Минерал (original) (raw)

МИНЕРАЛ (от cp.-век. лат. minera — руда * а. mineral; н. Mineral; ф. mineraux; и. minerales) — физически и химически индивидуализированное, как правило, твёрдое тело, относительно однородное по составу и свойствам, возникшее как продукт природных физико-химических процессов, протекающих на поверхности и в глубинах Земли, Луны и других планет, обычно представляющее собой составную часть горных пород, руд и метеоритов.

Большинство минералов — кристаллические вещества (или ранее находились в кристаллическом состоянии, но утратили его в результате метамиктного распада). Однако по традиции в число минералов включаются и некоторые природные аморфные образования (опал, аллофаны), а также немногие жидкие минералы (и металлы) — самородная ртуть и некоторые амальгамы. Аморфные и высокодисперсные тела в отличие от кристаллических минералов называются минералоидами. За редким исключением минералы — неорганические соединения, однако многие минерологи склонны считать минералы и природные органические кристаллические вещества (соли органические кислоты — оксалаты, меллит, жюльенит и др.), а также некоторые твёрдые углеводороды и ископаемые смолы — сукцинит и другие компоненты янтаря. Воду не считают минералом, но все полиморфные модификации льда суть минералов; вулканические и импактные стёкла относятся к горным породам, а лешательерит (природный стеклообразный кремнезём) — к минералам.

Виды минералов

Среди минералов различают минеральные виды и разновидности. Первые — индивидуальные природные химические вещества, резко различающиеся по составу и (или) структуре, вторые — это вариации одного минерального вида: цветовые, морфологические, а иногда и по химическому составу (без изменения кристаллической структуры) или по структуре при постоянстве состава (политипы у минералов со слоистой кристаллической решёткой). Политипы в современной систематике рассматривают как структурные разновидности или подвиды одного минерального вида (поскольку они часто сосуществуют, встречаясь даже в составе одного кристалла, например слюды или сфалерита), тогда как полиморфные модификации, возникающие при фазовых переходах и имеющие определённые поля устойчивости, относятся к самостоятельным минеральным видам. Структурными разновидностями считаются также энантиоморфные формы минералов (например, правый и левый кварц). Общее число известных минеральных видов около 3000. В соответствии с бурным развитием науки и техники количество открываемых минералов резко возросло. К началу 19 века было известно менее 100 минеральных видов, за первые 20 лет 19 века открывалось в среднем 4-5 новых минералов в год, за последующие 100 лет — по 9-10, далее до 1960 — по 14-15 и в последние 25 лет — в среднем по 40-50 (от 20-25 до 80-100) минералов ежегодно.

Реклама

Минеральный индивид — мономинеральное тело ограниченной протяжённости (кристалл, зерно или иное выделение), отделённое от соседних подобных тел непрерывными физическими поверхностями раздела, замкнутыми в пространстве. Размеры минеральных индивидов варьируют в широком диапазоне — от 1-100 нм (коллоидные минералы) до 10 м (кристаллы сподумена в пегматитах); известны кристаллы кварца и полевого шпата массой в несколько тонн. Срастания минеральных индивидов одного состава образуют мономинеральный агрегат. Понятие минералов употребляется в различных значениях: оно может относиться к минеральному виду, разновидности, индивиду и мономинеральному агрегату. Самостоятельные названия получают как минеральные виды, так и разновидности; но открытием новых минералов считается только открытие нового минерального вида.

Называют минералы по месту первой находки, в честь крупных минерологов, геологов и учёных других специальностей, известных коллекционеров минералов, путешественников, космонавтов, общественных и политических деятелей прошлого и настоящего, по каким-либо характерным физическим свойствам или по химическому составу. Последний химический принцип особенно рекомендован, и большинство минералов, открытых за последние десятилетия, в самом названии несут информацию о своём химическом составе.

