Five palaeobiological laws needed to understand the evolution of the living biota (original) (raw)
References
Slater, G. J., Harmon, L. J. & Alfaro, M. E. Integrating fossils with molecular phylogenies improves inferences of trait evolution. Dryadhttp://doi.org/10.5061/dryad.q96d7 (2012).
Stadler, T. Recovering speciation and extinction dynamics based on phylogenies. J. Evol. Biol.26, 1203–1219 (2013). ArticleCAS Google Scholar
Morlon, H. Phylogenetic approaches for studying diversification. Ecol. Lett.17, 508–525 (2014). Article Google Scholar
Bacon, C. D. et al. Biological evidence supports an early and complex emergence of the Isthmus of Panama. Proc. Natl Acad. Sci. USA112, 6110–6115 (2015). ArticleCAS Google Scholar
Macleod, N. The geological extinction record: History, data, biases, and testing. Geol. Soc. Am. Spec. Pap.505, SPE505-01 (2014). Google Scholar
Bailey, N. T. J. The Elements of Stochastic Processes, with Applications to the Natural Sciences (Wiley, 1964). Google Scholar
Raup, D. M. Mathematical models of cladogenesis. Paleobiology11, 42–52 (1985). Pioneering paper in the statistical analysis of evolutionary birth–death processes. Article Google Scholar
Van Valen, L. A new evolutionary law. Evol. Theory1, 1–30 (1973). Google Scholar
Raup, D. M. Taxonomic survivorship curves and Van Valen's Law. Paleobiology1, 82–96 (1975). Article Google Scholar
Kendall, D. G. On the generalized ‘birth-and-death’ process. Ann. Math. Stat.19, 1–15 (1948). Article Google Scholar
Alroy, J. Quantitative Mammalian Biochronology and Biogeography of North America (Univ. Chicago, 1994). Google Scholar
Alroy, J. Constant extinction, constrained diversification, and uncoordinated stasis in North American mammals. Palaeogeogr. Palaeoclimatol. Palaeoecol.127, 285–311 (1996). Article Google Scholar
Bradley, R. et al. Revised checklist of North American mammals north of Mexico, 2014. Occas. Pap. Museum Texas Tech Univ.327, 1–27 (2014). Google Scholar
Foote, M. & Miller, A. I. Principles of Paleontology (W. H. Freeman and Company, 2007). Comprehensive introduction to the analysis of the fossil record. Google Scholar
Meredith, R. W. et al. Impacts of the Cretaceous terrestrial revolution and KPg extinction on mammal diversification. Science334, 521–524 (2011). ArticleCAS Google Scholar
dos Reis, M. et al. Phylogenomic datasets provide both precision and accuracy in estimating the timescale of placental mammal phylogeny. Proc. R. Soc. B279, 3491–3500 (2012). Article Google Scholar
Buckley, L. B. et al. Phylogeny, niche conservatism and the latitudinal diversity gradient in mammals. Proc. R. Soc. B277, 2131–2138 (2010). Article Google Scholar
Jetz, W. & Fine, P. V. A. Global gradients in vertebrate diversity predicted by historical area-productivity dynamics and contemporary environment. PLoS Biol.10, e1001292 (2012).
Kammer, T. W., Baumiller, T. K. & Ausich, W. I. Evolutionary significance of differential species longevity in Osagean–Meramecian (Mississippian) crinoid clades. Paleobiology24, 155–176 (1998). Google Scholar
Crampton, J. S., Cooper, R. A., Sadler, P. M. & Foote, M. Greenhouse-icehouse transition in the Late Ordovician marks a step change in extinction regime in the marine plankton. Proc. Natl Acad. Sci. USA113, 1498–1503 (2016). ArticleCAS Google Scholar
Horowitz, A. S., Blakely, R. F. & Macurda, D. B. J. Taxonomic survivorship within the Blastoidea (Echinodermata). J. Paleontol.59, 543–550 (1985). Google Scholar
Norris, R. D. Biased extinction and evolutionary trends. Paleobiology17, 388–399 (1991). Article Google Scholar
Silvestro, D., Cascales-Miñana, B., Bacon, C. D. & Antonelli, A. Revisiting the origin and diversification of vascular plants through a comprehensive Bayesian analysis of the fossil record. New Phytol.207, 425–436 (2015). Article Google Scholar
Niklas, K. J., Tiffney, B. H. B. H. & Knoll, A. H. Patterns in vascular land plant diversification. Nature303, 614–616 (1983). Article Google Scholar
Marshall, C. R. & Quental, T. B. The uncertain role of diversity dependence in species diversification and the need to incorporate time-varying carrying capacities. Philos. Trans. B371,(2016).
