Koye, D. N., Magliano, D. J., Nelson, R. G. & Pavkov, M. E. The global epidemiology of diabetes and kidney disease. Adv. Chronic Kidney Dis.25, 121–132 (2018). ArticlePubMed Google Scholar
Gregg, E. W. et al. Changes in diabetes-related complications in the United States, 1990–2010. N. Engl. J. Med.370, 1514–1523 (2014). Unlike the prevalence of other diabetic microvascular and macrovascular complications, which have decreased over the past 10–20 years, the prevalence of DKD has remained unchanged. ArticleCASPubMed Google Scholar
Lytvyn, Y., Bjornstad, P., van Raalte, D. H., Heerspink, H. L. & Cherney, D. Z. I. The new biology of diabetic kidney disease-mechanisms and therapeutic implications. Endocr. Rev.41, 202–231 (2020). An excellent review of therapies for DKD currently in use or in clinical development. Article Google Scholar
Zinman, B. et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N. Engl. J. Med.373, 2117–2128 (2015). ArticleCASPubMed Google Scholar
Neal, B. et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N. Engl. J. Med.377, 644–657 (2017). ArticleCASPubMed Google Scholar
Wiviott, S. D. et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med.380, 347–357 (2019). ArticleCASPubMed Google Scholar
Perkovic, V. et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N. Engl. J. Med.380, 2295–2306 (2019). A large prospective study that demonstrated the efficacy of the SGLT2 inhibitor canagliflozin in slowing the progression of kidney disease in patients with established DKD and resulted in approval of the drug by the FDA. ArticleCASPubMed Google Scholar
Heerspink, H. J. L. et al. Dapagliflozin in patients with chronic kidney disease. N. Engl. J. Med.383, 1436–1446 (2020). ArticleCASPubMed Google Scholar
Umanath, K. & Lewis, J. B. Update on diabetic nephropathy: core curriculum 2018. Am. J. Kidney Dis.71, 884–895 (2018). ArticlePubMed Google Scholar
Tonneijck, L. et al. Glomerular hyperfiltration in diabetes: mechanisms, clinical significance, and treatment. J. Am. Soc. Nephrol.28, 1023–1039 (2017). Excellent, up-to-date review about the origin, significance and treatment of hyperfiltration in diabetic nephropathy. ArticleCASPubMedPubMed Central Google Scholar
Markus, M. R. P. et al. Prediabetes is associated with microalbuminuria, reduced kidney function and chronic kidney disease in the general population: The KORA (Cooperative Health Research in the Augsburg Region) F4-Study. Nutr. Metab. Cardiovasc. Dis.28, 234–242 (2018). ArticleCASPubMed Google Scholar
Diabetes, C. et al. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med.329, 977–986 (1993). Landmark study demonstrating the importance of tight glycaemic control in the prevention of microvascular complications in patients with type 1 diabetes. Article Google Scholar
American Diabetes Association. 6. Glycemic targets: standards of medical care in diabetes-2018. Diabetes Care41, S55–S64 (2018). Article Google Scholar
Diabetes, C. et al. Retinopathy and nephropathy in patients with type 1 diabetes four years after a trial of intensive therapy. N. Engl. J. Med.342, 381–389 (2000). Article Google Scholar
Nathan, D. M. et al. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N. Engl. J. Med.353, 2643–2653 (2005). ArticlePubMed Google Scholar
Stratton, I. M. et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ321, 405–412 (2000). ArticleCASPubMedPubMed Central Google Scholar
Group, A. C. et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N. Engl. J. Med.358, 2560–2572 (2008). Article Google Scholar
Ismail-Beigi, F. et al. Effect of intensive treatment of hyperglycaemia on microvascular outcomes in type 2 diabetes: an analysis of the ACCORD randomised trial. Lancet376, 419–430 (2010). ArticlePubMedPubMed Central Google Scholar
Brocco, E. et al. Evidence of a threshold value of glycated hemoglobin to improve the course of renal function in type 2 diabetes with typical diabetic glomerulopathy. J. Nephrol.14, 461–471 (2001). CASPubMed Google Scholar
Zoungas, S. et al. Combined effects of routine blood pressure lowering and intensive glucose control on macrovascular and microvascular outcomes in patients with type 2 diabetes: new results from the ADVANCE trial. Diabetes Care32, 2068–2074 (2009). ArticleCASPubMedPubMed Central Google Scholar
Tamborlane, W. V. et al. Long-term improvement of metabolic control with the insulin pump does not reverse diabetic microangiopathy. Diabetes Care5, 58–64 (1982). Although the number of patients with diabetes was small, this study demonstrated that intensive glycaemic control with insulin in patients with type 1 diabetes cannot slow the progression of DKD once macroalbuminuria is established. PubMed Google Scholar
Ciavarella, A. et al. Effect of long-term near-normoglycemia on the progression of diabetic nephropathy. Diabete Metab.11, 3–8 (1985). CASPubMed Google Scholar
Caramori, M. L., Fioretto, P. & Mauer, M. Low glomerular filtration rate in normoalbuminuric type 1 diabetic patients: an indicator of more advanced glomerular lesions. Diabetes52, 1036–1040 (2003). ArticleCASPubMed Google Scholar
Merovci, A. et al. Dapagliflozin improves muscle insulin sensitivity but enhances endogenous glucose production. J. Clin. Invest.124, 509–514 (2014). To our knowledge the first study to examine the mechanisms by which SGLT2 inhibitors improve glycaemic control in patients with diabetes. ArticleCASPubMedPubMed Central Google Scholar
DeFronzo, R. A., Norton, L. & Abdul-Ghani, M. Renal, metabolic and cardiovascular considerations of SGLT2 inhibition. Nat. Rev. Nephrol.13, 11–26 (2017). Comprehensive review of the pleiotrophic effects of SGLT2 inhibitors in humans. ArticleCASPubMed Google Scholar
DeFronzo, R. A. et al. Characterization of renal glucose reabsorption in response to dapagliflozin in healthy subjects and subjects with type 2 diabetes. Diabetes Care36, 3169–3176 (2013). ArticleCASPubMedPubMed Central Google Scholar
Merovci, A. et al. Dapagliflozin lowers plasma glucose concentration and improves beta-cell function. J. Clin. Endocrinol. Metab.100, 1927–1932 (2015). ArticleCASPubMedPubMed Central Google Scholar
Al Jobori, H. et al. Empagliflozin treatment is associated with improved beta-cell function in type 2 diabetes mellitus. J. Clin. Endocrinol. Metab.103, 1402–1407 (2018). ArticlePubMedPubMed Central Google Scholar
Yki-Jarvinen, H Glucose toxicity. in International Textbook of Diabetes Mellitus. 4th edn. 413-425 (Wiley, 2015).