Современными методами установлено, что строение реальных минералов значительно сложнее, чем это следует из определения понятия минералов, постулирующего относительную однородность состава и структуры минералов. Выяснилось, что в очень многих случаях различные элементы-примеси входят в состав минералов в неизоморфной форме. Большинство минералов, особенно непрозрачных или слабопросвечивающих, обнаружило микро- гетерогенное строение; почти в любом их "минеральном индивиде" приходится различать матрицу, принадлежащую одному минеральному виду, и мельчайшие, микро- или субмикроскопические включения, относящиеся к другим минеральным видам. Происхождение включений различно: они появляются в результате захвата растущим индивидом минералов-"хозяина" инородных дисперсных минеральных частиц (например, титановые минералы в кварце или корунде; танталониобаты, апатит и породообразующие силикаты в магнетите); как эндотаксические вростки — продукты распада твёрдых растворов, что находит выражение в специфических структурах (например, ильменит или ульвит в магнетите); вследствие перехода минералов в метамиктное состояние (например, возникновение фаз простых оксидов в глубокометамиктных титано-тантало-ниобатах); при образовании неполных псевдоморфоз, т.е. при метасоматических процессах, включая гипергенные изменения минералов (реликты первичных минералов во вторичных и т.п.); путём раскристаллизации захваченных включений минералообразующих сред (расплавов, флюидов) или как сохранившиеся внутри кристаллов минералов реликты тех соединений, в форме которых происходил перенос вещества в ходе минералообразования (например, включения гидростаннатов в касситерите). В зависимости от способа образования минеральных включений они могут распределяться в матрице минералов закономерно (эпитаксия, синтаксия) или беспорядочно. Помимо твердофазных включений в минералах, в т.ч. и прозрачных (например, в кварце), обычно присутствуют газово-жидкие включения минералообразующих сред. В результате обычные химические анализы минералов фиксируют лишь валовой состав минеральных систем (минералы + различные виды микровключений).

Установлено широкое развитие в природе, особенно среди глинистых минералов и в околожильных ореолах низкотемпературных гидротермальных месторождений, т.н. смешаннослойных и смешанноленточных минералов (главным образом силикатов), крайние компоненты которых (например, хлорит и монтмориллонит, иллит, вермикулит), входящие в состав единых минеральных индивидов в качестве структурных элементов их кристаллических решёток, относятся к разным минеральным видам.

Cтруктура минералов

В зависимости от химического состава минералов и физико-химических параметров находится тип химической связи между отдельными элементами и, как следствие, закономерность их пространственного распределения в кристаллической структуре минералов. Значительное изменение состава вызывает морфотропное изменение структуры и переход к веществу с новой структурой, т.е. к другому минералу. Изменение физико-химических параметров может привести к полиморфному переходу типа а-кварц-Я-кварц (повышение температуры), андалузитсиллиманит (повышение температуры) кианит (повышение давления). Обычные отклонения реальной структуры минералов от идеальной — вакансии в отдельных узлах кристаллической решётки, связанные с появлением, например, примесей в междоузлиях, изменением валентности части катионов (анионов). Упорядочение ваканский может приводить к увеличению одного из параметров элементарной ячейки, к появлению сверхструктур, переходу, например, от слоистых структур (талька — пирофиллита) к ленточным (честерит — джимтомпсонит — амфиболы) и т.п. В кристаллохимическом отношении среди минералов преобладают кристаллические структуры с ионным и ковалентным типами химической связи, менее распространены — с металлическими и молекулярными решётками (сера самородная, реальгар, аурипигмент). В результате различных дефектов (вакансий, примесных, радиационных и других дефектов, вхождения посторонних ионов или молекул, например воды в каналы и другие полости решётки, изменения заряда катионов и анионов и т.д.) и дислокаций кристаллы минералов могут приобретать блочное строение. Реальные минералы образуют иногда т.н. упорядочивающиеся серии (например, полевые шпаты), когда распределение различных катионов по структурным позициям в той или иной степени отклоняется от правильного порядка, присущего идеальным кристаллам, и с понижением температуры проявляет тенденцию к упорядочению. Не менее широко распространены явления распада твёрдых растворов (смешанных кристаллов), находящие выражение в специфических структурах минералов.

Для минералов со слоистыми кристаллическими решётками (например, слюд, молибденита, сфалерита, глинистых минералов, хлоритов, графита и др.) характерно явление политипии, при котором смежные слои (или пакеты слоев) оказываются несколько повёрнутыми один относительно другого. В результате такого поворота возникают политипные модификации (или политипы), элементарные ячейки которых имеют одинаковые параметры по двум осям и различные — по третьей. Образование политипов объясняется условиями роста кристаллов (в частности, кинетическими факторами и механизмом спирального роста). Политипия может приводить к изменениям симметрии кристаллов минералов, вплоть до перемены их сингонии, но не сопровождается существенной перестройкой кристаллической структуры.

