Five palaeobiological laws needed to understand the evolution of the living biota (original) (raw)

References

  1. Slater, G. J., Harmon, L. J. & Alfaro, M. E. Integrating fossils with molecular phylogenies improves inferences of trait evolution. Dryadhttp://doi.org/10.5061/dryad.q96d7 (2012).
  2. Stadler, T. Recovering speciation and extinction dynamics based on phylogenies. J. Evol. Biol. 26, 1203–1219 (2013).
    Article CAS Google Scholar
  3. Morlon, H. Phylogenetic approaches for studying diversification. Ecol. Lett. 17, 508–525 (2014).
    Article Google Scholar
  4. Bacon, C. D. et al. Biological evidence supports an early and complex emergence of the Isthmus of Panama. Proc. Natl Acad. Sci. USA 112, 6110–6115 (2015).
    Article CAS Google Scholar
  5. Macleod, N. The geological extinction record: History, data, biases, and testing. Geol. Soc. Am. Spec. Pap. 505, SPE505-01 (2014).
    Google Scholar
  6. Bailey, N. T. J. The Elements of Stochastic Processes, with Applications to the Natural Sciences (Wiley, 1964).
    Google Scholar
  7. Raup, D. M. Mathematical models of cladogenesis. Paleobiology 11, 42–52 (1985). Pioneering paper in the statistical analysis of evolutionary birth–death processes.
    Article Google Scholar
  8. Van Valen, L. A new evolutionary law. Evol. Theory 1, 1–30 (1973).
    Google Scholar
  9. Raup, D. M. Taxonomic survivorship curves and Van Valen's Law. Paleobiology 1, 82–96 (1975).
    Article Google Scholar
  10. Kendall, D. G. On the generalized ‘birth-and-death’ process. Ann. Math. Stat. 19, 1–15 (1948).
    Article Google Scholar
  11. Alroy, J. Quantitative Mammalian Biochronology and Biogeography of North America (Univ. Chicago, 1994).
    Google Scholar
  12. Alroy, J. Constant extinction, constrained diversification, and uncoordinated stasis in North American mammals. Palaeogeogr. Palaeoclimatol. Palaeoecol. 127, 285–311 (1996).
    Article Google Scholar
  13. Bradley, R. et al. Revised checklist of North American mammals north of Mexico, 2014. Occas. Pap. Museum Texas Tech Univ. 327, 1–27 (2014).
    Google Scholar
  14. Foote, M. & Miller, A. I. Principles of Paleontology (W. H. Freeman and Company, 2007). Comprehensive introduction to the analysis of the fossil record.
    Google Scholar
  15. Meredith, R. W. et al. Impacts of the Cretaceous terrestrial revolution and KPg extinction on mammal diversification. Science 334, 521–524 (2011).
    Article CAS Google Scholar
  16. dos Reis, M. et al. Phylogenomic datasets provide both precision and accuracy in estimating the timescale of placental mammal phylogeny. Proc. R. Soc. B 279, 3491–3500 (2012).
    Article Google Scholar
  17. Buckley, L. B. et al. Phylogeny, niche conservatism and the latitudinal diversity gradient in mammals. Proc. R. Soc. B 277, 2131–2138 (2010).
    Article Google Scholar
  18. Jetz, W. & Fine, P. V. A. Global gradients in vertebrate diversity predicted by historical area-productivity dynamics and contemporary environment. PLoS Biol. 10, e1001292 (2012).
  19. Kammer, T. W., Baumiller, T. K. & Ausich, W. I. Evolutionary significance of differential species longevity in Osagean–Meramecian (Mississippian) crinoid clades. Paleobiology 24, 155–176 (1998).
    Google Scholar
  20. Crampton, J. S., Cooper, R. A., Sadler, P. M. & Foote, M. Greenhouse-icehouse transition in the Late Ordovician marks a step change in extinction regime in the marine plankton. Proc. Natl Acad. Sci. USA 113, 1498–1503 (2016).
    Article CAS Google Scholar
  21. Horowitz, A. S., Blakely, R. F. & Macurda, D. B. J. Taxonomic survivorship within the Blastoidea (Echinodermata). J. Paleontol. 59, 543–550 (1985).
    Google Scholar
  22. Norris, R. D. Biased extinction and evolutionary trends. Paleobiology 17, 388–399 (1991).
    Article Google Scholar
  23. Silvestro, D., Cascales-Miñana, B., Bacon, C. D. & Antonelli, A. Revisiting the origin and diversification of vascular plants through a comprehensive Bayesian analysis of the fossil record. New Phytol. 207, 425–436 (2015).
    Article Google Scholar
  24. Niklas, K. J., Tiffney, B. H. B. H. & Knoll, A. H. Patterns in vascular land plant diversification. Nature 303, 614–616 (1983).
    Article Google Scholar
  25. Marshall, C. R. & Quental, T. B. The uncertain role of diversity dependence in species diversification and the need to incorporate time-varying carrying capacities. Philos. Trans. B 371,(2016).
  26. Quental, T. B. & Marshall, C. R. Diversity dynamics: Molecular phylogenies need the fossil record. Trends Ecol. Evol. 25, 435–441 (2010). Summarizes the fact that many evolutionary processes can lead to similar looking phylogenies.
    Article Google Scholar
  27. Rabosky, D. L. Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees. PLoS ONE 9, e89543 (2014).
    Article Google Scholar
  28. Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001).
    Article CAS Google Scholar
  29. Morlon, H., Parsons, T. L. & Plotkin, J. B. Reconciling molecular phylogenies with the fossil record. Proc. Natl Acad. Sci. USA 108, 16327–32 (2011).