Parving, H. H., Andersen, A. R., Smidt, U. M. & Svendsen, P. A. Early aggressive antihypertensive treatment reduces rate of decline in kidney function in diabetic nephropathy. Lancet1, 1175–1179 (1983). One of the earliest publications demonstrating the powerful effect of antihypertensive therapy in slowing the rate of GFR decline in patients with established DKD. ArticleCASPubMed Google Scholar
Xie, X. et al. Effects of intensive blood pressure lowering on cardiovascular and renal outcomes: updated systematic review and meta-analysis. Lancet387, 435–443 (2016). ArticlePubMed Google Scholar
Group, A. S. et al. Effects of intensive blood-pressure control in type 2 diabetes mellitus. N. Engl. J. Med.362, 1575–1585 (2010). ArticleCAS Google Scholar
Group, S. R. et al. A randomized trial of intensive versus standard blood-pressure control. N. Engl. J. Med.373, 2103–2116 (2015). ArticleCAS Google Scholar
Warren, A. M., Knudsen, S. T. & Cooper, M. E. Diabetic nephropathy: an insight into molecular mechanisms and emerging therapies. Expert Opin. Ther. Targets23, 579–591 (2019). ArticlePubMed Google Scholar
Ruggenenti, P., Cravedi, P. & Remuzzi, G. The RAAS in the pathogenesis and treatment of diabetic nephropathy. Nat. Rev. Nephrol.6, 319–330 (2010). Excellent review of the renin–angiotensin–aldosterone system in the pathogenesis and treatment of DKD. ArticleCASPubMed Google Scholar
van den Meiracker, A. H. et al. Partial escape of angiotensin converting enzyme (ACE) inhibition during prolonged ACE inhibitor treatment: does it exist and does it affect the antihypertensive response? J. Hypertens.10, 803–812 (1992). PubMed Google Scholar
Ingelfinger, J. R. Aliskiren and dual therapy in type 2 diabetes mellitus. N. Engl. J. Med.358, 2503–2505 (2008). ArticleCASPubMed Google Scholar
Morales, E. et al. Renoprotective effects of mineralocorticoid receptor blockers in patients with proteinuric kidney diseases. Nephrol. Dial. Transpl.28, 405–412 (2013). ArticleCAS Google Scholar
Cherney, D. Z. et al. Renal hemodynamic effect of sodium-glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus. Circulation129, 587–597 (2014). Well-designed study demonstrating that inhibition of the SGLT2 cotransporter reverses hyperfiltration in patients with type 1 diabetes. ArticleCASPubMed Google Scholar
Scheen, A. J. & Delanaye, P. Effects of reducing blood pressure on renal outcomes in patients with type 2 diabetes: focus on SGLT2 inhibitors and EMPA-REG OUTCOME. Diabetes Metab.43, 99–109 (2017). ArticleCASPubMed Google Scholar
Brenner, B. M. Hemodynamically mediated glomerular injury and the progressive nature of kidney disease. Kidney Int.23, 647–655 (1983). The role of altered tubuloglomerular feedback, increased intraglomerular pressure, and hyperfiltration in the development and progression of chronic kidney disease is reviewed by the original proponent of the haemodynamic theory of glomerular injury. ArticleCASPubMed Google Scholar
Thomson, S. C. & Blantz, R. C. Glomerulotubular balance, tubuloglomerular feedback, and salt homeostasis. J. Am. Soc. Nephrol.19, 2272–2275 (2008). ArticlePubMed Google Scholar
Vallon, V. et al. Adenosine A(1) receptors determine glomerular hyperfiltration and the salt paradox in early streptozotocin diabetes mellitus. Nephron Physiol.111, p30–p38 (2009). ArticleCASPubMedPubMed Central Google Scholar
Sallstrom, J. et al. Diabetes-induced hyperfiltration in adenosine A(1)-receptor deficient mice lacking the tubuloglomerular feedback mechanism. Acta Physiol.190, 253–259 (2007). ArticleCAS Google Scholar
Gallo, L. A., Wright, E. M. & Vallon, V. Probing SGLT2 as a therapeutic target for diabetes: basic physiology and consequences. Diab Vasc. Dis. Res.12, 78–89 (2015). ArticleCASPubMed Google Scholar
Bank, N. & Aynedjian, H. S. Progressive increases in luminal glucose stimulate proximal sodium absorption in normal and diabetic rats. J. Clin. Invest.86, 309–316 (1990). ArticleCASPubMedPubMed Central Google Scholar
Vallon, V. & Thomson, S. C. Renal function in diabetic disease models: the tubular system in the pathophysiology of the diabetic kidney. Annu. Rev. Physiol.74, 351–375 (2012). Review of evidence supporting enhanced glucose-coupled sodium reabsorption by the proximal tubule in the development of increased intraglomerular pressure, hyperfiltration and diabetic glomerular injury. ArticleCASPubMed Google Scholar
Vallon, V., Richter, K., Blantz, R. C., Thomson, S. & Osswald, H. Glomerular hyperfiltration in experimental diabetes mellitus: potential role of tubular reabsorption. J. Am. Soc. Nephrol.10, 2569–2576 (1999). CASPubMed Google Scholar
Bjornstad, P. et al. Rapid GFR decline is associated with renal hyperfiltration and impaired GFR in adults with Type 1 diabetes. Nephrol. Dial. Transpl.30, 1706–1711 (2015). Prospective clinical study demonstrating that hyperfiltration predicts the decline in GFR in patients with type 1 diabetes. Article Google Scholar
Magee, G. M. et al. Is hyperfiltration associated with the future risk of developing diabetic nephropathy? A meta-analysis. Diabetologia52, 691–697 (2009). ArticleCASPubMed Google Scholar
Ruggenenti, P. et al. Glomerular hyperfiltration and renal disease progression in type 2 diabetes. Diabetes Care35, 2061–2068 (2012). Prospective clinical study demonstrating that hyperfiltration predicts the decline in GFR in patients with type 2 diabetes. ArticleCASPubMedPubMed Central Google Scholar
Nelson, R. G. et al. Development and progression of renal disease in Pima Indians with non-insulin-dependent diabetes mellitus. Diabetic Renal Disease Study Group. N. Engl. J. Med.335, 1636–1642 (1996). ArticleCASPubMed Google Scholar
Jerums, G., Premaratne, E., Panagiotopoulos, S. & MacIsaac, R. J. The clinical significance of hyperfiltration in diabetes. Diabetologia53, 2093–2104 (2010). ArticleCASPubMed Google Scholar
Vestri, S. et al. Changes in sodium or glucose filtration rate modulate expression of glucose transporters in renal proximal tubular cells of rat. J. Membr. Biol.182, 105–112 (2001). ArticleCASPubMed Google Scholar
Tabatabai, N. M., Sharma, M., Blumenthal, S. S. & Petering, D. H. Enhanced expressions of sodium-glucose cotransporters in the kidneys of diabetic Zucker rats. Diabetes Res. Clin. Pract.83, e27–e30 (2009). ArticleCASPubMed Google Scholar
Albertoni Borghese, M. F. et al. Expression and activity of SGLT2 in diabetes induced by streptozotocin: relationship with the lipid environment. Nephron Physiol.112, p45–p52 (2009). ArticleCASPubMed Google Scholar
