9FC6C6C133E6C6C13F83903FC07F0C6B512C0013F90CAFC EB07F83E466DC348>I<010C1306011C130E49131C491338491370484813E04913C00003 13013907000380000EEB0700000C1306001C130E0018130C0038131C0030131800701338 00601330A200E0137000CFEB678039FFC07FE0A6018013C0397F003F80003CEB1E001F1D 65C432>92 D97 DIIIII<15FCEC07FF91391F83838091393E01CFC09138FC 00EF494813FF4948137F49481480130F4948133FA249481400137F91C75A5B49147E1201 16FE1203495CA215011207495CA21503A2495CA21507A25E150FA2151F00034A5AA2157F 6C6C13FF0000903801DF8090387C079F90383E0F3FEB1FFCD903F090C7FC90C7FC5DA215 7EA215FEA25DA2001C495A127F48495A14074A5A48495A4AC8FC00F8137E387C01F8381F FFE0000390C9FC2A407BAB2D>I<14FE137FA3EB01FC13001301A25CA21303A25CA21307 A25CA2130FA25CA2131FA25C157F90393F83FFC091388F81F091381E00F802387F494813 7C5C4A137EA2495A91C7FCA25B484814FE5E5BA2000314015E5BA2000714035E5B150700 0F5DA249130F5E001F1678031F1370491480A2003F023F13F0EE00E090C7FC160148023E 13C01603007E1680EE070000FEEC1E0FED1F1E48EC0FF80038EC03E02D467AC432>I<14 3C147E14FE1301A3EB00FC14701400AE137C48B4FC3803C780380703C0000F13E0120E12 1C13071238A21278EA700F14C0131F00F0138012E0EA003F1400A25B137EA213FE5B1201 5BA212035B141E0007131C13E0A2000F133CEBC038A21478EB807014F014E0EB81C0EA07 83EBC7803803FE00EA00F8174378C11E>I<14FE137FA3EB01FC13001301A25CA21303A2 5CA21307A25CA2130FA25CA2131FA25C167E013F49B4FC92380783C09138000E07ED3C1F 491370ED603F017E13E0EC01C09026FE03801380913907000E00D9FC0E90C7FC5C00015B 5C495AEBF9C03803FB8001FFC9FCA214F03807F3FCEBF07F9038E01FC06E7E000F130781 EBC003A2001F150FA20180140EA2003F151E161C010013E0A2485DA2007E1578167000FE 01015B15F1489038007F800038021FC7FC2A467AC42D>107 DIIIII<91380FC00691387FF00E903901F8381E903903E01C3C90390FC00E 7CD91F8013FC90383F0007017E14F813FE48481303A2484814F012075B000F14074914E0 121FA2003F140F4914C0A3007F141F491480A3153F48C71300A35D157E127E15FEA24A5A 007F13036C1307140F6C495A380F803D14793807C1E33901FFC3F038007E03130014075D A3140F5DA3141F5DA2143FA2147F013FB5FCA25D273F77AB2D>III<1470EB01F8A313035CA313075CA3130F 5CA3131F5CA2007FB512E0B6FC15C0D8003FC7FCA25B137EA313FE5BA312015BA312035B A312075BA3120F5BA2EC0780001F140013805C140E003F131EEB001C143C14385C6C13F0 495A6C485AEB8780D807FEC7FCEA01F81B3F78BD20>I<137C48B414072603C780EB1F80 380703C0000F7F000E153F121C0107150012385E1278D8700F147E5C011F14FE00F05B00 E05DEA003FEC0001A2495C137E150313FE495CA215071201495CA2030F13380003167849 ECC070A3031F13F0EE80E0153F00011581037F13C06DEBEF8300000101148090397C03C7 87903A3E0F07C70090391FFE01FE903903F000782D2D78AB34>I<017C147848B4EB01FC 2603C78013FE390703C003000F13E0120E121C0107130100381400167E1278D8700F143E 5C131F00F049131C12E0EA003F91C7123C16385B137E167801FE14705BA216F0000115E0 5B150116C0A24848EB0380A2ED0700A2150E12015D6D5B000014786D5B90387C01E09038 3F0780D90FFFC7FCEB03F8272D78AB2D>I<017CEE078048B4020EEB1FC02603C780013F EB3FE0380703C0000E7F5E001C157E0107161F0038170F04FE130700785DD8700F16035C 011F130100F0018049EB01C012E0EA003FDA000314034C14805B137E0307140701FE1700 495CA2030F5C0001170E495CA260A24848495A60A2601201033F5C7F4B6C485A000002F7 13036D9039E7E0078090267E01C349C7FC903A1F0781F81E903A0FFF007FF8D901FCEB0F E03B2D78AB41>I<02F8133FD907FEEBFFE0903A0F0F83C0F0903A1C07C780F890393803 CF03017013EE01E0EBFC07120101C013F8000316F00180EC01C000074AC7FC1300140748 5C120EC7FC140F5DA3141F5DA3143F92C8FCA34AEB03C01780147EA202FEEB0700121E00 3F5D267F81FC130E6E5BD8FF83143CD903BE5B26FE079E5B3A7C0F1F01E03A3C1E0F83C0 271FF803FFC7FC3907E000FC2D2D7CAB2D>I<137C48B414072603C780EB1F80380703C0 000F7F000E153F001C1600130712385E0078157EEA700F5C011F14FE00F0495B12E0EA00 3FEC00015E5B137E150301FE5C5BA2150700015D5BA2150F00035D5BA2151F5EA2153F12 014BC7FC6D5B00005BEB7C0390383E0F7EEB1FFEEB03F090C712FE5DA214015D121F397F 8003F0A24A5A4848485A5D48131F00F049C8FC0070137E007813F8383801F0381E07C06C B4C9FCEA01FC294078AB2F>I<027C130749B4130F49EB800E010F141E49EBC03CEDE038 90393F03F07890397C00FDF00178EB3FE00170EB03C001F0148049130790C7EA0F00151E 5D5D5D4A5A4A5A4A5A4AC7FC141E5C5C5C495A495A495A49C8FC011E14F04914E05B4913 01485A4848EB03C0D807B0130701FEEB0F80390FCF801F3A1F07E07F00393E03FFFED83C 015B486C5B00705C00F0EB7FC048011FC7FC282D7BAB28>I E /Fw 57 122 df11 D<15F8913807FFC0021F 13FC023E13FEEC700FEC6007ECE0019138C000FC16300101140080A26D7EA280A280147E A2147F6E7EA2816E7E81140F816E7E143FECFFFE903803F3FFEB07C1EB1F8149C6138013 7E49137F484814C0485A0007143F5B120F485AA24848131FA2127F90C7FCA34815804814 3FA316005A5DA2157EA25DA24A5A127C007E495A003E5C003F13076C5C6C6C485A6C6C48 C7FC3803F07C3800FFF0EB1FC027487CC62B>14 DI<1470D901F8141E0103153F5FA20107 5D5F5CA2010F14015F5CA2011F14035F5CA2013F14075F5CA2017F140F5F91C7FCA24914 1F5F5BA20001033F1338EF8078491670A2000317F0047F13E0EEFF00A2486C491301DB03 BF13C0030713036DD90F3F1380489039801C1F07913AC0F80F8F00903AE3FFE007FE903A E07F8001F8001F90CAFCA25BA2123FA25BA2127FA290CBFCA25AA25AA35AA2127035417D AB3B>22 DI<010FB712E0013F 16F05B48B8FC5A4817C09027E00E0078C7FCD80F801470381F001E123E003C011C13F048 133C00705D12F00060EB7801C7FCA214F814F015031301A214E01303A2EB07C0A2150713 0F1480131F82133F1400A24980017E130313FE8212015B1501495C6C48EB00E0342C7EAA 37>25 DI<010FB612FC013F15FE5B48B7 FC5A4816F89026E001C0C7FC380F8003EA1F00121E5A48495A127012F00060130FC7FC92 C8FC5CA4143EA3147EA2147C14FCA4495AA31303A3495AA4495A1307EB03802F2C7EAA2A >28 D<180E0118163F0138EE7F801378017016FF01F0167F485A49163F0003171F5B0007 170F90CAFC5A120EF00700001E140E001C141F4B5C003C170E12385D037E141E0078171C 12704B143C183818785D6000F04A1301606C0101140302034A5A00780107140F007C496C 495A007E011F4AC7FC007FD97FFC13FF0181B5EA07FED9FFFEEBFFFC6C496C5B02F85C6C 496C5B6C01E014806C9026800FFEC8FC3A00FC0003F8392D7FAB3D>33 D<121EEA7F80A2EAFFC0A4EA7F80A2EA1E000A0A78891B>58 D<121EEA7F8012FF13C0A2 13E0A3127FEA1E601200A413E013C0A312011380120313005A1206120E5A5A5A12600B1D 78891B>II<1618163C167CA2167816F8A216F01501 A216E01503A216C01507A21680150FA2ED1F00A2151E153EA2153C157CA2157815F8A25D 1401A24A5AA25D1407A25D140FA292C7FC5CA2141E143EA2143C147CA25CA25C1301A25C 1303A25C1307A25C130FA291C8FC5BA2133EA2133C137CA2137813F8A25B1201A25B1203 A2485AA25B120FA290C9FC5AA2121E123EA2123C127CA2127812F8A25A126026647BCA31 >I<127012FCB4FCEA7FC0EA1FF0EA07FCEA01FF38007FC0EB1FF0EB07FE903801FF8090 38007FE0EC1FF8EC03FE913800FF80ED3FE0ED0FF8ED03FF030013C0EE3FF0EE0FFCEE01 FF9338007FC0EF1FF0EF07FCEF01FF9438007FC0F01FE0A2F07FC0943801FF00EF07FCEF 1FF0EF7FC04C48C7FCEE0FFCEE3FF0EEFFC0030390C8FCED0FF8ED3FE0EDFF80DA03FEC9 FCEC1FF8EC7FE0903801FF80D907FECAFCEB1FF0EB7FC04848CBFCEA07FCEA1FF0EA7FC0 48CCFC12FC12703B3878B44C>I<187018F0841701A217031707A2170FA2171F173FA2EF 77FCA217E3160117C3EE0383A2EE0703160F160E161C8416381701167016E0A2ED01C0A2 ED038015071600030E80A24B7F153C15385DA25D14015D4AB7FC855C92C8127F140E5CA2 5CA25C14F05C494882A24948153F130791C9FC5B131E133E137E01FF4C7E00076D15FF00 7F01F8027FEBFFC0B5FC5C42477DC649>65 D<91B87E19F019FC02009039C00003FF6F48 0100138003FFED3FC01AE093C8121FF10FF0A24A17F84B1507A314035D190FA2020717F0 4B151F1AE0193F020F17C04BED7F80F1FF004E5A021F4B5A4B4A5AF01FF0F03FC0023F4A B4C7FC4BEB1FFC92B612F018FEDA7FC0C7EA7F804BEC1FC0F00FF0727E02FF6F7E92C8FC 727EA249835CA313035CA301075F4A1503A24E5A130F4A4B5A4E5AA2011F4C5A4A4B5A4D 485A013F4B48C7FCEF0FFC4AEC3FF801FF913801FFE0B9128005FCC8FC17C045447CC34A >II<91B87E19F019FC02009039C00007FF6F489038007FC003FFED1F E0737E93C86C7E737E19014A707E5D1A7FA20203EF3F805DA21BC014075DA3140F4B17E0 A3141F4B17C0A3143F4B167FA3027F18804B16FFA302FF180092C95A62A24917034A5F19 076201034D5A5C4F5A620107173F4A5F4FC7FC19FE010F4C5A4A15034E5AF00FE0011F4C 5A4A4B5A06FFC8FC013FED01FCEF0FF84AEC3FE001FF913803FF80B848C9FC17F094CAFC 4B447CC351>I<91B912FCA3020001C0C7123F6F48EC07F803FF1503190193C9FCA21A78 5C5DA3020317705DA314074B14E0A21701020F4B13005DA21703021F5D4B1307170F171F 023F027FC8FC92B6FCA391397FC000FE4B133EA2171E02FF141C92C7FCA2173C49033813 075C61190E010392C7FC4A161E191C193C010717384A1678197019F0130F4A4B5A180361 011F16074A150F4E5A013F163F06FFC7FC4A140301FFED7FFEB9FCA26046447CC348>I< 91B912F8A3020001C0C7127F6F48EC0FF003FF1507190393C81201A219005C5DA3020317 E05DA314075D18E01701020F4B13005DA21703021F5D4B1307A2170F023F4AC8FC4B13FF 92B6FCA24A5CED8000173EA202FF141C92C7FCA2173C4915385CA21778010315704A91C9 FCA313075CA3130F5CA3131F5CA2133FA313FFB612F8A345447CC33F>II<91B6D8E003B61280A3020001E0C70003EB8000DB7F806E48C7FC03FF 1503A293C85BA219075C4B5EA2190F14034B5EA2191F14074B5EA2193F140F4B5EA2197F 141F4B5EA219FF143F92B8C8FCA3DA7FC0C712014B5DA2180314FF92C85BA218075B4A5E A2180F13034A5EA2181F13074A5EA2183F130F4A5EA2187F131F4A5EA2013F16FFA24A93 C9FCD9FFE002037FB6D8E003B67EA351447CC351>I<027FB512F8A217F09139007FF000 ED3FC0157FA25EA315FF93C7FCA35C5DA314035DA314075DA3140F5DA3141F5DA3143F5D A3147F5DA314FF92C8FCA35B5CA313035CA313075CA3130F5CA2131FA25CEB7FF0007FB5 12F0B6FCA22D447DC32B>I<91B612F8A3020001E0C8FC6F5A4B5AA293C9FCA35C5DA314 035DA314075DA3140F5DA3141F5DA3143F5DA3147F5DA314FF92CAFCA34917804AED01C0 A21803010317804A15071900A201075E4A150E181EA2010F5E4A157C187818F8011F1501 4A4A5A1707013F151F4D5A4A14FF01FF020F5BB9FCA2603A447CC342>76 D<91B500C0933807FFFE8263020095381FFE00037F18F803FF173F1B7703EF6003E717E7 7016EF0201EF01CF03C79338038FE0A2F2071F14030387040E5B1A1CDB83F8163F020717 38030304705BA2F2E07F140F020EDC01C090C7FCF103806F6C5E021E4C5A021C60190EF1 1C01143C023804385B19701A0391267800FE14E0027060F001C0953803800714F04ADB07 005B180E1A0F0101027F5B4A60604E131F13034A4B5CA24D48133F01074B5A91C7D83F83 5D0587C7FC058E147F5B010E039C92C8FCA205B85C011E15F0011C021F5D013C5D190101 7C5D01FE4B5C2603FF80EE07FEB500FCDA0007B512FE161E160E5F447BC35E>I<91B500 C0021FB51280A282DA007F0300EBE00070ED3F8074C7FC03FF161EEDEFF803E7161C7015 3C1401DBC3FE1538A203C1167802037F0381167003807F1AF00207137F03006D5CA2706C 13015C020E011F5D831903021E6D7E021C5F1607711307143C02386D6C91C8FCA204015C 0278800270160E701380191E02F0147F4AEDC01CA294383FE03C13014A021F133818F019 780103ED0FF84A16701707F0FCF0130791C86C6C5AA2EF01FF5B010E5F83A2011E167F01 1C5F133C183F137C01FE70C9FC3803FF80B512FC84180E51447CC34E>II<91B712FEF0FFE019F802009039C0000FFE6F48EB01FF03FF9138007F80F13FC093C8EA 1FE0A24AEE0FF0A25D1AF81403A25DA21407F11FF05DA2020FEE3FE0A24B16C0197F021F 1780F1FF004B4A5A4E5A023F4B5A4E5A4BEC3FC006FFC7FC027FEC07FC92B612F0188003 80CAFC14FFA292CBFCA25BA25CA21303A25CA21307A25CA2130FA25CA2131FA25CA2133F A25CEBFFE0B612E0A345447CC33F>I<91B712F018FF19E002009039C0003FF86F48EB07 FC03FFEC01FEF0007F93C8EA3F801AC0F11FE05C5D1AF0A214035DA30207EE3FE05DA2F1 7FC0020F17804B15FF1A004E5A021F4B5A4B4A5AF00FE04E5A023F037FC7FC4BEB03FCEF 1FF092B612804A4AC8FC923980007F80EF0FC0EF07F002FF6E7E92C77F1701845B4A1400 A2170113035CA2170313075CA24D5A130F5CA3011F18385CA2013F4C13781A704A6F13F0 D9FFE00203EB01E0B600E016C00501EB0380943900FE0F00CBEA3FFEF007F045467CC34A >82 D<9339FF8001800307EBF003033FEBFC079238FF00FEDA01F8EB1F0FDA07E0903807 9F004A486DB4FC4AC7FC023E804A6E5AA25C4948157E187C495AA213074A1578A3130F18 7080A295C7FC806D7E8014FF6D13E015FC6DEBFFC06D14FC6E13FF6E14C0020F80020314 F8EC003F03077F9238007FFE160F1603707E8283A283A21207A448163EA2120E177E001F 167CA25F5F4815016D4A5A4C5A6D4A5A486C4AC8FC6D143ED87CF85CD8787E495A3AF01F E00FE00107B51280D8E00149C9FC39C0003FF039487BC53C>I<48BA12C05AA291C7D980 011380D807F892C7123F01E049151F49170F48485C90C71607A2001E020316005E121C12 3C003814074C5C0078180E127000F0140F485DA3C8001F92C7FC5EA3153F5EA3157F5EA3 15FF93CAFCA35C5DA314035DA314075DA3140F5DA3141F5DA3143F5DA2147FA214FF0103 7F001FB612FCA25E42447EC339>I87 D89 D<020FB812C05C1A809326C00001130003FCC7FCDA3FF04A5A03C04A5A4B4A5A4A C8485A027E4B5A027C4B5A4A4B5AA24A4A90C7FC4A4A5A01014B5A4D5A4A4A5A01034B5A 4A4A5A4D5AA290C84890C8FC4C5A4C5A4C5A4C5A4C5A4C5A4C5AA24B90C9FC4B5A4B5A4B 5A4B5A4B5A4B5AA24B5A4A90CAFC4A5A4A48140E4A5A4A5A4A48141E4A48141CA24A4814 3C4990C8123849481578495A49485D495A4948140149485D1703494814074890C8485A48 5A4848153F48484B5A4848EC01FF48481407047F90C8FC48B8FCB9FC5F42447BC343>I< ED03C0ED0FF0ED3E38ED7C18EDF81C15F01401EC03E0A2EC07C0140FED803C021F133815 005C1678027E1370A214FE4A13F0010114E0150102F813C001031303A2903907F00780A2 ED0F00010F130EECE01E151C153C011F5BECC07015F0ECC1E090383FC3C01483EC878002 8FC7FCEB7F9E5CA25C5C5C5C5C49C8FC5BA25BA2120112031207120FEA1F7C123E127C00 F8156000F015F0D8403CEB01E0D8003EEB03C0ED0780011EEB0F00011F133E6D13789038 0783E0903803FF80D900FEC7FC26477FC529>96 DIIII102 D<157F913801FFC0913907C0E0E091391F8073F891387E003B4A 133F4948131F010315F04948130F495AA2494814E0133F4A131F137F91C713C05B163F5A 491580A2167F1203491500A25EA2495CA21501A25EA21503A200014A5A150F0000141F6D 133F017C495A90383E01E790381F07CF903807FF0FD901FC5B90C7FC151FA25EA2153FA2 5E121ED87F8049C7FCA200FF14FE4A5A4A5A49485A48495A48495A007E017FC8FC381FFF F8000313C02D407EAB2F>II<141E147FECFF80A4 15005C143891C7FCAD133EEBFF803801C3E0EA0783EB03F0120E121E001C7F123CEA3807 5C1270130F5C12F0EAE01F00005BA2133F5C137F91C7FCA25B5BA212015B12039038F807 801500120713F05C000F130E13E05CA2495AA200075B5C3803E1C06CB45AD8007EC7FC19 437DC121>I<161C167F16FF5DA316FEED00FC16781600AD15FC913803FF8091380787C0 91381E03E0143C027813F0147014E01301ECC007130314801307EC000F5B010E14E090C7 FC151FA216C0A2153FA21680A2157FA21600A25DA25DA21401A25DA21403A25DA21407A2 5DA2140FA25DA2141F5DA2001E133FD87F805BA200FF49C7FC14FE5CEB01F848485A4848 5A38781F80D81FFEC8FCEA07F0285681C128>III<01 F8D903FCEC7F80D803FE903B0FFF8003FFE03E078F803C07C00F81F83E0F0FC0F003F01E 00FC270E07C1C01478001C9028E38001F8F0137EDAE700EBF9E0003C01EEDAFBC0137F00 3801FCECFF80010F93C7FC00785B0070495CA226F01FE049485C00E04C5C5C1200013F02 071401624A5CA2017F020F14036291C75B190749021F5DA2494B130F620001033F161E07 1F131C494B14C0193F0003037FED803C1B384992C7FCF2007000075D1BE0494A15011BC0 96381F0380494A91380F8F00F107FED803800270EC01F04F2D7DAB55>I<01F8EB03FCD8 03FEEB1FFF3B078F807C0FC03B0F0FC0F007E0390E07C3C0001C9039E78003F0ECEF0000 3C01FE8000385B495A127800705BA226F01FE0130700E05E5C1200013F140F5F5CA2017F 141F5F91C7FC163F495DA249147F94C7FC000117F04C13E0495C15010003EDFC0118C05B 9338F803801207EF0700495D170E03005B49EC7878EE3FF0D80380EC0F80342D7DAB3A> III<91390FE0018091383FF807 9138F81C0F903A03F00E1F00903907C0073FD91F8013FF49487E495C01FE13015B120148 485C12075B000F14035E485AA2003F1407495CA3007F140F495CA3151F90C75B5AA2153F 6C5DA2127E007F147F4BC7FC6C5BA25C6C6C485A000F131E3807C03C3803E0F93900FFE1 FCEB3F01130014035DA314075DA3140F5DA2141FA2143F011FB512C0A25E293F7DAB2B> I115 D<143814FEA21301A25CA21303A25CA21307A25CA2130FA25CA2007FB512FCB6FC15F839 001FC000133FA25CA2137FA291C7FCA25BA25BA21201A25BA21203A25BA21207A25BA200 0F14F015E05B140115C0001F130301C013801407EC0F00000F130E5C143C000713703803 E1E06CB45AD8007EC7FC1E3F7EBD23>I<013F140ED9FFC0EB3F802601C3E0137F380381 F0EA0701000E7F121E001C153FD83C03141F1238160FEA70075CA2D8F00FEC070000E05B EA001F4A5B160E133F5C161E017F141C91C7FCA2163C4914385B16781670A248485CA24B 5AA200004A5AA24BC7FC6D130E017E131E017F5B6D5B90380FC1E06DB45AD900FEC8FC29 2D7DAB2F>118 D<013F1738D9FFC0D901E013FC2601C3E0903903F001FE260381F01307 EA0701000E6D130F001E16E0001C1700D83C03177E0038151F4D133EEA70075C163FD8F0 0F171C00E0495CEA001F4A017F143C1938013F92C7FC5C4C1478017F177091C75AA20301 15F04917E0495CA2F001C0A249495AF00380A2F00700A20307140E7F017E496C5B030E5C 6D496C137890271F80387E5B903B0FE0F01F83C0903B03FFE00FFF809028007F8001FEC7 FC3F2D7DAB46>I<02FCEB0FE0903A03FF803FF8903A0F07C0F03E903A1E03E1E03F903A 3801F3C07F0170EC80FF01F0EBFF01EA01E001C013FE000316FE138000079138FC007801 0015001403485C120EC7FC14075DA3140F5DA3141F5DA3023F147817705D17F0000F017F 14E0EA3F80D87FC0EC01C09138FF00031780D8FF81EB800702DFEB0F00267F038F131E3A 7C0787C03C3A3C0F03E0F03A1FFC01FFC02703F0003FC7FC302D7EAB37>I<133FD9FFC0 14F02601C3E0EB01F8260381F01303EA0701000E6D1307001E16F0121CEA3C030038150F 17E0EA70075C161FD8F00F15C000E05BEA001F4A133F1780133F5C167F017F150091C7FC A25E495C5BA215015E485AA215035EA200001407A24B5A017E131F153F6D137F90391F81 EFE0903807FF8F903800FE0FEC001F5EA2153FD807805CD81FC0137F486C91C7FC15FEA2 4848485A4A5A01805B393E0007E00038495A003C495A6C017EC8FC380F81F83803FFE0C6 90C9FC2D407DAB30>I E /Fx 92 127 df0 D<15074B7EA34B7EA44B7EA34B7EA34B7E15EFA202017F15C7A202037F 1587158302077F150381020F80140E81A24A80167FA24A80163FA24A80161FA24A80160F A20101815C16070103815C160301078191C7FC82A2010E8282A24982177FA24982173FA2 4982171F13F06D821201486C82D80FFFED7FFEB500E0010FB512F8A33D477DC644>3 D6 D10 D<9239FFC001FC020F9038F80FFF913B3F807E3F03C0913BFC000F7E07E0D903F89138FC 0FF0494890383FF81F4948EB7FF0495A494814E049C7FCF00FE04991393FC0038049021F 90C7FCAFB912F0A3C648C7D81FC0C7FCB3B2486CEC3FF0007FD9FC0FB512E0A33C467EC5 39>I<4AB4FC020F13E091387F80F8903901FC003C49487FD907E07F4948137F011FECFF 80495A49C7FCA25B49EC7F00163E93C7FCACEE3F80B8FCA3C648C7FC167F163FB3B0486C EC7FC0007FD9FC1FB5FCA330467EC536>I14 D<131F1480133F137F13FF1400485A485A485A5B485A485A5B003EC7FC5A5A5A12601112 6CC431>19 D<00C01430A46C147000601460007014E0A26CEB01C0003C13036CEB07806C EB0F00EBE07F3807FFFE000113F86C5BEB1F801C1176C431>21 DII<121EEA7F80EAFFC0AAEA7F80AD EA3F00AD121EAD120CC7FCA9121EEA7F80A2EAFFC0A4EA7F80A2EA1E000A4778C61B>33 D<001EEB03C0397F800FF000FF131F01C013F8A201E013FCA3007F130F391E6003CC0000 EB000CA401E0131C491318A3000114384913300003147090C712604814E0000614C0000E 130148EB038048EB070048130E0060130C1E1D7DC431>I<043014C00478497EA204F813 03A24C5CA203011407A24C5CA20303140FA24C91C7FCA203075CA24C131EA2030F143EA2 93C7123CA24B147CA2031E1478A2033E14F8A2033C5CA2037C1301007FBA12F8BB12FCA2 6C19F8C72801F00007C0C7FC4B5CA30203140FA24B91C8FCA402075CA24B131EA3020F14 3E007FBA12F8BB12FCA26C19F8C7003EC700F8C8FC023C5CA2027C1301A202785CA202F8 1303A24A5CA201011407A24A5CA20103140FA24A91C9FCA201075CA24A131EA2010F143E A291C7123CA249147CA2011E1478A2010C143046587BC451>I<121EEA7F8012FF13C0A2 13E0A3127FEA1E601200A413E013C0A312011380120313005A1206120E5A5A5A12600B1D 78C41B>39 D<140C141C1438147014E01301EB03C0EB0780EB0F00A2131E133E133C5B13 F85B1201A2485AA2485AA3485AA3121F90C7FCA25AA3123E127EA6127C12FCB3A2127C12 7EA6123E123FA37EA27F120FA36C7EA36C7EA26C7EA212007F13787F133E131E7FA2EB07 80EB03C0EB01E0130014701438141C140C166476CA26>I<12C07E12707E7E121E7E6C7E 6C7EA26C7E7F12001378137C133C133EA27FA2EB0F80A3EB07C0A314E01303A214F0A313 0114F8A6130014FCB3A214F81301A614F01303A314E0A2130714C0A3EB0F80A3EB1F00A2 133EA2133C137C13785B12015B485AA2485A48C7FC121E121C5A5A5A5A16647BCA26>I< 16C04B7EB3AB007FBAFCBB1280A26C1900C8D801E0C9FCB3AB6F5A41407BB84C>43 D<121EEA7F8012FF13C0A213E0A3127FEA1E601200A413E013C0A312011380120313005A 1206120E5A5A5A12600B1D78891B>II<121EEA7F80A2EAFFC0A4 EA7F80A2EA1E000A0A78891B>I<1618163C167CA2167816F8A216F01501A216E01503A2 16C01507A21680150FA2ED1F00A2151E153EA2153C157CA2157815F8A25D1401A24A5AA2 5D1407A25D140FA292C7FC5CA2141E143EA2143C147CA25CA25C1301A25C1303A25C1307 A25C130FA291C8FC5BA2133EA2133C137CA2137813F8A25B1201A25B1203A2485AA25B12 0FA290C9FC5AA2121E123EA2123C127CA2127812F8A25A126026647BCA31>I<14FF0107 13E090381F81F890383E007C01FC133F4848EB1F8049130F4848EB07C04848EB03E0A200 0F15F0491301001F15F8A2003F15FCA390C8FC4815FEA54815FFB3A46C15FEA56D130100 3F15FCA3001F15F8A26C6CEB03F0A36C6CEB07E0000315C06D130F6C6CEB1F806C6CEB3F 00013E137C90381F81F8903807FFE0010090C7FC28447CC131>I<1438147814F8130313 0F137FB5FC13F71387EA0007B3B3B0497E497E007FB61280A3214278C131>II<49B4FC010F13E0013F13F89038FE01FE3A01F000FF804848EB 7FC0D80780EB3FE048C7121F6D14F013E0486CEB0FF87FA56C5A6C5AC813F0151FA216E0 153F16C0ED7F80160015FE4A5AEC03F0EC1FC0D90FFFC7FC15E090380003FCEC00FEED7F 80ED3FC0ED1FE0ED0FF016F8ED07FCA216FEA2150316FFA3121FEA7FC0A2487EA316FE15 075B6C4814FC007EC7FC0078EC0FF87E6CEC1FF0001FEC3FE06C6CEB7FC0D803E0EBFF80 3A01FE03FE0039007FFFF8011F13E0010190C7FC28447CC131>II<000615C0D807C0 130701FCEB7F8090B61200A215FC5D5D15C092C7FCEB3FF890C9FCAD14FF010713C09038 1F03F090387800FC01E0137E497F491480ED1FC090C7FC0006EC0FE0C813F0A3ED07F8A3 16FCA5123EEA7F8012FF7FA34914F8A248C7120F007015F0A212780038EC1FE0003C15C0 001C143F001EEC7F806C15006C6C13FE3903E003FC3901F80FF06CB512C0013F90C7FCEB 07F826447BC131>II<121C121EEA1FC090B712 C0A3481680A217005EA2003CC8123C485D1670007015F04B5A5E1503484A5A93C7FC5DC8 121E5D153815785D5D14014A5AA24A5AA2140F92C8FC5CA2143EA2147EA2147C14FCA213 01A413035CA31307A5130FAB6D5AEB01C02A457BC231>I<14FF010713E0011F13F89038 3F00FE01FC133FD801F0EB1F804848EB0FC049EB07E04848EB03F01501120F90C713F848 1400A47FA26D13016D14F07F6C6CEB03E013FE6DEB07C06C9038C00F809138E01F006CEB F83E6CEBFC786CEBFFF06D13C0011F7F6D7F010313FC497F90391E7FFF80D97C3F13C0D9 F80F13E02601E00713F02603C00113F800077F4848EB3FFC48C7121F003EEC07FE150348 1401ED00FF167F5A163FA2161FA46C151E127C163E007E153C003E157C003F15F86C6C14 F06C6CEB01E06C6CEB07C0D803F8EB1F80C6B4EBFF0090383FFFFC010F13F0010190C7FC 28447CC131>I<14FF010713E0011F13F890387F81FC9038FE007E48487F4848EB1F8048 48EB0FC0484814E0001F14074914F0003F140316F8127F4914FCA212FF150116FEA616FF A4007F5CA36C7EA2001F5CA26C6C5B0007140D6D131D000314196C6C1339D8007C137190 383F01E190390FFF81FE903801FE0190C7FCA2ED03FCA416F8150716F0EA0F80486CEB0F E0487EED1FC01680153F49140049137E001EC75A4A5A390F8007F03907E01FE06CB51280 C649C7FCEB1FF028447CC131>I<121EEA7F80A2EAFFC0A4EA7F80A2EA1E00C7FCB3A512 1EEA7F80A2EAFFC0A4EA7F80A2EA1E000A2B78AA1B>I<121EEA7F80A2EAFFC0A4EA7F80 A2EA1E00C7FCB3A5121E127FEAFF80A213C0A4127F121E1200A512011380A3120313005A 1206120E120C121C5A5A12600A3E78AA1B>I<007FBAFCBB1280A26C1900CEFCB0007FBA FCBB1280A26C190041187BA44C>61 D63 D65 DIIIIIIII<010FB6FCA3D9000313C06E138080B3B3AA 120EEA3F80487E487EA44A130013C0007F5CEB000300785C6C1307001C5C6CEB0FE06C6C 485A2603E03FC7FC3800FFFCEB1FE028467CC332>IIIIIIIII<49B41303010FEBE007013FEBF80F9038FE00FED801F8EB1F1FD803E0EB0F9F 4848EB03FF48487F48C8FC5A003E81007E81A2007C8112FCA282A37E827EA27F6C6C91C7 FC7F7FEA3FFCEBFF806C13F8ECFF806C14F86C14FE6C6E7E6C15E06C6C80011F80010780 D9007F7F02077FEC007F030F13801503030013C0167F163F17E0161F00E0150FA31607A3 7EA36C16C0160F7E17806C151F6C16006D5C6D147E6D147CD8F9F8495AD8F87E495A3AF0 3FE00FE0010FB51280D8E00149C7FC39C0003FF02B487BC536>I<003FB912F8A3903BF8 003FF8003F01C06D48130790C71501007EEF00FC007C187CA20078183CA20070181CA648 180EA5C81600B3B3A54B7EEDFFFE0103B77EA33F447DC346>IIII89 D<001FB81280A39126C00003130001FCC7FC01F04A5A 49140F495D494A5A90C8FC4C5A003E4B5AA2003C4B5AA24B5B4B90C7FC12384B5A4B5AA2 4B5AC8FC4B5A4B5AA24B5AA24A5B4A90C8FCA24A5A4A5AA24A5AA24A5A4A5AA24A5A495B A24990C7EA0380A2495A495AA2494814071800495A495AA2495A48495CA24890C8FC5F48 5A48485D5F48485D003F4B5A4914034848141F16FFB8FCA331447BC33C>II<01C01318000114384848137048C712E000 0EEB01C0000C1480001C13030018140000385B003013060070130E0060130CA300E0131C 481318A400CFEB19E039FFC01FF801E013FCA3007F130FA2003F130701C013F8390F0001 E01E1D71C431>II97 DII<167FED3FFFA315018182B3EC7FC0903803FFF090380FC07C90383F00 0E017E6D5A497FD803F87F48487F5B000F81485AA2485AA2127FA290C8FC5AAB7E7FA212 3FA26C7EA2000F5D7F6C6C5B00035C6C6C4913806C6C90380F7FC0013F011E13FE90380F C0F8903803FFE09026007F8013002F467DC436>IIIIII<143C14FFA2491380A46D1300A2143C91C7FCADEC7F80EB3FFFA3130014 7F143FB3B3AA123E127F39FF807F00A2147EA25C6C485A383C01F0381F03E03807FF80D8 01FEC7FC195785C21E>IIII<3901FC01FE00FF903807FFC091381E07F091383801F8000701707F0003EB E0002601FDC07F5C01FF147F91C7FCA25BA35BB3A8486CECFF80B5D8F83F13FEA32F2C7D AB36>II<3901FC03FC00FF90380FFF8091 383C07E09138F001F83A07FDE000FE2601FF80137FEE3F8091C7EA1FC04915E049140F17 F0160717F8160317FCA3EE01FEABEE03FCA3EE07F8A217F0160F6D15E0EE1FC06D143F17 806EEB7E00D9FDC05B9039FCF003F891387C0FE091381FFF80DA07FCC7FC91C9FCAE487E B512F8A32F3F7DAB36>I<91387F8007903903FFF00F90380FE07890383F801E90397E00 0F1F49EB079FD803F8EB03BF00076EB4FC5B48487F121F5B003F81A2485AA348C8FCAB6C 7EA3123F7F121F6D5C120F6D5B12076C6C5B6C6C497E6C6C130E013F131C90380FC0F890 3803FFE09038007F8091C7FCAEEEFF80033F13FEA32F3F7DAB33>I<3903F803F000FFEB 1FFCEC3C3EEC707F0007EBE0FF3803F9C000015B13FBEC007E153C01FF13005BA45BB3A7 48B4FCB512FEA3202C7DAB26>I<90383FE0183901FFFC383907E01F78390F0007F8001E 1303481301007C13000078147812F8A21538A27EA27E6C6C13006C7E13FC383FFFE06C13 FC6C13FF6C14C06C14E0C614F0011F13F81300EC0FFC140300E0EB01FE1400157E7E153E A37EA26C143C157C6C14786C14F890388001F039FBC003E039F1F00F8039E07FFE0038C0 0FF01F2E7DAC26>I<130EA6131EA4133EA2137EA213FE120112031207001FB512F0B6FC A2C648C7FCB3A4151CAA153C017F1338A27FEC807090381FC0F0903807E1E0903803FF80 9038007F001E3E7EBC26>IIIIII<003FB612 E0A29038E0003F018014C0003EC7EA7F80003CECFF00A20038495A0078495AA24A5A0070 495AA24A5A4A5AA2C7485A4AC7FC5B5C495A13075C495A131F4A13E0495A495AA29039FF 0001C0485AA2485A485A1503485A48481307A24848EB0F804848133F00FFEB01FF90B6FC