Solutions for a cultivated planet (original) (raw)

References

  1. International Assessment of Agricultural Knowledge (IAASTD) . Agriculture at a Crossroads, Global Report Chs 1, 4 (Island Press, 2009); http://www.agassessment.org/reports/IAASTD/EN/AgricultureataCrossroads_GlobalReport(English).pdf.
    Google Scholar
  2. Reaping the Benefits: Science and the Sustainable Intensification of Global Agriculture 1–10, 47–50 (The Royal Society, 2009); http://royalsociety.org/Reapingthebenefits/.
  3. Pelletier, N. & Tyedmers, P. Forecasting potential global environmental costs of livestock production 2000–2050. Proc. Natl Acad. Sci. USA 107, 18371–18374 (2010)
    Article ADS CAS Google Scholar
  4. Food and Agriculture Organization of the United Nations (FAO) . The State of Food Insecurity in the World: Economic crises—Impacts and Lessons Learned 8–12 (FAO, 2009)
    Google Scholar
  5. Thurow, R. & Kilman, S. Enough: Why the World’s Poorest Starve in an Age of Plenty Chs 2, 4, 12 (Perseus Books, 2009)
    Google Scholar
  6. Godfray, H. C. J. et al. Food security: the challenge of feeding 9 billion people. Science 327, 812–818 (2010)This article reviews a recent effort by the UK-based Foresight Project, which assessed global conditions and trends in agriculture and food security, and set the benchmark for the world’s discussions on this important topic.
    Article ADS CAS Google Scholar
  7. Naylor, R. Expanding the boundaries of agricultural development. Food Security 3, 233–251 (2011)
    Article Google Scholar
  8. Kearney, J. Food consumption trends and drivers. Phil. Trans. R. Soc. B 365, 2793–2807 (2010)
    Article Google Scholar
  9. Cirera, X. & Masset, E. Income distribution trends and future food demand. Phil. Trans. R. Soc. B 365, 2821–2834 (2010)
    Article Google Scholar
  10. Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005)This paper reviews the global extent of land use practices, especially agriculture, and how it has become a transformative force in the global environment—through changes in climate, water resources, biogeochemical cycles and biodiversity.
    Article ADS CAS Google Scholar
  11. Millennium Ecosystem Assessment . Ecosystems and Human Well-Being Vol. 2 Scenarios: Findings of the Scenarios Working Group Ch. 9 (Island Press, 2005)
    Google Scholar
  12. Power, A. G. Ecosystem services and agriculture: tradeoffs and synergies. Phil. Trans. R. Soc. B 365, 2959–2971 (2010)
    Article Google Scholar
  13. Rockström, J. et al. A safe operating space for humanity. Nature 461, 472–475 (2009)This article presents a new way of thinking about the condition of the global environment and the idea of “planetary boundaries”—points where more environmental deterioriation may “tip” the global environment far out of the current condition.
    Article ADS Google Scholar
  14. Ramankutty, N., Evan, A. T., Monfreda, C. & Foley, J. A. Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Glob. Biogeochem. Cycles 22, GB1003 (2008)
    Article ADS Google Scholar
  15. Monfreda, C., Ramankutty, N. & Foley, J. A. Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Glob. Biogeochem. Cycles 22, GB1022 (2008)
    Article ADS Google Scholar
  16. Portmann, F. T., Siebert, S. & Döll, P. MIRCA 2000: global monthly irrigated and rainfed crop areas around the year 2000: a new high-resolution data set for agricultural and hydrological modeling. Glob. Biogeochem. Cycles 24, GB1011 (2010)
    Article ADS Google Scholar
  17. Siebert, S. & Döll, P. Quantifying blue and green virtual water contents in global crop production as well as potential production losses without irrigation. J. Hydrol. 384, 198–217 (2010)This paper presents a state-of-the-art global assessment of how water resources (both ‘blue’ and ‘green’ water) are deployed in agriculture, primarily through irrigation, and how this is related to food production.
    Article ADS Google Scholar
  18. Food and Agriculture Organization of the United Nations (FAOSTAT) . http://faostat.fao.org/site/567/default.aspx#ancor (accessed, March 2011)
  19. Ramankutty, N., Foley, J. A., Norman, J. & McSweeney, K. The global distribution of cultivable lands: current patterns and sensitivity to possible climate change. Glob. Ecol. Biogeogr. 11, 377–392 (2002)
    Article Google Scholar
  20. Ellis, E. C., Klein Goldewijk, K., Siebert, S., Lightman, D. & Ramankutty, N. Anthropogenic transformation of the biomes, 1700 to 2000. Glob. Ecol. Biogeogr. 19, 589–606 (2010)
    Google Scholar
  21. West, P. C. et al. Trading carbon for food: global comparison of carbon stocks vs. crop yields on agricultural land. Proc. Natl Acad. Sci. USA 107, 19645–19648 (2010)This paper explores how future expansion of agriculture would lead to increasing greenhouse gas emissions (from deforestation) and increasing food production (by adding more farmland), and assesses the geographic patterns of the tradeoffs between the two.