Norton, L. et al. Sodium-glucose co-transporter (SGLT) and glucose transporter (GLUT) expression in the kidney of type 2 diabetic subjects. Diabetes Obes. Metab.19, 1322–1326 (2017). Renal biopsy study demonstrating that the gene transcript for SGLT1 is increased in patients with diabetes, whereas the gene transcript for SGLT2 is normal to decreased. ArticleCASPubMed Google Scholar
Solini, A. et al. Sodium-glucose co-transporter (SGLT)2 and SGLT1 renal expression in patients with type 2 diabetes. Diabetes Obes. Metab.19, 1289–1294 (2017). ArticleCASPubMed Google Scholar
Vallon, V. et al. Knockout of Na-glucose transporter SGLT2 attenuates hyperglycemia and glomerular hyperfiltration but not kidney growth or injury in diabetes mellitus. Am. J. Physiol. Ren. Physiol.304, F156–F167 (2013). Classic study documenting that knockout of the SGLT2 transporter in the proximal tubule ameliorates hyperfiltration in diabetic mice. ArticleCAS Google Scholar
Thomson, S. C. et al. Acute and chronic effects of SGLT2 blockade on glomerular and tubular function in the early diabetic rat. Am. J. Physiol. Regul. Integr. Comp. Physiol.302, R75–R83 (2012). ArticleCASPubMed Google Scholar
Terami, N. et al. Long-term treatment with the sodium glucose cotransporter 2 inhibitor, dapagliflozin, ameliorates glucose homeostasis and diabetic nephropathy in db/db mice. PLoS ONE9, e100777 (2014). ArticlePubMedPubMed CentralCAS Google Scholar
Kidokoro, K. et al. Evaluation of glomerular hemodynamic function by empagliflozin in diabetic mice using in vivo imaging. Circulation140, 303–315 (2019). ArticleCASPubMed Google Scholar
van Bommel, E. J. M. et al. The renal hemodynamic effects of the SGLT2 inhibitor dapagliflozin are caused by post-glomerular vasodilatation rather than pre-glomerular vasoconstriction in metformin-treated patients with type 2 diabetes in the randomized, double-blind RED trial. Kidney Int.97, 202–212 (2020). Provocative clinical study demonstrating that the SGLT2 inhibitor dapagliflozin reduces GFR intraglomerular pressure by causing vasodilation of the efferent arteriole in patients with type 2 diabetes, indicating that the renal haemodynamic effects in these individuals are distinct from those in patients with type 1 diabetes. ArticlePubMedCAS Google Scholar
Fioretto, P., Zambon, A., Rossato, M., Busetto, L. & Vettor, R. SGLT2 inhibitors and the diabetic kidney. Diabetes Care39, S165–S171 (2016). ArticleCASPubMed Google Scholar
van der Sande, N. G. et al. High ratios of kidney function to kidney size are related to mortality and kidney function decline in high-risk patients. Eur. J. Prev. Cardiol.24, 926–933 (2017). ArticlePubMed Google Scholar
Rigalleau, V. et al. Large kidneys predict poor renal outcome in subjects with diabetes and chronic kidney disease. BMC Nephrol.11, 3 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Hostetter, T. H. Hypertrophy and hyperfunction of the diabetic kidney. J. Clin. Invest.107, 161–162 (2001). Insightful discussion about whether glomerular hypertrophy begets hyperfiltration or hyperfiltration begets glomerular hypertrophy in the development of DKD. ArticleCASPubMedPubMed Central Google Scholar
Thomas, M. C., Burns, W. C. & Cooper, M. E. Tubular changes in early diabetic nephropathy. Adv. Chronic Kidney Dis.12, 177–186 (2005). ArticleCASPubMed Google Scholar
Tuttle, K. R. et al. Effect of strict glycemic control on renal hemodynamic response to amino acids and renal enlargement in insulin-dependent diabetes mellitus. N. Engl. J. Med.324, 1626–1632 (1991). Clinical study that conclusively demonstrates that strict glycaemic control with insulin reverses renal hypertrophy and the exaggerated rise in GFR in response to amino acids. ArticleCASPubMed Google Scholar
Wolf, G. & Neilson, E. G. Angiotensin II as a renal growth factor. J. Am. Soc. Nephrol.3, 1531–1540 (1993). CASPubMed Google Scholar
Huang, H. C. & Preisig, P. A. G1 kinases and transforming growth factor-beta signaling are associated with a growth pattern switch in diabetes-induced renal growth. Kidney Int.58, 162–172 (2000). ArticleCASPubMed Google Scholar
Deng, A. et al. Increased expression of ornithine decarboxylase in distal tubules of early diabetic rat kidneys: are polyamines paracrine hypertrophic factors? Diabetes52, 1235–1239 (2003). ArticleCASPubMed Google Scholar
Thomson, S. C. et al. Ornithine decarboxylase, kidney size, and the tubular hypothesis of glomerular hyperfiltration in experimental diabetes. J. Clin. Invest.107, 217–224 (2001). Landmark study demonstrating that tubular hypertrophy precedes glomerular hypertrophy and that inhibition of tubular hypertrophy with an inhibitor of ornithine decarboxylase prevents subsequent glomerular hypertrophy, hyperfiltration and DKD. ArticleCASPubMedPubMed Central Google Scholar
Chiarelli, F., Gaspari, S. & Marcovecchio, M. L. Role of growth factors in diabetic kidney disease. Horm. Metab. Res.41, 585–593 (2009). ArticleCASPubMed Google Scholar
Qi, W., Chen, X., Poronnik, P. & Pollock, C. A. Transforming growth factor-beta/connective tissue growth factor axis in the kidney. Int. J. Biochem. Cell Biol.40, 9–13 (2008). ArticleCASPubMed Google Scholar
Iwano, M. et al. Quantification of glomerular TGF-beta 1 mRNA in patients with diabetes mellitus. Kidney Int.49, 1120–1126 (1996). ArticleCASPubMed Google Scholar
Yamamoto, T., Nakamura, T., Noble, N. A., Ruoslahti, E. & Border, W. A. Expression of transforming growth factor beta is elevated in human and experimental diabetic nephropathy. Proc. Natl Acad. Sci. USA90, 1814–1818 (1993). ArticleCASPubMedPubMed Central Google Scholar
McGowan, T. A., Zhu, Y. & Sharma, K. Transforming growth factor-beta: a clinical target for the treatment of diabetic nephropathy. Curr. Diab Rep.4, 447–454 (2004). ArticlePubMed Google Scholar
Voelker, J. et al. Anti-TGF-beta1 antibody therapy in patients with diabetic nephropathy. J. Am. Soc. Nephrol.28, 953–962 (2017). Large prospective clinical trial in which an anti-TGFβ1 antibody failed to slow the progression of DKD. ArticleCASPubMed Google Scholar
van Nieuwenhoven, F. A., Jensen, L. J., Flyvbjerg, A. & Goldschmeding, R. Imbalance of growth factor signalling in diabetic kidney disease: is connective tissue growth factor (CTGF, CCN2) the perfect intervention point? Nephrol. Dial. Transpl.20, 6–10 (2005). Article Google Scholar
Riser, B. L. et al. Regulation of connective tissue growth factor activity in cultured rat mesangial cells and its expression in experimental diabetic glomerulosclerosis. J. Am. Soc. Nephrol.11, 25–38 (2000). CASPubMed Google Scholar