В случае изоморфных рядов при выделении минеральных видов руководствуются следующими правилами: в двухкомпонентных (бинарных) твёрдых растворах различают два минеральных вида (с содержанием конечных членов от 0 до 50 и от 50 до 100 молекулярных %), в трёхкомпонентных — три. Ранее и в бинарных изоморфных смесях выделялось по три минеральных вида, названия которых закрепились в минералогической номенклатуре (например, ряд вольфрамита: ферберитвольфрамитгюбнерит). Наряду с этим в минералогии бытуют и некоторые другие принципы выделения минеральных видов. Так, если представители данного ряда имеют особое значение по распространённости и отдельные промежуточные члены ряда твёрдых растворов типичны для определённых парагенезисов, выделение минерального вида становится более дробным и часто базируется на номерной основе. Примером являются плагиоклазы, среди которых выделяют альбит (№ 0-10; № отвечает содержанию анортитового компонента в молекулярном %), олигоклаз (№ 10-30), андезин (№ 30-50), лабрадор (№ 50-70), битовнит (№ 70-90), анортит (№ 90-100).

Кристаллы реальных минералов часто обнаруживают зонарное или секториальное, блочное или доменное строение; изоморфные примеси могут распределяться в них статистически (беспорядочно), занимать строго определённые структурные позиции или группироваться в кластеры; обнаружено вхождение в минералы примесных компонентов в форме плоских встроек и т.д. Чрезвычайно характерны для кристаллов многих минералов (кварца, полевых шпатов и др.) весьма многообразные явления двойникования, часто полисинтетического. Двойникование подобно распаду смешанных кристаллов фиксируется на разных уровнях — от макроскопического до субмикроскопического и доменного.

Изучение реального строения и состава кристаллов минералов даёт важную информацию об условиях минералообразования.

Химический состав и конституция, химические и кристаллохимические формулы. В состав минералов входят все стабильные и долгоживущие изотопы элементов периодической системы, кроме инертных газов (гелий и аргон могут накапливаться в структурных каналах и полостях кристаллических решёток минералов как радиогенные продукты или вследствие захвата из атмосферы). Но минералообразующая роль различных элементов неодинакова. Одни из них проявляют тенденцию к образованию "собственных" минералов, другие (т.н. элементы-примеси) — к изоморфному рассеянию в решётках минералов, содержащих кристаллохимически близкие к ним, но более распространённые элементы. К рассеянным элементам, чаще всего входящим в состав минералов в виде изоморфных примесей, относятся Rb, Cd, Ga, In, Tl, Sc, ряд редкоземельных, Ge, Re, I, Br, Ra, Se и др.; для многих из них вообще не известно самостоятельных минералов. Примеси могут входить в минералы не только изоморфно, но и путём сорбции, а также в виде механических минеральных или газово-жидких микровключений. Большинство минералов — соединения переменного состава, т.е. члены изоморфных рядов: двух-, трёх- и многокомпонентных. Эти ряды (серии) определяют границы вариаций состава минералов, а тем самым и колебания их физических свойств: плотности, твёрдости, оптических, магнитных и других параметров элементарной ячейки, температуры плавления и т.д.

Около 25% общего числа минеральных видов в земной коре — силикаты и алюмосиликаты; около 18% приходится на фосфаты, арсенаты и их аналоги, около 13% — на сульфиды и их аналоги, около 12% — на оксиды и гидроксиды. Минералы, относящиеся к другим классам химических соединений, составляют около 32%. По распространённости в земной коре резко доминируют алюмосиликаты (особенно полевые шпаты) и силикаты, за ними следуют оксиды (прежде всего кварц) и гидроксиды (включая оксигидраты) и далее карбонаты; в сумме они слагают около 98% верхней части земной коры (до глубины 16 км). По типу химических соединений минералы подразделяются на редко встречающиеся простые вещества (самородные элементы), составные (бинарные, например, оксиды, галогениды, сульфиды) и сложные соединения (трёх- и многокомпонентные: силикаты, сложные оксиды, гидроксиды и прочие кислородные соединения, а также сложные сульфиды, тиосоли и галогениды). В составе бинарных соединений обычно присутствуют простые анионы (S2-, О2-, Cl2-, F-, OH-), реже более сложные (S22-); сложные соединения содержат комплексные анионные радикалы CO32-, SO42-, PO43-, SiO44-, AsS33-, SbS33- и др., а также полимерные: например, Si2О76-, AlSi3О8-, AlSi3O105-, Sb4S1110-, Bi2S54-.