Quental, T. B. & Marshall, C. R. Diversity dynamics: Molecular phylogenies need the fossil record. Trends Ecol. Evol.25, 435–441 (2010). Summarizes the fact that many evolutionary processes can lead to similar looking phylogenies. Article Google Scholar
Rabosky, D. L. Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees. PLoS ONE9, e89543 (2014). Article Google Scholar
Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science292, 686–693 (2001). ArticleCAS Google Scholar
Morlon, H., Parsons, T. L. & Plotkin, J. B. Reconciling molecular phylogenies with the fossil record. Proc. Natl Acad. Sci. USA108, 16327–32 (2011). ArticleCAS Google Scholar
Reyes, E., Morlon, H. & Sauquet, H. Presence in Mediterranean hotspots and floral symmetry affect speciation and extinction rates in Proteaceae. New Phytol.207, 401–410 (2015). Article Google Scholar
Liow, L. H., Quental, T. B. & Marshall, C. R. When can decreasing diversification rates be detected with molecular phylogenies and the fossil record? Syst. Biol.59, 646–659 (2010). Article Google Scholar
Quental, T. B. & Marshall, C. R. How the Red Queen drives terrestrial mammals to extinction. Science341, 290–292 (2013). ArticleCAS Google Scholar
Lim, J. Y. & Marshall, C. R. The true tempo of evolutionary radiation and decline revealed on the Hawaiian Archipelago. Nature543, 710–713 (2017). ArticleCAS Google Scholar
Heath, T. A., Huelsenbeck, J. P. & Stadler, T. The fossilized birth–death process for coherent calibration of divergence-time estimates. Proc. Natl Acad. Sci. USA111, E2957–E2966 (2014). ArticleCAS Google Scholar
Zhang, C., Stadler, T., Klopfstein, S., Heath, T. A. & Ronquist, F. Total-evidence dating under the fossilized birth–death process. Syst. Biol.65, 228–249 (2016). Article Google Scholar
Losos, J. B. Seeing the forest for the trees: the limitations of phylogenies in comparative biology. (American Society of Naturalists Address). Am. Nat.177, 709–27 (2011). Article Google Scholar
Foote, M. Origination and extinction through the Phanerozoic: a new approach. J. Geol.111, 125–148 (2003). Article Google Scholar
Foote, M. Pulsed origination and extinction in the marine realm. Paleobiology31, 6–20 (2005). Article Google Scholar
Lu, P. J., Yogo, M. & Marshall, C. R. Phanerozoic marine biodiversity dynamics in light of the incompleteness of the fossil record. Proc. Natl Acad. Sci. USA103, 2736–2739 (2006). ArticleCAS Google Scholar
Condamine, F. L., Nagalingum, N. S., Marshall, C. R. & Morlon, H. Origin and diversification of living cycads: a cautionary tale on the impact of the branching process prior in Bayesian molecular dating. BMC Evol. Biol.15, 65 (2015).
Marshall, C. & Schultze, H.-P. Relative importance of molecular, neontological, and paleontological data in understanding the biology of the vertebrate invasion of land. J. Mol. Evol.35, 93–101 (1992). ArticleCAS Google Scholar
Coates, M. I. & Clack, J. A. Fish-like gills and breathing in the earliest known tetrapod. Nature352, 234–236 (1991). Article Google Scholar
Coates, M. I. & Clack, J. A. Polydactyly in the earliest known tetrapod limbs. Nature347, 66–69 (1990). Article Google Scholar
Campbell, K. S. W. & Barwick, R. E. Geological and palaeontological information and phylogenetic hypotheses. Geol. Mag.125, 207–227 (1988). Article Google Scholar
Rozhnov, S. V. Symmetry of echinoderms: From initial bilaterally-asymmetric metamerism to pentaradiality. Nat. Sci.6, 171–183 (2014). Google Scholar
Brusatte, S. L., O’Connor, J. K. & Jarvis, E. D. The origin and diversification of birds. Curr. Biol.25, R888–R898 (2015). ArticleCAS Google Scholar
White, T. D., Lovejoy, C. O., Asfaw, B., Carlson, J. P. & Suwa, G. Neither chimpanzee nor human, Ardipithecus reveals the surprising ancestry of both. Proc. Natl Acad. Sci. USA112, 4877–4884 (2015). ArticleCAS Google Scholar
Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature491, 444–448 (2012). ArticleCAS Google Scholar
Steeman, M. E. et al. Radiation of extant cetaceans driven by restructuring of the oceans. Syst. Biol.58, 573–585 (2009). Article Google Scholar
Quental, T. B. & Marshall, C. R. The molecular phylogenetic signature of clades in decline. PLoS ONE6, e25780 (2011).
Bininda-emonds, O. R. P. et al. The delayed rise of present-day mammals. Nature446, 507–512 (2007). ArticleCAS Google Scholar
Alroy, J. The fossil record of North American mammals: evidence for a Paleocene evolutionary radiation. Syst. Biol.48, 107–118 (1999). ArticleCAS Google Scholar
Halliday, T. J. D., Upchurch, P. & Goswami, A. Eutherians experienced elevated evolutionary rates in the immediate aftermath of the Cretaceous–Palaeogene mass extinction. Proc. R. Soc. B283, 20153026 (2016).
Alroy, J. Accurate and precise estimates of origination and extinction rates. Paleobiology40, 374–397 (2014). Article Google Scholar
Alroy, J. A more precise speciation and extinction rate estimator. Paleobiology41, 633–639 (2015). Article Google Scholar
Silvestro, D., Schnitzler, J., Liow, L. H., Antonelli, A. & Salamin, N. Bayesian estimation of speciation and extinction from incomplete fossil occurrence data. Syst. Biol.63, 349–367 (2014). Article Google Scholar
Silvestro, D., Antonelli, A., Salamin, N. & Quental, T. B. The role of clade competition in the diversification of North American canids. Proc. Natl Acad. Sci. USA112, 8684–8689 (2015). ArticleCAS Google Scholar