Wahab, N. A., Weston, B. S. & Mason, R. M. Connective tissue growth factor CCN2 interacts with and activates the tyrosine kinase receptor TrkA. J. Am. Soc. Nephrol.16, 340–351 (2005). ArticleCASPubMed Google Scholar
Guha, M., Xu, Z. G., Tung, D., Lanting, L. & Natarajan, R. Specific down-regulation of connective tissue growth factor attenuates progression of nephropathy in mouse models of type 1 and type 2 diabetes. FASEB J.21, 3355–3368 (2007). ArticleCASPubMed Google Scholar
Adler, S. G. et al. Phase 1 study of anti-CTGF monoclonal antibody in patients with diabetes and microalbuminuria. Clin. J. Am. Soc. Nephrol.5, 1420–1428 (2010). ArticleCASPubMedPubMed Central Google Scholar
Vallon, V. & Thomson, S. C. The tubular hypothesis of nephron filtration and diabetic kidney disease. Nat. Rev. Nephrol.16, 317–336 (2020). ArticleCASPubMedPubMed Central Google Scholar
Fine, L. G., Orphanides, C. & Norman, J. T. Progressive renal disease: the chronic hypoxia hypothesis. Kidney Int. Suppl.65, S74–S78 (1998). Early review proposing renal hypoxia as a causative factor in the development of DKD. CASPubMed Google Scholar
Mimura, I. & Nangaku, M. The suffocating kidney: tubulointerstitial hypoxia in end-stage renal disease. Nat. Rev. Nephrol.6, 667–678 (2010). ArticleCASPubMed Google Scholar
Korner, A., Eklof, A. C., Celsi, G. & Aperia, A. Increased renal metabolism in diabetes. Mechanism and functional implications. Diabetes43, 629–633 (1994). ArticleCASPubMed Google Scholar
Layton, A. T., Vallon, V. & Edwards, A. Predicted consequences of diabetes and SGLT inhibition on transport and oxygen consumption along a rat nephron. Am. J. Physiol. Ren. Physiol.310, F1269–F1283 (2016). Review of oxygen consumption by nephron segments and the predicted effect of SGLT2 inhibition on sodium transport and oxygen utlization in these segments. ArticleCAS Google Scholar
Soltoff, S. P. ATP and the regulation of renal cell function. Annu. Rev. Physiol.48, 9–31 (1986). ArticleCASPubMed Google Scholar
Layton, A. T., Laghmani, K., Vallon, V. & Edwards, A. Solute transport and oxygen consumption along the nephrons: effects of Na+ transport inhibitors. Am. J. Physiol. Ren. Physiol.311, F1217–F1229 (2016). ArticleCAS Google Scholar
Franzen, S., Pihl, L., Khan, N., Gustafsson, H. & Palm, F. Pronounced kidney hypoxia precedes albuminuria in type 1 diabetic mice. Am. J. Physiol. Ren. Physiol.310, F807–F809 (2016). ArticleCAS Google Scholar
Blantz, R. C., Deng, A., Miracle, C. M. & Thomson, S. C. Regulation of kidney function and metabolism: a question of supply and demand. Trans. Am. Clin. Climatol. Assoc.118, 23–43 (2007). PubMedPubMed Central Google Scholar
Inoue, T. et al. Noninvasive evaluation of kidney hypoxia and fibrosis using magnetic resonance imaging. J. Am. Soc. Nephrol.22, 1429–1434 (2011). ArticlePubMedPubMed Central Google Scholar
Basile, D. P., Donohoe, D., Roethe, K. & Osborn, J. L. Renal ischemic injury results in permanent damage to peritubular capillaries and influences long-term function. Am. J. Physiol. Ren. Physiol.281, F887–F899 (2001). ArticleCAS Google Scholar
Kong, T., Eltzschig, H. K., Karhausen, J., Colgan, S. P. & Shelley, C. S. Leukocyte adhesion during hypoxia is mediated by HIF-1-dependent induction of beta2 integrin gene expression. Proc. Natl Acad. Sci. USA101, 10440–10445 (2004). ArticleCASPubMedPubMed Central Google Scholar
Postlethwaite, A. E., Shigemitsu, H. & Kanangat, S. Cellular origins of fibroblasts: possible implications for organ fibrosis in systemic sclerosis. Curr. Opin. Rheumatol.16, 733–738 (2004). ArticlePubMed Google Scholar
Deng, A. et al. Renal protection in chronic kidney disease: hypoxia-inducible factor activation vs. angiotensin II blockade. Am. J. Physiol. Renal Physiol.299, F1365–F1373 (2010). ArticleCASPubMedPubMed Central Google Scholar
Rosenberger, C. et al. Adaptation to hypoxia in the diabetic rat kidney. Kidney Int.73, 34–42 (2008). ArticleCASPubMed Google Scholar
Eckardt, K. U., Bernhardt, W., Willam, C. & Wiesener, M. Hypoxia-inducible transcription factors and their role in renal disease. Semin. Nephrol.27, 363–372 (2007). ArticleCASPubMed Google Scholar
Persson, P. & Palm, F. Hypoxia-inducible factor activation in diabetic kidney disease. Curr. Opin. Nephrol. Hypertens.26, 345–350 (2017). Supporting evidence for the role of HIF and renal hypoxia in the development of DKD. ArticleCASPubMed Google Scholar
Garcia-Pastor, C., Benito-Martinez, S., Moreno-Manzano, V., Fernandez-Martinez, A. B. & Lucio-Cazana, F. J. Mechanism and consequences of The impaired Hif-1alpha response to hypoxia in human proximal tubular HK-2 cells exposed to high glucose. Sci. Rep.9, 15868 (2019). ArticlePubMedPubMed CentralCAS Google Scholar
O’Neill, J. et al. Acute SGLT inhibition normalizes O2 tension in the renal cortex but causes hypoxia in the renal medulla in anaesthetized control and diabetic rats. Am. J. Physiol. Renal Physiol.309, F227–F234 (2015). ArticlePubMedCAS Google Scholar
Ghanim, H. et al. Dapagliflozin suppresses hepcidin and increases erythropoiesis. J. Clin. Endocrinol. Metab.105, dgaa057 (2020). ArticlePubMed Google Scholar
Mudaliar, S., Alloju, S. & Henry, R. R. Can a shift in fuel energetics explain the beneficial cardiorenal outcomes in the EMPA-REG OUTCOME Study? A unifying hypothesis. Diabetes Care39, 1115–1122 (2016). Hypothesis and supporting evidence for energy depravation in the aetiology of diabetic renal disease. ArticleCASPubMed Google Scholar
Little, J. R. & Spitzer, J. J. Uptake of ketone bodies by dog kidney in vivo. Am. J. Physiol.221, 679–683 (1971). ArticleCASPubMed Google Scholar
Sato, K. et al. Insulin, ketone bodies, and mitochondrial energy transduction. FASEB J.9, 651–658 (1995). ArticleCASPubMed Google Scholar
Ferrannini, E., Mark, M. & Mayoux, E. CV Protection in the EMPA-REG OUTCOME Trial: a “thrifty substrate” hypothesis. Diabetes Care39, 1108–1114 (2016). Novel hypothesis that ketones function as a “super fuel” for the heart and explain, in part, the beneficial cardiovascular effects of the SGLT2 inhibitor class of drugs. ArticlePubMed Google Scholar
Scandling, J. D. & Myers, B. D. Glomerular size-selectivity and microalbuminuria in early diabetic glomerular disease. Kidney Int.41, 840–846 (1992). ArticleCASPubMed Google Scholar
Nakamura, Y. & Myers, B. D. Charge selectivity of proteinuria in diabetic glomerulopathy. Diabetes37, 1202–1211 (1988). ArticleCASPubMed Google Scholar
Steffes, M. W., Schmidt, D., McCrery, R., Basgen, J. M. & International Diabetic Nephropathy Study Group. Glomerular cell number in normal subjects and in type 1 diabetic patients. Kidney Int.59, 2104–2113 (2001). ArticleCASPubMed Google Scholar