Состав минералов выражается его химической формулой — эмпирической, полуэмпирической, кристаллохимической. Эмпирическая формула отражает лишь отношение между собой отдельных элементов в минералах. В ней элементы располагаются слева направо по мере увеличения номера их групп в периодической системе, а для элементов одной группы — по мере уменьшения их порядковых номеров, т.е. по мере увеличения их силовых характеристик (злектроотрицательностей). Элементы, образующие изоморфные смеси, приводятся в круглых скобках через запятую, располагаясь в зависимости от их содержания в минералах. После расшифровки кристаллических структур подавляющего большинства минералов и уточнения позиций различных элементов в их кристаллической решётке стало возможным введение в минералогию понятия о конституции минералов, в которой химический состав минералов тесно увязывается с их структурой. Выражением конституции минералов служат т.н. структурные, или кристаллохимические формулы, составляемые и записываемые по определённым правилам. В этих формулах элементы, играющие роль нормальных катионов, записываются в их начале в том же порядке, что и в эмпирических формулах. Комплексные ионы, и в первую очередь анионы, выделяются квадратными скобками, причём в случае бесконечного полимерного комплекса вверху слева от квадратной скобки ставится специальный значок, обозначающий его тип:

, или для комплексов с цепочечным (и ленточным), слоистым и каркасным строением соответственно. Слева, вверху от символа элемента, в круглых скобках указывается его координационное число (КЧ) в структуре, а справа, вверху, — степень окисления. Так, например, для пиропового граната соответствующие формулы имеют вид: (Mg, Fe, Mn, Ca)32+ (Al, Cr, Fe)23+Si3О12 (эмпирическая) и (6)(Mg, Fe, Mn, Ca)32+ (Al, Cr, Fe)23+ SiO43 (кристаллохимическая); для буры — Na2В4Н20О17 (эмпирическая), Na2В4О7•10Н2О (полуэмпирическая), Na2В4О5(OH)4•8Н2О (полукристаллохимическая), (6)Na2(Н2О)8(4)В2(3)В2О5(OH)4 (кристаллохимическая). Существуют и другие приёмы записи кристаллохимических формул (строгая общеобязательная регламентация отсутствует).

Для групп минералов сложного состава с широким проявлением изоморфизма употребительны обобщённые, т.н. типовые, кристаллохимические формулы, в которых катионы и анионы, сгруппированные по структурным позициям и координациональным числам, получают условные обозначения. Примеры типовых формул: структурный тип эвксенита AB2Х6, где А=Y, TR, U4+, Pb, Ca, Th; В=Nb, Ta, Ti; Х=О, OH; группа пироксенов М1МТ2О6, где М1=Mg, Fe2+, Li, Ca, Na; М=Mg, Fe2+, Al, Fe3+; Т=Si, частично Al; группа блёклых руд М10+М22+YS34S1; где М=Cu, Ag; М2+=Fe, Zn, Hg, Cd; Y=As3+, Sb3+, Te4+, отчасти Bi3+ и т.д.

Особенности химического состава минералов (в т.ч. содержание элементов-примесей) являются их важнейшими типоморфными признаками (см. Типоморфизм минералов).

Морфология минералов зависит от их внутреннего строения и условий образования (термодинамического и кинетического факторов, состава минералообразующей среды). Различают несколько типов облика кристаллов минералов: изометричный, таблитчатый, листоватый и чешуйчатый, длинно- и короткостолбчатый, шестоватый и игольчатый, дощатый и др. Более строго (по преобладающим на кристалле граням — т.н. габитусным формам) определяется габитус кристаллов: кубический, октаэдрический, пентагондодекаэдрический, кубооктаэдрический, ромбоэдрический, призматический и другие. При различных условиях один и тот же минерал может образовывать кристаллы различного облика (апатит — длинно- и короткостолбчатые, игольчатые, таблитчатые, фенакит — от изометрического до игольчатых и т.д.), а иногда, сохраняя свой облик (например, изометрический), меняет габитус (например, флюорит — от октаэдрического до кубического). Часто даже в одном месторождении последовательные генерации одного минерала резко меняют свой облик и габитус, образуя т.н. эволюционный кристалломорфологический ряд. Форма кристаллов минералов — его типоморфный признак.