A2232B7DAA2B>II<01F81302D803FE13073907FF800E48EBE01C39 1F1FF8F8393807FFF0D8700113E039E0007FC00040EB1F00200978C131>126 D E /Fy 37 123 df<13FE3803FF80000F13E04813F04813F84813FCA2B512FEA96C13FC A26C13F86C13F06C13E0000313803800FE00171775962E>46 D<167C16FE1503150F153F 15FF1407147F010FB5FCB7FCA51487EBF007C7FCB3B3B3B1003FB912C0A73A5E74DD52> 49 D<913801FFFC021FEBFFE091B612FC010715FF011F16C04916F090B87E48D9FC0114 FE489026E0003F7F4890C7000F8048486E80D81FF86E80D83FFE6E806D6C6D80486D6E7F 806E6E7FB5FC6E6E7FA283A21A80A3836C5BA26C5B6C5B6C5B6C90C85AEA00F890C9FC1A 00A25F61A24D5BA24D5B6194B55AA24C5C4C5C96C7FC4C13FC4C5B4C5B604C5B4C90C8FC 4C5A4B5B4B13F04B5B4B138094C9FC4B5A4B48EC3F80ED7FF04B5A4A5B4A49EC7F004A48 C8FC4A5A4A5A4A5A4A485DECFF804990C9FC49484B5A4948150749B8FC5B5B5B90B9FC5A 5A48605A5A5A5ABAFCA361A4415E78DD52>III<01E0EE01C0D801 F8EE07E001FF163F02F0EC03FFDAFFC090B5FC92B7FC616196C7FC60606060606095C8FC 5F17F817E017804CC9FC16F09026FE1FFECAFC91CCFCACED3FFF0203B512F0020F14FE02 3F6E7E91B712E090B87EDBE00F13FC9126FE00037F02F86D7F02E06D804A6E7F91C86C7F 4983717F5B6C488390C9FC8583A285A41A80A3EA07FC48B4FC003F7F487FA2B57EA51A00 A35F4A5E6C5B91C85C5BD83FF84B5B13E0001F4C5B6D5F6C6C92B55A6C6C4A5C6CB44A91 C7FC6C6D495B6C01F0011F5BD97FFE90B512F06DB75A010F16806D4BC8FC010115F0D900 3F1480020301F0C9FC416078DD52>III65 D<95B56C15E0053F02F8EC03F00407B7140704 3F04E0130F4BB800F8131F030705FE133F031F9438FF807F037F9126FC003FEBC0FF4AB6 0080010313F34A02F8C86CB5FC020F02C0151F4A91C97E027F01FC160391B548824902E0 82494A83494A834991CB7E4949844949845B4B8490B548845A4B845A4B197F5A4B193F5A A24891CD121FA35A4A1A0FA25AF507E09AC7FCA25CA2B5FCB07EA280A46CF403E0F507F0 807EA36C6E190FA26C1DE0816C1C1F816CF43FC0816C1C7F6D6D1A806F19FF6D1C006D6D 4E5A6D6D18036D6E4D5A6D6E4D5A6D6E4D5A6D02F8173F6E6DEFFFE0021F01FF4C13806E 02E0030790C7FC020302F8ED3FFE6EDAFF8049B45A6E6C02FC011F13F0031F91B712C003 076003014DC8FCDB003F16F0040716C0DC003F02FCC9FC05001480646677E377>67 D69 D73 D78 D<94380FFFF80403B612E0043F15FE4BB812C0030717F0031F17 FC037F17FF4AB526FE003F14C0020702E0010314F04A91C86C7F023F01FC031F13FE4A01 F003077F91B5486F80494A6F80494A6F804991CA6C7F4949717F4949717F4949717F4B83 498790B5487180A2484A718048894B834889A292CC7E4889A248894A85A24889A4484973 7FA6B51D80AF6C1E00A26E61A46C65A36E616C65A36C6E95B55AA26C656F5F6C65A26C6E 4D5CA26C6E4D5C6D99C7FC6F5F6D6D4D5B6D6D4D5B6D636D6D4D5B6D6E93B55A6D6E4B5C 6D02F003075C6E6D4B91C8FC6E01FE033F5B6E6D6C91B55A020702E0010314F0020102FE 013F14C06E91B85A033F4DC9FC030717F0030117C0DB003F4BCAFC040315E0DC000F01F8 CBFC696677E37C>I82 D<913803FFFE027FEBFFF00103B612FE010F6F7E013F16E04916F89027FFFE001F7F4801 F001077F4801FC01016D7E7080486D80717F85838583A2856C4980A26C5B38007FE0EB1F 8090C9FCA5043FB5FC031FB6FC0203B7FC143F49B8FC0107ECF807011F1480017FEBF800 90B512E0000314804849C7FC485B485B485BA2485B5CB5FCA25CA35FA2805F6C5E806E5C 6C04FD7F6C6DD903F9EBFFC06C01FED90FF1ECFF806C9027FF807FE015C06C91B55AC64C 7E6D4A487E011F4A130F010302E001011480D9001F90CBFC4A437BC150>97 D<92380FFFF092B67E020715F0023F15FC91B8FC491780010717C049DA000713E04901F8 4913F0017F13E090B5484913F8485C92C7FC485B5A5C5A485B7113F0A248496E13E00501 1380489338007E0095C7FC5CA3B5FCAE6C7FA47E80A26C18F86EED01FC6C1703806C6DED 07F87E6FEC0FF06C6E141F6C02F0EC3FE06D6DEC7FC06D01FFEB01FF6DDAE00F13800107 91B5EAFE006D5E01005E023F15E0020F1580020102FCC7FCDA000F13C03E437BC149>99 DI<92380FFFC04A B512FC020FECFF80023F15E091B712F801038249D9FE037F011F9039F0007FFF4949011F 7F4901806D7F90B5C76C7F48496E7F834849824849808548177F4A825A183F4884A2485B A21A80A284B5FCA391B9FCA41A0002E0CBFCA57EA3807EA36C6D161FF13F807E6E167F6C 19006C6D5E6E4B5A6C806C6EEC07FC6D6D140F6D01F8EC3FF86D01FEECFFF06D9026FFE0 075B010391B65A6D94C7FC6D6C5D021F15F8020315E0DA007F91C8FC030713F041437BC1 4C>III<903807FFC0B6FCA7C6FC7F7FB3A7943807FFC0057F13FC4CB6FC040715 C0041F814C819326FFF01F7F03C1D900077FDBC3FC81DBC7F07FDBCFE0814C7FEDDF8003 FFC7FC4B6E80A25DA25DA25DA45DB3B0B7D8F803B712E0A753647AE35C>II<903807FFC0B6 FCA7C6FC7F7FB3A84DB612E0A7DD001FEBC0007248C7FC4E5AF07FF8F0FFE04D5B4D5B05 0F90C8FCEF1FFC4D5A4D5A4C485A4C13804C90C9FC4C5A4C5AEE7FF016FF03C17F03C37F 03CF7F15DF92B6FC8484A2844B6C7F4B6C7FEDF01F03E0804B6C7F4B6C7F7080A2708070 80717FA2717F717F717F8385718071807180A2727F86B7D8E007B612FCA74E647BE357> 107 D<903807FFC0B6FCA7C6FC7F7FB3B3B3B3ABB712F0A724647AE32D>I<902607FF80 902607FFC0ED1FFFB6027F01FC4AB512F04CB6020714FC040703C0011F14FF041F6F017F 814C6F90B77E9326FFF01FD9F803D9C07F7F0381D900079028FC07FC001F7FC6DA83FC92 26FE0FF0816DD987F06DDA1FC07F6DD98FE06F4848814C6D92C77EDB9F80167E03BFC75D 03BE6E4A6E7F15FE4B5FA24B5FA24B5FA44B5FB3B0B7D8F803B7D8E00FB71280A781417A C08A>I<902607FF80903807FFC0B6027F13FC4CB6FC040715C0041F814C819326FFF01F 7F0381D900077FC6DA83FC816DD987F07F6DD98FE0814C7FED9F8003BFC7FC03BE6E8015 FE5DA25DA25DA45DB3B0B7D8F803B712E0A753417AC05C>I<923807FFC092B512FE0207 ECFFC0023F15F891B712FE4982010749C614C04901F0011F7F4901C001077F49496D7F49 90C76C7F49486E7F48496F7E48496F1380A24819C048496F13E0A24819F0A24819F84A81 A34819FCA4B518FEAD6C19FCA46C6D4B13F8A36C19F0A26C6D4B13E0A26C19C06C6D4B13 806E92B5FC6C6D4A14006C6E495B6D6D495B6D01F0011F5B6D01FE90B55A010790B712C0 6D5F01004CC7FC023F15F8020F15E0020192C8FCDA000F13E047437BC152>I<902607FF C0EB3FFEB60107B512E0043F14FC93B7FC03C316C003C716F003DF8292B5C680C603F801 1F13FF6D02C00107806D91C76C804B804B6E804B6F7F4B834B81737FA28785A28785A473 1480AD611C00A44F5BA34F5BA24F5BA26F4B5B6F5F96B5FC6F4A5C6F4A5C6F6C4991C7FC 70495B04F0013F13F8DCFE01B55A03EFB712C003E35E03E14BC8FCDBE07F14F0040F1480 040101F0C9FC93CCFCB3A2B712F8A7515D7BC05C>I<903A07FF8007FEB690381FFFC004 7F13F093B57E038314FE038780DCFC7F1380ED8FF0C6DA9FC0B512C06D5C6D13BF5E15FE A25DA24B6D1380A24B6D1300EF0FFCEF03F04B90C8FCA65DB3ADB712FCA73A417BC044> 114 D<913A3FFFC007800103B538FC1FC0011FECFF3F017F15FF90B8FC0003EBF0004890 C7121FD80FFC140748481401003F815B007F167F49153FA212FF171F7FA27F6DED0F8001 FF92C7FC14E014FEECFFF86CECFFC016FC6C15FF17C06C16F06C826C16FE6C826C17806C 6C16C06D16E0130F010316F0EB003F020115F8EC000FDB007F13FC160F1603007C8100FE 81177F6C163FA2171F7FA26D16F8A26D153F7F6DED7FF07F6DEDFFE06D4A13C002E00107 138002FC017F130091B65A01DF5D018715F0D8FE0315C048C66C91C7FC0070010713E036 437BC141>II<902603FFE092380FFF80B60203B6FCA7C6EE00036D826D82B3B260A360A260A26D5E60 6F4A7E6D047F806F02FE806D6DD903FCECFFE06D9039FF801FF86D91B512F06D16E0023F 1580020F1500020314F8DA001F01C002FCC7FC53427AC05C>I119 D<007FB600C0017FB512 F8A7D8001F01F8C70007EBE0006D6D6E90C7FC6D6D5D6D6D4A5A6D6E495A6D4C5A70495A 6E6D137F6E6D495A6E6D5C6E4A90C8FC70485A6E6D485A6E6D485A6EEC9FF06E14FF6F5C 606F5C6F91C9FC6F5B81A26F7F6F806F80707F93B5FC4B804B804B804B80DB1FFB7F16F3 DB3FE180DB7FC0804B486C7F4A496C7F4A804A48814A486D7F4B6D7F4A486D7F4A486D80 4A487F4A488249707F4990C86C7F49486F7FD91FFF81B600F049B7FCA750407DBF57>I< 007FB600E049B512FEA7D8003F01F0C8380FFE006DEF03F86F1507A26D6D4B5AA26D6D4B 5AA26D6D5E193F6D6E5D197F6D95C7FC705C6E5E701301A26E6D495AA26E6D495AA26E6D 5C180F6E6D5C181F6E5E70133F6E5EEF807FA26E6E48C8FCA26FEBE1FEA26FEBF1FC17F3 6FEBFBF817FF6F5CA26F5CA36F5CA26F5CA26F91C9FCA2705AA2705AA2705AA3705AA24C 5AA25F163F5F167FD807F092CAFCD81FFC5C486C5C486C1301A2B56C485AA24B5A4B5AA2 4B5A4A485A6C4A5A9038FE01FF263FDE0790CBFC9038F01FFE6CB512F86C5C6C5C6C1480 C649CCFCEB1FF04F5D7DBF57>I<000FB912E019F0A59126FC000114E04801C04914C091 C74814805B494A1400494A5B494A5BA2494A5B93B55A49495CA24B5C4B5C003F4A91C7FC 5B4B5B4B5B4B5BA2C8B55A4A5C4A5CA24A5C4A91C8FC4A5BA24A49EB07F04A5B91B55AA2 495C494AEB0FE0495CA24991C7FC495B4949141FA2495B90B548143F485CF07FC0485C48 4A14FF4891C75A5F4849140F4849143F48490103B5FC91B8FCBAFC1980A47E3C407BBF49 >I E /Fz 43 122 df<030C1303031E497EA2033E130FA2033C91C7FCA2037C5BA20378 131EA303F8133EA24B133CA20201147CA24B1378A2020314F8A24B5BA302071301007FB9 1280BA12C0A26C1880C7271F0007C0C7FC021E5CA3023E130FA2023C91C8FCA2027C5BA2 0278131EA302F8133E007FB91280BA12C0A26C1880280003E000F8C8FC4A5BA301071301 A202805BA2010F1303A202005BA2491307A2011E5CA3013E130FA2013C91C9FCA2017C5B A20178131EA20130130C3A4A7BB945>35 D<121C127FEAFF80A213C0A3127F121C1200A4 12011380A2120313005A1206120E5A5A5A12600A19798817>44 DI<121C127FEAFF80A5EA7F00121C0909798817>I48 DIII<000C140C000F143C9038F003F890B5FC5D5D158092C7FC 14FC000E13E090C9FCABEB07F8EB3FFE9038780F80390FE007E090388003F0496C7E120E 6E7EC87EA28181A21680A4123E127F487EA490C71300485C12F000705C12780038495A00 3C5C6C1303001F495A6C6C485A3907E03F800001B5C7FC38007FFCEB1FE0213A7CB72A> 53 DI57 D<1538157CA315FEA34A7EA34A7FA34A7F153FA2020F7FEC0E1FA2021E7FEC1C0FA2023C 7FEC3807A202787FEC7003A202F07FECE001A20101804A7EA20103814A137FA201078191 C7123F91B6FC4981A2010EC7121F011E81011C140FA2013C8101381407A2017881017014 03A201F08116011201486C81D80FFE02071380B500C090B512FEA3373C7DBB3E>65 DI<4AB4EB0180020FEBE003027FEBF807903901FF807E903A03FC00 1F0FD90FF0EB079FD91FC0EB03FF49487F49C8FC01FE157F4848153F12034848151FA248 48150F121F491507A2123F5B007F1603A35B00FF93C7FCAD127F6DED0380A3123F7F001F 160718007F120F6C6C5D170E6C6C151E00015E6C6C1538017F15786D6C5C6D6C495AD90F F0495AD903FCEB0F80902701FF807EC7FC6D6CB45A020F13F002011380313D7BBA3C>I< B812F8A30001903880001F6C90C71203EE01FC1600177C173CA2171CA4171E170EA2ED03 80A21700A41507A2150F153F91B5FCA3EC003F150F1507A21503A692C8FCAD4813C0B612 C0A32F397DB836>70 D73 D77 DI80 D82 DI85 D97 DIIII<147E903803FF8090380FC1E0EB1F8790383F0FF0137EA213FC A23901F803C091C7FCADB512FCA3D801F8C7FCB3AB487E387FFFF8A31C3B7FBA19>IIIII108 D<2703F00FF0EB1FE000FFD93FFCEB7FF8913AF0 3F01E07E903BF1C01F83803F3D0FF3800FC7001F802603F70013CE01FE14DC49D907F8EB 0FC0A2495CA3495CB3A3486C496CEB1FE0B500C1B50083B5FCA340257EA445>I<3903F0 0FF000FFEB3FFCECF03F9039F1C01F803A0FF3800FC03803F70013FE496D7EA25BA35BB3 A3486C497EB500C1B51280A329257EA42E>II<3903F01FE000FFEBFF F89038F3E07E9039F7801F803A07FF000FC06C48EB07E049EB03F04914F849130116FC15 0016FEA3167FAA16FEA3ED01FCA26DEB03F816F06D13076DEB0FE016C09039F7803F0090 38F3E07E9038F0FFF8EC3FC091C8FCAB487EB512C0A328357EA42E>I<3807E03F00FFEB FFC09038E1C7E09038E38FF0380FE70FEA03EE13ECA29038FC07E09038F8018091C7FCA2 5BB3A3487EB512F0A31C257EA421>114 DI<1338A51378A413F8A21201A212031207001FB5FCB6FC A2D801F8C7FCB2EC01C0A93900FC0380A2137C90387E0700EB3F0EEB0FFCEB03F01A347F B220>II< B53A1FFFE07FFEA3260FF8009038001FF86C48017EEB07E018C00003EE0380153E6D1507 0001027F1400A26D5D00009138FF800E15EF6DECC01ED97E01141C15C7017FECE03C9026 3F03831338A2D91F836D5AEC8701A2D90FC76D5AECCE00A2D907EEEBFDC002FC137DA201 03EC7F804A133FA2010192C7FC4A7FA20100141E4A130E37257EA33C>119 D121 D E /FA 2 122 df<1338A50060130C00F8133E00FC137E00FE13FE383FBBF83807FFC000011300 EA007C48B4FC000713C0383FBBF838FE38FE00FC137E00F8133E0060130C00001300A517 197B9A22>3 D<137013F8A71370A6387C71F0B512F8A3387C71F038007000A413F8B313 70AB15357CA81E>121 D E /FB 14 112 df<13031307130E131C1338137813F0EA01E0 A2EA03C012071380120F13005AA2121E123EA3123C127CA512FCA25AAB7EA2127CA5123C 123EA3121E121FA27E1380120713C01203EA01E0A2EA00F013781338131C130E13071303 10437AB11B>40 D<12C07E12707E7E121E7EEA0780A2EA03C013E0120113F0120013F8A2 1378137CA3133C133EA5133FA2131FAB133FA2133EA5133C137CA3137813F8A213F01201 13E0120313C0EA0780A2EA0F00121E121C5A5A5A5A10437CB11B>I43 D48 D<130E131E137EEA01FE12FFA2EAFE7E1200B3AF13FF007F13FFA3182C7BAB23>III<14075C5CA25C5CA25C5BEB03BFA2EB073F13 0EA2131C13381370A213E0EA01C0A2EA0380EA07001206120E5A5AA25A5AB612FCA3C7EA 3F00A8EC7F8090381FFFFCA31E2D7EAC23>I57 D61 D<48B4FC000713E0381F01F8383C00 FC48137E143E00FC133F7EA4007C137FC7127E14FCEB01F8EB03F014E0EB07C0EB0F8014 00131EA25BA21338A8133090C7FCA6137813FC487EA46C5A1378182F7CAE21>63 D<013F13F83901FFE3FE3903E1FF3E3807807C380F003C48EB3E08001EEB1E00003E131F A6001E131E001F133E6C133C6C6C5A380FE1F0380DFFE0D81C3FC7FC90C8FCA3121E121F EBFFF86C13FF15C06C14E04814F0393F0007F8007E1301007CEB00FC5A157CA4007C14F8 007E13016CEB03F0391F8007E03907E01F803901FFFE0038003FF01F2D7E9D23>103 D108 D111 D E /FC 2 68 df<17075F84171FA2173F177FA217FFA25E5EA24C6C7EA2 EE0E3F161E161C1638A21670A216E0ED01C084ED0380171FED07005D150E5DA25D157815 705D844A5A170F4A5A4AC7FC92B6FC5CA2021CC7120F143C14384A81A24A140713015C49 5AA249C8FC5B130E131E4982137C13FED807FFED1FFEB500F00107B512FCA219F83E417D C044>65 D67 D E /FD 6 118 df<147E49B47E0107EBC38090390FC1EFC090383F80FF495A01FEEB7F 80485A4848133FA248481400120F5B001F5C157E485AA215FE007F5C5BA2140100FF5C13 00A21403EDF0385AA21407EDE078020F1370007E131F16F0007F013F13E06CEB7FE16C13 F3903983E3F3C03A0FFFC1FF80000301001300D800FC133E252977A72E>97 D108 D110 D114 D116 D<137C48B4141C486D137EEA078F380F0FC0D81E0714FEEA1C0F003C5D 12381501EA781F007001805BA2D8F03F1303140000005D5B017E1307A201FE5C5B150F12 01495CA2151F0003EDC1C0491481A2153F1683EE0380157FEDFF07000116006D5A913803 DF0F3A00FC0F9F9E90397FFF0FFC90391FFC07F8903907F001F02A2979A731>I E /FE 40 123 df<15FF020F13E0027F13F84948C67ED903F8133EEB0FF0494813FF4948 5A1480EB7F00A25B496D5A163893C7FCAA167FB8FCA33900FE00018182B3AC486CECFF80 007FD9FC3F13FEA32F407FBF33>12 D<4AB4EC7F80020F9039E007FFF0027FD9F03F13FC 903C01FF01F8FF807E903C03F8003DFC001FD90FF0EB7FF849484948EB7F804948484913 FF02805CD97F005CA25B496D90C7EA7F0070141C96C7FCAAF13F80BBFCA3C648C76CC7FC 197F193FB3AC486C4A6CEB7FC0007FD9FC3FD9FE1FB5FCA348407FBF4C>14 D<121EEA7F8012FF13C0A213E0A3127F121E1200A4120113C0A312031380120713005A12 1E5AA25A12300B1C79BE19>39 D<1438147814F0EB01E0EB03C0EB0780130FEB1F00133E A25B5BA2485AA2485AA212075B120FA25B121FA290C7FC5AA3123E127EA6127C12FCB212 7C127EA6123E123FA37E7FA2120F7FA212077F1203A26C7EA26C7EA2137C7FA27FEB0F80 1307EB03C0EB01E0EB00F014781438155A78C323>I<12E07E12787E7E7E7F6C7E6C7EA2 6C7E6C7EA2137CA27FA2133F7F1480A2130F14C0A2130714E0A3130314F0A6130114F8B2 14F01303A614E01307A314C0130FA21480131FA214005B133EA25BA25BA2485A485AA248 5A485A90C7FC121E5A5A5A5A155A7BC323>I<121EEA7F8012FF13C0A213E0A3127F121E 1200A4120113C0A312031380120713005A121E5AA25A12300B1C798919>44 DI<121EEA7F80A2EAFFC0A4EA7F80A2EA1E000A0A798919>I66 D70 D72 D82 DI87 D89 D97 DI<49B4FC010F13F0013F13FC90 387F007ED801FC7F4848EB7F80484813FF485AA2485AA24848EB7F00151C007F91C7FCA2 90C9FC5AAB6C7EA36C6CEB01C0A2001F14036D14806C6C13076C6CEB0F006C6C131E6C6C 133E3900FF80F890383FFFF0010F13C0D901FEC7FC222A7DA828>IIII<167C903903F801FF90261FFF071380017FEBCF9F9039FE0F FC1F3901F803F83803F0013B07E000FC0600000F6EC7FCA249137E001F147FA7000F147E 6D13FEA200075C6C6C485A6C6C485A3903FE0FE090B55AD8071F90C8FCEB03F80006CAFC 120E120FA37F6C7E90B512F015FE6C6E7E6C15E016F812073A0FC0001FFC4848EB03FE48 C8FC127E167F4881A56C5D007E157E007F15FE6C6C495A6C6C495AD80FF0EB0FF0D803FE EB7FC0C6B6C7FC013F13FC010313C0293D7EA82D>III107 DI<2701F801FE14FF 00FF902707FFC00313E0021FD9E00F7F913B7C07F03E03F80007903BF003F87801FC3D03 F9E001FCF000FE000101C05CD9FB80D9FFC07F91C7497F13FF4992C7FCA3495CB3A5486C 496CECFF80B5D8F87FD9FC3F13FEA347287DA74C>I<3901F801FE00FF903807FFC0021F 7F91387C07F000079038F003F83A03F9E001FC000113C0D9FB807F91C7FC13FF5BA35BB3 A5486C497EB5D8F87F13FCA32E287DA733>I<14FF010713E0011F13F890387F81FE9038 FC003F4848EB1F804848EB0FC04848EB07E04848EB03F0001F15F8491301003F15FCA248 C812FEA44815FFA96C15FEA36C6CEB01FCA36C6CEB03F8000F15F06D13076C6CEB0FE06C 6CEB1FC06C6CEB3F803A007F81FE006DB45A010F13F0010090C7FC282A7EA82D>I<3901 FC03FC00FF90381FFF80027F13E09138FC0FF83A03FFE003FC6C496C7E4A6C7E91C7EA7F 8049EC3FC05BEE1FE0A2EE0FF0A317F81607A9EE0FF0A4EE1FE0A26DEC3FC0EE7F807F6E EBFF006E485A9039FDE003FC9039FCF80FF091387FFFE0021F1380DA03FCC7FC91C9FCAD 487EB512F8A32D3A7EA733>I<02FE131C903907FFC03C013F13E090387F80F83A01FE00 3C7C4848131E4848EB0FFC48481307A248481303485A1501485AA448C7FCA97F127FA36C 7E15036C7E15076C6C130F6C7E6C6C131F6C6C137D3900FF81F190383FFFE1010F138190 3801FC0190C7FCAD4B7E92B512F8A32D3A7DA730>I<3901F807E000FFEB1FF8EC7FFCEC F9FE3807F9E1000313C13801FB81A2EC00FC01FF1330491300A45BB3A4487EB512FEA31F 287EA724>I<90383FC0603901FFF8E0000713FF381FC03F383F000F003E130748130300 78130112F8A214007EA27E6C6C1300EA7FF0EBFF806C13F86C13FE6C7F6C1480000114C0 6C6C13E0010313F0EB003FEC0FF800E013031401A26C1300A37E15F06C13017E6CEB03E0 90388007C09038E01F8000F1B5120000E013FC38C01FE01D2A7DA824>I<131CA5133CA4 137CA213FCA2120112031207121FB612C0A3D801FCC7FCB3A215E0A9EBFE01000014C0A2 90387F0380EB3F8790381FFF006D5AEB01F81B397EB723>IIIIII<001FB61280A3D9E0001300EB800149485A001E5C001C495A003C 130F5D4A5A0038495A147F5D4AC7FC5BC6485A5C495A130F5C90391FE00380133FEB7FC0 1480EBFF005A491307485A485A000F1500495B485A003F5C4848137F49485AB7FCA32127 7EA628>I E /FF 7 117 df<16FCA24B7EA24B7EA34B7FA24B7FA34B7FA24B7FA34B7F15 7C03FC7FEDF87FA2020180EDF03F0203804B7E02078115C082020F814B7E021F81150082 4A81023E7F027E81027C7FA202FC814A147F49B77EA34982A2D907E0C7001F7F4A80010F 835C83011F8391C87E4983133E83017E83017C81B500FC91B612FCA5463F7CBE4F>65 D<903807FFC0013F13F848B6FC48812607FE037F260FF8007F6DEB3FF0486C806F7EA36F 7EA26C5A6C5AEA01E0C8FC153F91B5FC130F137F3901FFFE0F4813E0000F1380381FFE00 485A5B485A12FF5BA4151F7F007F143F6D90387BFF806C6C01FB13FE391FFF07F36CEBFF E100031480C6EC003FD91FF890C7FC2F2B7DA933>97 D<13FFB5FCA512077EAFEDFFE002 0713FC021FEBFF80027F80DAFF8113F09139FC003FF802F06D7E4A6D7E4A13074A807013 80A218C082A318E0AA18C0A25E1880A218005E6E5C6E495A6E495A02FCEB7FF0903AFCFF 01FFE0496CB55AD9F01F91C7FCD9E00713FCC7000113C033407DBE3A>II<3901FE03FC00FF90380FFF804A13C04A13E091387E3FF09138 F87FF8000713F03803FFE0A214C0A29138803FF0ED1FE0ED078092C7FC91C8FCB3A3B6FC A525297DA82B>114 D<90383FFC1E48B512BE000714FE5A381FF00F383F800148C7FC00 7E147EA200FE143EA27E7F6D90C7FC13F8EBFFE06C13FF15C06C14F06C806C806C806C80 C61580131F1300020713C014000078147F00F8143F151F7EA27E16806C143F6D140001E0 13FF9038F803FE90B55A15F0D8F87F13C026E00FFEC7FC222B7DA929>II E /FG 6 122 df<007FB81280B912C0A26C17803204799641>0 D3 D<913807FF80023F13F049B5 12FE903A07FC38FF80D90FE0EB1FC0D93F00EB03F0017CEC00F849157CD801E0151E4848 814848ED078090C714034817C0001EEE01E0001C1600003C17F000381770A20078177800 701738A200F0173C48171CA3B912FCA300E0C70038C7121CA46C173C00701738A2007817 7800381770A2003C17F0001C17E0001E16016CEE03C06C17806D15076C6CED0F006C6C15 1ED800F8157C017C5D013FEC03F0D90FE0EB1FC0D907FCEBFF800101B548C7FCD9003F13 F00207138036367BAF41>8 D102 D<12FCEAFFC0EA07F0EA01FCEA007E7F80131F80130FB3A7801307806D7E6D7EEB007EEC 1FF0EC07F8EC1FF0EC7E00495A495A495A5C130F5CB3A7131F5C133F91C7FC137E485AEA 07F0EAFFC000FCC8FC1D537ABD2A>I<130F497EA96DC7FCA71306A3007EEB07E039FFC6 3FF090B5FCA2EBC63F397E0607E0000090C7FCA2130FA5497EB3AA6DC7FCB01C4D7CBA25 >121 D E /FH 53 124 df0 D<161E163FA34C7EA44C7EA34B7FA34B7FA34B7FA216BF030F7F163F161F031F7F151E 160FA2033C7F82A203788082A203F080A28202018115E0820203815D177F0207815D173F 020F8192C7FC171FA2021E81170FA24A8183A2027C8214788302F8825C830101835C8301 03835C187FA2494882183FA249C97F181FA24983131E013E160F013F835B496C83486D5D 000F01F8037F13E0B6023FB612C0A44A567CD553>3 D44 D46 D48 DII52 D<0003166001C0EC03E001F8141F903AFFC001FF C091B6128017005E5E5E5E16C093C7FC15FC01CF13E001C0C9FCAFEC0FF891B5FC01C314 C09039C7F80FF09039CF8007F89039DE0003FC01FC6D7E496D7E49EC7F804915C049EC3F E0A249EC1FF0C9FC17F8A3EE0FFCA417FEA41206EA3F80EA7FE012FF7FA317FC5BA24914 1F90C813F812701278EE3FF01238003C16E06CED7FC016FF6C16806D491300D807E0495A 6C6C495AD801FCEB1FF83A00FF807FE0013FB55A010F91C7FC010313F89038007FC02F53 7ACF3C>II<121EA2121F13F090B812C0A44817801800A25F5F5F003CC9FC484B5A5F 160300704B5A5F160F4CC7FC00F0151E48153E5E5EC95A15014B5A5E15074B5A93C8FC5D 153EA25DA215FC5D1401A24A5AA214075D140FA3141F5D143FA4147FA314FF5DA45BA65B AC6D90C9FC6D5A147C325479D03C>III65 D67 DI71 D73 D<0103B71280A490C7003FEBC000030F5B6F90C7FCB3B3B3A2EA1FC0487E487E487E A45E150F5B5E6C48131F01805C003CC7FC003E4A5A6C4A5A6C6C5C6C6C495A2603F00190 C8FC3901FE07FE39007FFFF86D13E0D907FEC9FC31557BD13D>I77 DI80 D82 DI85 DI91 D93 D<903801FFC0011F13FC017F13FF3A01FE007FC0D807E0EB1FE049EB0FF8D80FF06D7E48 6C6D7E6D1301826F7FA36C486E7EA2EA03E0C9FCA64AB5FC141F49B6FC0107EBC07F9038 1FFC00EB7FE03801FF804890C7FCEA07FC485A485A123F5B485A183812FF5BA316FFA25D 7F007F5C6DEB07BF6C6C90390F1FE0706C6C131F6C6C90393C0FF9E02707FF01F813FF00 019026FFF00713C0D8003FD9C0011300D907FEC712FC35367BB43C>97 DIIIIIII<137C48B4FC487FA2487FA56C5BA26C90C7FCEA007C90C8FCB0EB7FC0B5FCA41203C6FC 137FB3B3A3497E487FB612C0A41A517CD022>I107 DI<9027FF8003FF4AB47EB5011F01E0010F13F0037F01F8013F13FC92 26FC07FE90387E03FF912A83E001FF01F0007F0003D98780EC03C0C6018FC7D987806D7E D97F9EDA7FCFC76C7E029C15CE02BC15DE02F8DA3FFC6E7E4A5DA24A5DA34A5DB3AC496C 4A6C4A7E486D4A6C4A7EB6D8E07F9026FFF03FB512F8A45D347CB364>I<9039FF8003FE B590381FFFC0037F13F0913981F80FFC913983E003FE00039039878001FFC6EB8F00D97F 9E6D7F14BC14B802F86E7E5CA25CA35CB3AC496C4A7E486D497FB600E0B612E0A43B347C B342>II<90397FC007 FCB590383FFFC092B512F09139C3F80FFC9139C7C003FE000101DFC76C7E6C01FC6E7E6D 486E7E4A81171F4A6E7E4A81170784717EA3711380A47113C0AB4D1380A44D1300A26017 0760170F6E4A5A6E5D4D5A6E4A5A6E4A5A02DF4990C7FC9139CF8007FE9139C3F01FF802 C1B512E0DAC07F1380DB0FF8C8FC92CAFCB0497E487FB612E0A43A4B7DB342>I<9039FF 801FC0B5EB7FF0913881FFFC913883E1FEEC8783000390388F07FFC6139EEB7F9C14BC14 B89138F803FE14F0ED00F816005CA45CB3AA497E4813F8B612F8A428347DB32F>114 DI<14E0A61301A5 1303A21307A3130F131FA2133F137F13FF1203000F90B512E0B7FCA326003FE0C7FCB3A7 1638AC011F14786E1370A2010F14F06E13E0903807FC010103EB03C0903901FF07806DEB FF00EC3FFEEC07F8254B7EC92E>IIIIII<00 1FB712F0A301FCC7EA7FE001E014FF01804913C090C714804B1300001E5C4B5A485D4B5A 153F5E00384A5A15FF4A5B5E4A90C7FC5CC7485A5D4A5A143F5D4A5A4A5A5B5D4990C712 705B495A5C495A013F15E0495A5C495A5A4A13014890C7FC5A484814034914074848140F 003FED1FC04848147F49EB03FFB8FCA32C337DB235>II E /FI 10 118 df78 D80 D97 D102 D108 D111 D<023FECFF800003B5010713F0B6011F7F4C13FE9338FF 83FF923801FC07922603F00F1380DB07E014C0C64B5A011FEB0F806DEB1F00151E6D133E 153C037C6D138003786D130003F86D5A4B6D5A94C8FCA25DA35DA65DB3B3A2497F81017F 13FCB87EA63A4C7CCB43>114 D<91260FFF8013E049B5EAF8030107ECFE07013FECFF8F 90267FF80013DF2601FF80EB1FFF4848C71207D807F8140148488049157F4848153F4848 151FA2007F160F90C9FCA2481607A317037FA27F7FA213F86C6C92C7FC13FF14E06C13FE ECFFF06CECFF806C15F86C15FF6C16C06C16F06C826D81011F816D8101031680D9007F15 C0020715E0DA003F14F01501DB001F13F81603040013FC0078167F00F8163FEF1FFE170F 6C1607A21703A26C1601A37EA26D16FCA26D150318F87F17076D16F06DED0FE07F6DED1F C06DED7F80D99FC0903801FF00D90FF0EB07FE26FE07FEEB7FF8486CB65A48C615C04801 3F49C7FC48010313E0374F7ACC44>III E end %%EndProlog %%BeginSetup %%Feature: *Resolution 600dpi TeXDict begin %%PaperSize: a4 %%EndSetup %%Page: 1 1 1 0 bop 1353 1034 a FI(Natural)59 b(Pro)5 b(ofs)372 1329 y FH(Alexander)40 b(A.)f(Razb)s(oro)m(v)1603 1286 y FG(\003)393 1479 y FH(Sc)m(ho)s(ol)h(of)f(Mathematics)222 1628 y(Institute)j(for)d (Adv)-7 b(anced)41 b(Study)453 1778 y(Princeton,)g(NJ)f(08540)891 1927 y(and)172 2077 y(Steklo)m(v)g(Mathematical)e(Institute)256 2226 y(V)-10 b(a)m(vilo)m(v)j(a)37 b(42,)j(117966,)e(GSP{1)525 2375 y(Mosco)m(w,)h(R)m(USSIA)2470 1329 y(Stev)m(en)j(Rudic)m(h)3226 1286 y FG(y)2043 1479 y FH(Computer)f(Science)g(Departmen)m(t)2133 1628 y(Carnegie)f(Mellon)e(Univ)m(ersit)m(y)2281 1778 y(Pittsburgh,)k(P)-10 b(A)40 b(15212)1401 2609 y(Septem)m(b)s(er)h(11,) f(1999)1712 3084 y FF(Abstract)380 3252 y FE(W)-8 b(e)26 b(in)m(tro)s(duce)e(the)h(notion)g(of)g FD(natur)-5 b(al)26 b FE(pro)s(of.)39 b(W)-8 b(e)26 b(argue)f(that)g(the)h(kno)m(wn)e(pro)s (ofs)g(of)h(lo)m(w-)244 3365 y(er)33 b(b)s(ounds)d(on)j(the)g (complexit)m(y)f(of)h(explicit)e(Bo)s(olean)i(functions)f(in)f (non-monotone)i(mo)s(dels)244 3478 y(fall)d(within)f(our)i (de\014nition)e(of)j(natural.)43 b(W)-8 b(e)33 b(sho)m(w)f(based)f(on)g (a)h(hardness)e(assumption)g(that)244 3591 y(natural)25 b(pro)s(ofs)h(can't)h(pro)m(v)m(e)g(sup)s(er-p)s(olynomial)22 b(lo)m(w)m(er)27 b(b)s(ounds)d(for)i(general)g(circuits.)38 b(With-)244 3704 y(out)30 b(the)g(hardness)e(assumption,)h(w)m(e)h(are) h(able)e(to)i(sho)m(w)e(that)i(they)f(can't)g(pro)m(v)m(e)h(exp)s(onen) m(tial)244 3817 y(lo)m(w)m(er)c(b)s(ounds)e(\(for)h(general)h (circuits\))f(for)h(the)g(discrete)f(logarithm)g(problem.)38 b(W)-8 b(e)28 b(sho)m(w)e(that)244 3930 y(the)34 b(w)m(eak)m(er)g (class)g(of)f FC(AC)1170 3897 y FB(0)1209 3930 y FE(-natural)g(pro)s (ofs)g(whic)m(h)f(is)h(su\016cien)m(t)g(to)h(pro)m(v)m(e)g(the)g(parit) m(y)f(lo)m(w)m(er)244 4043 y(b)s(ounds)22 b(of)i(F)-8 b(urst,)25 b(Saxe,)h(and)d(Sipser,)h(Y)-8 b(ao,)26 b(and)e(Hastad)g(is) f(inheren)m(tly)f(incapable)h(of)h(pro)m(ving)244 4155 y(the)30 b(b)s(ounds)d(of)j(Razb)s(oro)m(v)g(and)f(Smolensky)-8 b(.)39 b(W)-8 b(e)31 b(giv)m(e)f(some)g(formal)f(evidence)g(that)h (natural)244 4268 y(pro)s(ofs)35 b(are)i(indeed)d(natural)i(b)m(y)g (sho)m(wing)f(that)i(ev)m(ery)g(formal)e(complexit)m(y)h(measure)g (whic)m(h)244 4381 y(can)31 b(pro)m(v)m(e)g(sup)s(er-p)s(olynomial)26 b(lo)m(w)m(er)31 b(b)s(ounds)d(for)i(a)h(single)e(function,)g(can)i(do) f(so)h(for)f(almost)244 4494 y(all)f(functions,)g(whic)m(h)g(is)h(one)g (of)h(the)g(t)m(w)m(o)g(requiremen)m(ts)f(of)g(a)h(natural)e(pro)s(of)h (in)f(our)h(sense.)p 0 4580 1530 4 v 111 4641 a FA(\003)149 4671 y Fz(Supp)r(orted)g(b)n(y)f(the)h(gran)n(t)d(#)j(93-6-6)d(of)i (the)h(Alfred)f(P)-7 b(.)29 b(Sloan)g(F)-7 b(oundation,)29 b(b)n(y)g(the)h(gran)n(t)e(#)h(93-011-16015)24 b(of)0 4771 y(the)k(Russian)f(F)-7 b(oundation)27 b(for)g(F)-7 b(undamen)n(tal)28 b(Researc)n(h,)e(and)i(b)n(y)f(an)g(AMS-FSU)i(gran)n (t)115 4841 y FA(y)149 4871 y Fz(P)n(artially)d(supp)r(orted)i(b)n(y)f (NSF)h(gran)n(t)e(CCR-9119319)p eop %%Page: 2 2 2 1 bop 0 631 a Fy(1.)165 b(In)-5 b(tro)5 b(duction)0 850 y Fx(It)33 b(is)g(natural)g(to)g(ask)h(what)g(mak)m(es)g(lo)m(w)m (er)f(b)s(ound)h(questions)g(suc)m(h)h(as)f Fw(P)2831 797 y FB(?)2810 850 y Fx(=)29 b Fw(P)14 b(S)6 b(P)14 b(AC)7 b(E)f Fx(,)32 b Fw(P)3549 797 y FB(?)3528 850 y Fx(=)d Fw(N)10 b(P)k Fx(,)0 984 y(and)38 b Fw(P)330 932 y FB(?)309 984 y Fx(=)f Fw(N)10 b(C)46 b Fx(so)38 b(di\016cult)g(to)f(solv)m(e.)61 b(A)39 b(non-tec)m(hnical)e(reason)i (for)e(thinking)g(they)j(are)e(di\016cult)0 1105 y(migh)m(t)23 b(b)s(e)i(that)g(some)f(v)m(ery)i(brigh)m(t)e(p)s(eople)h(ha)m(v)m(e)h (tried)e(and)h(failed)e({)h(but)h(this)g(is)f(hardly)g(satisfactory)-8 b(.)0 1225 y(A)25 b(tec)m(hnical)f(reason)h(along)e(the)i(same)f(lines) g(w)m(ould)g(b)s(e)h(pro)m(vided)g(b)m(y)g(a)g(reduction)f(to)g(these)i (questions)0 1345 y(from)31 b(another)i(problem)e(kno)m(wn)j(to)e(b)s (e)h(really)e(hard)h(suc)m(h)i(as)f(the)g(Riemann)e(Hyp)s(othesis.)44 b(P)m(erhaps)0 1480 y(the)c(ultimate)d(demonstration)h(that)h Fw(P)1579 1427 y FB(?)1557 1480 y Fx(=)g Fw(N)10 b(P)53 b Fx(is)39 b(a)g(hard)g(problem)g(w)m(ould)g(b)s(e)g(to)g(sho)m(w)i(it) d(to)h(b)s(e)0 1600 y(indep)s(enden)m(t)34 b(of)e(set)h(theory)g(\(ZF)m (C\).)146 1720 y(Another)f(w)m(a)m(y)h(to)e(answ)m(er)i(this)d (question)i(is)f(to)g(demonstrate)h(that)f Fv(known)f Fx(metho)s(ds)h(are)h(inher-)0 1855 y(en)m(tly)26 b(to)s(o)f(w)m(eak)i (to)f(solv)m(e)g(problems)f(suc)m(h)j(as)e Fw(P)1846 1802 y FB(?)1825 1855 y Fx(=)i Fw(N)10 b(P)k Fx(.)41 b(This)26 b(approac)m(h)g(w)m(as)h(tak)m(en)g(in)e(Bak)m(er,)j(Gill,)0 1975 y(and)35 b(Solo)m(v)-5 b(a)m(y)35 b([7],)h(who)g(used)g(oracle)f (separation)g(results)g(for)g(man)m(y)g(ma)5 b(jor)34 b(complexit)m(y)h(classes)h(to)0 2096 y(argue)d(that)f(relativizing)e (pro)s(of)i(tec)m(hniques)j(could)d(not)g(solv)m(e)i(these)g(problems.) 