Pagtalunan, M. E. et al. Podocyte loss and progressive glomerular injury in type II diabetes. J. Clin. Invest.99, 342–348 (1997). Renal biopsy study in Pima Indians with type 2 diabetes with varying degrees of kidney disease demonstrating that with advancing severity of glomerulosclerosis there is a progressive loss of podocytes. ArticleCASPubMedPubMed Central Google Scholar
Tamsma, J. T. et al. Expression of glomerular extracellular matrix components in human diabetic nephropathy: decrease of heparan sulphate in the glomerular basement membrane. Diabetologia37, 313–320 (1994). ArticleCASPubMed Google Scholar
de Vries, A. P. et al. Fatty kidney: emerging role of ectopic lipid in obesity-related renal disease. Lancet Diabetes Endocrinol.2, 417–426 (2014). Review of evidence supporting lipid deposition in the kidney as a causative factor in the development of obesity-related glomerulosclerosis and hyperfiltration, as a distinct entity from diabetic nephropathy. ArticlePubMedCAS Google Scholar
Nishi, H. & Nangaku, M. Podocyte lipotoxicity in diabetic kidney disease. Kidney Int.96, 809–812 (2019). ArticlePubMed Google Scholar
Sieber, J. et al. Regulation of podocyte survival and endoplasmic reticulum stress by fatty acids. Am. J. Physiol. Ren. Physiol.299, F821–F829 (2010). ArticleCAS Google Scholar
Wang, Z. et al. Regulation of renal lipid metabolism, lipid accumulation, and glomerulosclerosis in FVBdb/db mice with type 2 diabetes. Diabetes54, 2328–2335 (2005). ArticleCASPubMed Google Scholar
Hale, L. J. & Coward, R. J. The insulin receptor and the kidney. Curr. Opin. Nephrol. Hypertens.22, 100–106 (2013). ArticleCASPubMed Google Scholar
Welsh, G. I. et al. Insulin signaling to the glomerular podocyte is critical for normal kidney function. Cell Metab.12, 329–340 (2010). ArticleCASPubMedPubMed Central Google Scholar
Russo, L. M. et al. Impaired tubular uptake explains albuminuria in early diabetic nephropathy. J. Am. Soc. Nephrol.20, 489–494 (2009). ArticlePubMedPubMed Central Google Scholar
Abbate, M., Zoja, C. & Remuzzi, G. How does proteinuria cause progressive renal damage? J. Am. Soc. Nephrol.17, 2974–2984 (2006). ArticleCASPubMed Google Scholar
Burton, C. & Harris, K. P. The role of proteinuria in the progression of chronic renal failure. Am. J. Kidney Dis.27, 765–775 (1996). ArticleCASPubMed Google Scholar
Dixon, R. & Brunskill, N. J. Activation of mitogenic pathways by albumin in kidney proximal tubule epithelial cells: implications for the pathophysiology of proteinuric states. J. Am. Soc. Nephrol.10, 1487–1497 (1999). CASPubMed Google Scholar
Heerspink, H. J. L. et al. Change in albuminuria as a surrogate endpoint for progression of kidney disease: a meta-analysis of treatment effects in randomised clinical trials. Lancet Diabetes Endocrinol.7, 128–139 (2019). Metaanalysis proposing albuminuria as a surrogate end point for progression of renal disease and providing evidence for a toxic effect of albumin on the kidney. ArticleCASPubMed Google Scholar
Cassis, P. et al. SGLT2 inhibitor dapagliflozin limits podocyte damage in proteinuric nondiabetic nephropathy. JCI Insight3, e98720 (2018). ArticlePubMed Central Google Scholar
Korbut, A. I. et al. SGLT2 inhibitor empagliflozin and DPP4 inhibitor linagliptin reactivate glomerular autophagy in db/db Mice, a model of type 2 diabetes. Int. J. Mol. Sci.21, 2987 (2020). ArticleCASPubMed Central Google Scholar
Herman-Edelstein, M., Scherzer, P., Tobar, A., Levi, M. & Gafter, U. Altered renal lipid metabolism and renal lipid accumulation in human diabetic nephropathy. J. Lipid Res.55, 561–572 (2014). ArticleCASPubMedPubMed Central Google Scholar
Chen, H. M. et al. Podocyte lesions in patients with obesity-related glomerulopathy. Am. J. Kidney Dis.48, 772–779 (2006). ArticlePubMed Google Scholar
Sharma, S. G. et al. The modern spectrum of renal biopsy findings in patients with diabetes. Clin. J. Am. Soc. Nephrol.8, 1718–1724 (2013). ArticlePubMedPubMed Central Google Scholar
Belfort, R. et al. Dose-response effect of elevated plasma free fatty acid on insulin signaling. Diabetes54, 1640–1648 (2005). ArticleCASPubMed Google Scholar
Kashyap, S. et al. A sustained increase in plasma free fatty acids impairs insulin secretion in nondiabetic subjects genetically predisposed to develop type 2 diabetes. Diabetes52, 2461–2474 (2003). ArticleCASPubMed Google Scholar
Cooper, M. E. & Jandeleit-Dahm, K. A. Lipids and diabetic renal disease. Curr. Diab Rep.5, 445–448 (2005). Review of evidence supporting glomerular and tubular lipid deposition in the development of diabetic kidney injury. ArticleCASPubMed Google Scholar
Shevalye, H. et al. Prediabetic nephropathy as an early consequence of the high-calorie/high-fat diet: relation to oxidative stress. Endocrinology153, 1152–1161 (2012). ArticleCASPubMedPubMed Central Google Scholar
Sun, Y. B. et al. Smad3 deficiency protects mice from obesity-induced podocyte injury that precedes insulin resistance. Kidney Int.88, 286–298 (2015). ArticleCASPubMed Google Scholar
Grove, K. J. et al. Diabetic nephropathy induces alterations in the glomerular and tubule lipid profiles. J. Lipid Res.55, 1375–1385 (2014). ArticleCASPubMedPubMed Central Google Scholar
Jiang, T. et al. Diet-induced obesity in C57BL/6J mice causes increased renal lipid accumulation and glomerulosclerosis via a sterol regulatory element-binding protein-1c-dependent pathway. J. Biol. Chem.280, 32317–32325 (2005). ArticleCASPubMed Google Scholar
Zhao, X. et al. Kidney injury molecule-1 is upregulated in renal lipotoxicity and mediates palmitate-induced tubular cell injury and inflammatory response. Int J. Mol. Sci.20, 3406 (2019). ArticlePubMed CentralCAS Google Scholar
Kim, M. Y. et al. Resveratrol prevents renal lipotoxicity and inhibits mesangial cell glucotoxicity in a manner dependent on the AMPK-SIRT1-PGC1alpha axis in db/db mice. Diabetologia56, 204–217 (2013). ArticleCASPubMed Google Scholar
Rosca, M. G. et al. Oxidation of fatty acids is the source of increased mitochondrial reactive oxygen species production in kidney cortical tubules in early diabetes. Diabetes61, 2074–2083 (2012). ArticleCASPubMedPubMed Central Google Scholar
Ohse, T. et al. Albumin induces endoplasmic reticulum stress and apoptosis in renal proximal tubular cells. Kidney Int.70, 1447–1455 (2006). ArticleCASPubMed Google Scholar
Falkevall, A. et al. Reducing VEGF-B signaling ameliorates renal lipotoxicity and protects against diabetic kidney disease. Cell Metab.25, 713–726 (2017). ArticleCASPubMed Google Scholar