Быстрая кристаллизация минералов приводит к искажению формы их кристаллов, возникновению скелетных, дендритных, нитевидных форм, сферо-кристаллов. Кристаллы минералов нередко несут на гранях характерную штриховку, фигуры роста и растворения. Массовая кристаллизация (например, при образовании изверженных горных пород) создаёт обстановку стеснённого роста, и минералы образуют зёрна неправильной формы. Детальное изучение форм выделений минералов, скульптуры на гранях их кристаллов, явлений двойникования, кристаллов-фантомов и т.д., прослеживание морфологической эволюции минералов в процессе их образования (кристалло-морфологический и онтогенический анализ) позволяют воссоздать историю формирования минеральных индивидов. Среди кристаллических минеральных индивидов различают: кристаллы нормальные, т.е. плоско- и полногранные разного облика, определяющегося составом и условиями образования, скелетные (рёберные), блочные, скрученные, расщеплённые, дендритные (расщеплённые скелетные кристаллы); сферокристаллы, возникающие при объёмном расщеплении кристаллов вплоть до образования круглых кристаллических индивидов особенно характерных для стильбита и Mg (Mn) — кальцита; сферолиты, образованные расходящимися из центра пучками тончайших волокон, игл, столбчатых, пластинчатых и более крупных составных частей; сфероидолиты, отдельные волокна, иглы которых не прямые, как в сферолите, а изогнуты к периферии; и те и другие имеют круглую поверхность, причём сферолиты часто шарообразны.

Значительно чаще, чем отдельные кристаллы минералов, встречаются их сростки (минеральные агрегаты), как закономерно ориентированные (двойники, эпитаксия и синтаксия, симплектитовые и топотаксического срастания), так и лишённые взаимной ориентировки. Блочные, скрученные, дендритные и расщеплённые кристаллы, сферокристаллы, сферолиты и сфероидолиты могут рассматриваться одновременно как индивиды, из которых слагаются более сложные агрегаты, и как минеральные агрегаты, состоящие из отдельных индивидов — волокон, игл и т.д. К минеральным агрегатам относятся друзы нормальных кристаллов, корки расщеплённых кристаллов, сферо-кристаллов, сферолитов. Все они образуются на относительно плоском основании. На основаниях иной формы могут возникать, например, псевдосталактиты, представляющие сферолитовые корки, возникающие вокруг волосовидных и других оснований (игольчатых минералов и остатков от растворения вмещающей породы и т.п.). Минеральные индивиды и минеральные агрегаты слагают минеральные тела. К малым минеральным телам относят, например, коралиты, сталактиты, сталагмиты, пизолиты, кокарды, гнёзда, жеоды, конкреции, к крупным — жилы, рудные столбы, пласты, залежи, некки, силлы, батолиты, лакколиты и т.д.

Классификация минералов

Попытки систематизации минералов на различной основе предпринимались уже в античном мире. Первоначально (от Аристотеля до Ибн Сины и Бируни) их делили по внешним признакам, иногда привлекая и генетические элементы, зачастую самые фантастические. Начиная с позднего Возрождения и вплоть до начала 19 в. доминировали классификации, основанные на внешних признаках и физических свойствах минералов Во 2-й половине 19 — начале 20 вв. исключительное распространение получили химические классификации минералов (труды П. Грота, В. И. Вернадского, П. Ниггли и др.). С 20-х гг. 20 в. всё большую роль начинают играть кристаллохимические классификации, в которых за основу принимаются в равной мере химический состав и кристаллическая структура минералов. В современной минералогии имеется много различных вариантов минералогической систематики. В CCCP наиболее распространена классификация минералов на типы и классы по химическому составу (табл.).

Более мелкие таксоны внутри классов (подклассы, отделы, группы и др.) выделяют по типу структуры (силикаты) и в соответствии со степенью усложнения состава. При выделении дробных таксонов основываются также на группировке близких в геохимическом и кристаллохимическом отношении катионов и анионов. Ведутся специальные исследования в направлении создания естественной генетико-структурной и химико-структурной систематики минералов.