43 b(Since)33 b(relativizing)0 2216 y(pro)s(of)f(tec)m(hniques)j(in)m (v)m(olving)c(diagonalization)e(and)k(sim)m(ulation)d(w)m(ere)k(the)f (only)f(a)m(v)-5 b(ailable)31 b(to)s(ols)g(at)0 2336 y(the)i(time)e(of)h(their)g(w)m(ork,)i(progress)f(along)e(kno)m(wn)j (lines)e(w)m(as)i(ruled)e(out.)146 2457 y(Because)44 b(of)d(this,)i(p)s(eople)f(b)s(egan)f(to)h(study)h(these)g(problems)e (from)f(the)i(v)-5 b(an)m(tage)42 b(of)f(Bo)s(olean)0 2577 y(circuit)26 b(complexit)m(y)-8 b(,)27 b(rather)f(than)h(mac)m (hines.)42 b(The)27 b(new)h(goal)d(is)h(to)g(pro)m(v)m(e)i(a)f (stronger,)h(non-uniform)0 2697 y(v)m(ersion)45 b(of)f Fw(P)61 b Fu(6)p Fx(=)47 b Fw(N)10 b(P)k Fx(,)48 b(namely)43 b(that)h(SA)-8 b(T)45 b(\(or)f(some)g(other)h(problem)e(in)g Fw(N)10 b(P)k Fx(\))45 b(do)s(es)f(not)h(ha)m(v)m(e)0 2818 y(p)s(olynomial-size)23 b(circuits.)41 b(Man)m(y)28 b(new)g(pro)s(of)e(tec)m(hniques)i(ha)m(v)m(e)h(b)s(een)e(disco)m(v)m (ered)i(and)e(successfully)0 2938 y(applied)36 b(to)i(pro)m(v)m(e)h(lo) m(w)m(er)e(b)s(ounds)i(in)d(circuit)h(complexit)m(y)-8 b(,)38 b(as)g(exempli\014ed)f(b)m(y)h([11,)g(1)o(,)g(40,)f(14,)g(27,)0 3059 y(28,)k(3)o(,)h(2)o(,)f(37,)g(4,)g(29)o(,)h(36)o(,)f(8,)g(5,)g(23) o(,)h(24)o(,)f(15,)g(13)o(,)h(17)o(,)f(26,)g(6])g(among)e(others,)44 b(although)c(the)i(lo)m(w)m(er)0 3179 y(b)s(ounds)d(ha)m(v)m(e)h(not)f (come)f(up)h(near)f(the)h(lev)m(el)g(of)f Fw(P)52 b Fx(or)38 b(ev)m(en)i Fw(N)10 b(C)d Fx(.)62 b(These)40 b(tec)m(hniques)h(are)d (highly)0 3299 y(com)m(binatorial,)45 b(and)g(in)f(principle)f(they)j (are)f(not)f(sub)5 b(ject)47 b(to)d(relativization.)78 b(They)46 b(exist)f(in)f(a)0 3420 y(m)m(uc)m(h)34 b(larger)e(v)-5 b(ariet)m(y)33 b(than)g(their)f(recursion-theoretic)h(predecessors.)48 b(Ev)m(en)35 b(so,)f(in)e(this)h(pap)s(er)g(w)m(e)0 3554 y(giv)m(e)38 b(evidence)i(of)d(a)h(general)g(limitation)33 b(on)38 b(their)g(abilit)m(y)e(to)i(resolv)m(e)h Fw(P)2879 3501 y FB(?)2858 3554 y Fx(=)e Fw(N)10 b(P)52 b Fx(and)39 b(other)f(hard)0 3674 y(problems.)146 3795 y(Section)h(2)g(in)m(tro)s (duces)h(and)g(formalizes)d(the)i(notion)g(of)f(a)h Fv(natur)-5 b(al)41 b(pr)-5 b(o)g(of)p Fx(.)63 b(W)-8 b(e)40 b(argue)f(that)g Fv(al)5 b(l)0 3915 y(lower)38 b(b)-5 b(ound)39 b(pr)-5 b(o)g(ofs)38 b(known)g(to)h(date)g(against)g(non-monotone)e(Bo)-5 b(ole)g(an)37 b(cir)-5 b(cuits)39 b(ar)-5 b(e)39 b(natur)-5 b(al,)40 b(or)0 4036 y(c)-5 b(an)41 b(b)-5 b(e)41 b(r)-5 b(epr)g(esente)g(d)41 b(as)g(natur)-5 b(al)p Fx(.)65 b(In)40 b(Section)g(3)f(w)m(e)i(presen)m(t)g(div)m(erse)g(examples)f (of)f(circuit)g(lo)m(w)m(er)0 4156 y(b)s(ound)i(pro)s(ofs)f(and)h(sho)m (w)g(wh)m(y)h(they)g(are)f(natural)e(in)h(our)g(sense.)70 b(While)39 b(Section)i(5)f(giv)m(es)h(some)0 4276 y(general)32 b(theoretical)g(reasons)i(wh)m(y)g(pro)s(ofs)e(against)g(circuits)g (tend)i(to)e(b)s(e)h(natural.)43 b(Section)33 b(4)g(giv)m(es)0 4397 y(evidence)f(that)e Fv(\\natur)-5 b(alizable")32 b(pr)-5 b(o)g(of)32 b(te)-5 b(chniques)32 b(c)-5 b(annot)33 b(pr)-5 b(ove)32 b(str)-5 b(ong)33 b(lower)f(b)-5 b(ounds)32 b(on)h(cir)-5 b(cuit)0 4517 y(size)p Fx(.)85 b(In)47 b(particular,)i(w)m(e)f(sho)m(w)f(mo)s(dulo)e(a)h(widely)h(b)s(eliev)m (ed)f(cryptographic)h(assumption)f(that)0 4637 y Fv(no)41 b(natur)-5 b(al)41 b(pr)-5 b(o)g(of)40 b(c)-5 b(an)41 b(pr)-5 b(ove)40 b(sup)-5 b(er-p)g(olynomial)40 b(lower)g(b)-5 b(ounds)40 b(for)h(gener)-5 b(al)40 b(cir)-5 b(cuits)p Fx(,)41 b(and)f(sho)m(w)0 4758 y Fv(unc)-5 b(onditional)5 b(ly)49 b Fx(that)41 b Fv(no)i(natur)-5 b(al)43 b(pr)-5 b(o)g(of)43 b(c)-5 b(an)42 b(pr)-5 b(ove)43 b(exp)-5 b(onential)41 b(lower)i(b)-5 b(ounds)42 b(on)h(the)g(cir)-5 b(cuit)0 4878 y(size)34 b(of)h(the)g(discr)-5 b(ete)34 b(lo)-5 b(garithm)34 b(pr)-5 b(oblem)p Fx(.)1888 5214 y(2)p eop %%Page: 3 3 3 2 bop 146 631 a Fx(Natural)27 b(pro)s(ofs)h(form)e(a)i(hierarc)m(h)m (y)h(according)e(to)h(the)g(complexit)m(y)f(of)h(the)g(com)m (binatorial)c(prop-)0 751 y(ert)m(y)44 b(in)m(v)m(olv)m(ed)f(in)e(the)j (pro)s(of.)72 b(W)-8 b(e)43 b(sho)m(w)h(without)e(using)g(an)m(y)i (cryptographic)e(assumption)g(that)0 872 y Fw(AC)150 836 y FB(0)190 872 y Fx(-natural)34 b(pro)s(ofs,)j(whic)m(h)g(are)g (su\016cien)m(t)g(to)f(pro)m(v)m(e)i(the)f(parit)m(y)f(lo)m(w)m(er)g(b) s(ounds)h(of)f([11,)g(40,)g(14],)0 992 y(are)d(inheren)m(tly)f (incapable)g(of)g(pro)m(ving)g(the)h(b)s(ounds)g(for)f Fw(AC)2326 956 y FB(0)2366 992 y Fx([)p Fw(q)t Fx(]-circuits)f(of)i ([29)o(,)g(36)o(,)g(8].)146 1162 y(One)f(application)e(of)h(natural)g (pro)s(ofs)g(w)m(as)i(giv)m(en)f(in)f([33)o(].)44 b(It)31 b(w)m(as)i(sho)m(wn)g(there)g(that)e(in)g(certain)0 1283 y(fragmen)m(ts)h(of)f(Bounded)i(Arithmetic)d(an)m(y)j(pro)s(of)e(of)h (sup)s(er-p)s(olynomial)c(lo)m(w)m(er)k(b)s(ounds)h(for)f(general)0 1403 y(circuits)45 b(w)m(ould)g(naturalize,)j(i.e.,)g(could)d(b)s(e)h (recast)g(as)g(a)f(natural)g(pro)s(of.)81 b(Com)m(bined)45 b(with)h(the)0 1523 y(material)28 b(con)m(tained)k(in)e(Section)h(4)g (of)g(this)g(pap)s(er,)h(this)f(leads)g(to)g(the)g(indep)s(endence)i (of)e(suc)m(h)i(lo)m(w)m(er)0 1644 y(b)s(ounds)38 b(from)e(these)i (theories)g(\(assuming)e(our)h(cryptographic)g(hardness)i (assumption\).)57 b(See)38 b(also)0 1764 y([19,)32 b(34])g(for)g(in)m (terpretations)f(of)h(this)g(approac)m(h)h(in)e(terms)i(of)e(the)i (prop)s(ositional)c(calculus,)j([10,)g(25])0 1885 y(for)g(further)h (results)g(in)f(this)g(direction,)f(and)i([35])f(for)g(an)h(informal)c (surv)m(ey)-8 b(.)0 2173 y Ft(1.1.)137 b(Notation)47 b(and)f(de\014nitions)0 2358 y Fx(W)-8 b(e)34 b(denote)h(b)m(y)g Fw(F)685 2373 y Fs(n)766 2358 y Fx(the)g(set)g(of)e(all)f(Bo)s(olean)h (functions)h(in)f Fw(n)i Fx(v)-5 b(ariables.)46 b(Most)35 b(of)f(the)g(time,)f(it)g(will)0 2479 y(b)s(e)h(con)m(v)m(enien)m(t)h (to)e(think)h(of)f Fw(f)1156 2494 y Fs(n)1232 2479 y Fu(2)d Fw(F)1391 2494 y Fs(n)1471 2479 y Fx(as)k(a)f(binary)g(string)g (of)g(length)g(2)2719 2442 y Fs(n)2766 2479 y Fx(,)h(called)e(the)i Fv(truth-table)g Fx(of)0 2599 y Fw(f)48 2614 y Fs(n)95 2599 y Fx(.)49 b Fr(f)228 2614 y Fs(n)309 2599 y Fx(is)35 b(a)f(randomly)f(c)m(hosen)j(function)e(from)g Fw(F)1925 2614 y Fs(n)1972 2599 y Fx(,)h(and)f(in)g(general)g(w)m(e)i(reserv)m(e) g(the)f(b)s(old)f(face)h(in)0 2719 y(our)d(form)m(ulae)f(for)h(random)g (ob)5 b(jects.)146 2840 y(The)43 b(notation)d Fw(AC)905 2804 y Fs(k)947 2840 y Fx(,)k Fw(N)10 b(C)1183 2804 y Fs(k)1268 2840 y Fx(is)41 b(used)h(in)f(the)h(standard)f(sense)j(to)d (denote)h(non-uniform)d(class-)0 2960 y(es.)56 b Fw(AC)314 2924 y FB(0)353 2960 y Fx([)p Fw(m)p Fx(],)38 b Fw(T)14 b(C)705 2924 y FB(0)780 2960 y Fx(and)37 b Fw(P)8 b(=pol)r(y)39 b Fx(are)e(the)f(classes)i(of)e(functions)g(computable)f(b)m(y)j(p)s (olynomial-size)0 3080 y(b)s(ounded-depth)26 b(circuits)e(allo)m(wing)e Fw(M)10 b(O)s(D)s Fx(-)p Fw(m)24 b Fx(gates,)j(b)s(ounded-depth)f (circuits)e(allo)m(wing)e(threshold)0 3201 y(gates)33 b(and)g(un)m(b)s(ounded-depth)h(circuits)e(o)m(v)m(er)i(a)e(complete)g (basis,)g(resp)s(ectiv)m(ely)-8 b(.)0 3534 y Fy(2.)165 b(Natural)56 b(pro)5 b(ofs)0 3782 y Ft(2.1.)137 b(Natural)46 b(com)l(binatorial)g(prop)t(erties)0 3966 y Fx(W)-8 b(e)31 b(start)f(b)m(y)i(de\014ning)e(what)h(w)m(e)g(mean)f(b)m(y)i(a)e (\\natural)f(com)m(binatorial)e(prop)s(ert)m(y";)32 b(natural)d(pro)s (ofs)0 4087 y(will)h(b)s(e)j(those)g(that)g(use)g(a)f(natural)g(com)m (binatorial)d(prop)s(ert)m(y)-8 b(.)146 4207 y(F)g(ormally)g(,)50 b(b)m(y)f(a)g(com)m(binatorial)c(prop)s(ert)m(y)k(of)f(Bo)s(olean)f (functions)i(w)m(e)g(will)e(mean)h(a)g(set)h(of)0 4328 y(Bo)s(olean)35 b(functions)h Fu(f)8 b Fw(C)931 4343 y Fs(n)1006 4328 y Fu(\022)28 b Fw(F)1174 4343 y Fs(n)1238 4328 y Fu(j)22 b Fw(n)27 b Fu(2)i Fw(!)13 b Fu(g)p Fx(.)54 b(Th)m(us,)39 b(a)d(Bo)s(olean)e(function)i Fw(f)2849 4343 y Fs(n)2932 4328 y Fx(will)e(p)s(ossess)k(prop)s(ert)m(y)0 4448 y Fw(C)70 4463 y Fs(n)160 4448 y Fx(if)k(and)i(only)e(if)h Fw(f)834 4463 y Fs(n)926 4448 y Fu(2)k Fw(C)1109 4463 y Fs(n)1156 4448 y Fx(.)75 b(\(Alternativ)m(ely)-8 b(,)45 b(w)m(e)g(will)c(sometimes)h(\014nd)i(it)e(con)m(v)m(enien)m(t)j(to)e (use)0 4568 y(function)33 b(notation:)44 b Fw(C)883 4583 y Fs(n)930 4568 y Fx(\()p Fw(f)1016 4583 y Fs(n)1063 4568 y Fx(\))29 b(=)h(1)j(if)f Fw(f)1456 4583 y Fs(n)1533 4568 y Fu(2)e Fw(C)1699 4583 y Fs(n)1746 4568 y Fx(,)j(and)h Fw(C)2067 4583 y Fs(n)2114 4568 y Fx(\()p Fw(f)2200 4583 y Fs(n)2247 4568 y Fx(\))29 b(=)h(0)j(if)f Fw(f)2640 4583 y Fs(n)2717 4568 y Fu(62)e Fw(C)2883 4583 y Fs(n)2929 4568 y Fx(.\))47 b(The)34 b(com)m(binatorial)0 4689 y(prop)s(ert)m(y)f Fw(C)468 4704 y Fs(n)548 4689 y Fx(is)f Fv(natur)-5 b(al)32 b Fx(if)g(it)f(con)m(tains)i(a)f(subset)i Fw(C)2005 4653 y Fq(\003)1998 4713 y Fs(n)2078 4689 y Fx(with)e(the)h(follo)m(wing)d (t)m(w)m(o)j(conditions:)1888 5214 y(3)p eop %%Page: 4 4 4 3 bop 0 656 a Fp(Constructivit)m(y:)46 b Fx(The)37 b(predicate)f Fw(f)1467 671 y Fs(n)1564 585 y FB(?)1547 656 y Fu(2)e Fw(C)1724 620 y Fq(\003)1717 680 y Fs(n)1800 656 y Fx(is)h(in)g Fw(P)14 b Fx(.)53 b(Th)m(us,)38 b Fw(C)2530 620 y Fq(\003)2523 680 y Fs(n)2606 656 y Fx(is)d(computable)g (in)g(time)f(whic)m(h)244 776 y(is)e(p)s(olynomial)d(in)j(the)h(truth)f (table)g(of)g Fw(f)1785 791 y Fs(n)1833 776 y Fx(;)0 979 y Fp(Largeness:)51 b Fu(j)p Fw(C)662 943 y Fq(\003)655 1004 y Fs(n)701 979 y Fu(j)27 b(\025)h Fx(2)910 943 y Fq(\000)p Fs(O)r FB(\()p Fs(n)p FB(\))1145 979 y Fu(\001)21 b(j)p Fw(F)1285 994 y Fs(n)1332 979 y Fu(j)p Fx(.)146 1208 y(A)33 b(com)m(binatorial)c(prop)s(ert)m(y)k Fw(C)1335 1223 y Fs(n)1415 1208 y Fx(is)f Fv(useful)j(against)f Fw(P)8 b(=pol)r(y)36 b Fx(if)31 b(it)g(satis\014es:)0 1436 y Fp(Usefulness:)50 b Fx(The)25 b(circuit)f(size)h(of)f(an)m(y)h (sequence)i(of)d(functions)h Fw(f)2495 1451 y FB(1)2534 1436 y Fw(;)17 b(f)2626 1451 y FB(2)2666 1436 y Fw(;)g(:)g(:)g(:)e(;)i (f)2932 1451 y Fs(n)2979 1436 y Fw(;)g(:)g(:)g(:)o Fx(,)27 b(where)e Fw(f)3512 1451 y Fs(n)3587 1436 y Fu(2)j Fw(C)3751 1451 y Fs(n)3798 1436 y Fx(,)244 1556 y(is)35 b(sup)s(er-p)s (olynomial,)f(i.e.,)i(for)g(an)m(y)g(constan)m(t)h Fw(k)s Fx(,)g(for)e(su\016cien)m(tly)i(large)e Fw(n)p Fx(,)i(the)f(circuit)f (size)244 1677 y(of)d Fw(f)403 1692 y Fs(n)483 1677 y Fx(is)g(greater)g(than)h Fw(n)1197 1641 y Fs(k)1240 1677 y Fx(.)0 1905 y(A)48 b(pro)s(of)g(that)g(some)h(function)e(do)s(es)i (not)g(ha)m(v)m(e)g(p)s(olynomial-sized)c(circuits)j(is)g Fv(natur)-5 b(al)50 b(against)0 2026 y Fw(P)8 b(=pol)r(y)26 b Fx(if)c(the)h(pro)s(of)f(con)m(tains,)j(more)e(or)f(less)i (explicitly)-8 b(,)23 b(the)g(de\014nition)f(of)h(a)g(natural)e(com)m (binatorial)0 2146 y(prop)s(ert)m(y)33 b Fw(C)468 2161 y Fs(n)548 2146 y Fx(whic)m(h)g(is)f(useful)g(against)g Fw(P)8 b(=pol)r(y)t Fx(.)146 2266 y(Note)48 b(that)f(the)i (de\014nition)d(of)h(a)h(natural)e(pro)s(of,)51 b(unlik)m(e)c(that)g (of)h(a)f(natural)f(com)m(binatorial)0 2387 y(prop)s(ert)m(y)-8 b(,)43 b(is)d(not)g(precise.)68 b(This)40 b(is)g(b)s(ecause)i(while)d (the)i(notion)e(of)h(a)g(prop)s(ert)m(y)h(b)s(eing)f(explicitly)0 2507 y(de\014ned)48 b(in)d(a)h(journal)f(pap)s(er)h(is)f(p)s(erfectly)i (clear)e(to)h(the)h(w)m(orking)f(mathematician,)g(it)f(is)h(a)g(bit)0 2627 y(slipp)s(ery)c(to)g(formalize.)69 b(This)43 b(lac)m(k)f(of)g (precision)f(will)f(not)i(a\013ect)h(the)f(precision)g(of)f(our)i (general)0 2748 y(statemen)m(ts)32 b(ab)s(out)f(natural)f(pro)s(ofs)h (\(see)i(Section)e(4\))g(b)s(ecause)i(they)f(will)d(app)s(ear)i(only)g (in)f(the)i(form)0 2868 y(\\there)44 b(exists)g(\(no\))f(natural)g(pro) s(of)p Fw(:)17 b(:)g(:)e Fx(",)46 b(and)e(should)f(b)s(e)h(understo)s (o)s(d)f(as)h(equiv)-5 b(alen)m(t)43 b(to)g(\\there)0 2989 y(exists)33 b(\(no\))g(natural)e(com)m(binatorial)e(prop)s(ert)m (y)34 b Fw(C)1906 3004 y Fs(n)1952 2989 y Fw(:)17 b(:)g(:)f Fx(")146 3109 y(The)36 b(de\014nitions)f(of)f(natural)g(prop)s(ert)m(y) i(and)f(natural)f(pro)s(of)h(can)g(b)s(e)g(explained)g(m)m(uc)m(h)h (less)f(for-)0 3229 y(mally)-8 b(.)81 b(First,)48 b(a)e(pro)s(of)f (that)h(some)f(explicit)g(function)g Fu(f)p Fw(g)2314 3244 y Fs(n)2361 3229 y Fu(g)g Fx(do)s(es)i(not)e(ha)m(v)m(e)j(p)s (olynomial-sized)0 3350 y(circuits)42 b(m)m(ust)i(plainly)c(iden)m (tify)j(some)g(com)m(binatorial)c(prop)s(ert)m(y)44 b Fw(C)2662 3365 y Fs(n)2752 3350 y Fx(of)e Fw(g)2920 3365 y Fs(n)3010 3350 y Fx(that)h(is)f Fv(use)-5 b(d)43 b Fx(in)g(the)0 3470 y(pro)s(of.)f(That)32 b(is,)g(the)f(pro)s(of)g(will) e(sho)m(w)k(that)e(all)f(functions)h Fw(f)2316 3485 y Fs(n)2395 3470 y Fx(that)g(ha)m(v)m(e)i(this)e(prop)s(ert)m(y)-8 b(,)33 b(including)0 3591 y Fw(g)47 3606 y Fs(n)125 3591 y Fx(itself,)e(are)h(hard)f(to)h(compute.)43 b(In)32 b(other)g(w)m(ords,)h Fw(C)2079 3606 y Fs(n)2157 3591 y Fx(is)e Fv(useful)10 b Fx(.)44 b(If)31 b Fu(f)p Fw(g)2772 3606 y Fs(n)2819 3591 y Fu(g)c(2)i Fw(N)10 b(P)k Fx(,)31 b(then)i(the)f(pro)s(of)0 3711 y(concludes)i Fw(P)42 b Fu(6)p Fx(=)29 b Fw(N)10 b(P)k Fx(.)45 b(Our)33 b(main)f(con)m(ten)m (tion,)i(bac)m(k)m(ed)h(b)m(y)f(evidence)h(in)d(the)i(next)g(section,)f (is)g(that)0 3831 y(curren)m(t)41 b(pro)s(of)e(tec)m(hniques)i(w)m (ould)f(strongly)f(tend)i(to)e(mak)m(e)h(this)f Fw(C)2653 3846 y Fs(n)2739 3831 y Fv(lar)-5 b(ge)47 b Fx(and)40 b Fv(c)-5 b(onstructive)47 b Fx(as)0 3952 y(de\014ned)37 b(ab)s(o)m(v)m(e.)52 b(\(Or)35 b(at)g(least)f(these)j(t)m(w)m(o)f (conditions)e(w)m(ould)h(hold)f(for)h(some)g(sub-prop)s(ert)m(y)i Fw(C)3672 3916 y Fq(\003)3665 3976 y Fs(n)3746 3952 y Fx(of)0 4072 y Fw(C)70 4087 y Fs(n)117 4072 y Fx(.\))146 4192 y(In)f(order)g(to)g(understand)h(the)f(de\014nition)f(of)g Fv(lar)-5 b(ge)36 b Fx(more)f(in)m(tuitiv)m(ely)-8 b(,)35 b(let)g Fw(N)44 b Fx(=)33 b(2)3284 4156 y Fs(n)3331 4192 y Fx(.)53 b(Largeness)0 4313 y(requires)32 b(that)584 4266 y Fq(j)p Fs(C)659 4243 y Fo(\003)654 4283 y Fn(n)697 4266 y Fq(j)p 584 4290 132 4 v 587 4347 a(j)p Fs(F)652 4355 y Fn(n)694 4347 y Fq(j)754 4313 y Fu(\025)902 4274 y FB(1)p 869 4290 102 4 v 869 4347 a Fs(N)932 4328 y Fn(k)1011 4313 y Fx(for)e(some)h(\014xed)h Fw(k)f(>)d Fx(0,)j(i.e.,)g Fr(f)2168 4328 y Fs(n)2245 4313 y Fx(has)g(a)g (non-negligible)c(c)m(hance)33 b(of)d(ha)m(ving)0 4433 y(prop)s(ert)m(y)j Fw(C)468 4448 y Fs(n)515 4433 y Fx(.)146 4554 y Fv(Constructivity)g Fx(is)f(a)g(more)f(subtle)i(notion)e(to)h (understand)h(and)g(justify)-8 b(.)43 b(W)-8 b(e)33 b(tak)m(e)g(as)f (our)g(basic)0 4674 y(b)s(enc)m(hmark)45 b(of)e(\\constructiv)m(e")i (that)f Fw(f)1563 4689 y Fs(n)1657 4674 y Fu(2)k Fw(C)1841 4689 y Fs(n)1932 4674 y Fx(b)s(e)c(decidable)g(in)f(time)g(2)2924 4638 y Fs(O)r FB(\()p Fs(n)p FB(\))3081 4674 y Fx(,)k(i.e.,)g(p)s (olynomial)0 4794 y(as)e(a)f(function)g(of)h(2)792 4758 y Fs(n)838 4794 y Fx(.)80 b(No)m(w,)48 b(this)d(is)f(exp)s(onen)m(tial) g(in)g(the)h(n)m(um)m(b)s(er)g Fw(n)g Fx(of)f(v)-5 b(ariables)43 b(in)h Fw(f)3546 4809 y Fs(n)3593 4794 y Fx(,)k(and)0 4915 y(this)38 b(mak)m(es)h(our)f(concept)h(somewhat)f(m)m(ysterious,)i (esp)s(ecially)d(since)i(w)m(e)g(are)f(going)f(to)g(emplo)m(y)h(it)1888 5214 y(4)p eop %%Page: 5 5 5 4 bop 0 631 a Fx(for)39 b(studying)h(computations)e(whic)m(h)i(are)g (p)s(olynomial)35 b(in)k Fw(n)p Fx(!)64 b(The)41 b(b)s(est)f (justi\014cation)e(w)m(e)j(ha)m(v)m(e)f(is)0 751 y(empirical:)51 b(the)39 b(v)-5 b(ast)38 b(ma)5 b(jorit)m(y)37 b(of)g(prop)s(erties)h (of)f(Bo)s(olean)g(functions)h(or)g Fw(n)p Fx(-v)m(ertex)h(graphs)f (\(etc.\))0 872 y(that)h(one)h(encoun)m(ters)h(in)d(com)m(binatorics)g (are)h(at)g(w)m(orst)h(exp)s(onen)m(tial-time)d(decidable,)k(and,)g(as) e(a)0 992 y(matter)24 b(of)g(fact,)j(kno)m(wn)f(lo)m(w)m(er)f(b)s (ounds)g(pro)s(ofs)g(op)s(erate)f(only)h(with)f(suc)m(h)i(prop)s (erties.)41 b(It)25 b(also)f(should)0 1112 y(b)s(e)32 b(noted)h(that)e(ev)m(en)j(with)e(this)f(lo)s(ose)h(notion)f(of)g (constructivit)m(y)i(w)m(e)g(manage)e(to)h(pro)m(v)m(e)h(in)e(Section)0 1233 y(4)h(strong)h(negativ)m(e)g(results)g(on)f(the)h(non-existence)h (of)e(natural)f(pro)s(ofs.)146 1353 y(More)g(sp)s(eci\014cally)-8 b(,)30 b(consider)g(a)g(commonly-en)m(visioned)f(pro)s(of)g(strategy)i (for)e(pro)m(ving)h Fw(P)41 b Fu(6)p Fx(=)28 b Fw(N)10 b(P)k Fx(:)145 1582 y Fu(\017)49 b Fx(F)-8 b(orm)m(ulate)28 b(some)i(mathematical)d(notion)j(of)f(\\discrepancy")j(or)e(\\scatter") g(or)g(\\v)-5 b(ariation")27 b(of)244 1702 y(the)i(v)-5 b(alues)29 b(of)g(a)g(Bo)s(olean)f(function,)h(or)g(of)g(an)g(asso)s (ciated)g(p)s(olytop)s(e)f(or)h(other)g(structure.)44 b(\(In)244 1822 y(our)39 b(terms,)h(this)f(notion)e(w)m(ould)i(b)s(e)g (formalized)e(as)i(a)f(com)m(binatorial)e(prop)s(ert)m(y)j Fw(C)3456 1837 y Fs(n)3542 1822 y Fx(that)f(is)244 1943 y(true)33 b(of)f(an)m(y)h(function)f(with)g(su\016cien)m(tly)i(high)e (discrepancy)-8 b(.\))145 2146 y Fu(\017)49 b Fx(Sho)m(w)e(b)m(y)h(an)f (inductiv)m(e)g(argumen)m(t)f(that)g(p)s(olynomial-sized)e(circuits)i (can)h(only)f(compute)244 2267 y(functions)36 b(of)f(\\lo)m(w")g (discrepancy)-8 b(.)56 b(\(In)36 b(our)g(terms,)h(this)e(w)m(ould)h (mean)g(sho)m(wing)g(that)g Fw(C)3677 2282 y Fs(n)3759 2267 y Fx(is)244 2387 y(\\useful",)28 b(b)s(ecause)g(an)m(y)f(function) g(with)f(prop)s(ert)m(y)i Fw(C)2233 2402 y Fs(n)2306 2387 y Fx(can't)g(b)s(e)f(computed)g(b)m(y)g(a)g(p)s(olynomial-)244 2507 y(sized)33 b(circuit.\))145 2711 y Fu(\017)49 b Fx(Then)29 b(sho)m(w)g(that)e(SA)-8 b(T,)29 b(or)e(some)h(other)g (function)f(in)g Fw(N)10 b(P)k Fx(,)29 b(has)f(\\high")f(discrepancy)-8 b(.)43 b(\(In)28 b(our)244 2831 y(terms,)k(this)h(means)f(sho)m(wing)h (that)f(SA)-8 b(T)34 b(has)f(prop)s(ert)m(y)g Fw(C)2479 2846 y Fs(n)2526 2831 y Fx(.\))146 3059 y(Our)i(main)f(theorem)g(in)h (Section)f(4)h(giv)m(es)h(evidence)g(that)f Fv(no)h(pr)-5 b(o)g(of)37 b(str)-5 b(ate)g(gy)38 b(along)e(these)h(lines)0 3180 y(c)-5 b(an)28 b(ever)g(suc)-5 b(c)g(e)g(e)g(d)10 b Fx(.)40 b(W)-8 b(e)26 b(sho)m(w)h(that)e(an)m(y)h(large)e(and)i (constructiv)m(e)h Fw(C)2558 3195 y Fs(n)2630 3180 y Fx(that)e(is)g(useful)h(against)e Fw(P)8 b(=pol)r(y)0 3300 y Fx(pro)m(vides)35 b(a)f(statistical)e(test)j(that)f(can)g(b)s(e) g(used)i(to)e(break)h Fv(any)42 b Fx(p)s(olynomial-time)29 b(pseudo-random)0 3421 y(n)m(um)m(b)s(er)34 b(generator.)48 b(Sp)s(eci\014cally)-8 b(,)33 b(it)g(w)m(ould)h(violate)e(the)i(fairly) e(widely)i(b)s(eliev)m(ed)g(conjecture)h(that)0 3541 y(there)i(exist)g(pseudo-random)f(generators)g(of)g(hardness)i(2)2220 3505 y Fs(n)2263 3481 y Fn(\017)2297 3541 y Fx(,)f(for)f(some)g Fw(\017)e(>)g Fx(0)i(\(e.g.,)i(the)f(standard)0 3671 y(generator)c(based)g(on)g(the)g(discrete)g(logarithm)c(function)j([9]) h(is)f(b)s(eliev)m(ed)g(to)h(b)s(e)f(2)3104 3635 y Fs(n)3147 3611 y Fm(1)p Fn(=)p Fm(3)3248 3671 y Fx(-hard\).)146 3791 y(What)f(w)m(e)g(are)g(sa)m(ying,)g(sub)5 b(ject)32 b(to)e(the)h(truth)g(of)f(the)g(hard)h(pseudo-random)f(generator)h (conjec-)0 3912 y(ture,)36 b(is)e(this:)48 b(An)m(y)36 b(pro)s(of)e(that)g(some)h(function)f Fu(f)p Fw(f)1979 3927 y Fs(n)2026 3912 y Fu(g)g Fx(do)s(es)i(not)e(ha)m(v)m(e)j(small)32 b(circuits)i(m)m(ust)h(either)0 4032 y(seize)e(on)g(some)g(v)m(ery)h (sp)s(ecialized)e(prop)s(ert)m(y)i(of)e Fw(f)1867 4047 y Fs(n)1914 4032 y Fx(,)h(i.e.)44 b(one)33 b(shared)h(b)m(y)f(only)g(a) f(negligible)e(fraction)0 4153 y(of)40 b(functions,)i(or)e(m)m(ust)g (de\014ne)h(a)f(v)m(ery)i(complicated)d(prop)s(ert)m(y)h Fw(C)2577 4168 y Fs(n)2624 4153 y Fx(,)i(one)f(outside)f(the)h(b)s (ounds)f(of)0 4273 y(most)g(mathematical)d(exp)s(erience.)68 b(In)41 b(our)f(terms,)i(the)f(pro)s(of)f(m)m(ust)g(b)s(e)h(unnatural)e (b)m(y)j(violating)0 4393 y(either)29 b(\\largeness")h(or)f (\\constructivit)m(y)-8 b(.")43 b(In)30 b(Section)f(5)g(w)m(e)i(giv)m (e)f(some)f(solid)f(theoretical)h(evidence)0 4514 y(for)d(largeness,)j (b)m(y)f(sho)m(wing)f(that)g(an)m(y)g Fw(C)1529 4529 y Fs(n)1603 4514 y Fx(based)h(on)e(a)h Fv(formal)i(c)-5 b(omplexity)29 b(me)-5 b(asur)g(e)34 b Fx(m)m(ust)27 b(b)s(e)g(large.)0 4634 y(W)-8 b(e)39 b(do)f(not)g(ha)m(v)m(e)i(an)m(y) f(similar)c(formal)g(evidence)40 b(for)e(constructivit)m(y)-8 b(,)40 b(but)f(from)e(exp)s(erience)i(it)e(is)0 4754 y(plausible)28 b(to)i(sa)m(y)h(that)f(w)m(e)h(do)f(not)f(y)m(et)i (understand)h(the)e(mathematics)e(of)i Fw(C)2924 4769 y Fs(n)3001 4754 y Fx(outside)g(exp)s(onen)m(tial)0 4875 y(time)d(\(as)h(a)g(function)f(of)h Fw(n)p Fx(\))g(w)m(ell)f(enough)i (to)f(use)h(them)f(e\013ectiv)m(ely)g(in)g(a)f(com)m(binatorial)e(st)m (yle)k(pro)s(of.)1888 5214 y(5)p eop %%Page: 6 6 6 5 bop 0 631 a Fx(W)-8 b(e)26 b(mak)m(e)g(this)g(p)s(oin)m(t)f(in)g (Section)h(3,)h(where)g(w)m(e)g(argue)f(that)f(all)f(kno)m(wn)j(lo)m(w) m(er)f(b)s(ound)g(pro)s(ofs)g(against)0 751 y(non-monotone)31 b(circuits)h(are)h(natural)e(b)m(y)j(our)e(de\014nition.)146 872 y(The)h(b)s(est)f(example)g(of)f(a)g(purp)s(ortedly)h(unnatural)f (argumen)m(t)g(is)g(a)h(traditional)c(coun)m(ting)k(argu-)0 992 y(men)m(t.)47 b(The)34 b(com)m(binatorial)c(prop)s(ert)m(y)35 b Fw(C)1575 1007 y Fs(n)1655 992 y Fx(w)m(ould)e(just)h(b)s(e)g (something)f(asserting)g(that)h Fu(f)p Fw(f)3455 1007 y Fs(n)3502 992 y Fu(g)f Fx(is)g(not)0 1112 y(in)f Fw(P)8 b(=pol)r(y)36 b Fx(\(e.g.,)d Fw(C)759 1127 y Fs(n)805 1112 y Fx(\()p Fw(f)891 1127 y Fs(n)938 1112 y Fx(\))28 b(=)g(1)k(exactly)i(when)f(the)h(complexit)m(y)e(of)g Fw(f)2604 1127 y Fs(n)2683 1112 y Fx(is)h(greater)f(than)h Fw(n)3398 1076 y FB(log)14 b Fs(n)3548 1112 y Fx(\).)44 b(The)0 1233 y(pro)s(of)35 b(that)h Fw(C)543 1248 y Fs(n)626 1233 y Fx(is)g(large)f(do)s(es)i(not)f(giv)m(e)g(us)h(the)f(least)g (hin)m(t)g(as)g(to)g(ho)m(w)h(to)f(pro)m(v)m(e)h(the)g(existence)g(of)0 1353 y(a)g(large)g Fv(c)-5 b(onstructive)38 b Fx(subset)h Fw(C)1256 1317 y Fq(\003)1249 1378 y Fs(n)1332 1353 y Fu(\022)e Fw(C)1516 1368 y Fs(n)1563 1353 y Fx(.)59 b(Moreo)m(v)m(er,) 40 b(a)e(consequence)j(of)c(Theorem)h(4.1)f(is)h(that)f(if)0 1474 y(our)e(pseudo-random)g(generator)g(assumption)f(is)h(true)h(then) f(suc)m(h)i Fw(C)2650 1437 y Fq(\003)2643 1498 y Fs(n)2725 1474 y Fx(cannot)e(exist)g(at)g(all!)49 b(Th)m(us,)0 1594 y(a)31 b(coun)m(ting)g(argumen)m(t)f(is)h(presumably)g(not)g(a)f (natural)g(argumen)m(t.)43 b(This)31 b(p)s(oses)h(no)f(problem)f(for)g (us)0 1714 y(since)f(coun)m(ting)f(argumen)m(ts)g(\(closely)g(asso)s (ciated)g(with)g(diagonalization)d(argumen)m(ts\))j(ha)m(v)m(e)i(y)m (et)f(not)0 1835 y(pro)m(v)m(ed)38 b(an)m(y)f(lo)m(w)m(er)g(b)s(ounds)g (for)f(explicit)f(functions)h(\(except)i(when)g(coun)m(ting)e(is)g (used)i(for)e(limited)0 1955 y(purp)s(oses,)g(as)e(in)f([36,)h(5)o(].) 