Ferrannini, E. et al. Metabolic response to sodium-glucose cotransporter 2 inhibition in type 2 diabetic patients. J. Clin. Invest.124, 499–508 (2014). ArticleCASPubMedPubMed Central Google Scholar
Nikolic-Paterson, D. J. & Atkins, R. C. The role of macrophages in glomerulonephritis. Nephrol. Dial. Transpl.16, 3–7 (2001). ArticleCAS Google Scholar
Perez-Morales, R. E. et al. Inflammation in diabetic kidney disease. Nephron143, 12–16 (2019). Review of inflammatory pathways that are activated in animal models of diabetes and their potential role in the development of diabetic nephropathy. ArticleCASPubMed Google Scholar
Alicic, R. Z., Johnson, E. J. & Tuttle, K. R. Inflammatory mechanisms as new biomarkers and therapeutic targets for diabetic kidney disease. Adv. Chronic Kidney Dis.25, 181–191 (2018). ArticlePubMed Google Scholar
Ruster, C. & Wolf, G. The role of chemokines and chemokine receptors in diabetic nephropathy. Front. Biosci.13, 944–955 (2008). ArticleCASPubMed Google Scholar
Dekkers, C. C. J. et al. Effects of the SGLT-2 inhibitor dapagliflozin on glomerular and tubular injury markers. Diabetes Obes. Metab.20, 1988–1993 (2018). ArticleCASPubMedPubMed Central Google Scholar
Okada, S. et al. Intercellular adhesion molecule-1-deficient mice are resistant against renal injury after induction of diabetes. Diabetes52, 2586–2593 (2003). ArticleCASPubMed Google Scholar
Nguyen, D. et al. Macrophage accumulation in human progressive diabetic nephropathy. Nephrology11, 226–231 (2006). ArticlePubMed Google Scholar
You, H., Gao, T., Cooper, T. K., Brian Reeves, W. & Awad, A. S. Macrophages directly mediate diabetic renal injury. Am. J. Physiol. Renal Physiol.305, F1719–F1727 (2013). ArticleCASPubMedPubMed Central Google Scholar
Awad, A. S. et al. Monocyte/macrophage chemokine receptor CCR2 mediates diabetic renal injury. Am. J. Physiol. Renal Physiol.301, F1358–F1366 (2011). ArticleCASPubMedPubMed Central Google Scholar
de Zeeuw, D. et al. The effect of CCR2 inhibitor CCX140-B on residual albuminuria in patients with type 2 diabetes and nephropathy: a randomised trial. Lancet Diabetes Endocrinol.3, 687–696 (2015). ArticlePubMedCAS Google Scholar
Sriwijitkamol, A. et al. Reduced skeletal muscle inhibitor of kappaB beta content is associated with insulin resistance in subjects with type 2 diabetes: reversal by exercise training. Diabetes55, 760–767 (2006). ArticleCASPubMed Google Scholar
Barnes, P. J. & Karin, M. Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. N. Engl. J. Med.336, 1066–1071 (1997). ArticleCASPubMed Google Scholar
Marrero, M. B., Banes-Berceli, A. K., Stern, D. M. & Eaton, D. C. Role of the JAK/STAT signaling pathway in diabetic nephropathy. Am. J. Physiol. Renal Physiol.290, F762–F768 (2006). ArticleCASPubMed Google Scholar
Berthier, C. C. et al. Enhanced expression of Janus kinase-signal transducer and activator of transcription pathway members in human diabetic nephropathy. Diabetes58, 469–477 (2009). ArticleCASPubMedPubMed Central Google Scholar
Choudhury, G. G., Ghosh-Choudhury, N. & Abboud, H. E. Association and direct activation of signal transducer and activator of transcription1alpha by platelet-derived growth factor receptor. J. Clin. Invest.101, 2751–2760 (1998). ArticleCASPubMedPubMed Central Google Scholar
Tuttle, K. R. et al. JAK1/JAK2 inhibition by baricitinib in diabetic kidney disease: results from a Phase 2 randomized controlled clinical trial. Nephrol. Dial. Transpl.33, 1950–1959 (2018). ArticleCAS Google Scholar
Amiri, F. et al. Angiotensin II activation of the JAK/STAT pathway in mesangial cells is altered by high glucose. Kidney Int.61, 1605–1616 (2002). ArticleCASPubMed Google Scholar
Bonnet, F. & Scheen, A. J. Effects of SGLT2 inhibitors on systemic and tissue low-grade inflammation: the potential contribution to diabetes complications and cardiovascular disease. Diabetes Metab.44, 457–464 (2018). ArticleCASPubMed Google Scholar
Yaribeygi, H., Butler, A. E., Atkin, S. L., Katsiki, N. & Sahebkar, A. Sodium-glucose cotransporter 2 inhibitors and inflammation in chronic kindey disease: possible molecualr pathways. J. Cell Physiol.234, 223–230 (2019). ArticleCAS Google Scholar
Jaikumkao, K. et al. Dapagliflozin, a sodium-glucose co-transporter-2 inhibitor, slows the progression of renal complications through the suppression of renal inflammation, endoplasmic reticulum stress and apoptosis in prediabetic rats. Diabetes Obes. Metab.20, 2617–2626 (2018). ArticleCASPubMed Google Scholar
Kim, S. R. et al. SGLT2 inhibition modulates NLRP3 inflammasome activity via ketones and insulin in diabetes with cardiovascular disease. Nat. Commun.11, 2127 (2020). ArticleCASPubMedPubMed Central Google Scholar
Heerspink, H. J. L. et al. Canagliflozin reduces inflammation and fibrosis biomarkers: a potential mechanism of action for beneficial effects of SGLT2 inhibitors in diabetic kidney disease. Diabetologia62, 1154–1166 (2019). ArticleCASPubMedPubMed Central Google Scholar
Lee, T. M., Chang, N. C. & Lin, S. Z. Dapagliflozin, a selective SGLT2 Inhibitor, attenuated cardiac fibrosis by regulating the macrophage polarization via STAT3 signaling in infarcted rat hearts. Free Radic. Biol. Med.104, 298–310 (2017). ArticleCASPubMed Google Scholar
Kang, S. et al. Direct effects of empagliflozin on extracellular matrix remodeling in human cardiac fibroblasts: novel translational clues to EMPA-REG Outcome. Can. J. Cardiol.33, S169 (2017). Article Google Scholar
Goligorsky, M. S., Chen, J. & Brodsky, S. Workshop: endothelial cell dysfunction leading to diabetic nephropathy: focus on nitric oxide. Hypertension37, 744–748 (2001). ArticleCASPubMed Google Scholar
Xia, Y., Dawson, V. L., Dawson, T. M., Snyder, S. H. & Zweier, J. L. Nitric oxide synthase generates superoxide and nitric oxide in arginine-depleted cells leading to peroxynitrite-mediated cellular injury. Proc. Natl Acad. Sci. USA93, 6770–6774 (1996). ArticleCASPubMedPubMed Central Google Scholar
Brodsky, S. V., Gao, S., Li, H. & Goligorsky, M. S. Hyperglycemic switch from mitochondrial nitric oxide to superoxide production in endothelial cells. Am. J. Physiol. Heart Circ. Physiol.283, H2130–H2139 (2002). ArticleCASPubMed Google Scholar
Wang, C. H. et al. A modest decrease in endothelial NOS in mice comparable to that associated with human NOS3 variants exacerbates diabetic nephropathy. Proc. Natl Acad. Sci. USA108, 2070–2075 (2011). ArticleCASPubMedPubMed Central Google Scholar
Zhao, H. J. et al. Endothelial nitric oxide synthase deficiency produces accelerated nephropathy in diabetic mice. J. Am. Soc. Nephrol.17, 2664–2669 (2006). ArticleCASPubMed Google Scholar