Схема классификации минералов

Основные типы химических вешеств и соединений Классы (по ведушему аниону) Подклассы, отделы (по степени сложности состава или по структурному мотиву кристаллической решётки)
I. Простые вешества Самородные элементы а) металлы, сплавы, интерметаллические соединения, б) неметаллы, в) карбиды, нитриды, фосфиды, силициды
II. Бинарные и сложные соединения с аноинами: S2-, S22-, Se2-, As2-, AsS2-, Te2- и др. 1. Сульфиды, арсениды, селениды, теллуриды а) простые сульфиды и селениды, б) дисульфиды , диарсениды и т.д., в) арсениды и сульфоарсениды, г) теллуриды
YS33- где Y=As3+, Sb3+, Te4+ Iа. Тиосоли (сульфосоли) Тиосоли с мономерными анионными радикалами
YnSn То же Тиосоли с полимерными анионными радикалами
O2-, OH-,TiО32-, WO42-, NbО43-, Nb2O62-, Ta2O62- и др. 2. Оксиды и гидрооксиды а) простые оксиды, б) сложные оксиды: титанаты и титано-танталониабаты, частично вольфрамиты, в) гидрооксиды и оксигидраты (простые и сложные)
F-, AlF63- и др. Cl-, Br-, L- 3. Галогениды а) фториды (простые и сложные, т.е. комплексные), б) хлориды, бромиды, иодиды (простые и сложные)
III. Солеобразные с кислородосодержащими комплексными анионами типа Mmz+ On2-(2n-mz)-, где M= Si4+, Al3+, B3+, P5+, C4+, S6+, As5+, Cr6+, Mo6+, W6+ 1. Селикаты, алюмоселикаты и др. а) островные и групповые, б) кольцевые, в) цепочечные и ленточные, г) слоистые, д) каркасные
2. Бораты 3. Фосфаты, арсенаты, ванадаты а) простые (безводные и водосодержашие), б) сложные (основные, кристаллогидраты, двойные соли и т.д.)
4. Карбонаты 5. Сульфаты 6. Хроматы 7. Молибдаты, и вольфраматы
IV. Органические соединения 1. Соли органических кислот а) оксалаты, ацетаты и др. (кристаллогидраты), б) азотистые соединения
2. Ископаемые смолы

Физические свойства минералов

обусловлены их внутренним строением и химическим составом. Наблюдаемые у реальных минералов колебания физических свойств вызваны явлениями микронеоднородности и изоморфизма, структурными дефектами, различной степенью упорядоченности или метамиктности (иногда даже в пределах одного зерна) и другими факторами. Физические свойства минералов наряду с их морфологией — основа их диагностики, поисков, а в ряде случаев и практического использования. К физическим свойствам минералов относятся их плотность, механические, оптические, люминесцентные, магнитные, электрические, термические свойства, радиоактивность.

По плотности минералы подразделяют на лёгкие (до 2500 кг/м3), средние (2500-4000 кг/м3), тяжёлые (4000-8000 кг/м3) и весьма тяжёлые (более 8000 кг/м3). В минералогическом анализе к лёгкой фракции относятся минералы с плотностью 2900 кг/м3 (не тонущие в бромоформе), к тяжёлой — минералы с плотностью >2900 кг/м3 (тонущие в нём). Плотность минералов определяется его составом (содержанием тяжёлых катионов) и типом структуры, степенью её совершенства, явлениями гидратации и метамиктности, характером и количеством микровключений.

Механические свойства минералов

Механические свойства минералов включают твёрдость минералов, упругие свойства, излом, спайность минералов и отдельность. Качественное определение упругих свойств минералов производится визуально, по их реакции на механические напряжения (характеру деформаций). Различают минералы хрупкие (большинство) и ковкие (некоторые самородные металлы и сульфиды), а среди листоватых и чешуйчатых минералов — гибкие упругие (слюды) и неупругие (хлориты, урановые слюдки), а также негибкие (хрупкие слюды). Волокнистые минералы бывают ломкими и гибкими (хризотил-асбест). Излом — важное диагностическое свойство минерала, характеризует поверхность обломков, на которые он раскалывается (не по спайности) при ударе. Различают изломы раковистый, занозистый, волокнистый, землистый, ровный, неровный, ступенчатый и др.