48 b(These)36 b(examples)e(p)s(erfectly)g(\014t)g(our)g(general)f (framew)m(ork)h({)g(see)h(Sections)0 2076 y(3.2.1,)28 b(3.4.\))41 b(The)28 b(question)f(of)g(whether)h(\(unlimited\))c(coun)m (ting)j(or)g(diagonalization)c(argumen)m(ts)k(are)0 2196 y(su\016cien)m(tly)34 b(p)s(o)m(w)m(erful)f(to)f(resolv)m(e)i(barrier)e (problems)h(in)f(complexit)m(y)g(theory)i(predates)g(the)f(com)m(bi-)0 2316 y(natorial)28 b(st)m(yle)j(lo)m(w)m(er)f(b)s(ounds)h(of)f(the)h (1980s.)42 b(Our)30 b(results)h(ha)m(v)m(e)h(nothing)d(to)h(sa)m(y)h({) f(one)h(w)m(a)m(y)h(or)e(the)0 2437 y(other)j({)f(concerning)h(the)g (future)g(promise)e(of)h(diagonalization)d(and)k(coun)m(ting)f(argumen) m(ts.)146 2557 y(Another)49 b(exception)g(to)f(our)g(sc)m(heme)h(is)f (the)h(list)e(of)g(strong)i(lo)m(w)m(er)f(b)s(ounds)h(pro)s(ofs)f (against)0 2677 y Fv(monotone)43 b Fx(circuit)35 b(mo)s(dels)g([2,)i(3) o(,)g(4,)f(17,)g(26,)g(27)o(,)h(28)o(,)g(37)o(].)55 b(Here)38 b(the)e(issue)h(is)f(not)g(constructivit)m(y)0 2798 y({)42 b(the)g(prop)s(erties)g(used)h(in)e(these)i(pro)s(ofs)e(are)h(all)e (feasible)h({)h(but)g(that)g(there)g(app)s(ears)g(to)g(b)s(e)g(no)0 2918 y(go)s(o)s(d)37 b(formal)f(analogue)h(of)h(the)h(largeness)f (condition.)59 b(In)39 b(particular,)f(no)g(one)h(has)f(form)m(ulated)f (a)0 3039 y(w)m(ork)-5 b(able)32 b(de\014nition)g(of)g(a)g(\\random)g (monotone)g(function.")146 3159 y(All)j(the)i(lo)m(w)m(er)g(b)s(ound)g (pro)s(ofs)f(surv)m(ey)m(ed)k(in)c(this)g(pap)s(er)h(explicitly)e (state)i(a)g(natural)e(prop)s(ert)m(y)-8 b(,)0 3279 y(and)41 b(so)f(are)h(natural)e(pro)s(ofs.)68 b(In)40 b(some)h(cases)h(this)e (prop)s(ert)m(y)h(is)g(explicit)e(in)g(the)i(original)d(pap)s(er,)0 3400 y(while)f(in)f(others)i(w)m(e)h(need)g(to)e(do)g(some)g(w)m(ork)i (to)e(bring)g(out)g(a)g(natural)g(prop)s(ert)m(y)h Fw(C)3290 3364 y Fq(\003)3283 3424 y Fs(n)3367 3400 y Fx(that)f(yields)0 3520 y(the)k(same)f(lo)m(w)m(er)h(b)s(ound.)67 b(W)-8 b(e)41 b(call)d(this)i(latter)g(pro)s(cess)h Fv(natur)-5 b(alizing)49 b Fx(the)41 b(original)c(pro)s(of.)66 b(This)0 3641 y(can)40 b(b)s(e)g(subtle)g(\(see)g(e.g.)66 b(Section)39 b(3.2.1)g(b)s(elo)m(w\).)65 b(Giv)m(en)39 b Fw(C)2356 3656 y Fs(n)2403 3641 y Fx(,)j(one)e(m)m(ust)f(exhibit)g Fw(C)3318 3604 y Fq(\003)3311 3665 y Fs(n)3398 3641 y Fx(and)h(pro)m(v)m(e)0 3761 y(that)34 b(it)e(has)i(b)s(oth)g(the)g (constructivit)m(y)g(and)g(largeness)g(conditions.)46 b(The)35 b(k)m(ey)g(to)f(doing)f(this)g(seems)0 3881 y(to)44 b(lie)e(in)h(carefully)g(analyzing)g(the)h(lo)m(w)m(er)g(b)s (ound)g(pro)s(of)f(that)h(used)h Fw(C)2802 3896 y Fs(n)2848 3881 y Fx(.)78 b(In)44 b(the)g(case)h(where)g(a)0 4002 y(researc)m(her)k(in)m(tends)f(to)f(build)f(a)i(lo)m(w)m(er)f(b)s(ound) h(pro)s(of)e(around)i(some)f(prop)s(ert)m(y)h Fw(C)3264 4017 y Fs(n)3311 4002 y Fx(,)j(ev)-5 b(aluating)0 4122 y Fw(C)70 4137 y Fs(n)154 4122 y Fx(for)36 b(naturalness)h(migh)m(t)e (b)s(e)j(non-trivial.)53 b(Nonetheless,)39 b(in)d(ligh)m(t)g(of)g(our)h (framew)m(ork,)h(suc)m(h)g(an)0 4242 y(ev)-5 b(aluation)40 b(could)h(b)s(e)h(w)m(orth)m(while:)62 b(if)40 b(it)h(is)g(natural,)i Fw(C)2206 4257 y Fs(n)2295 4242 y Fx(is)e(not)g(a)h(useful)f(prop)s (ert)m(y)i(for)e(solving)0 4377 y Fw(P)128 4324 y FB(?)107 4377 y Fx(=)30 b Fw(N)10 b(P)47 b Fx(and)35 b(similar)30 b(questions.)49 b(Just)35 b(as)f(a)g(researc)m(her)i(migh)m(t)c(rule)i (out)g(an)g(approac)m(h)g(to)g(lo)m(w)m(er)0 4497 y(b)s(ounds)i(b)s (ecause)h(it)e(relativizes,)g(he/she)i(migh)m(t)d(rule)h(out)g(an)h (approac)m(h)g(to)f(circuit)g(lo)m(w)m(er)g(b)s(ounds)0 4617 y(b)s(ecause)f(it)d(\\naturalizes".)1888 5214 y(6)p eop %%Page: 7 7 7 6 bop 0 631 a Ft(2.2.)137 b(Prop)t(erties)46 b(whic)l(h)i(are)d FH(\000)p Ft(-natural)h(against)g FH(\003)g Ft(with)h(densit)l(y)h Fl(\016)3694 649 y Fk(n)0 816 y Fx(It)35 b(is)f(easy)i(and)f(useful)g (to)g(extend)h(the)g(de\014nition)e(of)g(natural)g(pro)s(of)g(to)g(a)h (more)f(general,)h(parame-)0 936 y(terized)c(v)m(ersion.)44 b(Understanding)32 b(this)f(more)f(general)h(de\014nition)f(is)h(imp)s (ortan)m(t)f(to)g(understanding)0 1056 y(the)j(results)g(as)g(presen)m (ted)i(in)c(this)i(pap)s(er.)146 1177 y(Let)38 b(\000)g(and)g(\003)f(b) s(e)h(complexit)m(y)f(classes.)60 b(Call)36 b(a)i(com)m(binatorial)c (prop)s(ert)m(y)39 b Fw(C)3120 1192 y Fs(n)3204 1177 y Fx(\000-)p Fv(natur)-5 b(al)37 b Fx(with)0 1297 y(densit)m(y)d Fw(\016)380 1312 y Fs(n)459 1297 y Fx(if)e(it)f(con)m(tains)i Fw(C)1106 1261 y Fq(\003)1099 1322 y Fs(n)1173 1297 y Fu(\022)28 b Fw(C)1348 1312 y Fs(n)1428 1297 y Fx(with)k(the)h(follo)m (wing)d(t)m(w)m(o)j(conditions:)0 1522 y Fp(Constructivit)m(y:)46 b Fx(The)37 b(predicate)e Fw(f)1466 1537 y Fs(n)1562 1452 y FB(?)1545 1522 y Fu(2)e Fw(C)1721 1486 y Fq(\003)1714 1546 y Fs(n)1795 1522 y Fx(is)i(computable)f(in)h(\000)g(\(recall,)f Fw(C)3042 1486 y Fq(\003)3035 1546 y Fs(n)3117 1522 y Fx(is)h(a)g(set)h(of)e(truth-)244 1642 y(tables)e(with)g(2)797 1606 y Fs(n)877 1642 y Fx(bits\);)0 1835 y Fp(Largeness:)51 b Fu(j)p Fw(C)662 1799 y Fq(\003)655 1860 y Fs(n)701 1835 y Fu(j)27 b(\025)h Fw(\016)904 1850 y Fs(n)974 1835 y Fu(\001)22 b(j)p Fw(F)1115 1850 y Fs(n)1161 1835 y Fu(j)p Fx(.)146 2023 y(A)33 b(com)m(binatorial)c(prop)s(ert)m(y)k Fw(C)1335 2038 y Fs(n)1415 2023 y Fx(is)f Fv(useful)j(against)f Fx(\003)e(if)g(it)f(satis\014es:)0 2211 y Fp(Usefulness:)50 b Fx(F)-8 b(or)27 b(an)m(y)i(sequence)i(of)c(functions)i Fw(f)1912 2226 y Fs(n)1959 2211 y Fx(,)g(where)g(the)g(ev)m(en)m(t)h Fw(f)2757 2226 y Fs(n)2831 2211 y Fu(2)e Fw(C)2995 2226 y Fs(n)3070 2211 y Fx(happ)s(ens)h(in\014nitely)244 2331 y(often,)k Fu(f)p Fw(f)616 2346 y Fs(n)662 2331 y Fu(g)28 b(62)g Fx(\003.)146 2519 y(A)k(lo)m(w)m(er)g(b)s(ound)h(pro)s(of)e (that)h(some)f(explicit)g(function)g(is)h(not)g(in)f(\003)g(is)h (called)f(\000-)p Fv(natur)-5 b(al)34 b(against)0 2639 y Fx(\003)29 b Fv(with)h(density)g Fw(\016)676 2654 y Fs(n)750 2639 y Fx(if)c(it)f(states)j(a)f(\000-natural)e(prop)s(ert)m (y)j Fw(C)2165 2654 y Fs(n)2239 2639 y Fx(whic)m(h)f(is)g(useful)g (against)f(\003)g(with)h(densit)m(y)0 2760 y Fw(\016)43 2775 y Fs(n)90 2760 y Fx(.)146 2880 y(The)34 b(\\default")e(settings)h (of)f(our)g(parameters)h(will)e(b)s(e)i(\000)28 b(=)f Fw(P)14 b Fx(,)33 b(\003)27 b(=)h Fw(P)8 b(=pol)r(y)s Fx(,)33 b(and)g Fw(\016)3358 2895 y Fs(n)3433 2880 y Fx(=)28 b(2)3586 2844 y Fq(\000)p Fs(O)r FB(\()p Fs(n)p FB(\))3798 2880 y Fx(,)0 3001 y(as)j(in)e(the)i(initial)c (de\014nition.)42 b(Our)30 b(main)f(result)h(implies)e(the)j Fv(ne)-5 b(gative)30 b Fx(statemen)m(t)h(that,)g(under)g(our)0 3121 y(pseudo-randomness)k(assumption,)f(no)g(pro)s(of)f(with)h(these)h (parameters)f(can)g(sho)m(w)h(that)f(SA)-8 b(T)34 b(do)s(es)0 3241 y(not)26 b(ha)m(v)m(e)h(p)s(olynomial-sized)22 b(circuits.)41 b(In)26 b(fact,)h(as)f(w)m(e)h(surv)m(ey)h(the)e(kno)m(wn)h(lo)m(w)m (er)f(b)s(ound)g(argumen)m(ts)0 3362 y(they)32 b(all)d(remain)h (natural)g(ev)m(en)j(when)g(the)e(parameters)g(are)h(more)e(restrictiv) m(ely)h(adjusted.)44 b(W)-8 b(e)32 b(are)0 3482 y(una)m(w)m(are)g(of)e (a)h(lo)m(w)m(er)f(b)s(ound)h(pro)s(of)f(for)g(whic)m(h)i(w)m(e)f (cannot)g(exhibit)f(a)h Fw(C)2743 3446 y Fq(\003)2736 3507 y Fs(n)2813 3482 y Fx(whic)m(h)h(is)e Fw(P)14 b Fx(-natural)28 b(with)0 3602 y(densit)m(y)41 b Fv(close)f(to)i(one.)64 b Fx(F)-8 b(or)38 b(most)i(kno)m(wn)h(argumen)m(ts,)g(\000)f(can)g(b)s (e)f(restricted)i(to)e Fw(N)10 b(C)3370 3566 y FB(2)3449 3602 y Fx(or)40 b(lo)m(w)m(er.)0 3723 y(Our)35 b(full)f(negativ)m(e)i (result)f(\(strengthened)i(b)m(y)g(an)e(observ)-5 b(ation)35 b(of)g(Razb)s(oro)m(v)h([33]\))f(is)g(that,)h(under)0 3843 y(our)g(pseudo-randomness)h(assumption,)g(no)f(prop)s(ert)m(y)h (with)f(\000=quasi-p)s(olynomial-sized)31 b(circuits,)0 3964 y(\003)37 b(=)g Fw(P)8 b(=pol)r(y)t Fx(,)39 b(and)g Fw(\016)822 3979 y Fs(n)906 3964 y Fx(=)f(2)1069 3927 y Fq(\000)p Fs(O)r FB(\()p Fs(n)p FB(\))1319 3964 y Fx(can)h(exist.)61 b(Th)m(us,)41 b(our)d(negativ)m(e)h(result)f(rules)g(out)g(pro)s(ofs)g (with)0 4084 y(m)m(uc)m(h)33 b(more)f(inclusiv)m(e)g(parameters)h(than) f(curren)m(tly)i(kno)m(wn)g(circuit)d(lo)m(w)m(er)i(b)s(ounds.)0 4412 y Fy(3.)165 b(Examples)56 b(of)g(naturalizing)h(argumen)-5 b(ts)0 4660 y Ft(3.1.)137 b Fl(AC)535 4616 y Fz(0)626 4660 y Ft(lo)l(w)l(er)47 b(b)t(ounds)g(for)e(parit)l(y:)61 b Fl(AC)2325 4616 y Fz(0)2371 4660 y Ft(-natural)0 4844 y Fx(One)30 b(of)f(the)g(\014rst)h(com)m(binatorial)c(argumen)m(ts)j (to)g(giv)m(e)h(p)s(eople)f(hop)s(e)g(and)h(direction)e(in)g(lo)m(w)m (er)i(b)s(ound)0 4965 y(researc)m(h)42 b(w)m(as)f([11)o(])f(where)i(it) d(w)m(as)i(sho)m(wn)g(that)f Fw(P)14 b(AR)q(I)8 b(T)14 b(Y)61 b Fu(62)41 b Fw(AC)2605 4929 y FB(0)2684 4965 y Fx(\(indep)s(enden)m(tly)g(this)f(result,)1888 5214 y(7)p eop %%Page: 8 8 8 7 bop 0 631 a Fx(using)48 b(somewhat)h(di\013eren)m(t)f(mac)m(hinery) -8 b(,)53 b(w)m(as)c(disco)m(v)m(ered)h(in)e([1]\).)91 b(Substan)m(tial)47 b(tec)m(hnical)h(im-)0 751 y(pro)m(v)m(emen)m(ts)h (to)d(their)g(b)s(ounds)i(w)m(ere)g(subsequen)m(tly)h(giv)m(en)e(b)m(y) h([40)o(,)f(14].)86 b(All)45 b(these)j(pro)s(ofs)e(are)0 872 y Fw(AC)150 836 y FB(0)190 872 y Fx(-natural.)146 992 y(The)d Fw(C)426 1007 y Fs(n)514 992 y Fx(used)g(b)m(y)f(these)h (argumen)m(ts)f(simply)e(sa)m(ys)j(that)f(there)g(do)s(es)g(not)g (exist)g(a)f(restriction)0 1112 y(of)e(the)h(v)-5 b(ariables)39 b(with)g(the)i(appropriate)d(n)m(um)m(b)s(er)j(of)e(unassigned)h(v)-5 b(ariables)39 b(whic)m(h)h(forces)h Fw(f)3652 1127 y Fs(n)3738 1112 y Fx(to)0 1233 y(b)s(e)36 b(a)f(constan)m(t)i(function.) 53 b(The)37 b(\\appropriate")d(n)m(um)m(b)s(er)i(of)f(unassigned)i(v)-5 b(ariables)34 b(is)i(di\013eren)m(t)g(in)0 1353 y([11,)c(40,)g(14])h (and)f(determines)h(the)g(b)s(ounds)g(obtained.)146 1474 y(All)k(three)j(pap)s(ers)f(argue)g(explicitly)e(that)i Fw(C)1875 1489 y Fs(n)1922 1474 y Fx(\()p Fw(f)2008 1489 y Fs(n)2055 1474 y Fx(\))f(=)g(1)h(implies)d(that)j Fu(f)p Fw(f)2986 1489 y Fs(n)3033 1474 y Fu(g)f(62)h Fw(AC)3376 1437 y FB(0)3415 1474 y Fx(,)i(in)d(other)0 1594 y(w)m(ords,)43 b(that)c Fw(C)604 1609 y Fs(n)690 1594 y Fx(is)g(useful)h(against)f Fw(AC)1576 1558 y FB(0)1615 1594 y Fx(.)65 b Fw(C)1777 1609 y Fs(n)1863 1594 y Fx(is)39 b(a)h(natural)e(prop)s(ert)m(y)-8 b(.)65 b(In)40 b(fact,)i(w)m(e)e(can)g(c)m(ho)s(ose)0 1714 y Fw(C)77 1678 y Fq(\003)70 1739 y Fs(n)144 1714 y Fx(=)28 b Fw(C)318 1729 y Fs(n)365 1714 y Fx(.)146 1835 y(A)37 b(simple)e(coun)m(ting)h(argumen)m(t)h(sho)m(ws)h(that)e Fw(C)1983 1799 y Fq(\003)1976 1859 y Fs(n)2060 1835 y Fx(is)g(true)h(of)f(a)g(random)g(function)g(\()p Fw(C)3435 1799 y Fq(\003)3428 1859 y Fs(n)3512 1835 y Fx(has)h(the)0 1955 y(largeness)c(condition\).)146 2076 y Fw(C)223 2039 y Fq(\003)216 2100 y Fs(n)295 2076 y Fx(is)e(in)g Fw(AC)655 2039 y FB(0)694 2076 y Fx(!)44 b(\()p Fw(C)880 2039 y Fq(\003)873 2100 y Fs(n)951 2076 y Fx(has)32 b(constructivit)m(y\).)44 b(Indeed,)33 b(supp)s(ose)g Fw(k)i Fx(is)c(the)h(\\appropriate")f(n)m (um)m(b)s(er)0 2196 y(of)44 b(unassigned)i(v)-5 b(ariables.)79 b(Giv)m(en)44 b(the)h(truth)g(table)f(for)h Fw(f)2316 2211 y Fs(n)2407 2196 y Fx(as)g(input,)j(w)m(e)e(compute)e Fw(C)3482 2160 y Fq(\003)3475 2221 y Fs(n)3522 2196 y Fx(\()p Fw(f)3608 2211 y Fs(n)3655 2196 y Fx(\))h(as)0 2329 y(follo)m(ws.)61 b(List)39 b(all)723 2232 y Fj(\020)772 2285 y Fs(n)774 2363 y(k)815 2232 y Fj(\021)865 2329 y Fx(2)914 2293 y Fs(n)p Fq(\000)p Fs(k)1092 2329 y Fx(=)g(2)1256 2293 y Fs(O)r FB(\()p Fs(n)p FB(\))1452 2329 y Fx(restrictions)f(of)h Fw(n)26 b Fu(\000)h Fw(k)42 b Fx(v)-5 b(ariables.)62 b(F)-8 b(or)38 b(eac)m(h)i(one)f(there)h(is)e(a)0 2473 y(circuit)33 b(of)h(depth)i(2)e(and)g(size)h(2)1207 2437 y Fs(O)r FB(\()p Fs(n)p FB(\))1399 2473 y Fx(whic)m(h)g(outputs)g(a)f (1)g(i\013)g(that)g(restriction)f(do)s(es)i(not)g(lea)m(v)m(e)g Fw(f)3695 2488 y Fs(n)3776 2473 y Fx(a)0 2593 y(constan)m(t)h (function.)51 b(Output)35 b(the)h(AND)f(of)f(all)f(these)k(circuits.)50 b(The)36 b(resulting)f(circuit)f(has)h(depth)0 2714 y(3)d(and)h(is)f(p) s(olynomial-sized)d(in)j(2)1275 2677 y Fs(n)1322 2714 y Fx(.)0 3002 y Ft(3.2.)137 b Fl(AC)535 2959 y Fz(0)581 3002 y FH([)p Fl(q)t FH(])47 b Ft(lo)l(w)l(er)f(b)t(ounds:)62 b Fl(N)13 b(C)1849 2959 y Fz(2)1895 3002 y Ft(-natural)0 3187 y Fx(In)41 b(this)g(subsection)h(w)m(e)g(lo)s(ok)e(at)h(the)g(pro) s(ofs)g(from)f([29)o(,)i(36)o(,)f(8])g(of)g(lo)m(w)m(er)g(b)s(ounds)h (on)f(the)g(size)g(of)0 3308 y Fw(AC)150 3271 y FB(0)190 3308 y Fx([)p Fw(q)t Fx(]-circuits,)34 b Fw(q)39 b Fx(b)s(eing)c(a)g(p) s(o)m(w)m(er)h(of)f(a)f(prime.)51 b(The)36 b(naturalness)f(of)g(these)h (pro)s(ofs)f(is)g(esp)s(ecially)0 3428 y(transparen)m(t)29 b(in)e(the)i(framew)m(ork)f(of)g([29)o(].)42 b(Namely)-8 b(,)29 b(w)m(e)g(ha)m(v)m(e)g(a)f Fw(GF)14 b Fx([2]-linear)26 b(mapping)g Fw(M)39 b Fx(from)27 b Fw(F)3778 3443 y Fs(n)0 3548 y Fx(to)e(a)f(matrix)f(space,)28 b(and)d(w)m(e)h(simply)e(tak)m(e) h Fw(C)1679 3512 y Fq(\003)1672 3573 y Fs(n)1744 3548 y Fx(to)f(b)s(e)h(the)h(set)f(of)g(all)e Fw(f)2565 3563 y Fs(n)2639 3548 y Fu(2)28 b Fw(F)2796 3563 y Fs(n)2868 3548 y Fx(for)d(whic)m(h)g(rank\()p Fw(M)10 b Fx(\()p Fw(f)3701 3563 y Fs(n)3749 3548 y Fx(\)\))0 3669 y(is)30 b(large.)42 b(After)30 b(reviewing)g(the)h(argumen)m(t)f(in)g(Section)g (3.2.1)g(b)s(elo)m(w,)h(it)f(will)e(b)s(e)i(an)h(exercise)h(for)e(the)0 3789 y(reader)c(to)g(sho)m(w)h(that)e Fw(C)920 3753 y Fq(\003)913 3814 y Fs(n)960 3789 y Fx(\()p Fw(f)1046 3804 y Fs(n)1093 3789 y Fx(\))i(=)h(1)d(for)h(at)f(least)g(1/2)g (fraction)g(of)g(all)f Fw(f)2619 3804 y Fs(n)2694 3789 y Fu(2)k Fw(F)2851 3804 y Fs(n)2898 3789 y Fx(.)41 b(Since)26 b(computing)f(the)0 3909 y(rank)34 b(is)f(in)g Fw(N)10 b(C)605 3873 y FB(2)645 3909 y Fx(,)33 b(w)m(e)i(see)g(that)e(the)h (pro)s(of)f(is)g Fw(N)10 b(C)1910 3873 y FB(2)1950 3909 y Fx(-natural.)44 b(Smolensky's)35 b(pro)s(of)d([36])i(is)f(analyzed)0 4030 y(b)s(elo)m(w.)146 4150 y(W)-8 b(e)39 b(will)e(sho)m(w)i(in)f (Section)h(4)f(that)h Fv(ther)-5 b(e)40 b(is)g(no)g Fw(AC)2184 4114 y FB(0)2224 4150 y Fv(-natur)-5 b(al)40 b(pr)-5 b(o)g(of)40 b(against)g Fw(AC)3342 4114 y FB(0)3381 4150 y Fx([2].)62 b(Along)0 4271 y(with)27 b(the)i(previous)f(subsection,)i (this)e Fv(gives)h(the)i(insight)f(that)h Fx([29)o(,)d(36,)g(8])i Fv(had)g(to)h(r)-5 b(e)g(quir)g(e)30 b(ar)-5 b(guments)0 4391 y(fr)g(om)34 b(a)h(str)-5 b(onger)35 b(class)f(than)g(those)h(of)g Fx([11)o(,)e(40)o(,)g(14].)0 4651 y Fp(3.2.1.)113 b(Smolensky's)37 b(pro)s(of:)50 b(a)38 b(non-trivial)e(example)h(of)h(naturalization)0 4836 y Fx(The)27 b(argumen)m(t)f(giv)m(en)h(in)e(Smolensky)i([36)o(])g (is)f(a)g(p)s(erfect)g(example)g(of)g(a)g(natural)f(circuit)g(lo)m(w)m (er)i(b)s(ound)0 4956 y(pro)s(of,)k(but)g(this)g(is)f(not)h (immediately)d(ob)m(vious.)44 b(W)-8 b(e)31 b(will)e(outline)h(a)h(sp)s (ecial)f(case)i(of)e(his)h(argumen)m(t:)1888 5214 y(8)p eop %%Page: 9 9 9 8 bop 0 631 a Fx(a)32 b(pro)s(of)g(that)g(parit)m(y)h(do)s(es)g(not)f (ha)m(v)m(e)i(small)c Fw(AC)1858 595 y FB(0)1898 631 y Fx([3])i(circuits.)146 751 y(First,)j(w)m(e)g(recall)e(the)i(notion)f (of)g(p)s(olynomial)d(appro)m(ximation)h(of)i(a)g(Bo)s(olean)g (function.)49 b(Think)0 872 y(of)42 b(the)h(Bo)s(olean)f(v)-5 b(alue)42 b(TR)m(UE)i(as)f(corresp)s(onding)f(to)h(the)g(\014eld)g (elemen)m(t)f Fu(\000)p Fx(1)h(and)g(the)g(Bo)s(olean)0 992 y(v)-5 b(alue)39 b(F)-11 b(ALSE)39 b(as)h(corresp)s(onding)f(to)g (the)h(\014eld)f(elemen)m(t)g(1.)63 b(Let)40 b Fw(f)50 b Fx(b)s(e)39 b(a)g(Bo)s(olean)f(function)h(and)0 1112 y Fw(p)h Fx(b)s(e)g(a)g(p)s(olynomial)c(o)m(v)m(er)41 b Fi(Z)1114 1127 y FB(3)1190 1112 y Fx(where)h Fw(f)50 b Fx(and)40 b Fw(p)g Fx(ha)m(v)m(e)h(an)f(iden)m(tical)e(set)j(of)e(v) -5 b(ariable)38 b(names.)66 b(An)m(y)0 1233 y(assignmen)m(t)48 b Fw(A)g Fx(to)g Fw(f)59 b Fx(can)48 b(b)s(e)h(view)m(ed)g(as)g(an)f (assignmen)m(t)g(to)g Fw(p)p Fx(;)56 b(in)47 b(the)i(case)g Fw(p)p Fx(\()p Fw(A)p Fx(\))f(and)g Fw(f)11 b Fx(\()p Fw(A)p Fx(\))0 1353 y(ev)-5 b(aluate)36 b(to)h(corresp)s(onding)f(v)-5 b(alues)37 b(w)m(e)h(consider)f(them)g(equal)f(on)h(this)f(assignmen)m (t.)56 b(Otherwise,)0 1474 y(w)m(e)35 b(consider)f(them)f(to)g (di\013er.)47 b(The)34 b(b)s(etter)g Fw(p)g Fv(appr)-5 b(oximates)32 b Fw(f)11 b Fx(,)34 b(the)g(few)m(er)h(assignmen)m(ts)f (on)f(whic)m(h)0 1594 y(they)43 b(di\013er.)73 b(Since)43 b(w)m(e)g(will)d(only)i(b)s(e)h(in)m(terested)h(in)d(the)i(v)-5 b(alues)43 b(p)s(olynomials)c(tak)m(e)k(on)g Fu(f\000)p Fx(1)p Fw(;)17 b Fx(1)p Fu(g)0 1714 y Fx(\(Bo)s(olean\))46 b(assignmen)m(ts,)52 b(w)m(e)d(will)d(consider)i(p)s(olynomials)c(to)k (b)s(e)g(m)m(ulti-linear)43 b(b)m(y)49 b(default)e(\(no)0 1835 y(v)-5 b(ariable)31 b(gets)i(raised)f(to)g(a)h(p)s(o)m(w)m(er)g (greater)g(than)f(one\).)146 1955 y Fp(Pro)s(of)e(outline:)39 b Fx(Smolensky's)27 b(pro)s(of)f(has)h(t)m(w)m(o)g(main)d(pieces.)42 b(\(1\))26 b(An)m(y)i(function)d(computed)i(b)m(y)0 2076 y(a)k(\\small")d Fw(AC)581 2039 y FB(0)621 2076 y Fx([3])j(circuit)f (can)i(b)s(e)f(\\reasonably")g(appro)m(ximated)g(b)m(y)h(a)f(\\lo)m(w") f(degree)j(p)s(olynomial)0 2196 y(o)m(v)m(er)j Fi(Z)280 2211 y FB(3)317 2196 y Fx(.)52 b(\(2\))34 b(The)j(parit)m(y)d(function) h(in)g Fw(n)g Fx(v)-5 b(ariables)34 b(can't)h(b)s(e)h(\\reasonably")f (appro)m(ximated)f(b)m(y)i(a)0 2316 y(\\lo)m(w")e(degree)j(p)s (olynomial)31 b(o)m(v)m(er)37 b Fi(Z)1370 2331 y FB(3)1407 2316 y Fx(.)51 b(The)36 b(pro)s(of)f(of)g(\(1\))g(is)f(not)i(imp)s (ortan)m(t)d(here)j(and)f(is)g(omitted.)0 2437 y(\(2\))29 b(is)g(pro)m(v)m(ed)h(b)m(y)g(con)m(tradiction.)42 b(Supp)s(ose)30 b(there)g(w)m(ere)g(a)f(\\lo)m(w")f(degree)j(\(degree)f Fw(d)p Fx(\))e(p)s(olynomial)e Fw(p)0 2557 y Fx(whic)m(h)35 b(agrees)g(with)f(the)h(p)s(olynomial)c Fw(x)1531 2572 y FB(1)1571 2557 y Fw(x)1626 2572 y FB(2)1666 2557 y Fw(x)1721 2572 y FB(3)1777 2557 y Fu(\001)17 b(\001)g(\001)e Fw(x)1965 2572 y Fs(n)2047 2557 y Fx(\(the)35 b(parit)m(y)f(function\)) g(on)g(all)f(but)h(a)h(\\small")0 2677 y(n)m(um)m(b)s(er)f(of)e(Bo)s (olean)g(assignmen)m(ts.)46 b(Let)33 b Fw(W)47 b Fx(b)s(e)34 b(the)f(set)h(of)f(Bo)s(olean)f(assignmen)m(ts)h(on)g(whic)m(h)h(they)0 2798 y(di\013er.)60 b(Let)39 b Fw(N)48 b Fx(=)37 b(2)776 2762 y Fs(n)823 2798 y Fx(.)60 b(Let)39 b Fw(w)h Fx(b)s(e)f(the)g(size) f(of)g(the)h(set)g Fw(W)14 b Fx(.)60 b(W)-8 b(e)39 b(will)d(assume)i (that)g Fw(n)h Fx(is)f(o)s(dd)g(and)0 2918 y(use)31 b Fw(l)195 2933 y FB(1)264 2918 y Fx(and)e Fw(l)479 2933 y FB(2)548 2918 y Fx(to)g(denote)i(p)s(olynomials)26 b(of)j(degree)i(less)f(than)f Fw(n=)p Fx(2.)43 b(Ev)m(ery)31 b(m)m(ulti-linear)26 b(p)s(olynomial)0 3039 y Fw(q)39 b Fx(can)d(b)s(e)g(written)f(in)g(the)h(form)e Fw(x)1320 3054 y FB(1)1376 3039 y Fu(\001)17 b(\001)g(\001)e Fw(x)1564 3054 y Fs(n)1611 3039 y Fw(l)1640 3054 y FB(1)1704 3039 y Fx(+)24 b Fw(l)1833 3054 y FB(2)1873 3039 y Fx(.)52 b(This)35 b(means)h(that,)g(ignoring)d(the)j(inputs)g(in)e Fw(W)14 b Fx(,)0 3159 y(ev)m(ery)30 b Fi(Z)322 3174 y FB(3)358 3159 y Fx(-v)-5 b(alued)27 b(function)g(on)h Fu(f\000)p Fx(1)p Fw(;)17 b Fx(1)p Fu(g)1519 3123 y Fs(n)1578 3159 y Fu(n)12 b Fw(W)41 b Fx(\(and)28 b(there)g(are)g(3)2447 3123 y Fs(N)7 b Fq(\000)p Fs(w)2649 3159 y Fx(of)27 b(them\))h(can)g(b) s(e)f(represen)m(ted)0 3279 y(in)39 b(the)h(form)f Fw(pl)612 3294 y FB(1)679 3279 y Fx(+)26 b Fw(l)810 3294 y FB(2)850 3279 y Fx(.)65 b(This)40 b(represen)m(tation)h(has)f(degree)h(\()p Fw(n)27 b Fu(\000)h Fx(1\))p Fw(=)p Fx(2)e(+)h Fw(d)39 b Fx(whic)m(h)i(b)m(y)g(a)e(coun)m(ting)0 3400 y(argumen)m(t)32 b(can't)h(represen)m(t)i(as)d(man)m(y)h(as)g(3)1655 3364 y Fs(N)7 b Fq(\000)p Fs(w)1862 3400 y Fx(functions.)43 b(Con)m(tradiction.)146 3520 y(This)g(pro)s(of)e(migh)m(t)g(seem)i(to)f (b)s(e)g(exploiting)e(a)i(v)m(ery)i(particular)d(fact)h(ab)s(out)g(ho)m (w)h(the)f(parit)m(y)0 3641 y(function)27 b(is)g(expressed)j(as)e(a)f (p)s(olynomial;)f(it)h(is)g(not)g(ob)m(vious)h(ho)m(w)g(this)f(same)h (pro)s(of)f(w)m(ould)g(apply)g(to)0 3761 y(a)32 b(large)f(fraction)g (of)h(functions.)43 b(Ev)m(en)34 b(w)m(orse,)f(the)g(pro)s(of)e(refers) i(to)f(a)g(seemingly)f(non-constructiv)m(e)0 3881 y(coun)m(ting)45 b(argumen)m(t.)80 b(Ho)m(w)m(ev)m(er,)50 b(the)45 b(pro)s(of)f(tec)m (hnique)j Fv(is)d Fx(b)m(y)i(its)e(nature)h(applicable)e(to)i(man)m(y)0 4002 y(functions,)39 b(and)f(coun)m(ting)g(Bo)s(olean)f(functions)g(ev) m(en)m(tually)i(b)s(oils)d(do)m(wn)j(to)e(coun)m(ting)h(dimensions)0 4122 y(of)32 b(certain)g(linear)f(spaces)j(whic)m(h)f(already)g Fv(is)f Fx(feasible)g(in)f(our)i(sense.)146 4242 y(There)39 b(is)e(one)h(c)m(hoice)g(of)g Fw(C)1202 4257 y Fs(n)1286 4242 y Fx(clear)f(from)f(the)j(pro)s(of:)52 b Fw(C)2305 4257 y Fs(n)2352 4242 y Fx(\()p Fw(f)2438 4257 y Fs(n)2485 4242 y Fx(\))36 b(=)h(1)g(if)f Fw(f)2900 4257 y Fs(n)2985 4242 y Fx(can't)i(b)s(e)g(reasonably)0 4363 y(appro)m(ximated)24 b(b)m(y)h(a)f(lo)m(w)f(degree)j(p)s(olynomial)20 b(o)m(v)m(er)26 b Fi(Z)2038 4378 y FB(3)2099 4363 y Fx(\(for)d(the)i(appropriate)e (de\014nitions)h(of)g(reason-)0 4483 y(able)32 b(and)i(lo)m(w\).)44 b(P)m(art)33 b(\(1\))g(of)g(Smolensky's)h(argumen)m(t)e(pro)m(v)m(es)j (that)e Fw(C)2710 4498 y Fs(n)2790 4483 y Fx(is)f(useful)h(against)f Fw(AC)3655 4447 y FB(0)3695 4483 y Fx([3].)0 4604 y(Wh)m(y)i(is)e Fw(C)404 4619 y Fs(n)483 4604 y Fx(natural?)42 b(T)-8 b(o)33 b(see)h(it)d(w)m(e)j(ha)m(v)m(e)g(to)e(mak)m(e)h(a)f(c)m(hoice)h (of)f Fw(C)2582 4567 y Fq(\003)2575 4628 y Fs(n)2622 4604 y Fx(.)146 4724 y(The)49 b(simple)c(c)m(hoice)j(is)f Fw(C)1175 4688 y Fq(\003)1168 4749 y Fs(n)1267 4724 y Fx(=)53 b Fw(C)1466 4739 y Fs(n)1513 4724 y Fx(.)87 b(It)48 b(is)f(fairly)e(ob)m(vious)j(that)f Fw(C)2801 4688 y Fq(\003)2794 4749 y Fs(n)2888 4724 y Fx(satis\014es)h(the)g(largeness)0 4844 y(condition.)69 b(But)42 b(what)f(ab)s(out)h Fw(P)8 b(=pol)r(y)s Fx(-constructivit)m(y?)70 b(It)42 b(is)f(not)g(at)g(all)f (clear)h(that)g(there)h(is)f(a)0 4965 y(p)s(olynomial-size)28 b(circuit)i(whic)m(h)i(can)g(determine)f(if)g(a)g(function)g(\(giv)m (en)h(b)m(y)g(its)f(truth-table\))g(can)h(b)s(e)1888 5214 y(9)p eop %%Page: 10 10 10 9 bop 0 631 a Fx(appro)m(ximated)32 b(b)m(y)h(a)g(lo)m(w-degree)f(p) s(olynomial)d(o)m(v)m(er)34 b Fi(Z)2096 646 y FB(3)2133 631 y Fx(.)43 b(This)33 b(remains)f(an)g(op)s(en)h(problem.)146 751 y(Th)m(us)h(w)m(e)g(sink)f(deep)s(er)g(in)m(to)f(the)h(pro)s(of)f (and)h(try)g(to)f(put)425 960 y Fw(C)502 919 y Fq(\003)495 985 y Fs(n)542 960 y Fx(\()p Fw(f)628 975 y Fs(n)675 960 y Fx(\))27 b(=)h(1)k(if)g(ev)m(ery)i(p)s(olynomial)29 b Fw(q)36 b Fx(can)d(b)s(e)g(written)g(in)e(the)i(form)3042 934 y(\026)3021 960 y Fw(f)3069 975 y Fs(n)3116 960 y Fw(l)3145 975 y FB(1)3206 960 y Fx(+)22 b Fw(l)3333 975 y FB(2)3373 960 y Fw(;)300 b Fx(\(1\))0 1169 y(where)308 1142 y(\026)287 1169 y Fw(f)335 1184 y Fs(n)419 1169 y Fx(is)37 b(the)h(unique)h(m)m(ulti-linear)33 b(p)s(olynomial)h (represen)m(ting)39 b Fw(f)2664 1184 y Fs(n)2711 1169 y Fx(.)58 b(Then)39 b(w)m(e)f(ha)m(v)m(e)h(construc-)0 1289 y(tivit)m(y)-8 b(.)146 1410 y(In)31 b(order)f(to)g(see)h(this,)g (denote)f(b)m(y)h Fw(L)g Fx(the)f(v)m(ector)i(space)f(of)f(all)e(p)s (olynomials)f(of)i(degree)i(less)g(than)0 1530 y Fw(n=)p Fx(2,)38 b(and)f(b)m(y)h Fw(T)50 b Fx(the)38 b(complemen)m(tary)e(v)m (ector)i(space)g(of)e(all)f(\(m)m(ulti-linear\))e(p)s(olynomials)g (without)0 1650 y(monomials)k(of)k(degree)g(less)g(than)g Fw(n=)p Fx(2.)67 b(The)42 b(whole)e(p)s(olynomial)d(space)42 b(is)e(then)i(represen)m(ted)h(as)0 1771 y(the)38 b(direct)f(sum)g Fw(L)26 b Fu(\010)g Fw(T)51 b Fx(and)37 b(also,)h(since)g Fw(n)f Fx(is)g(o)s(dd,)i(w)m(e)f(ha)m(v)m(e)h(dim)n(\()p Fw(L)p Fx(\))d(=)g(dim)n(\()p Fw(T)14 b Fx(\))36 b(=)g Fw(N)r(=)p Fx(2.)57 b(No)m(w,)0 1891 y Fw(C)77 1855 y Fq(\003)70 1916 y Fs(n)117 1891 y Fx(\()p Fw(f)203 1906 y Fs(n)250 1891 y Fx(\))27 b(=)h(1)22 b(i\013)g(the)h(linear)f(mapping) f Fw(\031)1463 1906 y Fs(f)1497 1914 y Fn(n)1572 1891 y Fx(:)27 b Fw(L)h Fu(\000)-16 b(!)28 b Fw(T)36 b Fx(taking)22 b Fw(l)30 b Fu(2)e Fw(L)23 b Fx(to)g(the)g(pro)5 b(jection)23 b(of)3379 1865 y(\026)3358 1891 y Fw(f)3406 1906 y Fs(n)3453 1891 y Fw(l)30 b Fu(2)e Fw(L)r Fu(\010)r Fw(T)0 2011 y Fx(on)m(to)e Fw(T)41 b Fx(is)26 b(one-to-one)g(\(the)h(reader)g(can)f (c)m(hec)m(k)j(his)e(understanding)g(at)f(this)g(p)s(oin)m(t)g(b)m(y)h (v)m(erifying)f(that)0 2132 y(the)g(parit)m(y)g(function)f(has)i(this)e (prop)s(ert)m(y\).)42 b(Th)m(us)28 b(c)m(hec)m(king)f(that)f Fw(C)2549 2096 y Fq(\003)2542 2156 y Fs(n)2588 2132 y Fx(\()p Fw(f)2674 2147 y Fs(n)2721 2132 y Fx(\))i(=)g(1)d(amoun)m(ts)h (to)g(c)m(hec)m(king)0 2252 y(that)32 b(a)h(matrix)e(easily)g (computable)h(from)g Fw(f)1683 2267 y Fs(n)1762 2252 y Fx(is)g(non-singular)f(whic)m(h)i(can)g(b)s(e)g(done)g(in)e Fw(N)10 b(C)3521 2216 y FB(2)3561 2252 y Fx(.)146 2373 y(F)-8 b(or)41 b(so)h(c)m(hosen)h Fw(C)857 2336 y Fq(\003)850 2397 y Fs(n)938 2373 y Fx(the)f(largeness)g(condition)e(also)h(lo)s (oks)g(plausible.)68 b(But)42 b(w)m(e)h(ha)m(v)m(e)f(no)g(easy)0 2493 y(pro)s(of)32 b(of)g(it.)146 2613 y(W)-8 b(e)35 b(turn)f(around)g(this)g(di\016cult)m(y)g(b)m(y)h(trying)e(to)h(extend) i(the)e(de\014nition)f(of)h(\(1\))g(as)g(m)m(uc)m(h)h(as)f(w)m(e)0 2734 y(can)43 b(\(so)g(that)f(w)m(e'll)g(ha)m(v)m(e)i(more)e(functions) h(satisfying)e(it\))h(while)g(preserving)h(its)f(spirit)f(\(so)i(that)0 2854 y(constructivit)m(y)30 b(will)d(also)i(b)s(e)g(preserv)m(ed\))j (and)e(k)m(eeping)g(the)g(lo)m(w)m(er)g(b)s(ound)f(pro)m(vided)h(b)m(y) h(it.)41 b(A)30 b(short)0 2974 y(examination)g(sho)m(ws)35 b(that)d(the)h(de\014nition)993 3183 y Fw(C)1070 3142 y Fq(\003)1063 3208 y Fs(n)1110 3183 y Fx(\()p Fw(f)1196 3198 y Fs(n)1243 3183 y Fx(\))27 b(=)h(1)k(i\013)48 b(dim)o(\()1848 3157 y(\026)1827 3183 y Fw(f)1875 3198 y Fs(n)1922 3183 y Fw(L)22 b Fx(+)g Fw(L)p Fx(\))28 b Fu(\025)g Fw(N)f Fx(\(1)p Fw(=)p Fx(2)22 b(+)g Fw(\017)p Fx(\))868 b(\(2\))0 3392 y(whic)m(h)39 b(for)f Fw(\017)h Fx(=)f(1)p Fw(=)p Fx(2)f(is)i(the)g(same)f(as)h(\(1\),)h(is)e(actually)f(as)i(go)s(o)s(d) f(as)g(\(1\))h(itself)e(for)h(arbitrary)g(\014xed)0 3512 y Fw(\017)47 b(>)f Fx(0.)77 b(Indeed,)48 b(\(2\))43 b(implies)f(that)h (at)g(least)h(3)1871 3476 y Fs(N)7 b FB(\(1)p Fs(=)p FB(2+)p Fs(\017)p FB(\))q Fq(\000)p Fs(w)2333 3512 y Fx(functions)43 b(on)h Fu(f\000)p Fx(1)p Fw(;)17 b Fx(1)p Fu(g)3230 3476 y Fs(n)3306 3512 y Fu(n)30 b Fw(W)57 b Fx(can)44 b(b)s(e)0 3633 y(represen)m(ted)39 b(b)m(y)f(a)e(degree)h(\() p Fw(n)25 b Fu(\000)h Fx(1\))p Fw(=)p Fx(2)e(+)g Fw(d)37 b Fx(p)s(olynomial,)d(and)i(the)h(same)g(coun)m(ting)f(argumen)m(t)g (still)0 3753 y(w)m(orks.)146 3873 y(But)g(if)f(w)m(e)i(de\014ne)h Fw(C)946 3837 y Fq(\003)939 3898 y Fs(n)1021 3873 y Fx(as)e(in)g(\(2\)) f(with)h Fw(\017)e Fx(=)f(1)p Fw(=)p Fx(4,)j(w)m(e)h(also)e(ha)m(v)m(e) j(largeness!)54 b(This)36 b(immediately)0 3994 y(follo)m(ws)27 b(from)g(the)h(fact)g(that)g(for)f(ev)m(ery)j Fw(f)1545 4009 y Fs(n)1620 3994 y Fu(2)e Fw(F)1777 4009 y Fs(n)1852 3994 y Fx(either)g Fw(C)2201 3958 y Fq(\003)2194 4018 y Fs(n)2241 3994 y Fx(\()p Fw(f)2327 4009 y Fs(n)2374 3994 y Fx(\))f(=)h(1)f(or)h Fw(C)2811 3958 y Fq(\003)2804 4018 y Fs(n)2851 3994 y Fx(\()p Fw(x)2944 4009 y FB(1)2997 3994 y Fu(\010)13 b(\001)k(\001)g(\001)11 b(\010)i Fw(x)3361 4009 y Fs(n)3422 3994 y Fu(\010)g Fw(f)3560 4009 y Fs(n)3607 3994 y Fx(\))28 b(=)f(1)0 4114 y(\(cf.)44 b(the)33 b(pro)s(of)e(of)h (Theorem)h(5.2)f(a\))h(b)s(elo)m(w\).)1713 4078 y FB(1)146 4247 y Fx(T)-8 b(o)34 b(sho)m(w)g(this)f(fact,)h(note)f(that)g(if)f (dim)1644 4151 y Fj(\020)1714 4221 y Fx(\026)1693 4247 y Fw(f)1741 4262 y Fs(n)1788 4247 y Fw(L)23 b Fx(+)f Fw(L)2041 4151 y Fj(\021)2120 4247 y Fu(\025)29 b Fx(3)p Fw(N)r(=)p Fx(4)k(then)h Fw(C)2786 4211 y Fq(\003)2779 4272 y Fs(n)2826 4247 y Fx(\()p Fw(f)2912 4262 y Fs(n)2959 4247 y Fx(\))29 b(=)f(1.)46 b(Otherwise)34 b(w)m(e)0 4367 y(ha)m(v)m(e)1076 4576 y(dim)1255 4480 y Fj(\020)1305 4576 y Fx(\()p Fw(x)1398 4591 y FB(1)1454 4576 y Fu(\001)17 b(\001)g(\001)e Fw(x)1642 4591 y Fs(n)1711 4550 y Fx(\026)1689 4576 y Fw(f)1737 4591 y Fs(n)1784 4576 y Fw(L)23 b Fx(+)f Fw(L)p Fx(\))p Fw(=L)2190 4480 y Fj(\021)2268 4576 y Fx(=)1076 4759 y(dim)1255 4662 y Fj(\020)1305 4759 y Fx(\()p Fw(x)1398 4774 y FB(1)1454 4759 y Fu(\001)17 b(\001)g(\001)e Fw(x)1642 4774 y Fs(n)1689 4759 y Fw(L)23 b Fx(+)1897 4732 y(\026)1876 4759 y Fw(f)1924 4774 y Fs(n)1971 4759 y Fw(L)p Fx(\))p Fw(=)2145 4732 y Fx(\026)2124 4759 y Fw(f)2172 4774 y Fs(n)2219 4759 y Fw(L)2285 4662 y Fj(\021)2363 4759 y Fu(\025)p 0 4873 1530 4 v 112 4935 a Fh(1)149 4965 y Fk(C)214 4935 y FA(\003)208 4985 y Fg(n)282 4965 y Fz(can)k(b)r(e)h(further)f(adjusted)h(to)g(b)r(e)g(a)f (prop)r(ert)n(y)f(of)i(densit)n(y)f(close)g(to)h(one,)f(as)g(opp)r (osed)g(to)g(1)p Fk(=)p Fz(2.)1864 5214 y Fx(10)p eop %%Page: 11 11 11 10 bop 1076 631 a Fx(dim)1255 535 y Fj(\020)1305 631 y Fx(\()p Fw(x)1398 646 y FB(1)1454 631 y Fu(\001)17 b(\001)g(\001)e Fw(x)1642 646 y Fs(n)1689 631 y Fw(L)23 b Fx(+)1897 605 y(\026)1876 631 y Fw(f)1924 646 y Fs(n)1971 631 y Fw(L)f Fx(+)g Fw(L)p Fx(\))p Fw(=)p Fx(\()2370 605 y(\026)2348 631 y Fw(f)2396 646 y Fs(n)2443 631 y Fw(L)h Fx(+)f Fw(L)p Fx(\))2734 535 y Fj(\021)2812 631 y Fx(=)1076 814 y(dim)1255 717 y Fj(\020)1305 814 y Fx(\()p Fw(T)35 b Fx(+)22 b Fw(L)p Fx(\))p Fw(=)p Fx(\()1746 787 y(\026)1724 814 y Fw(f)1772 829 y Fs(n)1820 814 y Fw(L)g Fx(+)g Fw(L)p Fx(\))2110 717 y Fj(\021)2188 814 y Fu(\025)28 b Fw(N)r(=)p Fx(4)0 1054 y(\(the)j(\014rst)f(equalit)m(y)g (here)h(comes)g(from)e(the)h(observ)-5 b(ation)30 b(that)g(\()2443 1028 y(\026)2422 1054 y Fw(f)2470 1069 y Fs(n)2517 1054 y Fx(\))2555 1018 y FB(2)2622 1054 y Fx(=)e(1)i(and)g(th)m(us)h(m)m (ultiplying)c(b)m(y)21 1149 y(\026)0 1175 y Fw(f)48 1190 y Fs(n)128 1175 y Fx(de\014nes)34 b(an)e(automorphism)f(of)h Fw(L)22 b Fu(\010)h Fw(T)14 b Fx(\).)43 b(This)33 b(giv)m(es)g(us)g Fw(C)2371 1139 y Fq(\003)2364 1200 y Fs(n)2411 1175 y Fx(\()p Fw(x)2504 1190 y FB(1)2566 1175 y Fu(\010)22 b Fw(:)17 b(:)g(:)22 b Fu(\010)h Fw(x)2957 1190 y Fs(n)3026 1175 y Fu(\010)g Fw(f)3174 1190 y Fs(n)3221 1175 y Fx(\))k(=)h(1.)146 1295 y(So,)33 b Fw(C)379 1310 y Fs(n)458 1295 y Fx(is)f(an)h Fw(N)10 b(C)857 1259 y FB(2)897 1295 y Fx(-natural)31 b(prop)s(ert)m(y)-8 b(.)146 1465 y(Smolensky's)35 b(pro)s(of)d(is)h (the)h(most)f(di\016cult)g(example)g(of)g(naturalization)d(w)m(e)35 b(ha)m(v)m(e)g(encoun)m(tered)0 1586 y(in)k(our)g(analysis.)64 b(On)39 b(the)h(other)g(hand,)i(it)c(p)s(erfectly)i(illustrates)e(the)i (general)f(empirical)e(idea)h(of)0 1706 y(\\adjusting")32 b Fw(C)594 1721 y Fs(n)673 1706 y Fx(in)g(b)s(oth)g(directions)g(in)g (order)g(to)h(come)f(up)h(with)f(a)g(natural)g Fw(C)3062 1670 y Fq(\003)3055 1731 y Fs(n)3101 1706 y Fx(.)0 1995 y Ft(3.3.)137 b(P)l(erceptron)47 b(lo)l(w)l(er)f(b)t(ounds)h(for)e (parit)l(y:)62 b Fl(P)17 b Ft(-natural)0 2180 y Fx(In)36 b([6],)h(it)e(is)h(sho)m(wn)h(that)f(a)f(small)f(constan)m(t-depth)j (circuit)e(\(o)m(v)m(er)i Fu(f^)p Fw(;)17 b Fu(_)p Fw(;)g Fu(:g)p Fx(\))36 b(whic)m(h)h(is)e(allo)m(w)m(ed)g(a)0 2300 y(single)g(ma)5 b(jorit)m(y)34 b(gate)h(can't)h(appro)m(ximate)f (the)h(parit)m(y)f(function.)52 b(The)37 b(authors)f(did)f(this)g(b)m (y)h(\014rst)0 2421 y(sho)m(wing)h(tigh)m(t)f(lo)m(w)m(er)g(b)s(ound)h (on)g(the)g(degree)g(of)f(a)h(p)s(erceptron)g(required)g(to)g(appro)m (ximate)e(parit)m(y)0 2541 y(to)d(within)g(a)g(giv)m(en)h Fw(\017)p Fx(.)44 b(Their)32 b(argumen)m(t)g(is)g(natural.)146 2661 y(Some)g(de\014nitions)g(from)f([6].)43 b(A)32 b(real)f(p)s (olynomial)e Fw(p)j Fv(str)-5 b(ongly)35 b(r)-5 b(epr)g(esents)31 b Fx(a)h(Bo)s(olean)f(function)3786 2625 y FB(2)0 2782 y Fw(f)50 b Fx(just)40 b(in)f(case)i(sgn)q(\()p Fw(p)p Fx(\()p Fw(x)p Fx(\)\))f(=)f Fw(f)11 b Fx(\()p Fw(x)p Fx(\))40 b(for)f(all)f(input)h(v)m(ectors)i Fw(x)p Fx(;)j(suc)m(h)d(a)f (p)s(olynomial)c(is)j(also)g(called)0 2902 y(a)i Fv(p)-5 b(er)g(c)g(eptr)g(on)41 b Fx(to)g(compute)h Fw(f)11 b Fx(.)70 b(Let)41 b Fw(p)h Fv(we)-5 b(akly)42 b(r)-5 b(epr)g(esent)41 b Fw(f)52 b Fx(just)42 b(in)f(case)h Fw(p)g Fx(is)f(not)g(the)h (constan)m(t)0 3022 y(zero)31 b(function)e(on)i Fu(f\000)p Fx(1)p Fw(;)17 b Fx(1)p Fu(g)1036 2986 y Fs(n)1082 3022 y Fx(,)31 b(and)f(sgn\()p Fw(p)p Fx(\()p Fw(x)p Fx(\)\))e(=)g Fw(f)11 b Fx(\()p Fw(x)p Fx(\))30 b(for)g(all)e Fw(x)j Fx(where)g Fw(p)p Fx(\()p Fw(x)p Fx(\))g(is)e(nonzero.)44 b(The)31 b Fv(we)-5 b(ak)0 3143 y(de)g(gr)g(e)g(e)p Fx(,)26 b Fw(d)360 3158 y Fs(w)416 3143 y Fx(\()p Fw(f)11 b Fx(\),)27 b(is)e(de\014ned)h(as)g(the)g(least)e Fw(k)29 b Fx(for)c(whic)m(h)g (there)h(exists)h(a)e(non-zero)g(degree)h Fw(k)j Fx(p)s(olynomial)0 3263 y(whic)m(h)k(w)m(eakly)h(represen)m(ts)h Fw(f)11 b Fx(.)146 3384 y(A)41 b(natural)f Fw(C)680 3399 y Fs(n)767 3384 y Fx(stated)i(in)e(the)h(pap)s(er)g(is)g(that)f Fw(f)2023 3399 y Fs(n)2111 3384 y Fx(can't)h(b)s(e)g(w)m(ell)f(appro)m (ximated)g(b)m(y)i(the)f(sign)0 3504 y(of)i(a)g(lo)m(w)g(degree)h(p)s (olynomial.)73 b(It)43 b(is)g(explicitly)f(sho)m(wn)j(that)e(an)m(y)h Fw(f)2721 3519 y Fs(n)2811 3504 y Fx(with)f(prop)s(ert)m(y)i Fw(C)3524 3519 y Fs(n)3614 3504 y Fx(can't)0 3624 y(b)s(e)39 b(appro)m(ximated)g(b)m(y)h(a)e(small,)h(constan)m(t-depth)h(circuit)e (with)h(one)g(ma)5 b(jorit)m(y)38 b(gate,)i(i.e.,)h Fw(C)3598 3639 y Fs(n)3684 3624 y Fx(has)0 3745 y(usefulness.)k(T)-8 b(o)33 b(see)g(that)g Fw(C)1075 3760 y Fs(n)1154 3745 y Fx(is)f(natural)g(one)g(m)m(ust)h(exhibit)f(a)g(prop)s(er)h(subset)h Fw(C)3111 3709 y Fq(\003)3104 3769 y Fs(n)3151 3745 y Fx(.)146 3865 y(Let)49 b Fw(C)414 3829 y Fq(\003)407 3890 y Fs(n)454 3865 y Fx(\()p Fw(f)540 3880 y Fs(n)587 3865 y Fx(\))54 b(=)h(1)48 b(if)g Fw(d)1064 3880 y Fs(w)1120 3865 y Fx(\()p Fw(f)1206 3880 y Fs(n)1253 3865 y Fx(\))g(is)g(greater)h (than)f(the)h(appropriate)f(threshold.)91 b([6])49 b(explicitly)0 3986 y(sho)m(w)m(ed)32 b(that)e Fw(C)620 3949 y Fq(\003)613 4010 y Fs(n)660 3986 y Fx(\()p Fw(f)746 4001 y Fs(n)793 3986 y Fx(\))d(=)h(1)i(implies)e(that)i(a)g(p)s(olynomial)c(m)m(ust)k (ha)m(v)m(e)i(appropriately)d(high)g(degree)i(to)0 4106 y(appro)m(ximate)26 b Fw(f)606 4121 y Fs(n)681 4106 y Fx(with)h(its)f(sign,)i(i.e.,)h Fw(C)1510 4070 y Fq(\003)1503 4131 y Fs(n)1549 4106 y Fx(\()p Fw(f)1635 4121 y Fs(n)1682 4106 y Fx(\))f(=)f(1)g(implies)e(that)i Fw(C)2529 4121 y Fs(n)2576 4106 y Fx(\()p Fw(f)2662 4121 y Fs(n)2709 4106 y Fx(\))h(=)f(1.)42 b Fw(d)3047 4121 y Fs(w)3130 4106 y Fx(is)27 b(computable)g(in)0 4226 y(p)s(olynomial-time)i(using) 34 b(linear)e(programming.)46 b(This)34 b(sho)m(ws)i(that)e Fw(C)2698 4190 y Fq(\003)2691 4251 y Fs(n)2772 4226 y Fx(has)g(constructivit)m(y)-8 b(.)49 b(Since)0 4347 y(the)44 b(linear)f(programming)e(seems)k(essen)m(tial)e(it)g(is)h(doubtful)f (that)h(an)m(ything)g(substan)m(tially)f(more)0 4467 y(constructiv)m(e)31 b(than)f Fw(C)847 4431 y Fq(\003)840 4492 y Fs(n)917 4467 y Fx(could)f(b)s(e)h(found)g(in)f(the)h(ab)s(o)m (v)m(e)h(argumen)m(t,)f(e.g.,)h(an)f Fw(N)10 b(C)d Fx(-natural)28 b(prop)s(ert)m(y)0 4587 y(for)k(example.)p 0 4675 1530 4 v 112 4736 a Fh(2)149 4766 y Fz(In)20 b(this)g(section)g(w)n(e,)h (similarly)d(to)i(3.2.1,)g(represen)n(t)e(Bo)r(olean)h(functions)h(as)f (mappings)g(from)g FG(f\000)p Fz(1)p Fk(;)14 b Fz(1)p FG(g)3378 4736 y Fg(n)3441 4766 y Fz(to)19 b FG(f\000)p Fz(1)p Fk(;)14 b Fz(1)p FG(g)p Fz(,)0 4866 y(and)27 b Fk(f)9 b(g)30 b Fz(stands)d(for)h(the)g(p)r(oin)n(t-wise)f(pro)r(duct,) g(whic)n(h)h(is)f(the)h(same)f(as)g Fk(f)g FG(\010)18 b Fk(g)31 b Fz(in)c(the)h FG(f)p Fz(0)p Fk(;)14 b Fz(1)p FG(g)p Fz(-notation)1864 5214 y Fx(11)p eop %%Page: 12 12 12 11 bop 146 631 a Fx(T)-8 b(o)36 b(argue)g(that)f Fw(C)853 595 y Fq(\003)846 656 y Fs(n)928 631 y Fx(has)h(the)g(largeness)g(prop) s(ert)m(y)-8 b(,)37 b(w)m(e)g(can)f(sho)m(w)g(the)g(follo)m(wing)d (impro)m(v)m(emen)m(t)0 751 y(of)f(an)h(\012\()p Fw(n=)17 b Fx(log)f Fw(n)p Fx(\))33 b(lo)m(w)m(er)g(b)s(ound)f(from)g([6]:)0 989 y Fp(Theorem)37 b(3.1.)49 b Fv(F)-7 b(or)34 b(a)h(uniformly)f (chosen)g Fr(f)1785 1004 y Fs(n)1859 989 y Fu(2)29 b Fw(F)2017 1004 y Fs(n)2064 989 y Fv(,)34 b Fp(P)p Fx([)p Fw(d)2283 1004 y Fs(w)2339 989 y Fx(\()p Fr(f)2434 1004 y Fs(n)2481 989 y Fx(\))27 b Fu(\025)i Fw(n=)p Fx(20])e Fw(>)g Fx(1)22 b Fu(\000)h Fx(2)3234 953 y Fq(\000)p FB(2)3324 930 y Fm(\012\()p Fn(n)p Fm(\))3462 989 y Fv(.)0 1268 y Fp(Pro)s(of.)81 b Fx(W)-8 b(e)33 b(use)g(the)g(follo)m(wing)d(w) m(ell-kno)m(wn)j(facts:)0 1496 y Fp(Prop)s(osition)j(3.2.)49 b Fv(L)-5 b(et)40 b Fw(a)1053 1511 y FB(1)1093 1496 y Fw(;)17 b(:)g(:)g(:)e(;)i(a)1362 1511 y Fs(N)1467 1496 y Fu(2)37 b Fi(R)5 b Fv(.)66 b(Then)39 b(ther)-5 b(e)40 b(exist)f Fw(a)2521 1460 y Fq(0)2521 1521 y FB(1)2561 1496 y Fw(;)17 b(:)g(:)g(:)f(;)h(a)2831 1460 y Fq(0)2831 1521 y Fs(N)2935 1496 y Fu(2)37 b Fi(Z)h Fv(such)h(that)i Fu(j)p Fw(a)3655 1460 y Fq(0)3655 1521 y Fs(i)3683 1496 y Fu(j)c(\024)0 1616 y Fx(exp)q(\()p Fw(O)s Fx(\()p Fw(N)26 b Fx(log)17 b Fw(N)10 b Fx(\)\))35 b(\(1)28 b Fu(\024)g Fw(i)g Fu(\024)g Fw(N)10 b Fx(\))p Fv(,)35 b(and)f(for)h(every)g Fw(x)1984 1631 y Fs(i)2040 1616 y Fu(2)28 b(f\000)p Fx(1)p Fw(;)17 b Fx(1)p Fu(g)2453 1580 y Fs(N)2520 1616 y Fv(,)1236 1911 y Fx(sgn)1394 1765 y Fj( )1488 1803 y Fs(N)1460 1828 y Fj(X)1463 2010 y Fs(i)p FB(=1)1596 1911 y Fw(a)1647 1926 y Fs(i)1676 1911 y Fw(x)1731 1926 y Fs(i)1759 1765 y Fj(!)1853 1911 y Fx(=)27 b(sgn)2114 1765 y Fj( )2208 1803 y Fs(N)2180 1828 y Fj(X)2183 2010 y Fs(i)p FB(=1)2317 1911 y Fw(a)2368 1870 y Fq(0)2368 1935 y Fs(i)2396 1911 y Fw(x)2451 1926 y Fs(i)2480 1765 y Fj(!)2562 1911 y Fw(:)0 2209 y Fp(Prop)s(osition)36 b(3.3.)49 b Fv(Every)29 b(inte)-5 b(ger)28 b(p)-5 b(olynomial)28 b Fw(p)p Fx(\()p Fw(x)2045 2224 y FB(1)2085 2209 y Fw(;)17 b(:)g(:)g(:)f(;)h(x)2359 2224 y Fs(n)2406 2209 y Fx(\))28 b Fv(of)h(de)-5 b(gr)g(e)g(e)28 b Fw(d)h Fv(which)f(is)g(not)h(an)g(iden-)0 2330 y(tic)-5 b(al)5 b(ly)35 b(zer)-5 b(o)34 b(on)h Fu(f\000)p Fx(1)p Fw(;)17 b Fx(1)p Fu(g)953 2293 y Fs(n)999 2330 y Fv(,)35 b(di\013ers)f(fr)-5 b(om)34 b(zer)-5 b(o)35 b(on)f(at)i(le)-5 b(ast)34 b Fx(2)2327 2293 y Fs(n)p Fq(\000)p Fs(d)2500 2330 y Fv(p)-5 b(oints)34 b(fr)-5 b(om)35 b Fu(f\000)p Fx(1)p Fw(;)17 b Fx(1)p Fu(g)3336 2293 y Fs(n)3382 2330 y Fv(.)146 2558 y Fx(The)34 b(pro)s(of)e(of)g(Prop)s(osition)f(3.2)h (can)h(b)s(e)f(found)h(e.g.)44 b(in)31 b([21];)i(Prop)s(osition)e(3.3)h (is)g(folklore.)146 2678 y(Let)40 b Fw(f)376 2693 y Fs(n)462 2678 y Fu(2)f Fw(F)630 2693 y Fs(n)677 2678 y Fx(.)64 b(If)39 b Fw(f)920 2693 y Fs(n)1006 2678 y Fx(is)g(w)m(eakly)h (represen)m(ted)i(b)m(y)e(a)f(p)s(olynomial)d Fw(p)j Fx(of)g(degree)h(at)f(most)f Fw(n=)p Fx(20,)0 2799 y(w)m(e)k(\014rstly) f(apply)f(Prop)s(osition)f(3.2)i(to)f(the)h(v)m(ector)h(of)e(co)s (e\016cien)m(ts)i(of)f Fw(p)p Fx(.)68 b(The)41 b(length)g Fw(N)51 b Fx(of)40 b(this)0 2976 y(v)m(ector)35 b(is)393 2909 y Fj(P)480 2925 y Fs(n=)p FB(20)480 2999 y Fs(i)p FB(=0)650 2830 y Fj( )757 2915 y Fw(n)770 3035 y(i)857 2830 y Fj(!)952 2976 y Fu(\024)30 b Fx(2)1108 2940 y Fs(n)p FB(\()p Ff(H)p FB(\(1)p Fs(=)p FB(20\)+)p Fs(o)p FB(\(1\)\))1654 2976 y Fx(,)k(where)g Fp(H)p Fx(\()p Fw(\017)p Fx(\))g(is)f(the)h(en)m(trop)m(y)h(function.)46 b(W)-8 b(e)34 b(\014nd)g(that)0 3157 y Fw(p)41 b Fx(can)g(b)s(e)g (replaced)h(b)m(y)g(a)e(p)s(olynomial)e Fw(p)1607 3121 y Fq(0)1671 3157 y Fx(with)j(in)m(teger)g(co)s(e\016cien)m(ts)h(whose)g (bit)e(size)h(is)g(at)g(most)0 3277 y Fw(O)19 b Fx(\()p Fw(N)220 3241 y FB(2)276 3277 y Fx(log)e Fw(N)10 b Fx(\))28 b Fu(\024)g Fx(2)727 3241 y Fs(n)p FB(\(2)p Fq(\001)p Ff(H)p FB(\(1)p Fs(=)p FB(20\)+)p Fs(o)p FB(\(1\)\))1328 3277 y Fx(.)146 3398 y Fw(f)194 3413 y Fs(n)277 3398 y Fx(can)35 b(b)s(e)g(uniquely)h(retriev)m(ed)g(from)e(the)h(pair)g(\() p Fw(p)2095 3361 y Fq(0)2118 3398 y Fw(;)17 b(f)2221 3361 y Fq(0)2210 3422 y Fs(n)2257 3398 y Fx(\),)35 b(where)i Fw(f)2701 3361 y Fq(0)2690 3422 y Fs(n)2772 3398 y Fx(is)e(the)h(list)d (of)i(v)-5 b(alues)35 b(of)g Fw(f)3778 3413 y Fs(n)0 3518 y Fx(on)h(zeros)i(of)e Fw(p)552 3482 y Fq(0)612 3518 y Fx(\(arranged,)h(sa)m(y)-8 b(,)39 b(in)d(the)h(lexicographic)e (order\).)55 b(F)-8 b(rom)35 b(Prop)s(osition)g(3.3)h(w)m(e)i(kno)m(w)0 3638 y(that)i(the)h(bit)f(size)g(of)g Fw(f)925 3602 y Fq(0)914 3663 y Fs(n)1002 3638 y Fx(is)g(at)g(most)g(2)1531 3602 y Fs(n)1605 3638 y Fu(\000)28 b Fx(2)1759 3602 y FB(19)p Fs(=)p FB(20)p Fs(n)1982 3638 y Fx(,)42 b(th)m(us)g(the)f(bit)e (size)i(of)f(the)h(pair)e(\()p Fw(p)3392 3602 y Fq(0)3415 3638 y Fw(;)17 b(f)3518 3602 y Fq(0)3507 3663 y Fs(n)3554 3638 y Fx(\))40 b(is)g(at)0 3759 y(most)31 b(2)287 3723 y Fs(n)354 3759 y Fu(\000)21 b Fx(2)501 3723 y FB(19)p Fs(=)p FB(20)p Fs(n)745 3759 y Fx(+)f(2)890 3723 y Fs(n)p FB(\(2)p Fq(\001)p Ff(H)p FB(\(1)p Fs(=)p FB(20\)+)p Fs(o)p FB(\(1\)\))1491 3759 y Fx(.)43 b(Since)32 b(2)20 b Fu(\001)g Fp(H)p Fx(\(1)p Fw(=)p Fx(20\))26 b Fw(<)2432 3719 y FB(19)p 2432 3735 71 4 v 2432 3793 a(20)2512 3759 y Fx(,)32 b(the)h(pro)s(of)d(is)i(completed)f(b)m(y)i(the)0 3879 y(standard)g(coun)m(ting)f(argumen)m(t.)p 1245 3879 43 43 v 0 4218 a Ft(3.4.)137 b(Lo)l(w)l(er)46 b(b)t(ounds)h(on)f(form)l (ula)f(size:)62 b Fl(AC)2434 4174 y Fz(0)2479 4218 y Ft(-natural)0 4402 y Fx(Andreev)32 b([5])e(giv)m(es)g(a)g(promising)e (lo)m(w)m(er)i(b)s(ound)g(for)g(the)g(form)m(ula)f(size)h(of)f(an)h (explicit)f(function.)42 b(His)0 4523 y(b)s(ound)36 b(w)m(as)h (subsequen)m(tly)h(impro)m(v)m(ed)e(in)f([23,)h(24)o(].)53 b(Finally)-8 b(,)34 b(H)-12 b(\027)-61 b(astad)36 b([15])g(ga)m(v)m(e)h (a)e(nearly)h(optimal)0 4643 y(lo)m(w)m(er)d(b)s(ound)f(\(almost)f Fw(n)966 4607 y FB(3)1006 4643 y Fx(\))h(of)h(the)g(form)m(ula)d(size)j (for)f(Andreev's)j(function.)146 4764 y(Andreev's)41 b(function)d(is)g(a)g(Bo)s(olean)f(function)h Fw(A)2029 4779 y FB(2)p Fs(n)2149 4764 y Fx(on)g(2)p Fw(n)h Fx(bits:)54 b Fw(a)2726 4779 y FB(1)2766 4764 y Fw(;)17 b(a)2861 4779 y FB(2)2900 4764 y Fw(;)g(:)g(:)g(:)f(;)h(a)3170 4779 y Fs(n)3217 4764 y Fx(;)41 b Fw(b)3326 4779 y FB(1)3366 4764 y Fw(;)17 b(b)3451 4779 y FB(2)3491 4764 y Fw(;)g(:)g(:)g(:)f(;)h (b)3751 4779 y Fs(n)3798 4764 y Fx(.)0 4884 y(The)34 b Fw(a)p Fx('s)h(are)e(partitioned)f(in)m(to)h(log)16 b Fw(n)34 b Fx(groups)g(of)f(size)h Fw(n=)17 b Fx(log)f Fw(n)34 b Fx(eac)m(h.)47 b(Let)34 b Fw(h)2917 4899 y Fs(j)2987 4884 y Fx(b)s(e)f(the)h(parit)m(y)f(of)h(the)1864 5214 y(12)p eop %%Page: 13 13 13 12 bop 0 631 a Fx(bits)34 b(in)g(the)h Fw(j)6 b Fx(th)34 b(group.)50 b(The)35 b(bits)f Fw(h)1421 646 y FB(1)1461 631 y Fw(;)17 b(h)1561 646 y FB(2)1600 631 y Fw(;)g(:)g(:)g(:)f(;)h(h) 1875 646 y FB(log)d Fs(n)2059 631 y Fx(index)35 b(a)f(n)m(um)m(b)s(er)h Fw(i)g Fx(from)e(1)h(to)h Fw(n)p Fx(.)49 b(The)36 b(v)-5 b(alue)0 751 y(of)32 b(the)h(function)f Fw(A)734 766 y FB(2)p Fs(n)849 751 y Fx(is)g(the)h(bit)f Fw(b)1308 766 y Fs(i)1337 751 y Fx(.)146 872 y(All)k(these)i(pro)s(ofs)f(w)m(ork) g(b)m(y)h(using)f(a)g Fv(shrinkage)h(factor)e Fw(T)51 b Fx(whic)m(h)38 b(w)m(as)g(successiv)m(ely)h(impro)m(v)m(ed)0 992 y(in)32 b(the)i(last)e(three)i(pap)s(ers)g(un)m(til)d Fw(T)43 b Fx(=)1476 966 y(~)1465 992 y(\012)q(\()p Fw(n)1632 956 y FB(2)1671 992 y Fx(\).)i(\()1830 966 y(~)1819 992 y(\012)34 b(is)e(the)i(\\soft)e(Omega")g(notation)g(whic)m(h)i(is)e (lik)m(e)h(\012)0 1112 y(but)g(ignores)f(m)m(ultiplicativ)m(e)d (factors)k(of)f(\(log)16 b Fw(n)p Fx(\))1830 1076 y Fs(k)1906 1112 y Fx(for)32 b(constan)m(t)h Fw(k)s Fx(.\))146 1233 y(The)40 b(meaning)d(of)h Fw(T)52 b Fx(is)38 b(that)h(when)g(a)g(form)m (ula)d(is)i(hit)g(b)m(y)i(a)e(random)f(restriction)h(it)g(is)g(almost)0 1353 y(certain)c(to)h(shrink)g(b)m(y)h(a)f(factor)f(of)h Fw(T)14 b Fx(.)50 b(Th)m(us,)37 b(to)d(pro)m(v)m(e)i(a)f(form)m(ula)e (lo)m(w)m(er)i(b)s(ound,)h(just)f(sho)m(w)h(that)0 1474 y(a)41 b(form)m(ula)f(m)m(ust)h(ha)m(v)m(e)i(size)f Fw(s)f Fx(after)g(b)s(eing)g(hit)f(b)m(y)j(a)e(random)g(restriction.)69 b(It)41 b(follo)m(ws)f(that)i(the)0 1594 y(original)29 b(form)m(ula)i(had)i(size)f(around)h Fw(sn)1519 1558 y FB(2)1559 1594 y Fx(.)146 1714 y(The)f(natural)e(prop)s(ert)m(y)i Fw(C)1152 1729 y FB(2)p Fs(n)1265 1714 y Fx(is)e(that)h(there)h(is)e(a) h(restriction)f(of)g Fw(b)p Fx('s)i(suc)m(h)h(that)e(an)m(y)g(of)g(its) f(exten-)0 1835 y(sions)c(lea)m(ving)g(at)g(least)g(one)g(unrestricted) i(v)-5 b(ariable)24 b(in)i(eac)m(h)h(group)f(of)g Fw(a)p Fx('s)h(induces)g(a)f(form)m(ula)f(of)h(size)0 1955 y(\012\()p Fw(n=)17 b Fx(log)g Fw(n)p Fx(\).)42 b(This)28 b(prop)s(ert)m(y)g(is)g (useful)g(since)g(a)f(random)g(restriction)g(lea)m(ving)g(\(log)17 b Fw(n)p Fx(\))3248 1919 y FB(2)3315 1955 y Fx(unrestricted)0 2076 y(v)-5 b(ariables)33 b(lea)m(v)m(es)j(at)e(least)h(one)f(suc)m(h)j (v)-5 b(ariable)32 b(in)i(eac)m(h)i(group:)47 b(for)34 b(some)h(\014xing)f(of)g Fw(b)p Fx('s,)i(a)f(random)0 2196 y(restriction)25 b(to)h(the)g Fw(a)p Fx('s)h(will)d(shrink)i(the)h (form)m(ula)d(to)h(\012\()p Fw(n=)17 b Fx(log)g Fw(n)p Fx(\).)41 b(Ob)m(viously)-8 b(,)28 b Fw(A)3054 2211 y FB(2)p Fs(n)3162 2196 y Fx(has)e Fw(C)3399 2211 y FB(2)p Fs(n)3507 2196 y Fx(\(simply)0 2316 y(restrict)39 b Fw(b)p Fx('s)g(so)g(that)f(they)i(will)c(enco)s(de)k(the)f(most)f(complex)g (function)g(in)g(log)16 b Fw(n)39 b Fx(v)-5 b(ariables\))37 b(whic)m(h)0 2437 y(implies)30 b(that)i(it)g(m)m(ust)h(ha)m(v)m(e)h (form)m(ula)c(complexit)m(y)i(at)g(least)2318 2411 y(~)2308 2437 y(\012\()p Fw(n)2474 2401 y FB(3)2514 2437 y Fx(\).)146 2557 y(W)-8 b(e)43 b(can)f(c)m(ho)s(ose)h Fw(C)908 2521 y Fq(\003)901 2582 y FB(2)p Fs(n)1027 2557 y Fx(=)g Fw(C)1216 2572 y FB(2)p Fs(n)1298 2557 y Fx(.)72 b(The)43 b(fact)f(that)g Fw(C)2107 2521 y Fq(\003)2100 2582 y FB(2)p Fs(n)2224 2557 y Fx(has)g(largeness)h(is)e(easy)i(to)f(pro)m(v)m(e.)73 b(Con-)0 2677 y(structivit)m(y)40 b(is)g(also)f(easy)i(if)e(w)m(e)i (observ)m(e)g(that)f(there)h(are)f(only)f(2)2531 2641 y Fs(O)r FB(\()p Fs(n)p FB(\))2728 2677 y Fx(form)m(ulas)g(of)g(size)i (less)f(than)0 2798 y Fw(n=)17 b Fx(log)f Fw(n)p Fx(.)0 3087 y Ft(3.5.)137 b(Lo)l(w)l(er)46 b(b)t(ounds)h(against)g(depth-2)g (threshold)g(circuits:)351 3236 y Fl(T)17 b(C)532 3193 y Fz(0)577 3236 y Ft(-natural)0 3421 y Fx(Ha)5 b(jnal)29 b(et)h(al.)41 b([13])30 b(sho)m(w)h(that)f(the)g(MOD-2)f(inner-pro)s (duct)g(function)g(requires)i(depth-2)f(threshold)0 3541 y(circuits)k(of)g(exp)s(onen)m(tial)g(size.)50 b(An)m(y)36 b(Bo)s(olean)d(function)h(can)h(b)s(e)g(view)m(ed)h(as)e(a)h(Bo)s (olean)e(matrix)g(b)m(y)0 3662 y(dividing)h(the)i(inputs)g(in)m(to)f(t) m(w)m(o)h(equal)g(sets)h(with)e(the)h(left)f(half)g(indexing)g(the)h (ro)m(ws)h(and)f(the)g(righ)m(t)0 3782 y(half)k(indexing)h(the)h (columns.)69 b(Seen)43 b(in)d(this)h(w)m(a)m(y)i(the)f(inner-pro)s (duct)f(function)g(is)g(a)g(Hadamard)0 3902 y(matrix.)62 b(Their)39 b(pro)s(of)g(sho)m(ws)i(that)e(an)m(y)g(matrix)f(with)h(lo)m (w)g(discrepancy)i(can't)e(b)s(e)h(computed)f(b)m(y)0 4023 y(small)24 b(depth-2)j(threshold)f(circuits.)41 b(Cho)s(ose)27 b Fw(C)1804 4038 y Fs(n)1878 4023 y Fx(to)f(b)s(e)g (true)h(of)f(all)f(functions)h(whose)i(matrices)e(ha)m(v)m(e)0 4143 y(lo)m(w)g(discrepancy)-8 b(.)42 b(Their)27 b(main)d(lemma)g(sho)m (ws)k(that)e(an)m(y)h(Hadamard)e(matrix)g(has)i(lo)m(w)f(discrepancy)-8 b(.)0 4264 y(The)38 b(same)g(argumen)m(t)f(sho)m(ws)i(that)e(an)m(y)h (matrix)e(whic)m(h)i(is)f(almost)f(Hadamard)g(in)h(the)h(sense)h(that)0 4384 y(the)32 b(dot)f(pro)s(duct)h(of)f(an)m(y)h(t)m(w)m(o)g(ro)m(ws)h (or)e(an)m(y)h(t)m(w)m(o)g(columns)f(is)g(small)e(also)i(has)h(the)g (lo)m(w)f(discrepancy)0 4504 y(prop)s(ert)m(y)-8 b(.)46 b(Th)m(us,)35 b(the)f