Morris, S. M. Jr. Gao, T., Cooper, T. K., Kepka-Lenhart, D. & Awad, A. S. Arginase-2 mediates diabetic renal injury. Diabetes60, 3015–3022 (2011). ArticleCASPubMedPubMed Central Google Scholar
You, H., Gao, T., Cooper, T. K., Morris, S. M. Jr. & Awad, A. S. Arginase inhibition: a new treatment for preventing progression of established diabetic nephropathy. Am. J. Physiol. Ren. Physiol.309, F447–F455 (2015). Evidence supporting the role of arginase inhibition in preventing kidney disease in a murine model of diabetes. ArticleCAS Google Scholar
You, H., Gao, T., Cooper, T. K., Morris, S. M. Jr. & Awad, A. S. Arginase inhibition mediates renal tissue protection in diabetic nephropathy by a nitric oxide synthase 3-dependent mechanism. Kidney Int.84, 1189–1197 (2013). ArticleCASPubMedPubMed Central Google Scholar
Forbes, J. M. & Cooper, M. E. Mechanisms of diabetic complications. Physiol. Rev.93, 137–188 (2013). ArticleCASPubMed Google Scholar
Nishikawa, T. et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature404, 787–790 (2000). ArticleCASPubMed Google Scholar
Mulder, S. et al. A metabolomics-based molecular pathway analysis of how the sodium-glucose co-transporter-2 inhibitor dapagliflozin may slow kidney function decline in patients with diabetes. Diabetes Obes. Metab.22, 1157–1166 (2020). ArticleCASPubMedPubMed Central Google Scholar
Shigiyama, F. et al. Effectiveness of dapagliflozin on vascular endothelial function and glycemic control in patients with early-stage type 2 diabetes mellitus: DEFENCE study. Cardiovasc. Diabetol.16, 84 (2017). ArticlePubMedPubMed CentralCAS Google Scholar
Tanaka, A. et al. Effect of empagliflozin on endothelial function in patients with type 2 diabetes and cardiovascular disease: results from the multicenter, randomized, placebo-controlled, double-blind EMBLEM trial. Diabetes Care42, e159–e161 (2019). ArticleCASPubMed Google Scholar
Ishibashi, Y., Matsui, T. & Yamagishi, S. Tofogliflozin, a highly selective inhibitor of SGLT2 blocks proinflammatory and proapoptotic effects of glucose overload on proximal tubular cells partly by suppressing oxidative stress generation. Horm. Metab. Res.48, 191–195 (2016). CASPubMed Google Scholar
Salim, H. M. et al. Glycemic control with ipragliflozin, a novel selective SGLT2 inhibitor, ameliorated endothelial dysfunction in streptozotocin-induced diabetic mouse. Front. Cardiovasc. Med.3, 43 (2016). ArticlePubMedPubMed CentralCAS Google Scholar
Juni, R. R. Cardiac microvascular endothelial enhancement of cardiomyocyte function is impaired by inflammation and restored by empagliflozin. JACC BasicTransl. Sci.4, 575–591 (2019). Google Scholar
Sharma, K. Mitochondrial hormesis and diabetic complications. Diabetes64, 663–672 (2015). Interesting review about the role and source of ROS in the development of DKD and challenging the dogma that ROS are derived from mitochondrial overproduction. ArticleCASPubMedPubMed Central Google Scholar
Zhan, M., Brooks, C., Liu, F., Sun, L. & Dong, Z. Mitochondrial dynamics: regulatory mechanisms and emerging role in renal pathophysiology. Kidney Int.83, 568–581 (2013). ArticleCASPubMedPubMed Central Google Scholar
Funk, J. A., Odejinmi, S. & Schnellmann, R. G. SRT1720 induces mitochondrial biogenesis and rescues mitochondrial function after oxidant injury in renal proximal tubule cells. J. Pharmacol. Exp. Ther.333, 593–601 (2010). ArticleCASPubMedPubMed Central Google Scholar
Scarpulla, R. C. Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiol. Rev.88, 611–638 (2008). ArticleCASPubMed Google Scholar
Sharma, K. et al. Metabolomics reveals signature of mitochondrial dysfunction in diabetic kidney disease. J. Am. Soc. Nephrol.24, 1901–1912 (2013). ArticleCASPubMedPubMed Central Google Scholar
Rasbach, K. A. & Schnellmann, R. G. PGC-1alpha over-expression promotes recovery from mitochondrial dysfunction and cell injury. Biochem. Biophys. Res. Commun.355, 734–739 (2007). ArticleCASPubMed Google Scholar
Zhao, M. et al. PGC-1alpha overexpression protects against aldosterone-induced podocyte depletion: role of mitochondria. Oncotarget7, 12150–12162 (2016). ArticlePubMedPubMed Central Google Scholar
Sedeek, M. et al. Critical role of Nox4-based NADPH oxidase in glucose-induced oxidative stress in the kidney: implications in type 2 diabetic nephropathy. Am. J. Physiol. Renal Physiol.299, F1348–F1358 (2010). ArticleCASPubMed Google Scholar
Gorin, Y. et al. Targeting NADPH oxidase with a novel dual Nox1/Nox4 inhibitor attenuates renal pathology in type 1 diabetes. Am. J. Physiol. Renal Physiol.308, F1276–F1287 (2015). ArticleCASPubMedPubMed Central Google Scholar
Gray, S. P. et al. Combined NOX1/4 inhibition with GKT137831 in mice provides dose-dependent reno- and atheroprotection even in established micro- and macrovascular disease. Diabetologia60, 927–937 (2017). ArticleCASPubMed Google Scholar
Takagi, S. et al. Ipragliflozin improves mitochondrial abnormalities in renal tubules induced by a high-fat diet. J. Diabetes Investig.9, 1025–1032 (2018). ArticleCASPubMedPubMed Central Google Scholar
Ishibashi, Y., Matsui, T., Yamagishi, S. & Tofogliflozin, A. Highly selective inhibitor of SGLT2 blocks proinflammatory and proapoptotic effects of glucose overload on proximal tubular cells partly by suppressing oxidative stress generation. Horm. Metab. Res.48, 191–195 (2016). CASPubMed Google Scholar
Fioretto, P., Zambon, A., Rassato, M., Busetto, L. & Vettor, R. SGLT inhibitors and the diabetic kidney. Diabetes Care39, S165–S171 (2016). ArticleCASPubMed Google Scholar
Bielesz, B. et al. Epithelial Notch signaling regulates interstitial fibrosis development in the kidneys of mice and humans. J. Clin. Invest.120, 4040–4054 (2010). ArticleCASPubMedPubMed Central Google Scholar
Mariappan, M. M. et al. Combined acute hyperglycemic and hyperinsulinemic clamp induced profibrotic and proinflammatory responses in the kidney. Am. J. Physiol. Cell Physiol.306, C202–C211 (2014). This study documents that hyperinsulinaemia, as a compensatory response to insulin resistance, activates multiple profibrotic and pro-inflammatory genes in the kidney. ArticleCASPubMed Google Scholar
Park, I. S., Kiyomoto, H., Abboud, S. L. & Abboud, H. E. Expression of transforming growth factor-beta and type IV collagen in early streptozotocin-induced diabetes. Diabetes46, 473–480 (1997). ArticleCASPubMed Google Scholar
Meng, X. M., Nikolic-Paterson, D. J. & Lan, H. Y. TGF-β: the master regulator of fibrosis. Nat. Rev. Nephrol.12, 325–338 (2016). Excellent review on the role of TGFβ in chronic kidney disease. ArticleCASPubMed Google Scholar