Оптические свойства минералов

Оптические свойства минералов включают цвет минералов, блеск, степень прозрачности, светопреломление и отражение, плеохроизм и др. Кристаллооптические свойства минералов изучают и количественно измеряют с помощью поляризационного микроскопа: прозрачных минералов — в проходящем свете, в тонких срезах (шлифах) или иммерсионных средах; непрозрачных — в отражённом свете, в аншлифах (полировках). Для прозрачных минералов определяют оптические константы: показатели светопреломления, их дисперсию, двупреломление света, осность, оптических знак, величину угла между оптическими осями, схему плеохроизма; для непрозрачных минералов — отражение, оптическую анизотропию, двуотражение, внутренние рефлексы, дисперсию отражения и поглощения. Блеск — характерный диагностический признак для многих минералов. Он определяется типом химической связи, составом минералов и величиной светопреломления. Различают металлический, полуметаллический, алмазный, жирный, восковой, смоляной, стеклянный, шелковистый, перламутровый и другие блески минералов.

Магнитные (см. Магнитные свойства), люминесцентные, электрические (см. Электрические свойства), термические (см. Термический анализ) и другие физические свойства минералов изучает развивающийся раздел минералогии — физика минералов, широко использующий для исследований свойств минералов методы физики твёрдого тела и соответствующую аппаратуру (ИК-, ЯГР-, ЭПР-, ЯМР-, Оже-спектрометры, просвечивающие электронные микроскопы и др.). Знание свойств минералов, с одной стороны, необходимо для точной диагностики минералов, с другой — для изучения их типоморфизма, разработки эффективных методов извлечения минералов из руд, геофизических методов разведки, использования минералов в народном хозяйстве.

Диагностика. Предварительная полевая диагностика минералов производится по внешним признакам и простым физическим свойствам: морфологии выделений, относительной твёрдости и плотности, цвету черты, блеску, побежалости, спайности, излому, люминесценции и пр. С помощью компаса диагностируются ферромагнитные минералы (магнетит, пирротин).

Для определения карбонатов используются методы окрашивания, "вскипание" с HCl. Иногда прибегают к простейшим качественным химическим реакциям (например, на фосфор с молибденово-кислым аммонием). Многие распространённые минералы, породообразующие и рудные, уже в полевых условиях удаётся определить достаточно надёжно. Более точная диагностика осуществляется в лабораторных условиях: оптическими методами (под микроскопом — в прозрачных шлифах, аншлифах, иммерсионных препаратах, при помощи диагностического травления), по рентгенограммам, на основе определения элементного состава посредством химического, эмиссионного спектрального, атомно-абсорбционного, рентгенорадиометрического и других видов анализа, по ИК-спектрам, спектрам фото- и рентгенолюминесценции и т.д. Высокодисперсные минералы, например глинистые, дающие на рентгенограммах нечёткие диффузные линии, уверенно диагностируются лишь под электронным микроскопом, с применением метода электронографии. Тот же метод позволяет точно диагностировать смешаннослойные минералы, политипы листоватых и чешуйчатых минералов. Карбонаты и другие минералы, содержащие летучие компоненты, определяются при помощи термического анализа (по дифференционным кривым нагревания и кривым потери в весе). Для точной диагностики метамиктных минералов часто требуется сочетание рентгеновской дифрактометрии и термического анализа. Степень упорядочения минералов определяется в основном рентгенографическими методами. Формы вхождения воды и тонкие структурные особенности минералов устанавливаются комплексом физических методов (термический анализ, ИК-, ЯМР-спектроскопия, ЯГР-, ЭПР-спектроскопия, нейтронография и др.). Формы вхождения примесей в минералы выясняются с помощью ЭПР-спектроскопии, электронной микроскопии, микрорентгеноспектрального анализа на электронном микрозонде, локального (лазерного) спектрального анализа. Локальные методы исследования позволяют выявить микронеоднородность минералов и более достоверно определить химический состав чистых минеральных фаз.

Нахождение минералов в природе

По распространённости в природе все минералы разделяют на главные породо- и рудообразующие (см. Породообразующие минералы), второстепенные, акцессорные минералы, редко встречающиеся (не образующие больших скоплений) и весьма редкие (известные в виде единичных находок). Это разделение условно. По мере открытия новых генетических типов месторождений многие минералы, ранее считавшиеся редкими и крайне редкими, приобретают значение важных компонентов руд (давсонит, пирохлор, бертрандит, фенакит, воджинит, тунгстенит, бадделеит, бишофит, трона и т.д.).

Изучением условий и процессов образования и изменения минералов занимается г