    Article CAS Google Scholar
  30. Reyes, E., Morlon, H. & Sauquet, H. Presence in Mediterranean hotspots and floral symmetry affect speciation and extinction rates in Proteaceae. New Phytol. 207, 401–410 (2015).
    Article Google Scholar
  31. Liow, L. H., Quental, T. B. & Marshall, C. R. When can decreasing diversification rates be detected with molecular phylogenies and the fossil record? Syst. Biol. 59, 646–659 (2010).
    Article Google Scholar
  32. Quental, T. B. & Marshall, C. R. How the Red Queen drives terrestrial mammals to extinction. Science 341, 290–292 (2013).
    Article CAS Google Scholar
  33. Lim, J. Y. & Marshall, C. R. The true tempo of evolutionary radiation and decline revealed on the Hawaiian Archipelago. Nature 543, 710–713 (2017).
    Article CAS Google Scholar
  34. Heath, T. A., Huelsenbeck, J. P. & Stadler, T. The fossilized birth–death process for coherent calibration of divergence-time estimates. Proc. Natl Acad. Sci. USA 111, E2957–E2966 (2014).
    Article CAS Google Scholar
  35. Zhang, C., Stadler, T., Klopfstein, S., Heath, T. A. & Ronquist, F. Total-evidence dating under the fossilized birth–death process. Syst. Biol. 65, 228–249 (2016).
    Article Google Scholar
  36. Losos, J. B. Seeing the forest for the trees: the limitations of phylogenies in comparative biology. (American Society of Naturalists Address). Am. Nat. 177, 709–27 (2011).
    Article Google Scholar
  37. Foote, M. Origination and extinction through the Phanerozoic: a new approach. J. Geol. 111, 125–148 (2003).
    Article Google Scholar
  38. Foote, M. Pulsed origination and extinction in the marine realm. Paleobiology 31, 6–20 (2005).
    Article Google Scholar
  39. Lu, P. J., Yogo, M. & Marshall, C. R. Phanerozoic marine biodiversity dynamics in light of the incompleteness of the fossil record. Proc. Natl Acad. Sci. USA 103, 2736–2739 (2006).
    Article CAS Google Scholar
  40. Condamine, F. L., Nagalingum, N. S., Marshall, C. R. & Morlon, H. Origin and diversification of living cycads: a cautionary tale on the impact of the branching process prior in Bayesian molecular dating. BMC Evol. Biol. 15, 65 (2015).
  41. Marshall, C. & Schultze, H.-P. Relative importance of molecular, neontological, and paleontological data in understanding the biology of the vertebrate invasion of land. J. Mol. Evol. 35, 93–101 (1992).
    Article CAS Google Scholar
  42. Coates, M. I. & Clack, J. A. Fish-like gills and breathing in the earliest known tetrapod. Nature 352, 234–236 (1991).
    Article Google Scholar
  43. Coates, M. I. & Clack, J. A. Polydactyly in the earliest known tetrapod limbs. Nature 347, 66–69 (1990).
    Article Google Scholar
  44. Campbell, K. S. W. & Barwick, R. E. Geological and palaeontological information and phylogenetic hypotheses. Geol. Mag. 125, 207–227 (1988).
    Article Google Scholar
  45. Rozhnov, S. V. Symmetry of echinoderms: From initial bilaterally-asymmetric metamerism to pentaradiality. Nat. Sci. 6, 171–183 (2014).
    Google Scholar
  46. Brusatte, S. L., O’Connor, J. K. & Jarvis, E. D. The origin and diversification of birds. Curr. Biol. 25, R888–R898 (2015).
    Article CAS Google Scholar
  47. White, T. D., Lovejoy, C. O., Asfaw, B., Carlson, J. P. & Suwa, G. Neither chimpanzee nor human, Ardipithecus reveals the surprising ancestry of both. Proc. Natl Acad. Sci. USA 112, 4877–4884 (2015).
    Article CAS Google Scholar
  48. Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).
    Article CAS Google Scholar
  49. Steeman, M. E. et al. Radiation of extant cetaceans driven by restructuring of the oceans. Syst. Biol. 58, 573–585 (2009).
    Article Google Scholar
  50. Quental, T. B. & Marshall, C. R. The molecular phylogenetic signature of clades in decline. PLoS ONE 6, e25780 (2011).
  51. Bininda-emonds, O. R. P. et al. The delayed rise of present-day mammals. Nature 446, 507–512 (2007).
    Article CAS Google Scholar
  52. Alroy, J. The fossil record of North American mammals: evidence for a Paleocene evolutionary radiation. Syst. Biol. 48, 107–118 (1999).
    Article CAS Google Scholar
  53. Halliday, T. J. D., Upchurch, P. & Goswami, A. Eutherians experienced elevated evolutionary rates in the immediate aftermath of the Cretaceous–Palaeogene mass extinction. Proc. R. Soc. B 283, 20153026 (2016).
  54. Alroy, J. Accurate and precise estimates of origination and extinction rates. Paleobiology 40, 374–397 (2014).
    Article Google Scholar
  55. Alroy, J. A more precise speciation and extinction rate estimator. Paleobiology 41, 633–639 (2015).
    Article Google Scholar
  56. Silvestro, D., Schnitzler, J., Liow, L. H., Antonelli, A. & Salamin, N. Bayesian estimation of speciation and extinction from incomplete fossil occurrence data. Syst. Biol. 63, 349–367 (2014).
    Article Google Scholar
  57. Silvestro, D., Antonelli, A., Salamin, N. & Quental, T. B. The role of clade competition in the diversification of North American canids. Proc. Natl Acad. Sci. USA 112, 8684–8689 (2015).
    Article CAS Google Scholar

Download references