Rysz, J. et al. Serum matrix metalloproteinases MMP-2 and MMP-9 and metalloproteinase tissue inhibitors TIMP-1 and TIMP-2 in diabetic nephropathy. J. Nephrol.20, 444–452 (2007). CASPubMed Google Scholar
Vallon, V. The proximal tubule in the pathophysiology of the diabetic kidney. Am. J. Physiol. Regul. Integr. Comp. Physiol.300, R1009–R1022 (2011). ArticleCASPubMed Google Scholar
Koszegi, S. et al. RAAS inhibitors directly reduce diabetes-induced renal fibrosis via growth factor inhibition. J. Physiol.597, 193–209 (2019). ArticleCASPubMed Google Scholar
Panchapakesan, U. et al. Effects of SGLT2 inhibition in human kidney proximal tubular cells–renoprotection in diabetic nephropathy? PLoS One8, e54442 (2013). ArticleCASPubMedPubMed Central Google Scholar
Li, C. et al. SGLT2 inhibition with empagliflozin attenuates myocardial oxidative stress and fibrosis in diabetic mice heart. Cardiovasc. Diabetol.18, 15 (2019). ArticlePubMedPubMed Central Google Scholar
Kang, S. et al. Direct effects of empagliflozin on extracellular matrix remodelling in human cardiac myofibroblasts: novel translational clues to explain EMPA-REG OUTCOME results. Can. J. Cardiol.36, 543–553 (2020). ArticlePubMed Google Scholar
Packer, M. Activation and inhibition of sodium-hydrogen exchanger is a mechanism that links the pathophysiology and treatment of diabetes mellitus with that of heart failure. Circulation136, 1548–1559 (2017). Comprehensive overview of the role of the NHE in the development of myocardial fibrosis, oxidative stress, inflammation and cardiac remodelling. ArticleCASPubMed Google Scholar
Wilcox, C. S. Antihypertensive and renal mechanisms of SGLT2 (Sodium-Glucose Linked Transporter 2) inhibitors. Hypertension75, 894–901 (2020). ArticleCASPubMed Google Scholar
Klisic, J., Nief, V., Reyes, L. & Ambuhl, P. M. Acute and chronic regulation of the renal Na/H+ exchanger NHE3 in rats with STZ-induced diabetes mellitus. Nephron Physiol.102, 27–35 (2006). ArticleCAS Google Scholar
Beloto-Silva, O., Machado, U. F. & Oliveira-Souza, M. Glucose-induced regulation of NHEs activity and SGLTs expression involves the PKA signaling pathway. J. Membr. Biol.239, 157–165 (2011). ArticleCASPubMed Google Scholar
Ganz, M. B., Hawkins, K. & Reilly, R. F. High glucose induces the activity and expression of Na(+)/H(+) exchange in glomerular mesangial cells. Am. J. Physiol. Renal Physiol.278, F91–F96 (2000). ArticleCASPubMed Google Scholar
Thomson, S. C. & Vallon, V. Renal effects of sodium-glucose co-transporter inhibitors. Am. J. Med.132, S30–S38 (2019). The review emphasizes the link between SGLT2 inhibitors and NHE in the development of DKD. ArticleCAS Google Scholar
Coady, M. J. et al. MAP17 is a necessary activator of renal Na+/Glucose cotransporter SGLT2. J. Am. Soc. Nephrol.28, 85–93 (2017). This article demonstrates that MAP links SGLT and NHE, providing a mechanism via which SGLT2 inhibitors can block the sodium–hydrogen exchanger. ArticleCASPubMed Google Scholar
Inoue, B. H. et al. Increased NHE3 abundance and transport activity in renal proximal tubule of rats with heart failure. Am. J. Physiol. Regul. Integr. Comp. Physiol.302, R166–R174 (2012). ArticleCASPubMed Google Scholar
Baartscheer, A. et al. Empagliflozin decreases myocardial cytoplasmic Na+ through inhibition of the cardiac Na+/H+ exchanger in rats and rabbits. Diabetologia60, 568–573 (2017). ArticleCASPubMed Google Scholar
von Lewinski, D. et al. Glucose-transporter-mediated positive inotropic effects in human myocardium of diabetic and nondiabetic patients. Metabolism59, 1020–1028 (2010). ArticleCAS Google Scholar
Pessoa, T. D., Campos, L. C., Carraro-Lacroix, L., Girardi, A. C. & Malnic, G. Functional role of glucose metabolism, osmotic stress, and sodium-glucose cotransporter isoform-mediated transport on Na+/H+ exchanger isoform 3 activity in the renal proximal tubule. J. Am. Soc. Nephrol.25, 2028–2039 (2014). ArticleCASPubMedPubMed Central Google Scholar
Onishi, A. et al. Effect of renal tubule-specific knockdown of the Na+/H+ exchanger NHE3 in Akita diabetic mice. Am. J. Physiol. Renal Physiol.317, F419–F434 (2019). ArticleCASPubMedPubMed Central Google Scholar
Cuervo, A. M. et al. Autophagy and aging: the importance of maintaining “clean” cells. Autophagy1, 131–140 (2005). ArticlePubMed Google Scholar
Jheng, H. F. et al. Mitochondrial fission contributes to mitochondrial dysfunction and insulin resistance in skeletal muscle. Mol. Cell Biol.32, 309–319 (2012). ArticleCASPubMedPubMed Central Google Scholar
Higgins, G. C. & Coughlan, M. T. Mitochondrial dysfunction and mitophagy: the beginning and end to diabetic nephropathy? Br. J. Pharmacol.171, 1917–1942 (2014). ArticleCASPubMedPubMed Central Google Scholar
Lin, T.-A., Wu, V. C.-C. & Wang, C.-Y. Autophagy in chronic kidney disease. Cells8, 61 (2019). Up-to-date review on the role of autophagy in the development of chronic kidney disease. ArticleCASPubMed Central Google Scholar
Ding, Y. & Choi, M. E. Autophagy in diabetic nephropathy. J. Endocrinol.224, R15–R30 (2015). ArticleCASPubMed Google Scholar
Xin, W. et al. Autophagy protects human podocytes from high glucose-induced injury by preventing insulin resistance. Metabolism65, 1307–1315 (2016). ArticleCASPubMed Google Scholar
Kitada, M. et al. Dietary restriction ameliorates diabetic nephropathy through anti-inflammatory effects and regulation of the autophagy via restoration of Sirt1 in diabetic Wistar fatty (fa/fa) rats: a model of type 2 diabetes. Exp. Diabetes Res.2011, 908185 (2011). ArticlePubMedPubMed CentralCAS Google Scholar
Lee, S.-Y. et al. PGC1 α activators mitigate diabetic tubulopathy by improving mitochondrial dynamics and quality control. J. Diabetes Res.2017, 6483572 (2017). ArticlePubMedPubMed CentralCAS Google Scholar
Lee, Y. H. et al. Empagliflozin attenuates diabetic tubulopathy by improving mitochondrial fragmentation and autophagy. Am. J. Physiol. Renal Physiol.317, F767–F780 (2019). ArticleCASPubMed Google Scholar
Hawley S. A. et al. Diabetes 65, 2784–2794 (2016).
Daniele, G. et al. Dapagliflozin enhances fat oxidation and ketone production in patients with type 2 diabetes. Diabetes Care39, 2036–2041 (2016). This article demonstrates that SGLT2 inhibitors create a state of energy depletion, which can secondarily improve autophagy and mitochondrial dysfunction in patients with type 2 diabetes. ArticleCASPubMedPubMed Central Google Scholar
Ferrannini, E. et al. Shift to fatty substrate utilization in response to sodium-glucose cotransporter 2 inhibition in subjects without diabetes and patients with type 2 diabetes. Diabetes65, 1190–1195 (2016). ArticleCASPubMed Google Scholar