Fw(C)951 4468 y Fq(\003)944 4529 y Fs(n)1024 4504 y Fx(suggested)h(b)m(y)f(their)e(pro)s(of)h(is)g(to)f (c)m(hec)m(k)k(that)d(the)h(function)e(view)m(ed)j(as)e(a)0 4625 y(matrix)24 b(is)h(almost)f(Hadamard,)i(for)f(the)i(appropriate)d (de\014nition)h(of)g(almost.)40 b(It)25 b(is)g(p)s(ossible)g(to)h (de\014ne)0 4745 y(\\almost")d(so)i(as)h(to)f(guaran)m(tee)g(that)g Fw(C)1462 4709 y Fq(\003)1455 4770 y Fs(n)1527 4745 y Fx(has)h(largeness)f(and)h(preserv)m(es)i(usefulness.)42 b(Constructivit)m(y:)0 4865 y(F)-8 b(or)33 b(eac)m(h)i(of)f(the)h(2)729 4829 y Fs(O)r FB(\()p Fs(n)p FB(\))920 4865 y Fx(dot)f(pro)s(ducts,)h (feed)g(the)g(binary)f(AND's)g(in)m(to)g(a)g(threshold)g(gate;)h(feed)g (the)1864 5214 y(13)p eop %%Page: 14 14 14 13 bop 0 631 a Fx(outputs)33 b(of)f(the)h(threshold)g(gates)g(in)m (to)f(a)g(large)f(fan-in)g(AND.)i(This)g(is)f(in)g Fw(T)14 b(C)2976 595 y FB(0)3015 631 y Fx(.)0 920 y Ft(3.6.)137 b(Lo)l(w)l(er)46 b(b)t(ounds)h(against)g(switc)l(hing-and-recti\014er)h (net)l(w)l(orks:)351 1069 y Fl(AC)535 1026 y Fz(0)581 1069 y Ft(-natural)0 1254 y Fx(It)40 b(w)m(as)h(sho)m(wn)h(in)d([30])h (that)g(an)m(y)g(switc)m(hing-and-recti\014er)g(net)m(w)m(ork)h(\(in)f (particular,)g(an)m(y)h(nonde-)0 1374 y(terministic)34 b(branc)m(hing)h(program\))g(for)g(a)h(large)e(v)-5 b(ariet)m(y)36 b(of)g(symmetric)f(functions)h(m)m(ust)g(ha)m(v)m(e)h(size)0 1495 y(\012\()p Fw(n\013)q Fx(\()p Fw(n)p Fx(\)\),)k(where)g Fw(\013)q Fx(\()p Fw(n)p Fx(\))e(is)f(a)h(function)g(whic)m(h)h(slo)m (wly)e(gro)m(ws)i(to)f(in\014nit)m(y)-8 b(.)63 b(A)39 b(similar)d(result)j(w)m(as)0 1615 y(pro)m(v)m(en)34 b(in)e([18)o(])h(for)f Fu(\010)p Fx(-branc)m(hing)h(programs.)146 1736 y(The)g(pro)s(ofs)f(are)g(based)g(up)s(on)g(a)g(purely)g(com)m (binatorial)c(c)m(haracterization)j(of)h(the)g(net)m(w)m(ork)i(size)0 1856 y(in)e(terms)h(of)f(particular)f(instances)j(of)e(the)h(MINIMUM)i (CO)m(VER)e(problem.)43 b(Let)33 b Fw(C)3213 1871 y Fs(n)3293 1856 y Fx(b)s(e)g(the)g(set)g(of)0 1976 y(those)39 b(functions)f Fw(f)735 1991 y Fs(n)819 1976 y Fx(for)g(whic)m(h)g(the)h(size)f Fw(\034)11 b Fx(\()p Fw(f)1761 1991 y Fs(n)1808 1976 y Fx(\))38 b(of)g(the)g(minimal)c(solution)i(to)i(the)g(corresp)s (onding)0 2097 y(instance)33 b(is)f(\012\()p Fw(n\013)q Fx(\()p Fw(n)p Fx(\)\).)146 2217 y(The)f(k)m(ey)g(lemma)d(in)h(these)i (pro)s(ofs)e(sa)m(ys)i(that)e(if)g Fw(f)2024 2232 y Fs(n)2101 2217 y Fx(outputs)h(a)f(1)h(on)f(an)m(y)i(input)e(with)g Fw(s)p Fx(\()p Fw(n)p Fx(\))h(ones,)0 2337 y(and)40 b(outputs)g(a)f(0)h (on)f(an)m(y)i(input)e(with)g Fw(s)p Fx(\()p Fw(n)p Fx(\))27 b Fu(\000)h Fw(d)p Fx(\()p Fw(n)p Fx(\))39 b(ones,)k(then)d Fw(\034)11 b Fx(\()p Fw(f)2727 2352 y Fs(n)2774 2337 y Fx(\))40 b Fu(\025)g Fx(\012\()p Fw(n\013)q Fx(\()p Fw(n)p Fx(\)\))g(\()p Fw(s)p Fx(\()p Fw(n)p Fx(\))g(and)0 2458 y Fw(d)p Fx(\()p Fw(n)p Fx(\))32 b(are)h(functions)f(whic)m(h)i (slo)m(wly)e(gro)m(w)g(to)h(in\014nit)m(y;)f Fw(s)p Fx(\()p Fw(n)p Fx(\))c Fu(\035)f Fw(d)p Fx(\()p Fw(n)p Fx(\)\).)146 2578 y(Denote)33 b(this)f(prop)s(ert)m(y)i(b)m(y)g Fw(A)1279 2593 y Fs(n)1326 2578 y Fx(.)43 b(It)33 b(ob)m(viously)g(violates)e (the)j(largeness)f(condition.)42 b(W)-8 b(e)33 b(circum-)0 2699 y(v)m(en)m(t)43 b(this)d(b)m(y)i(letting)e Fw(C)960 2662 y Fq(\003)953 2723 y Fs(n)1041 2699 y Fx(b)s(e)h(the)h(set)f(of)g (those)h(functions)f(for)g(whic)m(h)g(an)m(y)h(restriction)e Fw(\032)i Fx(assign-)0 2819 y(ing)e Fw(n=)p Fx(2)g(v)-5 b(ariables)40 b(to)g(zero)h(can)g(b)s(e)g(extended)i(to)d(another)h (restriction)f Fw(\032)2890 2783 y Fq(0)2954 2819 y Fx(b)m(y)i (assigning)d(to)i(zero)0 2939 y(\()p Fw(n=)p Fx(2)18 b Fu(\000)g Fx(log)f(log)f Fw(n)p Fx(\))31 b(additional)c(v)-5 b(ariables)29 b(in)h(suc)m(h)i(a)e(w)m(a)m(y)i(that)e(the)h(induced)g (function)f(has)h Fw(A)3545 2954 y FB(log)14 b(log)g Fs(n)3798 2939 y Fx(.)146 3060 y(T)-8 b(o)37 b(see)h Fw(C)533 3024 y Fq(\003)526 3084 y Fs(n)607 3060 y Fu(\022)e Fw(C)790 3075 y Fs(n)836 3060 y Fx(,)i(recall)e(from)f([30,)h(18])h (that)f(ev)m(ery)j(co)m(v)m(ering)e(set)h Fw(\016)2813 3075 y Fs(i;\017)2889 3060 y Fx(\()p Fw(A)p Fx(\))f(has)g(its)f(asso)s (ciated)0 3180 y(v)-5 b(ariable)34 b Fw(x)424 3195 y Fs(i)488 3180 y Fx(suc)m(h)j(that)e(restricting)g(this)g(v)-5 b(ariable)34 b(to)h(0)g(kills)f Fw(\016)2413 3195 y Fs(i;\017)2489 3180 y Fx(\()p Fw(A)p Fx(\).)53 b(No)m(w,)37 b(for)e(an)m(y)h (collection)d(of)0 3300 y Fw(o)p Fx(\()p Fw(n\013)q Fx(\()p Fw(n)p Fx(\)\))28 b(co)m(v)m(ering)g(sets)h(w)m(e)g(simply)d(assign)i Fw(n=)p Fx(2)g(most)f(frequen)m(tly)i(represen)m(ted)h Fw(x)3141 3315 y Fs(i)3170 3300 y Fx('s)e(to)g(0,)g(and)g(this)0 3421 y(lea)m(v)m(es)42 b(us)g(with)f(a)f(collection)f(in)i(whic)m(h)g Fv(every)g Fx(v)-5 b(ariable)40 b(corresp)s(onds)i(to)f(at)g(most)f Fw(o)p Fx(\()p Fw(\013)q Fx(\()p Fw(n)p Fx(\)\))h(sets.)0 3541 y(Hence,)35 b(for)f(ev)m(ery)h(extension)g Fw(\032)1210 3505 y Fq(0)1267 3541 y Fx(of)e(this)g(restriction,)h(the)g(size)g(of)f (the)h(resulting)f(collection)e(will)h(b)s(e)0 3662 y Fw(o)p Fx(\(log)16 b(log)h Fw(n)22 b Fu(\001)f Fw(\013)q Fx(\()p Fw(n)p Fx(\)\).)44 b(Th)m(us,)34 b(b)m(y)f(the)g(ab)s(o)m(v)m (e)g(lemma,)d(this)i(collection)f(\(and)h(hence)i(the)f(original)c (one\))0 3782 y(do)s(es)i(not)g(co)m(v)m(er)i(all)28 b(the)k(p)s(oin)m(ts)e(from)g(the)h(univ)m(erse)i(\()p Fw(\013)q Fx(\()p Fw(n)p Fx(\))d(and)h Fw(\013)q Fx(\(log)16 b(log)h Fw(n)p Fx(\))31 b(di\013er)f(b)m(y)i(at)f(most)f(1\).)146 3902 y Fw(C)223 3866 y Fq(\003)216 3927 y Fs(n)296 3902 y Fx(is)i(in)g Fw(AC)658 3866 y FB(0)730 3902 y Fx(\(cf.)43 b(Section)33 b(3.1\).)146 4023 y(T)-8 b(o)44 b(see)g(the)g(largeness)g (condition,)g(note)g(that)f(for)g(ev)m(ery)i Fw(\032)f Fx(w)m(e)g(can)g(c)m(ho)s(ose)g Fw(n)3234 3987 y FB(3)p Fs(=)p FB(2)3388 4023 y Fx(extensions)0 4143 y Fw(\032)50 4107 y Fq(0)50 4168 y FB(1)90 4143 y Fw(;)17 b(:)g(:)g(:)f(;)h(\032)359 4107 y Fq(0)359 4177 y Fs(n)402 4158 y Fm(3)p Fn(=)p Fm(2)535 4143 y Fx(so)33 b(that)f(the)h(sets)g(of)f(v)-5 b(ariables)32 b(unassigned)h(b)m(y)g(ev)m(ery)i(t)m(w)m(o)e(di\013eren) m(t)g Fw(\032)3246 4107 y Fq(0)3246 4168 y Fs(i)3274 4143 y Fw(;)17 b(\032)3368 4107 y Fq(0)3368 4168 y Fs(j)3437 4143 y Fx(from)31 b(this)0 4264 y(list)38 b(ha)m(v)m(e)j(at)e(most)h (one)f(v)-5 b(ariable)38 b(in)h(common.)63 b(The)41 b(ev)m(en)m(t)h(\\) p Fr(f)2482 4279 y Fs(n)2567 4264 y Fx(restricted)f(b)m(y)f Fw(\032)3201 4227 y Fq(0)3201 4288 y Fs(i)3269 4264 y Fx(has)g Fw(A)3523 4279 y FB(log)14 b(log)g Fs(n)3776 4264 y Fx(")0 4384 y(dep)s(ends)32 b(only)f(on)g(those)g(inputs)g(that) g(ha)m(v)m(e)h(either)e Fw(s)p Fx(\()p Fw(n)p Fx(\))h(or)g Fw(s)p Fx(\()p Fw(n)p Fx(\))18 b Fu(\000)h Fw(d)p Fx(\()p Fw(n)p Fx(\))31 b(ones,)h(and,)f(moreo)m(v)m(er,)h(all)0 4504 y(these)f(ones)g(corresp)s(ond)g(to)e(v)-5 b(ariables)29 b(not)g(assigned)i(b)m(y)f Fw(\032)2210 4468 y Fq(0)2210 4529 y Fs(i)2239 4504 y Fx(.)43 b(Since)30 b Fw(d)p Fx(\()p Fw(n)p Fx(\))d Fw(>)h Fx(1)h(and)h Fw(s)p Fx(\()p Fw(n)p Fx(\))17 b Fu(\000)g Fw(d)p Fx(\()p Fw(n)p Fx(\))28 b Fw(>)f Fx(1,)0 4625 y(our)f(assumption)g(on)h Fw(\032)857 4589 y Fq(0)857 4649 y FB(1)897 4625 y Fw(;)17 b(:)g(:)g(:)e(;)i(\032) 1165 4589 y Fq(0)1165 4659 y Fs(n)1208 4639 y Fm(3)p Fn(=)p Fm(2)1336 4625 y Fx(implies)24 b(that)i(these)i(sets)g(of)e (inputs)h(are)g(pairwise)e(disjoin)m(t)h(\(when)0 4745 y Fw(i)49 b Fx(ranges)g(o)m(v)m(er)h Fu(f)p Fx(1)p Fw(;)17 b(:)g(:)g(:)e(;)i(n)1002 4709 y FB(3)p Fs(=)p FB(2)1112 4745 y Fu(g)p Fx(\).)92 b(Hence,)54 b(the)49 b(ev)m(en)m(ts)i(\\)p Fr(f)2258 4760 y Fs(n)2353 4745 y Fx(restricted)e(b)m(y)g Fw(\032)3004 4709 y Fq(0)3004 4770 y Fs(i)3082 4745 y Fx(has)g Fw(A)3345 4760 y FB(log)14 b(log)g Fs(n)3598 4745 y Fx(")48 b(are)0 4865 y(indep)s(enden)m(t,)34 b(and)f(w)m(e)g (can)g(apply)f(the)h(standard)g(coun)m(ting)g(argumen)m(t.)1864 5214 y(14)p eop %%Page: 15 15 15 14 bop 0 631 a Fy(4.)165 b(Inheren)-5 b(t)54 b(limitations)k(of)e (natural)g(pro)5 b(ofs)0 850 y Fx(In)41 b(this)g(section,)i(w)m(e)f (argue)f(that)g(natural)f(pro)s(ofs)g(for)h(lo)m(w)m(er)g(b)s(ounds)g (are)g Fv(almost)h(self-defe)-5 b(ating)p Fx(.)0 970 y(The)36 b(idea)f(is)g(that)g(a)g(natural)f(pro)s(of)g(that)h(some)g (function)g Fw(f)46 b Fx(is)35 b(not)g(in)f Fw(P)8 b(=pol)r(y)38 b Fx(has)e(an)f(asso)s(ciated)0 1091 y(algorithm.)66 b(But)41 b(just)h(as)f(the)g(pro)s(of)g(m)m(ust)g(distinguish)f Fw(f)52 b Fx(from)39 b(a)i(pseudo-random)g(function)g(in)0 1211 y Fw(P)8 b(=pol)r(y)39 b Fx(\(one)c(b)s(eing)g(hard)h(the)g(other) g(not\),)g(the)g(asso)s(ciated)f(algorithm)e(m)m(ust)i(b)s(e)h(able)f (to)g(tell)g(the)0 1332 y(di\013erence)k(b)s(et)m(w)m(een)h(the)e(t)m (w)m(o.)60 b(Th)m(us,)41 b(the)d(algorithm)d(can)j(b)s(e)g(used)h(to)f (break)h(a)e(pseudo-random)0 1452 y(generator.)78 b(This)44 b(is)f(self-defeating)g(in)g(the)h(sense)i(that)e(a)f(natural)g(pro)s (of)g(that)h(hardness)h(exists)0 1572 y(w)m(ould)33 b(ha)m(v)m(e)g(as)g (an)g(automatic)d(b)m(y-pro)s(duct)k(an)e(algorithm)e(to)i(solv)m(e)h (a)f(\\hard")g(problem.)146 1693 y(F)-8 b(or)34 b(a)h(pseudo-random)f (generator)h Fw(G)1605 1708 y Fs(k)1679 1693 y Fx(:)c Fu(f)p Fx(0)p Fw(;)17 b Fx(1)p Fu(g)1979 1657 y Fs(k)2052 1693 y Fu(\000)-16 b(!)31 b(f)p Fx(0)p Fw(;)17 b Fx(1)p Fu(g)2486 1657 y FB(2)p Fs(k)2597 1693 y Fx(de\014ne)36 b(its)f Fv(har)-5 b(dness)33 b Fw(H)8 b Fx(\()p Fw(G)3623 1708 y Fs(k)3665 1693 y Fx(\))35 b(as)0 1813 y(the)e(minimal)28 b Fw(S)39 b Fx(for)32 b(whic)m(h)h(there)g(exists)g(a)g(circuit)e Fw(C)40 b Fx(of)32 b(size)h Fu(\024)28 b Fw(S)38 b Fx(suc)m(h)c(that) 1089 2057 y Fu(j)p Fp(P)p Fx([)p Fw(C)7 b Fx(\()p Fw(G)1413 2072 y Fs(k)1455 2057 y Fx(\()p Fr(x)p Fx(\)\))27 b(=)h(1])22 b Fu(\000)g Fp(P)p Fx([)p Fw(C)7 b Fx(\()p Fr(y)t Fx(\))27 b(=)h(1])o Fu(j)g(\025)2668 1989 y Fx(1)p 2660 2034 66 4 v 2660 2125 a Fw(S)0 2306 y Fx(\(cf.)42 b([9]\).)g(Here,)31 b(as)d(usual,)i Fr(x)e Fx(is)g(tak)m(en)i(at)e(random)g(from)f Fu(f)p Fx(0)p Fw(;)17 b Fx(1)p Fu(g)2427 2270 y Fs(k)2469 2306 y Fx(,)29 b(and)g Fr(y)j Fx(is)c(tak)m(en)i(at)e(random)g(from)0 2426 y Fu(f)p Fx(0)p Fw(;)17 b Fx(1)p Fu(g)242 2390 y FB(2)p Fs(k)319 2426 y Fx(.)0 2644 y Fp(Theorem)37 b(4.1.)49 b Fv(Ther)-5 b(e)45 b(is)h(no)f(lower)g(b)-5 b(ound)45 b(pr)-5 b(o)g(of)45 b(which)g(is)g Fw(P)8 b(=pol)r(y)t Fv(-natur)-5 b(al)45 b(against)g Fw(P)8 b(=pol)r(y)t Fx(,)0 2774 y Fv(unless)46 b Fw(H)8 b Fx(\()p Fw(G)507 2789 y Fs(k)549 2774 y Fx(\))50 b Fu(\024)g Fx(2)813 2738 y Fs(k)852 2714 y Fn(o)p Fm(\(1\))1015 2774 y Fv(for)d(every)f (pseudo-r)-5 b(andom)45 b(gener)-5 b(ator)47 b Fw(G)2663 2789 y Fs(k)2755 2774 y Fx(:)j Fu(f)p Fx(0)p Fw(;)17 b Fx(1)p Fu(g)3074 2738 y Fs(k)3165 2774 y Fu(\000)-16 b(!)49 b(f)p Fx(0)p Fw(;)17 b Fx(1)p Fu(g)3617 2738 y FB(2)p Fs(k)3740 2774 y Fv(in)0 2894 y Fw(P)8 b(=pol)r(y)t Fx(.)146 3112 y(In)31 b(particular,)f(if)g(2)879 3076 y Fs(n)922 3052 y Fn(\017)956 3112 y Fx(-hard)g(functions)h(exist)g (then)g(there)h(is)e(no)h Fw(P)8 b(=pol)r(y)t Fx(-natural)28 b(pro)s(of)i(\(against)0 3232 y Fw(P)8 b(=pol)r(y)t Fx(\).)0 3400 y Fp(Pro)s(of.)138 b Fx(F)-8 b(or)46 b(the)h(sak)m(e)h(of)e(con)m (tradiction,)j(supp)s(ose)f(that)e(suc)m(h)i(a)e(lo)m(w)m(er)h(b)s (ound)g(pro)s(of)e(exists)0 3520 y(and)g Fw(C)272 3535 y Fs(n)364 3520 y Fx(is)g(asso)s(ciated)g Fw(P)8 b(=pol)r(y)t Fx(-natural)43 b(com)m(binatorial)e(prop)s(ert)m(y)-8 b(.)82 b(Let)46 b Fw(C)2995 3484 y Fq(\003)2988 3545 y Fs(n)3084 3520 y Fu(\022)j Fw(C)3280 3535 y Fs(n)3372 3520 y Fx(satisfy)d(the)0 3641 y(constructivit)m(y)33 b(and)g(largeness)g(conditions.)43 b(W.l.o.g.)g(w)m(e)33 b(ma)m(y)g(assume)g(from)e(the)i(v)m(ery)h(b)s(eginning)0 3761 y(that)e Fw(C)288 3725 y Fq(\003)281 3786 y Fs(n)356 3761 y Fx(=)27 b Fw(C)529 3776 y Fs(n)576 3761 y Fx(.)146 3881 y(W)-8 b(e)38 b(use)h(a)e(sligh)m(tly)f(mo)s(di\014ed)h (construction)h(from)e([12].)58 b(Let)38 b Fw(G)2623 3896 y Fs(k)2702 3881 y Fx(:)e Fu(f)p Fx(0)p Fw(;)17 b Fx(1)p Fu(g)3007 3845 y Fs(k)3085 3881 y Fu(\000)-16 b(!)36 b(f)p Fx(0)p Fw(;)17 b Fx(1)p Fu(g)3524 3845 y FB(2)p Fs(k)3638 3881 y Fx(b)s(e)38 b(a)0 4002 y(p)s(olynomial)20 b(time)j(computable)g(pseudo-random)h(generator,)i(and)e Fw(\017)k(>)g Fx(0)c(b)s(e)g(an)g(arbitrary)f(constan)m(t.)0 4122 y(Set)36 b Fw(n)c Fx(=)f Fu(d)p Fw(k)466 4086 y Fs(\017)500 4122 y Fu(e)p Fx(.)51 b(W)-8 b(e)35 b(use)h Fw(G)c Fx(:)g Fu(f)p Fx(0)p Fw(;)17 b Fx(1)p Fu(g)1373 4086 y Fs(k)1447 4122 y Fu(\000)-16 b(!)31 b(f)p Fx(0)p Fw(;)17 b Fx(1)p Fu(g)1881 4086 y FB(2)p Fs(k)1993 4122 y Fx(for)35 b(constructing)g(a)g(pseudo-random)f(function)0 4242 y(generator)i Fw(f)44 b Fx(:)33 b Fu(f)p Fx(0)p Fw(;)17 b Fx(1)p Fu(g)831 4206 y Fs(k)905 4242 y Fu(\000)-16 b(!)33 b Fw(F)1162 4257 y Fs(n)1245 4242 y Fx(in)i(the)h(same)g(w)m(a)m (y)h(as)f(in)f([12)o(].)53 b(Namely)-8 b(,)36 b(let)f Fw(G)3055 4257 y FB(0)3094 4242 y Fw(;)17 b(G)3215 4257 y FB(1)3288 4242 y Fx(:)33 b Fu(f)p Fx(0)p Fw(;)17 b Fx(1)p Fu(g)3590 4206 y Fs(k)3664 4242 y Fu(\000)-16 b(!)0 4363 y(f)p Fx(0)p Fw(;)17 b Fx(1)p Fu(g)242 4327 y Fs(k)314 4363 y Fx(b)s(e)30 b(the)g(\014rst)h(and)f(the)h(last)e Fw(k)k Fx(bits)d(of)f Fw(G)p Fx(,)i(resp)s(ectiv)m(ely)-8 b(.)43 b(F)-8 b(or)30 b(a)f(string)h Fw(y)h Fu(2)d(f)p Fx(0)p Fw(;)17 b Fx(1)p Fu(g)3359 4327 y Fs(n)3435 4363 y Fx(w)m(e)31 b(de\014ne)0 4483 y Fw(G)77 4498 y Fs(y)146 4483 y Fx(:)d Fu(f)p Fx(0)p Fw(;)17 b Fx(1)p Fu(g)443 4447 y Fs(k)512 4483 y Fu(\000)-16 b(!)27 b(f)p Fx(0)p Fw(;)17 b Fx(1)p Fu(g)942 4447 y Fs(k)1015 4483 y Fx(b)m(y)32 b Fw(G)1226 4498 y Fs(y)1295 4483 y Fe(\012)27 b Fw(G)1499 4498 y Fs(y)1534 4506 y Fn(n)1600 4483 y Fu(\016)20 b Fw(G)1747 4498 y Fs(y)1782 4507 y Fn(n)p Fo(\000)p Fm(1)1926 4483 y Fu(\016)f(\001)e(\001)g(\001)h(\016)h Fw(G)2277 4498 y Fs(y)2312 4507 y Fm(1)2350 4483 y Fx(,)32 b(and)f(for)g Fw(x)d Fu(2)g(f)p Fx(0)p Fw(;)17 b Fx(1)p Fu(g)3164 4447 y Fs(k)3237 4483 y Fx(let)31 b Fw(f)11 b Fx(\()p Fw(x)p Fx(\)\()p Fw(y)t Fx(\))30 b(b)s(e)0 4604 y(the)j(\014rst)g(bit)f(of)g Fw(G)709 4619 y Fs(y)750 4604 y Fx(\()p Fw(x)p Fx(\).)146 4724 y(Note)44 b(that)f Fw(f)11 b Fx(\()p Fw(x)p Fx(\)\()p Fw(y)t Fx(\))42 b(is)h(computable)g(b)m(y)h(p)s(oly-size)f(circuits,)i (hence)g(\(from)d(the)i(de\014nition)e(of)0 4844 y(a)f(pro)s(of)g (natural)g(against)g Fw(P)8 b(=pol)r(y)t Fx(\))40 b(the)j(function)e Fw(f)11 b Fx(\()p Fw(x)p Fx(\))43 b Fu(2)h Fw(F)2403 4859 y Fs(n)2492 4844 y Fx(is)d(not)h(in)f Fw(C)2975 4859 y Fs(n)3063 4844 y Fx(for)g(an)m(y)i(\014xed)g Fw(x)h Fu(2)0 4965 y(f)p Fx(0)p Fw(;)17 b Fx(1)p Fu(g)242 4929 y Fs(k)333 4965 y Fx(and)51 b(an)m(y)f(su\016cien)m(tly)h(large)e Fw(k)s Fx(.)96 b(In)50 b(other)g(w)m(ords,)56 b Fw(C)2491 4980 y Fs(n)2587 4965 y Fx(has)51 b(empt)m(y)f(in)m(tersection)g(with) 1864 5214 y(15)p eop %%Page: 16 16 16 15 bop 0 535 a Fj(n)64 631 y Fw(f)11 b Fx(\()p Fw(x)p Fx(\))271 531 y Fj(\014)271 581 y(\014)271 631 y(\014)21 b Fw(x)28 b Fu(2)h(f)p Fx(0)p Fw(;)17 b Fx(1)p Fu(g)740 595 y Fs(k)791 535 y Fj(o)846 631 y Fx(,)45 b(and)d(this)g(disjoin)m (tness)g(implies)e(that)i Fw(C)2480 646 y Fs(n)2568 631 y Fx(pro)m(vides)h(a)f(statistical)e(test)i(for)0 764 y Fw(f)11 b Fx(\()p Fr(x)p Fx(\),)32 b(with)966 884 y Fu(j)p Fp(P)p Fx([)p Fw(C)1168 899 y Fs(n)1215 884 y Fx(\()p Fr(f)1310 899 y Fs(n)1356 884 y Fx(\))c(=)f(1])22 b Fu(\000)h Fp(P)p Fx([)p Fw(C)1897 899 y Fs(n)1943 884 y Fx(\()p Fw(f)11 b Fx(\()p Fr(x)p Fx(\)\))27 b(=)h(1])o Fu(j)g(\025)g Fx(2)2636 843 y Fq(\000)p Fs(O)r FB(\()p Fs(n)p FB(\))2848 884 y Fw(:)825 b Fx(\(3\))0 1056 y(Note)33 b(that)f(this)g(test)i(is)e(computable)f(b)m(y)j(circuits)e(of)g(size)h (2)2274 1020 y Fs(O)r FB(\()p Fs(n)p FB(\))2431 1056 y Fx(.)146 1176 y(Constructing)i(from)e(this)h(a)g(statistical)e(test)j (for)f(strings)g(in)g(our)g(case)h(is)f(ev)m(en)i(simpler)c(than)j(in)0 1297 y([12].)43 b(Namely)-8 b(,)32 b(w)m(e)h(arrange)g(all)d(in)m (ternal)i(no)s(des)h(of)f(the)h(binary)f(tree)h Fw(T)46 b Fx(of)33 b(heigh)m(t)f Fw(n)p Fx(:)1558 1511 y Fw(v)1605 1526 y FB(1)1644 1511 y Fw(;)17 b(v)1735 1526 y FB(2)1775 1511 y Fw(;)g(:)g(:)g(:)e(;)i(v)2040 1526 y FB(\(2)2102 1507 y Fn(n)2146 1526 y Fq(\000)p FB(1\))0 1725 y Fx(in)28 b(suc)m(h)j(a)e(w)m(a)m(y)h(that)f(if)f Fw(v)940 1740 y Fs(i)997 1725 y Fx(is)h(a)f(son)i(of)f Fw(v)1495 1740 y Fs(j)1560 1725 y Fx(then)h Fw(i)e(<)f(j)6 b Fx(.)43 b(Let)29 b Fw(T)2287 1740 y Fs(i)2344 1725 y Fx(b)s(e)h(the)f(union)g (of)f(subtrees)j(of)e Fw(T)42 b Fx(made)0 1845 y(b)m(y)35 b Fu(f)p Fw(v)234 1860 y FB(1)273 1845 y Fw(;)17 b(:)g(:)g(:)f(;)h(v) 539 1860 y Fs(i)567 1845 y Fu(g)34 b Fx(along)f(with)h(all)e(lea)m(v)m (es.)49 b(F)-8 b(or)33 b(a)h(leaf)f Fw(y)k Fx(of)d Fw(T)48 b Fx(let)33 b Fw(v)2530 1860 y Fs(i)2558 1845 y Fx(\()p Fw(y)t Fx(\))g(b)s(e)i(the)f(ro)s(ot)f(of)h(the)h(subtree)0 1966 y(in)c Fw(T)170 1981 y Fs(i)229 1966 y Fx(con)m(taining)f Fw(y)t Fx(.)42 b(Let)32 b Fw(G)1074 1981 y Fs(i;y)1186 1966 y Fe(\012)c Fw(G)1391 1981 y Fs(y)1426 1989 y Fn(n)1492 1966 y Fu(\016)19 b(\001)e(\001)g(\001)h(\016)h Fw(G)1843 1981 y Fs(y)1878 1995 y Fn(n)p Fo(\000)p Fn(h)p Fm(\()p Fn(i;y)r Fm(\)+1)2208 1966 y Fx(,)32 b(where)g Fw(h)p Fx(\()p Fw(i;)17 b(y)t Fx(\))31 b(is)g(the)g(distance)h(b)s(et)m(w)m (een)0 2086 y Fw(v)47 2101 y Fs(i)75 2086 y Fx(\()p Fw(y)t Fx(\))h(and)h Fw(y)t Fx(.)47 b(Finally)-8 b(,)31 b(de\014ne)k(the)g (random)e(collection)f Fr(f)2209 2101 y Fs(i;n)2333 2086 y Fx(b)m(y)i(letting)f Fr(f)2837 2101 y Fs(i;n)2927 2086 y Fx(\()p Fw(y)t Fx(\))g(b)s(e)h(the)g(\014rst)g(bit)f(of)0 2222 y Fw(G)77 2237 y Fs(i;y)179 2125 y Fj(\020)228 2222 y Fr(x)294 2237 y Fs(v)328 2247 y Fn(i)355 2237 y FB(\()p Fs(y)r FB(\))451 2125 y Fj(\021)500 2222 y Fx(,)i(where)h Fr(x)912 2237 y Fs(v)986 2222 y Fx(are)e(tak)m(en)i(from)d Fu(f)p Fx(0)p Fw(;)17 b Fx(1)p Fu(g)1892 2186 y Fs(k)1967 2222 y Fx(uniformly)32 b(and)j(indep)s(enden)m(tly)g(for)e(all)f(ro)s (ots)i Fw(v)0 2342 y Fx(of)e(trees)i(from)d Fw(T)632 2357 y Fs(i)660 2342 y Fx(.)146 2462 y(Since)i Fr(f)458 2477 y FB(0)p Fs(;n)592 2462 y Fx(is)f Fr(f)747 2477 y Fs(n)794 2462 y Fx(,)g(and)h Fr(f)1100 2477 y FB(2)1135 2458 y Fn(n)1177 2477 y Fq(\000)p FB(1)p Fs(;n)1367 2462 y Fx(is)f Fw(f)11 b Fx(\()p Fr(x)p Fx(\),)32 b(w)m(e)h(ha)m(v)m(e)h (from)d(\(3\))i(that)f(for)g(some)g Fw(i)p Fx(,)918 2676 y Fu(j)o Fp(P)p Fx([)p Fw(C)1119 2691 y Fs(n)1166 2676 y Fx(\()p Fr(f)1261 2691 y Fs(i;n)1351 2676 y Fx(\))c(=)f(1])22 b Fu(\000)h Fp(P)p Fx([)o Fw(C)1891 2691 y Fs(n)1938 2676 y Fx(\()p Fr(f)2033 2691 y Fs(i)p FB(+1)p Fs(;n)2214 2676 y Fx(\))k(=)h(1])p Fu(j)f(\025)h Fx(2)2668 2635 y Fq(\000)p Fs(O)r FB(\()p Fs(n)p FB(\))2880 2676 y Fw(:)0 2890 y Fx(Fix)e Fr(x)235 2905 y Fs(v)301 2890 y Fx(for)g(all)f(ro)s (ots)g Fw(v)30 b Fx(of)c(subtrees)j(in)c Fw(T)1535 2905 y Fs(i)p FB(+1)1680 2890 y Fx(other)i(than)f Fw(v)2197 2905 y Fs(i)p FB(+1)2342 2890 y Fx(so)g(that)g(the)h(bias)f(2)3066 2854 y Fq(\000)p Fs(O)r FB(\()p Fs(n)p FB(\))3304 2890 y Fx(is)g(preserv)m(ed.)0 3020 y(Then)32 b(w)m(e)f(ha)m(v)m(e)h(a)e (statistical)e(test)j(for)f(strings)g(distinguishing)f(b)s(et)m(w)m (een)j Fw(G)2878 2924 y Fj(\020)2927 3020 y Fr(x)2993 3035 y Fs(v)3027 3045 y Fn(i)p Fm(+1)3135 2924 y Fj(\021)3215 3020 y Fx(and)e(\()p Fr(x)3506 3035 y Fs(v)3542 3016 y Fo(0)3569 3020 y Fw(;)17 b Fr(x)3679 3035 y Fs(v)3715 3016 y Fo(00)3760 3020 y Fx(\),)0 3164 y(where)39 b Fw(v)338 3128 y Fq(0)361 3164 y Fw(;)17 b(v)456 3128 y Fq(00)535 3164 y Fx(are)37 b(the)h(t)m(w)m(o)g(sons)h(of)e Fw(v)1445 3179 y Fs(i)p FB(+1)1563 3164 y Fx(.)58 b(Th)m(us)39 b Fw(H)8 b Fx(\()p Fw(G)2104 3179 y Fs(k)2146 3164 y Fx(\))36 b Fu(\024)g Fx(2)2382 3128 y Fs(O)r FB(\()p Fs(n)p FB(\))2575 3164 y Fu(\024)h Fx(2)2738 3128 y Fs(O)r FB(\()p Fs(k)2860 3105 y Fn(\017)2889 3128 y FB(\))2921 3164 y Fx(.)58 b(As)38 b Fw(\017)g Fx(w)m(as)g(arbitrary)-8 b(,)0 3285 y(the)33 b(result)g(follo)m(ws.)p 765 3285 43 43 v 146 3453 a(The)k(assumption)e(that)g(2)1132 3417 y Fs(n)1175 3394 y Fn(\017)1209 3453 y Fx(-hard)h(functions)f(exist)h (is)g(quite)f(plausible.)51 b(F)-8 b(or)35 b(example,)h(despite)0 3574 y(man)m(y)h(adv)-5 b(ances)39 b(in)d(computational)f(n)m(um)m(b)s (er)j(theory)-8 b(,)39 b(m)m(ultiplication)32 b(seems)38 b(to)f(pro)m(vide)h(a)f(basis)0 3694 y(for)32 b(a)g(family)e(of)i(suc)m (h)j(functions)d(\(kno)m(wn)i(factoring)d(algorithms)f(are)j (su\016cien)m(tly)g(exp)s(onen)m(tial\).)146 3814 y(Based)g(up)s(on)f (lo)m(w)m(er)g(b)s(ounds)h(for)e(the)i(parit)m(y)e(function,)h(Nisan)g ([22)o(])g(constructed)i(a)d(v)m(ery)j(strong)0 3935 y(generator)d(secure)i(against)e Fw(AC)1210 3899 y FB(0)1249 3935 y Fx(-attac)m(k.)43 b(In)32 b(fact,)g(an)f(easy)h(analysis)f(of)g (his)g(generator)g(in)g(terms)g(of)0 4055 y(its)h(o)m(wn)h(complexit)m (y)f(giv)m(es)h(the)g(follo)m(wing:)0 4277 y Fp(Theorem)k(4.2.)49 b Fv(F)-7 b(or)41 b(any)g(inte)-5 b(ger)41 b Fw(d)p Fv(,)h(ther)-5 b(e)41 b(exists)g(a)g(family)g Fw(G)2525 4292 y Fs(n;s)2664 4277 y Fu(\022)f Fw(F)2844 4292 y Fs(n)2891 4277 y Fv(,)j(wher)-5 b(e)40 b Fw(s)i Fv(is)f(a)g(se)-5 b(e)g(d)40 b(of)0 4397 y(size)34 b(p)-5 b(olynomial)33 b(in)h Fw(n)h Fv(such)f(that)h Fw(G)1388 4412 y Fs(n;s)1514 4397 y Fu(2)29 b Fw(AC)1759 4361 y FB(0)1798 4397 y Fx([2])34 b Fv(and)g Fw(G)2201 4412 y Fs(n;s)2335 4397 y Fv(lo)-5 b(oks)33 b(r)-5 b(andom)34 b(for)g Fx(2)3132 4361 y Fs(O)r FB(\()p Fs(n)p FB(\))3289 4397 y Fv(-size)g(depth-)p Fw(d)0 4517 y Fv(cir)-5 b(cuits,)35 b(i.e.,)f(for)h(any)g(p)-5 b(olynomial-size)33 b Fx(\()p Fv(in)h Fx(2)1803 4481 y Fs(n)1850 4517 y Fx(\))h Fv(depth)f Fw(d)h Fv(cir)-5 b(cuit)35 b(family)f Fw(C)2941 4532 y Fs(n)3016 4517 y Fx(:)27 b Fw(F)3133 4532 y Fs(n)3208 4517 y Fu(\000)-16 b(!)27 b(f)p Fx(0)p Fw(;)17 b Fx(1)p Fu(g)p Fv(,)982 4731 y Fu(j)o Fp(P)p Fx([)p Fw(C)1183 4746 y Fs(n)1230 4731 y Fx(\()p Fr(f)1325 4746 y Fs(n)1371 4731 y Fx(\))28 b(=)f(1])22 b Fu(\000)h Fp(P)p Fx([)p Fw(C)1912 4746 y Fs(n)1958 4731 y Fx(\()p Fw(G)2073 4746 y Fs(n;)p Fd(s)2177 4731 y Fx(\))28 b(=)f(1])p Fu(j)h Fw(<)f Fx(2)2630 4690 y Fq(\000)p Fs(!)r FB(\()p Fs(n)p FB(\))2833 4731 y Fw(:)840 b Fx(\(4\))0 4945 y Fv(Her)-5 b(e)35 b Fr(s)g Fv(is)f(a)h(r)-5 b(andom)34 b(se)-5 b(e)g(d)34 b(of)h(the)g(appr)-5 b(opriate)34 b(size.)1864 5214 y Fx(16)p eop %%Page: 17 17 17 16 bop 0 631 a Fp(Theorem)37 b(4.3.)49 b Fv(Ther)-5 b(e)34 b(is)h(no)f(lower)h(b)-5 b(ound)34 b(pr)-5 b(o)g(of)35 b(which)f(is)g Fw(AC)2538 595 y FB(0)2578 631 y Fv(-natur)-5 b(al)34 b(against)h Fw(AC)3434 595 y FB(0)3473 631 y Fx([2])p Fv(.)0 909 y Fp(Pro)s(of.)118 b Fx(Assume,)45 b(on)d(the)g(con)m(trary)-8 b(,)45 b(that)c(suc)m(h)i(a)f(pro)s(of)e (exists,)45 b(and)d(that)g Fw(C)3165 924 y Fs(n)3253 909 y Fx(has)g(the)g(same)0 1029 y(meaning)g(as)i(in)f(the)h(pro)s(of)e (of)h(Theorem)h(4.1.)76 b(Let)44 b Fw(d)f Fx(b)s(e)h(the)g(depth)g(of)f (a)g(size)h(2)3223 993 y Fs(O)r FB(\()p Fs(n)p FB(\))3424 1029 y Fx(circuit)e(to)0 1150 y(compute)g Fw(C)475 1165 y Fs(n)522 1150 y Fx(.)71 b(Let)42 b Fw(G)881 1165 y Fs(n;s)1022 1150 y Fx(b)s(e)g(the)g(generator)g(whic)m(h)g(is)f (pseudo-random)h(against)f(depth-)p Fw(d)g Fx(2)3635 1114 y Fs(O)r FB(\()p Fs(n)p FB(\))3792 1150 y Fx(-)0 1270 y(sized)f(circuits)f(from)f(Theorem)i(4.2.)64 b(F)-8 b(rom)38 b(the)i(de\014nition)f(of)g(a)g(pro)s(of)g(natural)f(against)g Fw(AC)3655 1234 y FB(0)3695 1270 y Fx([2],)0 1391 y(for)45 b(su\016cien)m(tly)g(large)f Fw(n)p Fx(,)49 b Fw(C)1117 1406 y Fs(n)1164 1391 y Fx(\()p Fw(G)1279 1406 y Fs(n;s)1378 1391 y Fx(\))g(=)g(0.)81 b(No)m(w,)49 b(\(4\))c(immediately)d(con)m (tradicts)j(the)h(largeness)0 1511 y(condition.)p 433 1511 43 43 v 146 1681 a(In)36 b(fact,)g(it)f(is)g(clear)g(from)f(the)i (ab)s(o)m(v)m(e)g(pro)s(ofs)g(that)f(whenev)m(er)j(a)d(complexit)m(y)g (class)h(\003)f(con)m(tains)0 1802 y(pseudo-random)26 b(function)g(generators)g(that)h(are)f(su\016cien)m(tly)h(secure)h (against)d(\000-attac)m(k,)i(then)g(there)0 1922 y(is)i(no)h (\000-natural)e(pro)s(of)h(against)f(\003.)43 b(E.g.,)30 b(it)f(is)g(easy)i(to)e(see)i(that)f(Theorems)g(4.1,)g(4.3)g(are)f (still)f(v)-5 b(alid)0 2042 y(for)27 b(the)h(larger)f(class)g(of)h (\000-natural)e(pro)s(ofs,)i(where)h(\000)e(consists)i(of)e(languages)g (computable)g(b)m(y)h(quasi-)0 2163 y(p)s(olynomial-sized)44 b(circuits.)87 b(This)47 b(observ)-5 b(ation)47 b(is)g(of)f(little)f (imp)s(ortance)h(for)h(the)g(examples)g(of)0 2283 y(natural)36 b(pro)s(ofs)h(giv)m(en)g(in)g(this)f(pap)s(er.)58 b(Ho)m(w)m(ev)m(er,) 41 b(it)36 b(is)h(useful)g(in)f(the)i(con)m(text)g(of)f(pro)s(ofs)g (feasible)0 2403 y(in)c(the)h(logical)c(sense)36 b([33)o(],)e(where)h (quasi-p)s(olynomial)30 b(limitations)f(on)34 b(the)g(complexit)m(y)e (arise)i(more)0 2524 y(often.)84 b(F)-8 b(ormally)g(,)47 b(w)m(e)g(de\014ne)1246 2499 y(~)1225 2524 y Fw(P)13 b(=q)t(pol)r(y)49 b Fx(as)d(the)h(class)f(of)g(non-uniform,)i(quasi-p)s (olynomial)42 b(size)0 2656 y(circuits,)32 b(i.e.,)g(size)h Fw(n)796 2620 y FB(log)14 b Fs(n)942 2594 y Fn(O)r Fm(\(1\))1077 2656 y Fx(.)0 2859 y Fp(Theorem)37 b(4.4.)49 b Fv(Ther)-5 b(e)43 b(is)f(no)h(lower)g(b)-5 b(ound)42 b(pr)-5 b(o)g(of)43 b(which)f(is)2476 2834 y Fx(~)2454 2859 y Fw(P)14 b(=q)t(pol)r(y)t Fv(-natur)-5 b(al)41 b(against)i Fw(P)8 b(=pol)r(y)0 2989 y Fv(unless)46 b Fw(H)8 b Fx(\()p Fw(G)507 3004 y Fs(k)549 2989 y Fx(\))50 b Fu(\024)g Fx(2)813 2953 y Fs(k)852 2930 y Fn(o)p Fm(\(1\))1015 2989 y Fv(for)d(every)f (pseudo-r)-5 b(andom)45 b(gener)-5 b(ator)47 b Fw(G)2663 3004 y Fs(k)2755 2989 y Fx(:)j Fu(f)p Fx(0)p Fw(;)17 b Fx(1)p Fu(g)3074 2953 y Fs(k)3165 2989 y Fu(\000)-16 b(!)49 b(f)p Fx(0)p Fw(;)17 b Fx(1)p Fu(g)3617 2953 y FB(2)p Fs(k)3740 2989 y Fv(in)0 3110 y Fw(P)8 b(=pol)r(y)t Fx(.)0 3399 y Ft(4.1.)137 b(Natural)36 b(pro)t(ofs)g(are)f(not)i (applicable)g(to)f(the)h(discrete)g(logarithm)351 3548 y(problem)0 3733 y Fx(It)c(is)f(p)s(ossible)g(\(though)h(w)m(e)g(are)g (una)m(w)m(are)h(of)e(an)m(y)h(suc)m(h)i(examples\))d(that)h(a)f(lo)m (w)m(er)h(b)s(ound)g(pro)s(of)e(for)0 3853 y(restricted)25 b(mo)s(dels)f(migh)m(t)f(b)s(e)i(natural,)g(but)h(cannot)e(b)s(e)h (applied)f(to)g(an)m(y)i(explicit)d(function.)41 b(In)25 b(other)0 3974 y(w)m(ords,)j(the)e(pro)s(of)e(migh)m(t)g(simply)g (argue)h(that)g(man)m(y)h(functions)f(are)g(complex)g(without)g(pro)m (viding)f(us)0 4094 y(with)34 b(an)m(y)g(explicit)f(examples)g(of)h (suc)m(h)h(functions.)48 b(Giv)m(en)33 b(our)h(hardness)i(assumption,)d (no)h(natural)0 4214 y(pro)s(of)27 b(can)g(pro)m(v)m(e)i(lo)m(w)m(er)f (b)s(ounds)g(against)f Fw(P)8 b(=pol)r(y)30 b Fx(whether)f(or)e(not)h (the)g(pro)s(of)e(mak)m(es)j(explicit)d(what)0 4335 y(the)j(hard)f (function)f(is.)42 b(Avi)28 b(Wigderson)g(has)g(p)s(oin)m(ted)g(out)g (that)g(if)f(w)m(e)i(restrict)f(ourselv)m(es)i(to)d(certain)0 4455 y(explicit)k(functions,)h(w)m(e)h(can)f(pro)m(v)m(e)h Fv(unc)-5 b(onditional)31 b Fx(results)i(in)e(the)i(st)m(yle)f(of)g (Theorem)g(4.1.)43 b(A)32 b(go)s(o)s(d)0 4575 y(example)38 b(of)h(suc)m(h)h(a)f(function)f(is)h(the)g(discrete)g(logarithm.)60 b(The)39 b(k)m(ey)i(p)s(oin)m(t)d(is)g(that)h(the)g(discrete)0 4696 y(logarithm)c(is)j(kno)m(wn)i(to)e(b)s(e)h(hard)f(on)h(a)m(v)m (erage)g(if)f(and)g(only)g(if)g(it)f(is)h(hard)h(in)e(the)i(w)m(orst)g (case.)63 b(In)0 4816 y(this)39 b(section,)h(w)m(e)g(sho)m(w)g(that)f (there)h(is)e(no)h(natural)f(pro)s(of)g(that)g(the)i(discrete)f (logarithm)d(requires)0 4937 y(exp)s(onen)m(tial-sized)c(circuits.)1864 5214 y(17)p eop %%Page: 18 18 18 17 bop 146 631 a Fx(Recall)29 b(from)f([9])i(that)g(for)f(a)h(prime) e Fw(p)i Fx(and)g(a)g(generator)f Fw(g)34 b Fx(for)29 b Fi(Z)2576 595 y Fq(\003)2576 656 y Fs(p)2613 631 y Fx(,)h(the)h(predicate)f Fw(B)3330 646 y Fs(p;g)3425 631 y Fx(\()p Fw(x)p Fx(\))g(on)g Fi(Z)3788 595 y Fq(\003)3788 656 y Fs(p)0 751 y Fx(is)24 b(de\014ned)j(to)d(b)s(e)h(1)g(if)e(log)936 775 y Fs(g)993 751 y Fw(x)28 b Fu(\024)g Fx(\()p Fw(p)6 b Fu(\000)g Fx(1\))p Fw(=)p Fx(2)26 b(and)f(0)f(otherwise.)42 b Fw(B)2367 766 y Fs(p;g)2462 751 y Fx(\()p Fw(x)p Fx(\))25 b(w)m(as)h(sho)m(wn)g(in)e([9])h(to)f(b)s(e)h(a)g(hard)0 872 y(bit)i(of)h(the)h(discrete)f(logarithm)d(problem.)41 b(W)-8 b(e)29 b(consider)f Fw(B)2240 887 y Fs(p;g)2335 872 y Fx(\()p Fw(x)p Fx(\))h(as)f(a)g(Bo)s(olean)f(function)h(in)f Fu(d)p Fx(log)17 b Fw(p)p Fu(e)0 992 y Fx(v)-5 b(ariables)35 b(\(extended)j(b)m(y)-8 b(,)38 b(sa)m(y)-8 b(,)38 b(zeros)f(on)f(those) h(inputs)g Fw(x)f Fx(whic)m(h)h(do)f(not)g(represen)m(t)i(an)f(in)m (teger)f(in)0 1112 y(the)f(range)f([1)p Fw(;)17 b(p)23 b Fu(\000)h Fx(1]\).)49 b(Our)34 b(principal)e(goal)h(in)h(this)g (section)g(is)g(to)g(sho)m(w)i(that)e Fv(no)i Fw(P)8 b(=pol)r(y)t Fv(-natur)-5 b(al)0 1233 y(pr)g(o)g(of)34 b(against)h(\\su\016ciently)f(lar)-5 b(ge")34 b(Bo)-5 b(ole)g(an)34 b(cir)-5 b(cuits)35 b(c)-5 b(an)34 b(b)-5 b(e)35 b(applie)-5 b(d)34 b(to)h Fw(B)2940 1248 y Fs(p;g)3035 1233 y Fx(\()p Fw(x)p Fx(\).)146 1375 y(T)-8 b(o)28 b(explain)e(the)i (meaning)e(of)h(\\su\016cien)m(tly)h(large",)f(w)m(e)h(need)g(a)f (couple)h(of)e(tec)m(hnical)h(de\014nitions.)0 1496 y(F)-8 b(or)34 b(an)i(in)m(teger-v)-5 b(alued)34 b(function)h Fw(t)p Fx(\()p Fw(n)p Fx(\),)h(let)f Fw(S)6 b(I)i(Z)f(E)f Fx(\()p Fw(t)p Fx(\()p Fw(n)p Fx(\)\))35 b(b)s(e)g(the)h(complexit)m(y) e(class)i(consisting)e(of)0 1616 y(all)c(functions)j Fu(f)p Fw(f)654 1631 y Fs(n)701 1616 y Fu(g)f Fx(whic)m(h)h(ha)m(v)m(e) h(circuit)e(size)h Fw(O)s Fx(\()p Fw(t)p Fx(\()p Fw(n)p Fx(\)\).)42 b(Let)1283 1815 y Fw(t)1318 1774 y Fq(\000)p FB(1)1413 1815 y Fx(\()p Fw(n)p Fx(\))28 b Fe(\012)f Fx(max)16 b Fu(f)9 b Fw(x)17 b Fu(j)k Fw(t)p Fx(\()p Fw(x)p Fx(\))29 b Fu(\024)f Fw(n)10 b Fu(g)16 b Fw(:)0 2015 y Fx(W)-8 b(e)33 b(sa)m(y)h(that)e Fw(t)p Fx(\()p Fw(n)p Fx(\))h(is)f Fv(half-exp)-5 b(onential)30 b Fx(if)i(it)f(is)h (non-decreasing)h(and)1467 2214 y Fw(t)1502 2173 y Fq(\000)p FB(1)1597 2214 y Fx(\()p Fw(n)1693 2173 y Fs(C)1752 2214 y Fx(\))28 b Fu(\024)g Fw(o)p Fx(\(log)16 b Fw(t)p Fx(\()p Fw(n)p Fx(\)\))1343 b(\(5\))0 2413 y(for)42 b(ev)m(ery)j Fw(C)52 b(>)45 b Fx(0.)75 b(The)43 b(meaning)f(of)g(this)h (de\014nition)f(is)g(that,)j(roughly)e(sp)s(eaking,)i(the)f(second)0 2534 y(iteration)37 b(of)h Fw(t)p Fx(\()p Fw(n)p Fx(\))h(should)g(gro)m (w)g(faster)g(than)f(the)i(exp)s(onen)m(t.)63 b(F)-8 b(or)38 b(example,)i Fw(t)p Fx(\()p Fw(n)p Fx(\))f(=)f(2)3413 2498 y Fs(n)3456 2474 y Fn(\017)3528 2534 y Fx(is)h(half-)0 2654 y(exp)s(onen)m(tial,)32 b(whereas)i Fw(t)p Fx(\()p Fw(n)p Fx(\))28 b(=)g(2)1269 2618 y FB(\(log)14 b Fs(n)p FB(\))1469 2595 y Fn(C)1557 2654 y Fx(is)32 b(not.)0 2859 y Fp(Theorem)37 b(4.5.)49 b Fv(L)-5 b(et)37 b Fw(t)p Fx(\()p Fw(n)p Fx(\))g Fv(b)-5 b(e)36 b(an)g(arbitr)-5 b(ary)36 b(half-exp)-5 b(onential)35 b(function.)49 b(Then)35 b(ther)-5 b(e)37 b(is)f(no)g(c)-5 b(om-)0 2979 y(binatorial)31 b(pr)-5 b(op)g(erty)31 b Fw(C)886 2994 y Fs(n)965 2979 y Fv(useful)g(against)g Fw(S)6 b(I)i(Z)f(E)f Fx(\()p Fw(t)p Fx(\()p Fw(n)p Fx(\)\))32 b Fv(and)f(satisfying)g Fw(P)8 b(=pol)r(y)t Fv(-c)-5 b(onstructivity)31 b(and)0 3100 y(lar)-5 b(geness)50 b(c)-5 b(onditions)51 b(such)g(that)1368 3033 y Fj(S)1438 3120 y Fs(n)p Fq(2)p Fs(!)1595 3100 y Fw(C)1665 3115 y Fs(n)1763 3100 y Fv(c)-5 b(ontains)51 b(in\014nitely)g(many)g(functions)g(of)h(the)g(form)0 3220 y Fw(B)74 3235 y Fs(p;g)169 3220 y Fx(\()p Fw(x)p Fx(\))p Fv(.)0 3469 y Fp(Pro)s(of.)69 b Fx(Assume)25 b(the)g(con)m(trary)-8 b(,)27 b(and)e(let)f Fu(f)p Fw(B)1727 3484 y Fs(p)1763 3492 y Fn(\027)1801 3484 y Fs(;g)1855 3492 y Fn(\027)1897 3469 y Fu(g)g Fx(b)s(e)h(an)g(in\014nite)e (sequence)28 b(con)m(tained)c(in)3482 3402 y Fj(S)3551 3489 y Fs(n)p Fq(2)p Fs(!)3708 3469 y Fw(C)3778 3484 y Fs(n)0 3589 y Fx(suc)m(h)38 b(that)f Fu(d)p Fx(log)17 b Fw(p)676 3604 y FB(1)715 3589 y Fu(e)36 b Fw(<)e Fu(d)p Fx(log)17 b Fw(p)1141 3604 y FB(2)1181 3589 y Fu(e)35 b Fw(<)g(:)17 b(:)g(:)36 b Fx(Let)h Fw(k)1752 3604 y Fs(\027)1830 3589 y Fe(\012)e Fu(d)p Fx(log)17 b Fw(p)2201 3604 y Fs(\027)2244 3589 y Fu(e)p Fx(.)57 b(Applying)36 b(the)h(usefulness)h(condition)0 3709 y(to)d(the)h(sequence)i Fw(f)748 3724 y Fs(n)831 3709 y Fx(obtained)d(from)f Fu(f)p Fw(B)1592 3724 y Fs(p)1628 3732 y Fn(\027)1666 3724 y Fs(;g)1720 3732 y Fn(\027)1762 3709 y Fu(g)h Fx(b)m(y)h(letting) e Fw(f)2345 3724 y Fs(n)2425 3709 y Fu(\021)f Fx(0)i(for)g(those)h Fw(n)g Fx(whic)m(h)g(are)f(not)g(of)0 3830 y(the)d(form)e Fu(d)p Fx(log)17 b Fw(p)632 3845 y Fs(\027)675 3830 y Fu(e)p Fx(,)32 b(w)m(e)g(will)d(\014nd)j(in)f Fu(f)p Fw(B)1534 3845 y Fs(p)1570 3853 y Fn(\027)1608 3845 y Fs(;g)1662 3853 y Fn(\027)1704 3830 y Fu(g)g Fx(an)g(in\014nite)f (subsequence)35 b(where)e(all)c(functions)j(ha)m(v)m(e)0 3950 y(the)f(circuit)d(size)j(at)f(least)f Fw(t)p Fx(\()p Fw(k)1115 3965 y Fs(\027)1158 3950 y Fx(\).)43 b(W.l.o.g.)f(w)m(e)31 b(ma)m(y)f(assume)g(that)g(this)g(is)f(the)i(case)g(for)e(our)h (original)0 4070 y(sequence.)146 4191 y(Let)45 b Fw(G)410 4206 y Fs(\027)502 4191 y Fx(:)k Fu(f)p Fx(0)p Fw(;)17 b Fx(1)p Fu(g)819 4142 y FB(2)p Fs(k)891 4150 y Fn(\027)983 4191 y Fu(\000)-16 b(!)48 b(f)p Fx(0)p Fw(;)17 b Fx(1)p Fu(g)1433 4142 y FB(4)p Fs(k)1505 4150 y Fn(\027)1593 4191 y Fx(b)s(e)45 b(the)g(standard)h(pseudo-random)e(generator)h(from) f([9])0 4311 y(based)33 b(up)s(on)g Fu(f)p Fw(B)642 4326 y Fs(p)678 4334 y Fn(\027)716 4326 y Fs(;g)770 4334 y Fn(\027)812 4311 y Fu(g)o Fx(.)44 b(It)32 b(is)g(easy)i(to)e(c)m(hec)m (k)i(that)e(the)h(pro)s(of)f(of)g([9,)g(Theorem)h(3])f(actually)f (extends)0 4432 y(to)h(sho)m(wing)h(that)f(the)h(circuit)f(size)h(of)f Fu(f)p Fw(B)1594 4447 y Fs(p)1630 4455 y Fn(\027)1668 4447 y Fs(;g)1722 4455 y Fn(\027)1764 4432 y Fu(g)g Fx(is)g(p)s (olynomial)d(in)j Fw(H)8 b Fx(\()p Fw(G)2766 4447 y Fs(\027)2808 4432 y Fx(\))22 b(+)g Fw(k)3017 4447 y Fs(\027)3060 4432 y Fx(.)44 b(Th)m(us,)34 b(w)m(e)g(ha)m(v)m(e)1360 4645 y Fw(t)p Fx(\()p Fw(k)1484 4660 y Fs(\027)1527 4645 y Fx(\))27 b Fu(\024)h Fx(\()p Fw(H)8 b Fx(\()p Fw(G)1939 4660 y Fs(\027)1982 4645 y Fx(\))22 b(+)g Fw(k)2191 4660 y Fs(\027)2234 4645 y Fx(\))2272 4597 y Fs(O)r FB(\(1\))2438 4645 y Fw(:)1235 b Fx(\(6\))146 4844 y(No)m(w)37 b(w)m(e)g(con)m(v)m (ert)h Fw(G)944 4859 y Fs(\027)1023 4844 y Fx(in)m(to)e(the)h (pseudo-random)f(function)f(generator)h Fw(f)2954 4859 y Fs(\027)3032 4844 y Fx(:)e Fu(f)o Fx(0)p Fw(;)17 b Fx(1)p Fu(g)3333 4796 y FB(2)p Fs(k)3405 4804 y Fn(\027)3482 4844 y Fu(\000)-16 b(!)33 b Fw(F)3739 4859 y Fs(n)3782 4867 y Fn(\027)0 4965 y Fx(as)g(in)f(the)h(pro)s(of)f(of)g(Theorem)h (4.1,)g(where)h Fw(n)1705 4980 y Fs(\027)1781 4965 y Fx(will)c(b)s(e)j(sp)s(eci\014ed)h(a)e(little)f(bit)h(later.)43 b(There)34 b(exists)f(a)1864 5214 y(18)p eop %%Page: 19 19 19 18 bop 0 631 a Fx(\014xed)35 b(constan)m(t)f Fw(C)i(>)29 b Fx(0)k(suc)m(h)i(that)e(for)g(almost)e(all)g Fw(\027)6 b Fx(,)35 b Fw(f)2122 646 y Fs(\027)2165 631 y Fx(\()p Fw(x)p Fx(\)\()p Fw(y)t Fx(\))d(is)h(computable)g(b)m(y)h(circuits)f (of)g(size)0 751 y(\()p Fw(k)89 766 y Fs(\027)154 751 y Fx(+)22 b Fw(n)310 766 y Fs(\027)353 751 y Fx(\))391 715 y Fs(C)450 751 y Fx(.)44 b(Let)33 b Fw(n)754 766 y Fs(\027)825 751 y Fe(\012)27 b Fw(t)987 715 y Fq(\000)p FB(1)1082 751 y Fx(\()p Fw(k)1174 715 y Fs(C)5 b FB(+1)1171 776 y Fs(\027)1323 751 y Fx(\))22 b(+)g(1.)146 872 y(\(5\))42 b(implies)d(that)i Fw(t)p Fx(\()p Fw(k)997 887 y Fs(\027)1041 872 y Fx(\))i Fw(>)g(k)1295 836 y Fs(C)5 b FB(+1)1292 896 y Fs(\027)1486 872 y Fx(for)41 b(almost)f(all)g Fw(\027)6 b Fx(,)44 b(since)f(otherwise)f(w)m(e)h(w)m(ould)e(ha)m(v)m(e)i Fw(k)3661 887 y Fs(\027)3748 872 y Fu(\024)0 1005 y Fw(t)35 968 y Fq(\000)p FB(1)146 908 y Fj(\020)196 1005 y Fw(k)250 968 y Fs(C)5 b FB(+1)247 1029 y Fs(\027)399 908 y Fj(\021)481 1005 y Fu(\024)32 b Fx(log)16 b Fw(t)p Fx(\()p Fw(k)856 1020 y Fs(\027)900 1005 y Fx(\))31 b Fu(\024)i Fx(\()p Fw(C)d Fx(+)24 b(1\))17 b(log)f Fw(k)1614 1020 y Fs(\027)1657 1005 y Fx(.)51 b(Hence)36 b Fw(n)2085 1020 y Fs(\027)2160 1005 y Fu(\024)d Fw(k)2321 1020 y Fs(\027)2364 1005 y Fx(.)50 b(No)m(w)36 b(w)m(e)g(ha)m(v)m(e)g(that)f(for)g(almost)e(all)0 1144 y Fw(\027)46 b Fx(ev)m(ery)41 b(function)e(in)f(the)i(image)e(of)h (the)g(generator)h Fw(f)2112 1159 y Fs(\027)2194 1144 y Fx(has)g(circuit)e(size)i(at)f(most)g(\()p Fw(k)3338 1159 y Fs(\027)3407 1144 y Fx(+)27 b Fw(n)3568 1159 y Fs(\027)3611 1144 y Fx(\))3649 1108 y Fs(C)3748 1144 y Fu(\024)0 1265 y Fx(\(2)p Fw(k)138 1280 y Fs(\027)181 1265 y Fx(\))219 1228 y Fs(C)310 1265 y Fu(\024)33 b Fw(k)474 1228 y Fs(C)5 b FB(+1)471 1289 y Fs(\027)656 1265 y Fu(\024)33 b Fw(t)p Fx(\()p Fw(n)897 1280 y Fs(\027)940 1265 y Fx(\).)52 b(Applying)35 b(the)h(usefulness)h(condition)d(again,) g(w)m(e)j(\014nd)f(that)f(for)g(almost)0 1385 y(all)29 b Fw(\027)6 b Fx(,)31 b(the)g(image)e(of)i(the)g(generator)g Fw(f)1448 1400 y Fs(\027)1522 1385 y Fx(has)g(the)g(empt)m(y)g(in)m (tersection)g(with)f Fw(C)2968 1400 y Fs(n)3015 1385 y Fx(.)43 b(Arguing)30 b(as)h(in)f(the)0 1505 y(pro)s(of)i(of)g (Theorem)h(4.1,)f(w)m(e)i(get)e(from)f(this)1568 1718 y Fw(H)8 b Fx(\()p Fw(G)1772 1733 y Fs(\027)1815 1718 y Fx(\))27 b Fu(\024)h Fx(2)2034 1677 y Fs(O)r FB(\()p Fs(n)2160 1685 y Fn(\027)2198 1677 y FB(\))2230 1718 y Fw(:)1443 b Fx(\(7\))0 1930 y(Finally)30 b(note)j(that)f Fw(C)830 1945 y Fs(n)904 1930 y Fu(6)p Fx(=)c Fu(;)k Fx(for)g(almost)f(all)g Fw(n)i Fx(\(from)e(largeness\))i(and,)f(th)m (us,)1714 2142 y Fw(t)p Fx(\()p Fw(n)p Fx(\))c Fu(\024)g Fx(2)2065 2101 y Fs(n)3700 2142 y Fx(\(8\))0 2355 y(\(again,)j(for)h (almost)f(all)g Fw(n)p Fx(.\))146 2475 y(The)41 b(required)f(con)m (tradiction)f(is)g(no)m(w)h(obtained)g(simply)e(b)m(y)i(com)m(bining)e (the)j(inequalities)c(\(5\))0 2595 y(\(with)32 b Fw(n)c Fx(:=)g Fw(k)528 2610 y Fs(\027)571 2595 y Fx(,)k Fw(C)j Fx(:=)27 b Fw(C)j Fx(+)22 b(1\),)32 b(\(6\),)g(\(7\),)g(\(8\):)67 2808 y Fw(n)125 2823 y Fs(\027)196 2808 y Fx(=)c Fw(t)335 2766 y Fq(\000)p FB(1)430 2808 y Fx(\()p Fw(k)522 2766 y Fs(C)5 b FB(+1)519 2832 y Fs(\027)671 2808 y Fx(\))22 b(+)g(1)27 b Fu(\024)i Fw(o)p Fx(\(log)16 b Fw(t)p Fx(\()p Fw(k)1362 2823 y Fs(\027)1405 2808 y Fx(\)\))28 b Fu(\024)g Fw(o)17 b Fx(\()o(log)g Fw(H)8 b Fx(\()p Fw(G)2062 2823 y Fs(\027)2104 2808 y Fx(\))23 b(+)f(log)16 b Fw(k)2456 2823 y Fs(\027)2499 2808 y Fx(\))28 b Fu(\024)g Fw(o)p Fx(\()p Fw(n)2813 2823 y Fs(\027)2856 2808 y Fx(\))22 b(+)g Fw(o)p Fx(\(log)17 b Fw(k)3293 2823 y Fs(\027)3336 2808 y Fx(\))27 b Fu(\024)h Fw(o)p Fx(\()p Fw(n)3649 2823 y Fs(\027)3693 2808 y Fx(\))p Fw(:)p 9 3020 43 43 v 0 3287 a Fp(Corollary)36 b(4.6.)49 b Fv(Ther)-5 b(e)47 b(is)g(no)g(c)-5 b(ombinatorial)46 b(pr)-5 b(op)g(erty)48 b Fw(C)2371 3302 y Fs(n)2465 3287 y Fv(useful)g(against)3106 3221 y Fj(T)3175 3308 y Fs(\017>)p FB(0)3315 3287 y Fw(S)6 b(I)i(Z)f(E)3600 3191 y Fj(\020)3649 3287 y Fx(2)3698 3251 y Fs(n)3741 3227 y Fn(\017)3775 3191 y Fj(\021)0 3420 y Fv(and)39 b(satisfying)g Fw(P)8 b(=pol)r(y)t Fv(-c)-5 b(onstructivity)40 b(and)f(lar)-5 b(geness)38 b(c)-5 b(onditions)39 b(such)g(that)3091 3353 y Fj(S)3160 3441 y Fs(n)p Fq(2)p Fs(!)3317 3420 y Fw(C)3387 3435 y Fs(n)3474 3420 y Fv(c)-5 b(ontains)0 3540 y(in\014nitely)34 b(many)h(functions)f (of)h(the)g(form)f Fw(B)1684 3555 y Fs(p;g)1780 3540 y Fx(\()p Fw(x)p Fx(\))p Fv(.)0 3848 y Fp(Pro)s(of.)384 3781 y Fj(T)453 3868 y Fs(\017>)p FB(0)592 3848 y Fw(S)6 b(I)i(Z)f(E)878 3751 y Fj(\020)927 3848 y Fx(2)976 3811 y Fs(n)1019 3788 y Fn(\017)1053 3751 y Fj(\021)1130 3848 y Fu(\023)28 b Fw(S)6 b(I)i(Z)f(E)1521 3726 y Fj(\022)1582 3848 y Fx(2)1631 3811 y FB(2)1666 3741 y Fq(p)p 1725 3741 129 3 v 46 x Fm(log)12 b Fn(n)1861 3726 y Fj(\023)1922 3848 y Fx(,)33 b(and)g Fw(t)p Fx(\()p Fw(n)p Fx(\))28 b(=)f(2)2521 3811 y FB(2)2556 3741 y Fq(p)p 2615 3741 V 46 x Fm(log)13 b Fn(n)2784 3848 y Fx(is)32 b(half-exp)s(onen)m(tial.) p 3603 3848 43 43 v 146 4053 a(It)27 b(is)e(easy)i(to)f(see)i(that)d (the)i(ab)s(o)m(v)m(e)g(pro)s(of)e(is)h(actually)f(v)-5 b(alid)24 b(for)i(an)g Fv(arbitr)-5 b(ary)26 b Fx(collection)e Fu(f)p Fw(f)3575 4068 y Fs(p;g)3671 4053 y Fu(g)h Fx(of)0 4173 y(functions)i(p)s(oly-time)d(non)m(uniformly)h(T)-8 b(uring)27 b(reducible)f(to)h(the)g(corresp)s(onding)g(discrete)g (logarithm)0 4294 y(problem)k(in)h(place)g(of)h Fu(f)p Fw(B)978 4309 y Fs(p;g)1073 4294 y Fu(g)p Fx(.)0 4625 y Fy(5.)165 b(One)54 b(prop)5 b(ert)-5 b(y)55 b(of)h(formal)g (complexit)-5 b(y)57 b(measures)0 4844 y Fx(A)33 b Fv(formal)h(c)-5 b(omplexity)34 b(me)-5 b(asur)g(e)32 b Fx(\(see)h(e.g.)44 b([38,)32 b(Section)h(8.8],)f([31]\))g(is)g(an)h(in)m(teger-v)-5 b(alued)31 b(function)0 4965 y Fw(\026)41 b Fx(on)h Fw(F)308 4980 y Fs(n)397 4965 y Fx(suc)m(h)h(that)f Fw(\026)p Fx(\()p Fw(f)11 b Fx(\))42 b Fu(\024)i Fx(1)e(for)f Fw(f)54 b Fu(2)44 b(f:)p Fw(x)1836 4980 y FB(1)1876 4965 y Fw(;)17 b(:)g(:)g(:)f(;)h Fu(:)p Fw(x)2216 4980 y Fs(n)2263 4965 y Fw(;)g(x)2362 4980 y FB(1)2402 4965 y Fw(;)g(:)g(:)g(:)f(;)h(x)2676 4980 y Fs(n)2723 4965 y Fu(g)41 b Fx(and)h Fw(\026)p Fx(\()p Fw(f)d Fu(\003)28 b Fw(g)t Fx(\))43 b Fu(\024)g Fw(\026)p Fx(\()p Fw(f)11 b Fx(\))28 b(+)1864 5214 y(19)p eop %%Page: 20 20 20 19 bop 0 631 a Fw(\026)p Fx(\()p Fw(g)t Fx(\))40 b(for)g(all)f Fw(f)5 b(;)17 b(g)46 b Fu(2)d Fw(F)889 646 y Fs(n)977 631 y Fx(and)e Fu(\003)h(2)h(f^)p Fw(;)17 b Fu(_g)p Fx(.)69 b(The)42 b(meaning)e(of)g(this)h(de\014nition)f(is)h(that)g(for)f(ev)m (ery)0 751 y(formal)33 b(complexit)m(y)i(measure)h Fw(\026)p Fx(,)f Fw(\026)p Fx(\()p Fw(f)11 b Fx(\))35 b(pro)m(vides)h(a)f(lo)m(w) m(er)h(b)s(ound)g(on)f(the)h(form)m(ula)d(size)j(of)f Fw(f)11 b Fx(,)36 b(and)0 872 y(actually)d(man)m(y)i(kno)m(wn)h(lo)m(w) m(er)f(b)s(ounds,)h(b)s(oth)f(for)f(monotone)g(and)h(non-monotone)f (form)m(ulae,)g(can)0 992 y(b)s(e)i(view)m(ed)h(from)d(this)i(p)s(ersp) s(ectiv)m(e.)54 b(See)37 b(the)f(ab)s(o)m(v)m(e-cited)g(sources)i(for)d (examples.)53 b(Also,)36 b(for)f(an)m(y)0 1112 y(appro)m(ximation)30 b(mo)s(del)h Fc(M)h Fx(\(see)i([39)o(,)f(32)o(])g(for)f(most)g(general) f(de\014nitions\),)h(w)m(e)i(ha)m(v)m(e)g Fw(\032)p Fx(\()p Fw(f)f Fu(\003)21 b Fw(g)t(;)c Fc(M)p Fx(\))27 b Fu(\024)0 1233 y Fw(\032)p Fx(\()p Fw(f)5 b(;)17 b Fc(M)p Fx(\))22 b(+)g Fw(\032)p Fx(\()p Fw(g)t(;)17 b Fc(M)p Fx(\))k(+)h(1,)32 b(hence)i Fw(\032)p Fx(\()p Fw(f)5 b(;)17 b Fc(M)p Fx(\))22 b(+)g(1)32 b(is)g(a)h(formal)d(complexit)m(y)i(measure.)146 1376 y(In)c(this)f(section)g(w)m(e)h(sho)m(w)g(that)f(an)m(y)h(formal)d (complexit)m(y)h(measure)i Fw(\026)f Fx(whic)m(h)g(tak)m(es)i(a)d (large)h(v)-5 b(alue)0 1497 y(at)29 b(a)g(single)f(function,)i(m)m(ust) f(tak)m(e)i(large)d(v)-5 b(alues)29 b(almost)f(ev)m(erywhere.)45 b(In)30 b(particular,)e(ev)m(ery)j(com)m(bi-)0 1617 y(natorial)h(prop)s (ert)m(y)k(based)g(on)e(suc)m(h)j(a)d(measure)h(automatically)c (satis\014es)36 b(the)f(largeness)g(condition)0 1737 y(in)d(the)h(de\014nition)e(of)h(natural)g(prop)s(ert)m(y)-8 b(.)146 1858 y(More)33 b(sp)s(eci\014cally)-8 b(,)32 b(w)m(e)i(ha)m(v)m(e)f(the)g(follo)m(wing:)0 2071 y Fp(Theorem)k(5.1.) 49 b Fv(L)-5 b(et)50 b Fw(\026)f Fv(b)-5 b(e)49 b(a)g(formal)f(c)-5 b(omplexity)49 b(me)-5 b(asur)g(e)49 b(on)g Fw(F)2648 2086 y Fs(n)2695 2071 y Fx(,)k Fv(and)48 b Fw(\026)p Fx(\()p Fw(f)11 b Fx(\))54 b(=)g Fw(t)c Fv(for)f(some)0 2192 y Fw(f)38 b Fu(2)28 b Fw(F)243 2207 y Fs(n)291 2192 y Fv(.)44 b(Then)p Fx(:)97 2384 y Fp(a\))49 b Fv(for)35 b(at)g(le)-5 b(ast)34 b Fx(1)p Fw(=)p Fx(4)g Fv(fr)-5 b(action)35 b(of)f(al)5 b(l)35 b(functions)f Fw(g)d Fu(2)d Fw(F)2194 2399 y Fs(n)2241 2384 y Fx(,)35 b Fw(\026)p Fx(\()p Fw(g)t Fx(\))27 b Fu(\025)h Fw(t=)p Fx(4;)89 2584 y Fp(b\))49 b Fv(for)35 b(any)f Fw(\017)28 b Fx(=)g Fw(\017)p Fx(\()p Fw(n)p Fx(\))35 b Fv(we)g(have)f(that)h(for)g(at)g (le)-5 b(ast)35 b Fx(\(1)21 b Fu(\000)i Fw(\017)p Fx(\))35 b Fv(fr)-5 b(action)35 b(of)f Fw(g)d Fu(2)d Fw(F)3060 2599 y Fs(n)3107 2584 y Fx(,)1389 2903 y Fw(\026)p Fx(\()p Fw(g)t Fx(\))e Fu(\025)i Fx(\012)1793 2707 y Fj(0)1793 2853 y(B)1793 2906 y(@)2116 2836 y Fw(t)p 1876 2880 515 4 v 1876 2910 a Fj(\020)1925 3006 y Fw(n)23 b Fx(+)f(log)2256 2967 y FB(1)p 2256 2983 36 4 v 2259 3040 a Fs(\017)2302 2910 y Fj(\021)2351 2933 y FB(2)2401 2707 y Fj(1)2401 2853 y(C)2401 2906 y(A)2495 2903 y Fu(\000)h Fw(n:)146 3259 y Fx(In)45 b(fact,)j(the)d(main)e(argumen)m(t)h(used)i(in)e(the)h (pro)s(of)f(of)g(this)g(theorem)h(is)f(v)-5 b(alid)43 b(for)h(arbitrary)0 3380 y(Bo)s(olean)21 b(algebras,)i(and)f(w)m(e)h (form)m(ulate)d(it)h(as)i(a)e(separate)i(result)f(since)g(this)g(migh)m (t)e(b)s(e)i(of)g(indep)s(enden)m(t)0 3500 y(in)m(terest.)0 3713 y Fp(Theorem)37 b(5.2.)49 b Fv(L)-5 b(et)35 b Fw(B)40 b Fv(b)-5 b(e)35 b(a)g(\014nite)f(Bo)-5 b(ole)g(an)34 b(algebr)-5 b(a)34 b(with)g Fw(N)46 b Fv(atoms)34 b(and)h Fw(S)e Fu(\022)28 b Fw(B)5 b Fv(.)97 3906 y Fp(a\))49 b Fv(if)35 b Fu(j)p Fw(S)6 b Fu(j)26 b Fw(>)601 3867 y FB(3)p 601 3883 V 601 3940 a(4)646 3906 y Fu(j)p Fw(B)5 b Fu(j)34 b Fv(then)h(every)g(element)f(of)h Fw(B)40 b Fv(c)-5 b(an)34 b(b)-5 b(e)35 b(r)-5 b(epr)g(esente)g(d)34 b(in)g(the)h(form)1184 4113 y Fx(\()p Fw(s)1268 4128 y FB(1)1330 4113 y Fu(^)22 b Fw(s)1464 4128 y FB(2)1504 4113 y Fx(\))g Fu(_)g Fx(\()p Fw(s)1736 4128 y FB(3)1798 4113 y Fu(^)h Fw(s)1933 4128 y FB(4)1972 4113 y Fx(\);)51 b Fw(s)2134 4128 y Fs(i)2190 4113 y Fu(2)28 b Fw(S)41 b Fx(\(1)27 b Fu(\024)i Fw(i)e Fu(\024)i Fx(4\);)815 b(\(9\))89 4360 y Fp(b\))49 b Fv(if)31 b Fw(S)38 b Fv(c)-5 b(ontains)31 b(al)5 b(l)31 b(atoms)g(and)g(c)-5 b(o)g(atoms)31 b(of)g Fw(B)37 b Fv(then)32 b(every)f(element)g(of)h Fw(B)k Fv(c)-5 b(an)31 b(b)-5 b(e)32 b(r)-5 b(epr)g(esente)g(d)244 4480 y(in)34 b(the)h(form)1884 4562 y Fs(`)1852 4587 y Fj(_)1841 4769 y Fs(i)p FB(=1)2019 4562 y Fs(`)1987 4587 y Fj(^)1972 4769 y Fs(j)t FB(=1)2111 4670 y Fw(s)2157 4685 y Fs(ij)2217 4670 y Fw(;)1408 b Fx(\(10\))244 4947 y Fv(wher)-5 b(e)34 b Fw(s)565 4962 y Fs(ij)653 4947 y Fu(2)28 b Fw(S)41 b Fv(and)34 b Fw(`)28 b Fu(\024)g Fw(O)1305 4851 y Fj(\020)1355 4947 y Fx(log)1507 4900 y Fs(N)7 b Fq(\001j)p Fs(B)s Fq(j)p 1507 4924 179 4 v 1553 4981 a(j)p Fs(S)t Fq(j)1695 4851 y Fj(\021)1745 4947 y Fv(.)1864 5214 y Fx(20)p eop %%Page: 21 21 21 20 bop 0 631 a Fp(Pro)s(of)34 b(of)g(Theorem)f(5.1)h(from)g(Theorem) f(5.2.)77 b Fx(Let)30 b Fw(S)j Fe(\012)27 b Fu(f)9 b Fw(g)20 b Fu(j)i Fw(\026)p Fx(\()p Fw(g)t Fx(\))k Fw(<)i(t=)p Fx(4)9 b Fu(g)30 b Fx(for)f(part)g(a\),)h(and)0 814 y Fw(S)36 b Fe(\012)226 667 y Fj(\()302 814 y Fw(g)369 664 y Fj(\014)369 714 y(\014)369 764 y(\014)369 814 y(\014)369 863 y(\014)418 814 y Fw(\026)p Fx(\()p Fw(g)t Fx(\))27 b Fu(\024)h Fw(\016)e Fu(\001)1033 774 y Fs(t)p 865 790 362 4 v 865 880 a Fx(\()903 872 y Fs(n)p FB(+log)1113 844 y Fm(1)p 1113 856 31 4 v 1115 898 a Fn(\017)1154 880 y Fx(\))1192 826 y Fm(2)1246 667 y Fj(\))1313 814 y Fx(,)35 b(where)g Fw(\016)j Fx(is)c(a)g(su\016cien)m(tly)h(small)c (constan)m(t,)36 b(for)e(part)f(b\).)49 b(Note)0 1002 y(that)28 b(in)f(part)h(b\))h(w)m(e)g(ma)m(y)f(assume)h(that)f Fw(\016)17 b Fu(\001)1808 963 y Fs(t)p 1640 979 362 4 v 1640 1068 a Fx(\()1678 1060 y Fs(n)p FB(+log)1889 1033 y Fm(1)p 1889 1045 31 4 v 1891 1086 a Fn(\017)1929 1068 y Fx(\))1967 1014 y Fm(2)2040 1002 y Fu(\025)28 b Fw(n)13 b Fx(+)g(1)28 b(since)h(otherwise)f(there)h(is)f(nothing)f(to)0 1176 y(pro)m(v)m(e.)50 b(Since)35 b Fw(\026)17 b Fx(\()676 1110 y Fj(V)745 1136 y Fs(n)745 1201 y(i)p FB(=1)880 1176 y Fw(p)929 1191 y Fs(i)957 1176 y Fx(\))31 b Fu(\024)g Fw(n)k Fx(and)f Fw(\026)17 b Fx(\()1532 1110 y Fj(W)1601 1136 y Fs(n)1601 1201 y(i)p FB(=1)1736 1176 y Fw(p)1785 1191 y Fs(i)1813 1176 y Fx(\))31 b Fu(\024)g Fw(n)p Fx(,)k(where)h Fw(p)2443 1191 y Fs(i)2505 1176 y Fx(is)e(either)g Fw(x)2938 1191 y Fs(i)3001 1176 y Fx(or)g Fu(:)p Fw(x)3243 1191 y Fs(i)3272 1176 y Fx(,)h(this)f(implies)0 1296 y(that)28 b Fw(S)34 b Fx(con)m(tains)28 b(all)e(atoms)i(and)g(coatoms)f(of)h Fw(F)1824 1311 y Fs(n)1871 1296 y Fx(,)h(the)g(latter)e(b)s(eing)g (view)m(ed)j(as)e(a)g(Bo)s(olean)f(algebra.)146 1417 y(No)m(w,)37 b(if)e Fu(j)p Fw(S)6 b Fu(j)32 b Fw(>)764 1378 y FB(3)p 764 1394 36 4 v 764 1451 a(4)809 1417 y Fu(j)p Fw(B)5 b Fu(j)35 b Fx(in)g(part)h(a\))f(or)g Fu(j)p Fw(S)6 b Fu(j)32 b(\025)h Fw(\017)p Fu(j)p Fw(B)5 b Fu(j)36 b Fx(in)e(part)i(b\),)g(then)g(w)m(e)h(w)m(ould)e(apply)h(Theorem)0 1537 y(5.2)h(and)h(represen)m(t)i Fw(f)49 b Fx(in)37 b(the)h(form)f(\(9\),)i(\(10\))e(resp)s(ectiv)m(ely)-8 b(.)60 b(This)38 b(represen)m(tation)h(in)e(b)s(oth)h(cases)0 1658 y(w)m(ould)33 b(imply)d(the)j(b)s(ound)g Fw(\026)p Fx(\()p Fw(f)11 b Fx(\))27 b Fw(<)g(t)p Fx(,)33 b(the)g(con)m (tradiction.)p 2212 1658 43 43 v 146 1827 a(No)m(w)g(w)m(e)h(pro)m(v)m (e)g(Theorem)f(5.2.)43 b(Denote)33 b(b)m(y)g Fr(b)f Fx(a)h(randomly)e (c)m(hosen)j(elemen)m(t)f(of)f Fw(B)5 b Fx(.)0 1996 y Fp(Pro)s(of)37 b(of)h(Theorem)f(5.2)g(a\).)81 b Fx(Fix)32 b Fw(b)1518 2011 y FB(0)1586 1996 y Fu(2)c Fw(B)37 b Fx(and)c(consider)g(the)g(represen)m(tation)1094 2214 y Fw(b)1135 2229 y FB(0)1203 2214 y Fx(=)27 b(\()p Fr(b)22 b Fu(^)h Fx(\()p Fu(:)p Fr(b)f Fu(\010)h Fw(b)1826 2229 y FB(0)1865 2214 y Fx(\)\))g Fu(_)f Fx(\()p Fu(:)p Fr(b)g Fu(^)h Fx(\()p Fr(b)f Fu(\010)h Fw(b)2572 2229 y FB(0)2612 2214 y Fx(\)\))16 b Fw(:)0 2431 y Fx(As)34 b(all)d(four)i(random)f(v)-5 b(ariables)32 b Fr(b)p Fw(;)17 b Fx(\()p Fu(:)p Fr(b)22 b Fu(\010)h Fw(b)1663 2446 y FB(0)1703 2431 y Fx(\))p Fw(;)17 b Fu(:)p Fr(b)p Fw(;)g Fx(\()p Fr(b)22 b Fu(\010)h Fw(b)2200 2446 y FB(0)2240 2431 y Fx(\))33 b(are)h(uniformly)d (distributed)h(on)i Fw(B)k Fx(and)0 2552 y Fu(j)p Fw(S)6 b Fu(j)27 b Fw(>)262 2512 y FB(3)p 262 2528 36 4 v 262 2586 a(4)308 2552 y Fu(j)p Fw(B)5 b Fu(j)p Fx(,)32 b(for)g(at)g(least)g (one)h(particular)e(c)m(hoice)i Fw(b)g Fx(of)f Fr(b)g Fx(w)m(e)i(ha)m(v)m(e)g Fw(b;)17 b Fx(\()p Fu(:)p Fw(b)23 b Fu(\010)f Fw(b)2948 2567 y FB(0)2988 2552 y Fx(\))p Fw(;)17 b Fu(:)p Fw(b;)g Fx(\()p Fw(b)23 b Fu(\010)g Fw(b)3464 2567 y FB(0)3504 2552 y Fx(\))k Fu(2)h Fw(S)6 b Fx(.)p 3765 2552 43 43 v 146 2721 a(F)-8 b(or)32 b(pro)m(ving)g(part) h(b\))f(of)g(Theorem)h(5.2)f(w)m(e)i(need)g(the)f(follo)m(wing)0 2946 y Fp(Lemma)k(5.3.)49 b Fv(L)-5 b(et)43 b Fw(B)48 b Fv(b)-5 b(e)42 b(a)g(\014nite)h(Bo)-5 b(ole)g(an)41 b(algebr)-5 b(a)42 b(with)g Fw(N)53 b Fv(atoms)42 b(and)g Fw(S)48 b Fu(\022)42 b Fw(B)5 b Fv(.)68 b(Then)42 b(ther)-5 b(e)0 3067 y(exists)36 b(a)g(subset)h Fw(S)705 3082 y FB(0)775 3067 y Fu(\022)31 b Fw(S)42 b Fv(of)36 b(c)-5 b(ar)g(dinality)36 b Fw(O)s Fx(\(log)16 b Fw(N)10 b Fx(\))37 b Fv(such)f(that)h Fu(^)p Fw(S)2553 3082 y FB(0)2629 3067 y Fv(c)-5 b(ontains)36 b(at)h(most)f Fw(O)3468 2970 y Fj(\020)3517 3067 y Fx(log)3670 3020 y Fq(j)p Fs(B)s Fq(j)p 3670 3044 96 4 v 3675 3101 a(j)p Fs(S)t Fq(j)3775 2970 y Fj(\021)0 3187 y Fv(atoms.)0 3462 y Fp(Pro)s(of)i(of)g(Lemma)g (5.3.)83 b Fx(Let)34 b(us)f(call)f(an)h(atom)f Fw(a)h Fv(go)-5 b(o)g(d)33 b Fx(if)f Fp(P)p Fx([)o Fw(a)c Fu(\024)g Fr(s)p Fx(])h Fu(\024)g Fx(2)p Fw(=)p Fx(3)j(and)i Fv(b)-5 b(ad)32 b Fx(otherwise.)0 3582 y(Here)h Fr(s)g Fx(is)f(pic)m(k)m(ed)i (at)e(random)g(from)f Fw(S)6 b Fx(.)146 3702 y(No)m(w,)34 b(the)f(standard)g(en)m(trop)m(y-coun)m(ting)g(argumen)m(t)f(giv)m(es)h (us)g(that)g(there)g(are)g(at)f(most)1651 3976 y Fw(O)1745 3830 y Fj( )1811 3976 y Fx(log)1963 3909 y Fu(j)p Fw(B)5 b Fu(j)p 1963 3953 135 4 v 1970 4045 a(j)p Fw(S)h Fu(j)2108 3830 y Fj(!)0 4250 y Fx(bad)28 b(atoms.)41 b(An)28 b(equally)g (standard)g(argumen)m(t)g(implies)d(that)j(if)f(w)m(e)i(tak)m(e)g(a)e (random)g(subset)j Fr(S)3587 4265 y FB(0)3654 4250 y Fu(\022)e Fw(S)0 4370 y Fx(of)34 b(cardinalit)m(y)f Fw(C)24 b Fx(log)17 b Fw(N)10 b Fx(,)35 b(the)h(constan)m(t)f Fw(C)42 b Fx(b)s(eing)34 b(su\016cien)m(tly)i(large,)e(then)i(for)e(an) m(y)h(go)s(o)s(d)f(atom)g Fw(a)p Fx(,)0 4491 y Fp(P)p Fx([)p Fw(a)28 b Fu(\024)g(^)p Fr(S)423 4506 y FB(0)463 4491 y Fx(])j Fw(<)h(N)717 4455 y Fq(\000)p FB(1)812 4491 y Fx(.)50 b(Hence,)37 b(for)e(at)g(least)f(one)h(particular)e(c)m (hoice)j Fw(S)2699 4506 y FB(0)2773 4491 y Fx(of)f Fr(S)2956 4506 y FB(0)2995 4491 y Fx(,)h Fu(^)p Fw(S)3184 4506 y FB(0)3258 4491 y Fx(con)m(tains)f(only)0 4611 y(bad)e(atoms,)f(and)g (the)h(lemma)e(follo)m(ws.)p 1502 4611 43 43 v 0 4830 a Fp(Pro)s(of)51 b(of)g(Theorem)g(5.2)g(b\).)130 b Fx(Denote)1775 4783 y Fq(j)p Fs(S)t Fq(j)p 1770 4806 96 4 v 1770 4864 a(j)p Fs(B)s Fq(j)1921 4830 y Fx(b)m(y)45 b Fw(\017)p Fx(.)79 b(Once)46 b(again,)g(\014x)f Fw(b)2968 4845 y FB(0)3055 4830 y Fu(2)k Fw(B)5 b Fx(.)79 b(Let)45 b(us)g(call)0 4964 y Fw(c)34 b Fu(\024)h Fw(b)229 4979 y FB(0)305 4964 y Fv(go)-5 b(o)g(d)36 b Fx(if)f Fp(P)p Fx([)11 b Fr(b)28 b Fu(2)g Fw(S)22 b Fu(j)12 b Fr(b)22 b Fu(^)g Fw(b)1233 4979 y FB(0)1301 4964 y Fx(=)28 b Fw(c)10 b Fx(])34 b Fu(\025)1643 4924 y Fs(\017)p 1639 4940 36 4 v 1639 4998 a FB(2)1721 4964 y Fx(and)i Fv(b)-5 b(ad)36 b Fx(otherwise.)56 b(Note)36 b(that)g Fr(b)25 b Fu(^)g Fw(b)3237 4979 y FB(0)3313 4964 y Fx(is)36 b Fv(uniformly)1864 5214 y Fx(21)p eop %%Page: 22 22 22 21 bop 0 631 a Fx(distributed)32 b(on)h(the)g(Bo)s(olean)e(algebra)g Fw(B)1593 646 y FB(0)1661 631 y Fe(\012)c Fu(f)8 b Fw(c)17 b Fu(j)22 b Fw(c)27 b Fu(\024)h Fw(b)2170 646 y FB(0)2220 631 y Fu(g)p Fx(.)44 b(Hence)1539 874 y Fp(P)p Fx([)p Fr(c)32 b Fx(is)g(go)s(o)s(d)o(])c Fu(\025)2205 807 y Fw(\017)p 2200 851 49 4 v 2200 942 a Fx(2)2259 874 y Fw(;)1366 b Fx(\(11\))0 1119 y(where)34 b Fr(c)e Fx(is)h(c)m(hosen)h (from)d Fw(B)1080 1134 y FB(0)1152 1119 y Fx(at)h(random.)146 1239 y(No)m(w,)44 b(\014x)d(a)f(go)s(o)s(d)g Fw(c)h Fu(2)h Fw(B)1153 1254 y FB(0)1193 1239 y Fx(.)68 b(The)41 b(set)h Fw(B)5 b Fx(\()p Fw(c)p Fx(\))41 b Fe(\012)g Fu(f)9 b Fw(b)28 b Fu(2)g Fw(B)22 b Fu(j)f Fw(b)i Fu(^)g Fw(b)2597 1254 y FB(0)2664 1239 y Fx(=)28 b Fw(c)10 b Fu(g)40 b Fx(is)g(a)h(Bo)s(olean)e(algebra.)0 1360 y(Applying)e(Lemma)f(5.3)h(to) h(this)f(algebra)g(and)g(to)h Fw(S)k Fx(:=)36 b Fw(S)c Fu(\\)26 b Fw(B)5 b Fx(\()p Fw(c)p Fx(\),)39 b(w)m(e)g(come)e(up)h (with)f Fw(S)3453 1375 y FB(0)3529 1360 y Fu(\022)g Fw(S)43 b Fx(of)0 1493 y(cardinalit)m(y)c Fw(O)s Fx(\(log)16 b Fw(N)10 b Fx(\))41 b(suc)m(h)h(that)f Fw(c)h Fu(\024)g(^)p Fw(S)1698 1508 y FB(0)1778 1493 y Fx(and)f(\()p Fu(^)p Fw(S)2140 1508 y FB(0)2180 1493 y Fu(n)p Fw(c)p Fx(\))g(has)g(at)f (most)h Fw(O)3001 1396 y Fj(\020)3051 1493 y Fx(log)3204 1453 y FB(1)p 3204 1469 36 4 v 3207 1527 a Fs(\017)3249 1396 y Fj(\021)3339 1493 y Fx(atoms.)68 b(W)-8 b(e)0 1613 y(extend)37 b Fw(S)380 1628 y FB(0)456 1613 y Fx(b)m(y)f (including)e(to)i(it)f(the)h(corresp)s(onding)g(coatoms)f(and)h(\014nd) g(that)g(ev)m(ery)i(go)s(o)s(d)c Fw(c)g Fu(2)f Fw(B)3785 1628 y FB(0)0 1733 y Fx(can)g(b)s(e)g(represen)m(ted)i(in)d(the)h(form) 1342 1667 y Fj(V)1411 1693 y Fs(`)1411 1758 y(j)t FB(=1)1554 1733 y Fw(s)1600 1748 y Fs(j)1637 1733 y Fw(;)49 b(s)1759 1748 y Fs(j)1823 1733 y Fu(2)28 b Fw(S;)50 b(`)27 b Fu(\024)i Fw(O)2321 1637 y Fj(\020)2371 1733 y Fx(log)2524 1694 y Fs(N)p 2524 1710 64 4 v 2541 1768 a(\017)2597 1637 y Fj(\021)2646 1733 y Fx(.)146 1854 y(Next)43 b(w)m(e)h(apply)d(the)i (dual)e(v)m(ersion)i(of)f(Lemma)e(5.3)i(to)g(the)h(Bo)s(olean)d (algebra)h Fw(B)3331 1869 y FB(0)3413 1854 y Fx(and)h Fw(S)50 b Fx(:=)0 1974 y Fu(f)8 b Fw(c)28 b Fu(2)g Fw(B)296 1989 y FB(0)352 1974 y Fu(j)22 b Fw(c)33 b Fx(is)f(go)s(o)s(d)9 b Fu(g)o Fx(.)43 b(In)31 b(view)g(of)g(\(11\),)f(the)h(same)g(argumen)m (t)f(as)h(ab)s(o)m(v)m(e)h(yields)e(that)g Fw(b)3352 1989 y FB(0)3420 1974 y Fx(=)3524 1908 y Fj(W)3593 1934 y Fs(`)3593 1999 y(i)p FB(=1)3728 1974 y Fw(c)3770 1989 y Fs(i)3798 1974 y Fx(,)0 2095 y(where)k Fw(c)324 2110 y Fs(i)384 2095 y Fx(are)f(either)f(go)s(o)s(d)g(or)g(atoms.)43 b(The)33 b(statemen)m(t)g(follo)m(ws.)p 2485 2095 43 43 v 0 2477 a Fy(6.)165 b(Conclusion)0 2696 y Fx(W)-8 b(e)26 b(do)g(not)f(conclude)i(that)e(researc)m(hers)j(should)e(giv)m (e)g(up)g(on)f(pro)m(ving)h(serious)g(lo)m(w)m(er)g(b)s(ounds.)42 b(Quite)0 2817 y(the)33 b(con)m(trary)-8 b(,)33 b(b)m(y)g(classifying)d (a)i(large)g(n)m(um)m(b)s(er)g(of)g(tec)m(hniques)i(that)e(are)g (unable)g(to)g(do)g(the)h(job)f(w)m(e)0 2937 y(hop)s(e)i(to)g(fo)s(cus) h(researc)m(h)g(in)f(a)g(more)f(fruitful)f(direction.)48 b(P)m(essimism)33 b(will)f(only)i(b)s(e)g(w)m(arran)m(ted)h(if)e(a)0 3057 y(long)e(p)s(erio)s(d)h(of)g(time)f(passes)j(without)e(the)h (disco)m(v)m(ery)h(of)e(a)h(non-naturalizing)c(lo)m(w)m(er)k(b)s(ound)g (pro)s(of.)146 3178 y(As)c(long)f(as)g(w)m(e)i(use)f(natural)e(pro)s (ofs)i(w)m(e)g(ha)m(v)m(e)h(to)e(cop)s(e)h(with)f(a)g(dualit)m(y:)40 b Fv(any)31 b(lower)g(b)-5 b(ound)31 b(pr)-5 b(o)g(of)0 3298 y(must)37 b(implicitly)f(ar)-5 b(gue)37 b(a)f(pr)-5 b(op)g(ortionately)36 b(str)-5 b(ong)37 b(upp)-5 b(er)36 b(b)-5 b(ound.)49 b Fx(In)35 b(particular,)e(w)m(e)j(ha)m(v)m(e)g(sho)m (wn)0 3418 y(that)f(a)h(natural)e(pro)s(of)h(against)f(complexit)m(y)h (class)h(\003)f(implicitly)c(sho)m(ws)37 b(that)f(\003)f(do)s(es)h(not) f(con)m(tain)0 3539 y(strong)f(pseudo-random)f(function)g(generators.) 47 b(In)33 b(fact,)h(the)g(pro)s(of)e(giv)m(es)i(an)g(algorithm)c(to)j (break)0 3659 y(an)m(y)38 b(suc)m(h)g(generator.)57 b(Seen)38 b(this)e(w)m(a)m(y)-8 b(,)39 b(ev)m(en)g(a)e(natural)e(pro)s(of)h (against)g Fw(N)10 b(C)2969 3623 y FB(1)3046 3659 y Fx(\(or)37 b Fw(T)14 b(C)3356 3623 y FB(0)3395 3659 y Fx(\))36 b(b)s(ecomes)0 3780 y(di\016cult)41 b(or)g(imp)s(ossible.)67 b(In)42 b([16])f(it)g(is)g(argued)g(based)i(on)e(the)h(hardness)h(of)e(subset)i (sum)e(that)g(a)0 3900 y(pseudo-random)e(function)f(should)h(exist)g (in)f Fw(T)14 b(C)1899 3864 y FB(0)1977 3900 y Fu(\022)39 b Fw(N)10 b(C)2258 3864 y FB(1)2298 3900 y Fx(.)63 b(Consider)39 b(the)g(plausible)f(conjecture)0 4020 y(that)45 b(there)g(exists)h(a)e (\(pseudo-random\))h(function)f Fw(f)59 b Fu(2)49 b Fw(N)10 b(C)2414 3979 y FB(1)2498 4020 y Fx(\(or)44 b Fw(T)14 b(C)2815 3984 y FB(0)2855 4020 y Fx(\))44 b(suc)m(h)j(that)d Fw(G)3470 4035 y Fs(n;s)3569 4020 y Fx(\()p Fw(x)p Fx(\))49 b(=)0 4141 y Fw(f)11 b Fx(\()p Fw(s)p Fx(#)p Fw(x)p Fx(\))23 b(is)f(a)g(pseudo-random)h(function)f(generator.)40 b(A)22 b(natural)g(pro)s(of)g(that)g Fw(P)41 b Fu(6)p Fx(=)28 b Fw(N)10 b(C)3259 4099 y FB(1)3321 4141 y Fx(or)22 b Fw(P)41 b Fu(6)p Fx(=)28 b Fw(T)14 b(C)3786 4099 y FB(0)0 4261 y Fx(w)m(ould)40 b(giv)m(e)g(an)g(algorithm)d(to)j(break)g(it.)65 b(Th)m(us,)44 b(w)m(e)d(see)g(that)f(w)m(orking)g(on)g(lo)m(w)m(er)g(b) s(ounds)h(using)0 4381 y(natural)h(metho)s(ds)h(is)g(lik)m(e)f (breaking)h(a)g(secret)h(co)s(de)g(determined)f(b)m(y)h(the)f(class)h (w)m(e)g(are)f(w)m(orking)0 4502 y(against!)146 4622 y(With)29 b(this)g(dualit)m(y)g(in)g(mind,)f(it)h(is)g(no)g (coincidence)h(that)f(the)h(tec)m(hnical)f(lemmas)f(of)h([14,)g(36,)g (29])0 4743 y(yield)j(m)m(uc)m(h)h(of)f(the)h(mac)m(hinery)f(for)h(the) g(learning)d(result)j(of)f([20].)1864 5214 y(22)p eop %%Page: 23 23 23 22 bop 0 631 a Fy(7.)165 b(Ac)-5 b(kno)g(wledgemen)g(ts)0 850 y Fx(W)d(e)37 b(w)m(ould)f(lik)m(e)f(to)h(thank)h(Oded)f(Goldreic)m (h,)g(Russell)g(Impagliazzo,)e(Mauricio)h(Karc)m(hmer,)i(Silvio)0 970 y(Micali,)50 b(Rob)s(ert)e(Solo)m(v)-5 b(a)m(y)d(,)52 b(and)d(Avi)f(Wigderson)h(for)e(v)m(ery)j(helpful)e(discussions.)92 b(W)-8 b(e)48 b(are)h(also)0 1091 y(indebted)35 b(to)g(b)s(oth)g(anon)m (ymous)g(referees)i(of)d(the)i(journal)e(v)m(ersion)h(of)g(this)f(pap)s (er)h(for)g(man)m(y)g(useful)0 1211 y(commen)m(ts)d(and)h(remarks.)0 1542 y Fy(References)49 1761 y Fx([1])49 b(M.)26 b(Ajtai.)32 b(\006)690 1725 y FB(1)690 1786 y(1)730 1761 y Fx(-form)m(ulae)24 b(on)j(\014nite)f(structures.)34 b Fv(A)n(nnals)29 b(of)f(Pur)-5 b(e)30 b(and)e(Applie)-5 b(d)29 b(L)-5 b(o)g(gic)p Fx(,)27 b(24:1{48,)201 1881 y(Ma)m(y)33 b(1983.)49 2081 y([2])49 b(N.)43 b(Alon)f(and)h(R.)g(Boppana.)74 b(The)44 b(monotone)e(circuit)g (complexit)m(y)h(of)f(Bo)s(olean)g(functions.)201 2202 y Fv(Combinatoric)-5 b(a)p Fx(,)31 b(7\(1\):1{22,)g(1987.)49 2401 y([3])49 b Fb(A.E.)60 b(Andreev)p Fx(.)107 b Fb(Ob)60 b(odnom)h(met)n(ode)h(poluqeni\037)e(ni\031nih)f(ocenok)i(slo\031nosti) 201 2522 y(individu)n(al~nyh)47 b(monot)n(onnyh)i(funkci)5 b($)-54 b(i)p Fx(.)72 b Fa(DAN)45 b(SSSR)p Fx(,)f(282\(5\):1033{1037,)e (1985.)201 2642 y(A.E.)29 b(Andreev,)i(On)e(a)g(metho)s(d)f(for)h (obtaining)e(lo)m(w)m(er)i(b)s(ounds)h(for)e(the)h(complexit)m(y)g(of)f (individ-)201 2762 y(ual)j(monotone)h(functions.)h Fv(Soviet)h(Math.)h (Dokl.)d Fx(31\(3\):530-534,)e(1985.)49 2962 y([4])49 b Fb(A.E.)e(Andreev)p Fx(.)72 b Fb(Ob)48 b(odnom)h(met)n(ode)g (poluqeni\037)e(\013ffektivnyh)h(ni\031nih)f(ocenok)201 3082 y(monot)n(onno)5 b($)-54 b(i)41 b(slo\031nosti)p Fx(.)56 b Fa(Alg)m(ebra)39 b(i)h(logika)p Fx(,)e(26\(1\):3{21,)e(1987.) 54 b(A.E.)38 b(Andreev,)h(On)201 3203 y(one)k(metho)s(d)g(of)g (obtaining)f(e\013ectiv)m(e)i(lo)m(w)m(er)g(b)s(ounds)g(of)f(monotone)g (complexit)m(y)-8 b(.)43 b Fv(A)n(lgebr)-5 b(a)44 b(i)201 3323 y(lo)-5 b(gika)p Fx(,)31 b(26\(1\):3-21,)g(1987.)h(In)h(Russian.) 49 3523 y([5])49 b Fb(A.E.)40 b(Andreev)p Fx(.)53 b Fb(O)41 b(met)n(ode)h(poluqeni\037)f(bolee)g(qem)h(kvadratiqnyh)e(ni\031nih)g (oce-)201 3643 y(nok)e(dl\037)g(slo\031nosti)h Fw(\031)t Fb(-s)r(hem)p Fx(.)46 b Fa(Vestnik)37 b(MGU)-8 b(,)36 b(ser.)g(mat)m(em)h(i)g(mehan.)p Fx(,)d(42\(1\):63{66,)201 3764 y(1987.)48 b(A.E.)35 b(Andreev,)i(On)d(a)g(metho)s(d)g(for)g (obtaining)f(more)g(than)i(quadratic)f(e\013ectiv)m(e)i(lo)m(w)m(er)201 3884 y(b)s(ounds)29 b(for)f(the)g(complexit)m(y)g(of)g Fw(\031)t Fx(-sc)m(hemes.)i Fv(Mosc)-5 b(ow)30 b(Univ.)h(Math.)h(Bul)5 b(l.)28 b Fx(42\(1\):63-66,)f(1987.)201 4004 y(In)32 b(Russian.)49 4204 y([6])49 b(J.)34 b(Aspnes,)i(R.)e(Beigel,)f(M.)i(F) -8 b(urst,)34 b(and)g(S.)h(Rudic)m(h.)48 b(The)35 b(expressiv)m(e)h(p)s (o)m(w)m(er)f(of)f(v)m(oting)f(p)s(oly-)201 4325 y(nomials.)41 b Fv(Combinatoric)-5 b(a)p Fx(,)31 b(14\(2\):135{148,)f(1994.)49 4524 y([7])49 b(T.P)-8 b(.)35 b(Bak)m(er,)h(J.)f(Gill,)d(and)j(R.)g (Solo)m(v)-5 b(a)m(y)d(.)49 b(Relativizations)32 b(of)j(the)g Fw(P)45 b Fx(=)31 b Fw(N)10 b(P)49 b Fx(question.)h Fv(SIAM)201 4645 y(Journal)34 b(on)h(Computing)p Fx(,)d(4:431{442,)f(1975.)49 4844 y([8])49 b(D.)32 b(A.)i(Barrington.)44 b(A)34 b(note)f(on)h(a)f (theorem)g(of)g(Razb)s(oro)m(v.)46 b(T)-8 b(ec)m(hnical)33 b(rep)s(ort,)g(Univ)m(ersit)m(y)h(of)201 4965 y(Massac)m(h)m(usetts,)i (1986.)1864 5214 y(23)p eop %%Page: 24 24 24 23 bop 49 631 a Fx([9])49 b(M.)24 b(Blum)e(and)i(S.)g(Micali.)j(Ho)m (w)e(to)e(generate)i(cryptographically)d(strong)i(sequences)j(of)c (pseudo-)201 751 y(random)31 b(bits.)43 b Fv(SIAM)35 b(Journal)g(on)f(Computing)p Fx(,)e(13:850{864,)f(1984.)0 952 y([10])49 b(M.)31 b(Bonet,)h(T.)g(Pitassi,)f(and)h(R.)f(Raz.)41 b(Lo)m(w)m(er)33 b(b)s(ounds)f(for)f(cutting)g(planes)g(pro)s(ofs)g (with)g(small)201 1072 y(co)s(e\016cien)m(ts.)74 b(In)44 b Fv(Pr)-5 b(o)g(c)g(e)g(e)g(dings)43 b(of)g(the)i Fx(27)p Fv(th)f(A)n(CM)g(Simp)-5 b(osium)43 b(on)h(The)-5 b(ory)44 b(of)g(Computing)p Fx(,)201 1193 y(pages)33 b(575{584,)e(1995.)0 1393 y([11])49 b(M.)24 b(F)-8 b(urst,)26 b(J.)e(B.)g(Saxe,)i(and)e(M.)g (Sipser.)30 b(P)m(arit)m(y)-8 b(,)26 b(circuits)d(and)h(the)g(p)s (olynomial)d(time)h(hierarc)m(h)m(y)-8 b(.)201 1514 y Fv(Math.)35 b(Syst.)g(The)-5 b(ory)p Fx(,)32 b(17:13{27,)f(1984.)0 1714 y([12])49 b(O.)d(Goldreic)m(h,)i(S.)f(Goldw)m(asser,)j(and)d(S.)f (Micali.)82 b(Ho)m(w)47 b(to)f(construct)h(random)f(functions.)201 1835 y Fv(Journal)34 b(of)h(the)g(A)n(CM)p Fx(,)d(33\(4\):792{807,)f (1986.)0 2035 y([13])49 b(A.)24 b(Ha)5 b(jnal,)26 b(W.)f(Maass,)i(P)-8 b(.)25 b(Pudlak,)h(M.)g(Szegedy)-8 b(,)27 b(G.)e(T)-8 b(uran.)31 b(Threshold)25 b(circuits)f(of)g(b)s(ounded)201 2156 y(depth.)84 b(In)46 b Fv(Pr)-5 b(o)g(c)g(e)g(e)g(dings)46 b(of)h(the)g Fx(28)p Fv(th)g(IEEE)g(Symp)-5 b(osium)47 b(on)g(F)-7 b(oundations)45 b(of)i(Computer)201 2276 y(Scienc)-5 b(e)p Fx(,)31 b(pages)i(99{110,)e(1987.)0 2477 y([14])49 b(J.)43 b(H)-12 b(\027)-61 b(astad.)78 b Fv(Computational)44 b(limitations)g(on)h(Smal)5 b(l)44 b(Depth)h(Cir)-5 b(cuits)p Fx(.)77 b(PhD)44 b(thesis,)j(Mas-)201 2597 y(sac)m(h)m(usetts)35 b(Institute)e(of)f(T)-8 b(ec)m(hnology)g(,) 33 b(1986.)0 2798 y([15])49 b(J.)27 b(H)-12 b(\027)-61 b(astad.)34 b(The)28 b(shrink)-5 b(age)27 b(exp)s(onen)m(t)h(is)e(2.)34 b(In)28 b Fv(Pr)-5 b(o)g(c)g(e)g(e)g(dings)28 b(of)h(the)h Fx(34)p Fv(th)g(IEEE)f(F)n(OCS)p Fx(,)c(pages)201 2918 y(114{123,)31 b(1993.)42 b(Journal)32 b(v)m(ersion)h(submitted)f(to)g Fv(SIAM)j(Journal)g(on)f(Computing)p Fx(.)0 3119 y([16])49 b(R.)37 b(Impagliazzo)e(and)i(M.)h(Naor.)57 b(E\016cien)m(t)38 b(cryptographic)f(sc)m(hemes)i(pro)m(v)-5 b(ably)37 b(as)h(secure)h(as) 201 3239 y(subset)28 b(sum.)35 b(In)27 b Fv(Pr)-5 b(o)g(c)g(e)g(e)g (dings)29 b(of)h(the)f Fx(30)p Fv(th)h(IEEE)g(Symp)-5 b(osium)29 b(on)g(F)-7 b(oundations)29 b(of)g(Computer)201 3360 y(Scienc)-5 b(e)p Fx(,)31 b(pages)i(236{243,)e(1989.)0 3560 y([17])49 b(M.)40 b(Karc)m(hmer)g(and)f(A.)h(Wigderson.)65 b(Monotone)41 b(circuits)e(for)g(connectivit)m(y)h(require)h(sup)s(er-) 201 3681 y(logarithmic)28 b(depth.)45 b Fv(SIAM)35 b(J.)f(on)h(Disc.)f (Math.)p Fx(,)f(3\(2\):255{265,)d(Ma)m(y)k(1990.)0 3881 y([18])49 b(M.)31 b(Karc)m(hmer)f(and)h(A.)g(Wigderson.)41 b(On)30 b(span)i(programs.)39 b(In)31 b Fv(Pr)-5 b(o)g(c)g(e)g(e)g (dings)32 b(of)h(the)h Fx(8)p Fv(th)f(Struc-)201 4002 y(tur)-5 b(e)35 b(in)g(Complexity)f(The)-5 b(ory)34 b(A)n(nnual)h (Confer)-5 b(enc)g(e)p Fx(,)31 b(pages)i(102{111,)e(1993.)0 4202 y([19])49 b(J.)25 b(Kra)5 b(j)490 4179 y(\023)501 4202 y(i)m(\025)-46 b(cek.)32 b(In)m(terp)s(olation)24 b(theorems,)k(lo)m(w)m(er)d(b)s(ounds)i(for)e(pro)s(of)f(systems)k(and) d(indep)s(endence)201 4323 y(results)33 b(for)f(b)s(ounded)h (arithmetic.)41 b(Submitted)32 b(to)g Fv(Journal)j(of)g(Symb)-5 b(olic)34 b(L)-5 b(o)g(gic)p Fx(,)32 b(1994.)0 4523 y([20])49 b(N.)27 b(Linial,)f(Y.)i(Mansour,)i(and)e(N.)f(Nisan.)36 b(Constan)m(t)28 b(depth)h(circuits,)f(F)-8 b(ourier)27 b(transforms)g(and)201 4644 y(learnabilit)m(y)-8 b(.)30 b(In)d Fv(Pr)-5 b(o)g(c)g(e)g(e)g(dings)28 b(of)h(the)h Fx(30)p Fv(th)f(IEEE)g(Symp)-5 b(osium)29 b(on)g(F)-7 b(oundations)27 b(of)i(Computer)201 4764 y(Scienc)-5 b(e)p Fx(,)31 b(pages)i(574{579,)e(1989.)0 4965 y([21])49 b(S.)32 b(Muroga.)44 b Fv(Thr)-5 b(eshold)33 b(lo)-5 b(gic)34 b(and)h(its)g(applic)-5 b(ations)p Fx(.)41 b(Wiley-In)m (terscience,)34 b(1971.)1864 5214 y(24)p eop %%Page: 25 25 25 24 bop 0 631 a Fx([22])49 b(N.)25 b(Nisan.)31 b(Pseudorandom)26 b(bits)f(for)f(constan)m(t)j(depth)f(circuits.)31 b Fv(Combinatoric)-5 b(a)p Fx(,)25 b(11\(1\):63{70,)201 751 y(1991.)0 955 y([23])49 b(N.)c(Nisan)f(and)h(R.)g(Impagliazzo.)77 b(The)46 b(e\013ect)g(of)e(random)g(restrictions)h(on)f(form)m(ulae)g(size.)201 1075 y Fv(R)-5 b(andom)33 b(Structur)-5 b(es)36 b(and)e(A)n(lgorithms)p Fx(,)e(4\(2\):121{134,)f(1993.)0 1279 y([24])49 b(M.)42 b(S.)f(P)m(aterson)i(and)f(U.)g(Zwic)m(k.)70 b(Shrink)-5 b(age)42 b(of)f(de)h(Morgan)f(form)m(ulae)f(under)j(restriction.)201 1399 y Fv(R)-5 b(andom)33 b(Structur)-5 b(es)36 b(and)e(A)n(lgorithms)p Fx(,)e(4\(2\):135{150,)f(1993.)0 1602 y([25])49 b(P)-8 b(.)46 b(Pudl\023)-49 b(ak.)86 b(Lo)m(w)m(er)47 b(b)s(ounds)h(for)e (resolution)f(and)i(cutting)f(planes)h(pro)s(ofs)f(and)h(monotone)201 1723 y(computations.)42 b(T)-8 b(o)32 b(app)s(ear)h(in)f Fv(J.)j(of)f(Symb)-5 b(olic)34 b(L)-5 b(o)g(gic)p Fx(,)32 b(1995.)0 1926 y([26])49 b(R.)f(Raz)g(and)h(A.)f(Wigderson.)91 b(Monotone)49 b(circuits)f(for)g(matc)m(hing)f(require)i(linear)e (depth.)201 2046 y Fv(Journal)34 b(of)h(the)g(A)n(CM)p Fx(,)d(39:736{744,)f(1992.)0 2250 y([27])49 b Fb(A.)30 b(A.)g(R)n(azborov)p Fx(.)j Fb(Ni\031nie)e(ocenki)f(monot)n(onno)5 b($)-54 b(i)30 b(slo\031nosti)h(nekot)n(oryh)h(bu)n(levyh)201 2370 y(funkci)5 b($)-54 b(i)p Fx(.)65 b Fa(DAN)43 b(SSSR)p Fx(,)e(281\(4\):798{801,)f(1985.)66 b(A.)40 b(A.)h(Razb)s(oro)m(v,)h (Lo)m(w)m(er)f(b)s(ounds)g(for)201 2491 y(the)32 b(monotone)g (complexit)m(y)f(of)h(some)g(Bo)s(olean)f(functions,)i Fv(Soviet)h(Math.)h(Dokl.)p Fx(,)c(31:354-357,)201 2611 y(1985.)0 2814 y([28])49 b Fb(A.)43 b(A.)g(R)n(azborov)p Fx(.)60 b Fb(Ni\031nie)42 b(ocenki)i(monot)n(onno)5 b($)-54 b(i)43 b(slo\031nosti)h(logiqeskog)n(o)f(per-)201 2935 y(manent)n(a)p Fx(.)70 b Fa(Mat)m(em.)45 b(Zam.)p Fx(,)e (37\(6\):887{900,)e(1985.)69 b(A.)42 b(A.)f(Razb)s(oro)m(v,)j(Lo)m(w)m (er)e(b)s(ounds)g(of)201 3055 y(monotone)27 b(complexit)m(y)g(of)h(the) h(logical)c(p)s(ermanen)m(t)j(function,)g Fv(Mathem.)j(Notes)g(of)g (the)f(A)-5 b(c)g(ade-)201 3176 y(my)34 b(of)h(Sci.)f(of)h(the)g(USSR)p Fx(,)d(37:485-493,)f(1985.)0 3379 y([29])49 b Fb(A.)h(A.)g(R)n(azborov) p Fx(.)79 b Fb(Ni\031nie)51 b(ocenki)f(razmera)h(s)r(hem)g(ograniqenno) 5 b($)-54 b(i)50 b(g)n(lubiny)g(v)201 3499 y(polnom)32 b(bazise,)i(soder\031awem)f(funkci\030)f(logiqeskog)n(o)h (slo\031eni\037)p Fx(.)i Fa(Mat)m(em.)d(Zam.)p Fx(,)201 3620 y(41\(4\):598{607,)40 b(1987.)67 b(A.)40 b(A.)h(Razb)s(oro)m(v,)i (Lo)m(w)m(er)f(b)s(ounds)f(on)g(the)g(size)g(of)f(b)s(ounded-depth)201 3740 y(net)m(w)m(orks)34 b(o)m(v)m(er)f(a)g(complete)e(basis)i(with)f (logical)d(addition,)i Fv(Mathem.)j(Notes)h(of)g(the)f(A)-5 b(c)g(ademy)201 3861 y(of)34 b(Sci.)g(of)h(the)g(USSR)p Fx(,)e(41\(4\):333-338,)d(1987.)0 4064 y([30])49 b Fb(A.)f(A.)h(R)n (azborov)p Fx(.)76 b Fb(Ni\031nie)49 b(ocenki)g(slo\031nosti)g (realizacii)f(s)r(immetriqeskih)201 4184 y(bu)n(levyh)38 b(funkci)5 b($)-54 b(i)37 b(kont)n(aktno-ventil~nym)r(i)i(s)r(hemam)r (i)p Fx(.)45 b Fa(Mat)m(em.)37 b(Zam.)p Fx(,)c(48\(6\):79{)201 4305 y(91,)24 b(1990.)k(A.)c(A.)f(Razb)s(oro)m(v,)j(Lo)m(w)m(er)e(b)s (ounds)g(on)g(the)f(size)h(of)f(switc)m(hing-and-recti\014er)g(net)m(w) m(orks)201 4425 y(for)k(symmetric)f(Bo)s(olean)h(functions,)h Fv(Mathem.)i(Notes)h(of)f(the)g(A)-5 b(c)g(ademy)30 b(of)g(Sci.)g(of)g (the)g(USSR)p Fx(.)0 4628 y([31])49 b(A.)25 b(Razb)s(oro)m(v.)30 b(On)25 b(submo)s(dular)f(complexit)m(y)g(measures.)32 b(In)25 b(M.)g(S.)g(P)m(aterson,)j(editor,)d Fv(Bo)-5 b(ole)g(an)201 4749 y(F)e(unction)27 b(Complexity.)g(L)-5 b(ondon)28 b(Math.)g(So)-5 b(c.,)29 b(L)-5 b(e)g(ctur)g(e)29 b(Note)g(Series)e Fx(169,)g(pages)f(76{83.)e(Cam-)201 4869 y(bridge)32 b(Univ)m(ersit)m(y)h(Press,)h(1992.)1864 5214 y(25)p eop %%Page: 26 26 26 25 bop 0 631 a Fx([32])49 b(A.)42 b(Razb)s(oro)m(v.)71 b(On)42 b(small)d(size)j(appro)m(ximation)e(mo)s(dels.)70 b(T)-8 b(o)42 b(app)s(ear)g(in)f(the)h(v)m(olume)g Fv(The)201 751 y(Mathematics)34 b(of)h(Paul)g(Er)-5 b(dos)p Fx(,)32 b(1993.)0 955 y([33])49 b(A.)g(Razb)s(oro)m(v.)93 b(Unpro)m(v)-5 b(abilit)m(y)47 b(of)i(lo)m(w)m(er)h(b)s(ounds)f(on)g(circuit)g(size)g (in)f(certain)h(fragmen)m(ts)201 1075 y(of)f(Bounded)i(Arithmetic.)92 b Fa(Izv.)51 b(AN)g(SSSR)-8 b(,)52 b(ser.)e(mat)m(em.)i Fx(\()p Fv(Izvestiya)d(of)h(the)g(RAN)p Fx(\),)201 1196 y(59\(1\):201{222,)30 b(1995.)0 1399 y([34])49 b(A.)e(Razb)s(oro)m(v.) 89 b(On)47 b(pro)m(v)-5 b(ably)48 b(disjoin)m(t)e Fp(NP)p Fx(-pairs.)87 b(T)-8 b(ec)m(hnical)47 b(Rep)s(ort)h(RS-94-36,)h(Basic) 201 1519 y(Researc)m(h)34 b(in)d(Computer)i(Science)g(Cen)m(ter,)i (Aarh)m(us,)e(Denmark,)f(1994.)0 1723 y([35])49 b(A.)e(Razb)s(oro)m(v.) 86 b(Lo)m(w)m(er)48 b(b)s(ounds)g(for)e(prop)s(ositional)e(pro)s(ofs)j (and)g(indep)s(endence)h(results)g(in)201 1843 y(Bounded)33 b(Arithmetic.)43 b(In)33 b(F.)g(Mey)m(er)h(auf)f(der)g(Heide)g(and)g (B.)g(Monien,)g(editors,)g Fv(Pr)-5 b(o)g(c)g(e)g(e)g(dings)201 1963 y(of)48 b(the)g Fx(23)p Fv(r)-5 b(d)48 b(ICALP,)h(L)-5 b(e)g(ctur)g(e)49 b(Notes)g(in)f(Computer)g(Scienc)-5 b(e,)51 b Fx(1099,)f(pages)e(48{62,)i(New)201 2084 y(Y)-8 b(ork/Berlin,)31 b(1996.)h(Springer-V)-8 b(erlag.)0 2287 y([36])49 b(R.)36 b(Smolensky)-8 b(.)57 b(Algebraic)36 b(metho)s(ds)h(in)f(the)i(theory)f(of)g(lo)m(w)m(er)g(b)s(ounds)h(for)e (Bo)s(olean)g(circuit)201 2408 y(complexit)m(y)-8 b(.)69 b(In)42 b Fv(Pr)-5 b(o)g(c)g(e)g(e)g(dings)42 b(of)h(the)g(19th)g(A)n (CM)h(Symp)-5 b(osium)42 b(on)h(The)-5 b(ory)43 b(of)g(Computing)p Fx(,)201 2528 y(pages)33 b(77{82,)e(1987.)0 2731 y([37])209 2706 y(\023)201 2731 y(E.)h(T)-8 b(ardos.)44 b(The)34 b(gap)e(b)s(et)m(w)m(een)i(monotone)e(and)h(nonmonotone)f(circuit)f (complexit)m(y)h(is)g(exp)s(o-)201 2852 y(nen)m(tial.)42 b Fv(Combinatoric)-5 b(a)p Fx(,)31 b(8:141{142,)g(1988.)0 3055 y([38])49 b(I.)32 b(W)-8 b(egener.)45 b Fv(The)34 b(c)-5 b(omplexity)34 b(of)h(Bo)-5 b(ole)g(an)33 b(functions)p Fx(.)43 b(Wiley-T)-8 b(eubner,)33 b(1987.)0 3259 y([39])49 b(A.)33 b(Wigderson.)45 b(The)35 b(fusion)d(metho)s(d)h(for)g(lo)m(w)m (er)g(b)s(ounds)h(in)f(circuit)f(complexit)m(y)-8 b(.)45 b(In)33 b Fv(Combi-)201 3379 y(natorics,)h(Paul)h(Er)-5 b(dos)34 b(is)h(Eighty)p Fx(.)e(1993.)0 3582 y([40])49 b(A.)37 b(Y)-8 b(ao.)58 b(Separating)37 b(the)h(p)s(olynomial-time)32 b(hierarc)m(h)m(y)38 b(b)m(y)h(oracles.)58 b(In)38 b Fv(Pr)-5 b(o)g(c)g(e)g(e)g(dings)38 b(of)h(the)201 3703 y Fx(26)p Fv(th)34 b(IEEE)h(F)n(OCS)p Fx(,)c(pages)i(1{10,)f(1985.)1864 5214 y(26)p eop %%Trailer end userdict /end-hook known{end-hook}if %%EOF