    Article ADS CAS Google Scholar
  22. MacDonald, G. K., Bennett, E. M., Potter, P. A. & Ramankutty, N. Agronomic phosphorus imbalances across the world’s croplands. Proc. Natl Acad. Sci. USA 108, 3086–3091 (2011)
    Article ADS CAS Google Scholar
  23. Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R. & Polasky, S. Agricultural sustainability and intensive production practices. Nature 418, 671–677 (2002)
    Article ADS CAS Google Scholar
  24. Steinfeld, H. et al. Livestock’s Long Shadow: Environmental Issues and Options 1–20 (FAO, 2006)
    Google Scholar
  25. Ramankutty, N. & Foley, J. A. Estimating historical changes in global land cover: croplands from 1700 to 1992. Glob. Biogeochem. Cycles 13, 997–1027 (1999)
    Article ADS CAS Google Scholar
  26. Gibbs, H. et al. Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proc. Natl Acad. Sci. USA 107, 16732–16737 (2010)
    Article ADS CAS Google Scholar
  27. Foley, J. A. et al. Amazonia revealed: forest degradation and loss of ecosystem goods and services in the Amazon Basin. Front. Ecol. Environ. 5, 25–32 (2007)
    Article Google Scholar
  28. Friedlingstein, P. et al. Update on CO2 emissions. Nature Geosci. 3, 811–812 (2010)
    Article ADS CAS Google Scholar
  29. DeFries, R. & Rosenzweig, C. Toward a whole-landscape approach for sustainable land use in the tropics. Proc. Natl Acad. Sci. USA 107, 19627–19632 (2010)
    Article ADS CAS Google Scholar
  30. Rosegrant, M. W., Cai, X. & Cline, S. A. World Water and Food to 2025: Dealing with Scarcity 1–32 (International Food Policy Research Institute, 2002)
    Google Scholar
  31. Gleick, P. H. Global freshwater resources: soft-path solutions for the 21st century. Science 302, 1524–1528 (2003)
    Article ADS CAS Google Scholar
  32. Matson, P., Parton, W., Power, A. & Swift, M. Agricultural intensification and ecosystem properties. Science 277, 504–509 (1997)
    Article CAS Google Scholar
  33. Tilman, D. et al. Forecasting agriculturally driven global environmental change. Science 292, 281–284 (2001)
    Article ADS CAS Google Scholar
  34. Vorosmarty, C. J., Green, P., Salisbury, J. & Lammers, R. B. Global water resources: vulnerability from climate change and population growth. Science 289, 284–288 (2000)
    Article ADS CAS Google Scholar
  35. Diaz, R. J. & Rosenberg, R. Spreading dead zones and consequences for marine ecosystems. Science 321, 926–929 (2008)
    Article ADS CAS Google Scholar
  36. Gleick, P. H., Cooley, H. & Morikawa, M. The World's Water 2008–2009: The Biennial Report on Freshwater Resources (eds Gleick, P. H. et al.) 202–210 (Island Press, 2009)
    Google Scholar
  37. Postel, S. L., Daily, G. C. & Ehrlich, P. R. Human appropriation of renewable fresh water. Science 271, 785–788 (1996)
    Article ADS CAS Google Scholar
  38. Gordon, L. J. et al. Human modification of global water vapor flows from the land surface. Proc. Natl Acad. Sci. USA 102, 7612–7617 (2005)
    Article ADS CAS Google Scholar
  39. Vitousek, P. M., Mooney, H. A., Lubchenco, J. & Melillo, J. M. Human domination of Earth’s ecosystems. Science 277, 494–499 (1997)
    Article CAS Google Scholar
  40. Smil, V. Phosphorus in the environment: natural flows and human interferences. Annu. Rev. Energy Environ. 25, 53–88 (2000)
    Article Google Scholar
  41. Bennett, E. M., Carpenter, S. R. & Caraco, N. F. Human impact on erodable phosphorus and eutrophication: a global perspective. Bioscience 51, 227–234 (2001)
    Article Google Scholar
  42. Canfield, D. E., Glazer, A. N. & Falkowski, P. G. The evolution and future of earth’s nitrogen cycle. Science 330, 192–196 (2010)
    Article ADS CAS Google Scholar
  43. Galford, G. L. et al. Greenhouse gas emissions from alternative futures of deforestation and agricultural management in the southern Amazon. Proc. Natl Acad. Sci. USA 107, 19649–19654 (2010)
    Article ADS CAS Google Scholar
  44. van der Werf, G. et al. CO2 emissions from forest loss. Nature Geosci. 2, 737–738 (2009)
    Article ADS CAS Google Scholar
  45. Canadell, J. G. et al. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc. Natl Acad. Sci. USA 104, 18866–18870 (2007)
    Article ADS CAS Google Scholar
  46. Vergé, X., De Kimpe, C. & Desjardins, R. Agricultural production, greenhouse gas emissions and mitigation potential. Agric. For. Meteorol. 142, 255–269 (2007)
    Article ADS Google Scholar
  47. DeFries, R. S., Foley, J. A. & Asner, G. P. Land-use choices: balancing human needs and ecosystem function. Front. Ecol. Environ. 2, 249–257 (2004)
    Article Google Scholar
  48. Intergovernmental Panel on Climate Change (IPCC) . Climate Change 2007: IPCC Fourth Assessment Report (AR4) (Cambridge University Press, 2007)
    Book Google Scholar
  49. Gibbs, H. K. et al. Carbon payback times for crop-based biofuel expansion in the tropics: the effects of changing yield and technology. Environ. Res. Lett. 3, 034001 (2008)
    Article ADS Google Scholar
  50. Fargione, J., Hill, J., Tilman, D., Polasky, S. & Hawthorne, P. Land clearing and the biofuel carbon debt. Science 319, 1235–1238 (2008)
    Article ADS CAS Google Scholar
  51. Mayaux, P. et al. Tropical forest cover change in the 1990s and options for future monitoring. Phil. Trans. R. Soc. B 360, 373–384 (2005)
    Article Google Scholar
  52. Searchinger, T. et al. Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319, 1238–1240 (2008)
    Article ADS CAS Google Scholar
  53. Lambin, E. F. & Meyfroidt, P. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl Acad. Sci. USA 108, 3465–3472 (2011)
    Article ADS CAS Google Scholar
  54. Rudel, T. K. et al. Agricultural intensification and changes in cultivated areas, 1970–2005. Proc. Natl Acad. Sci. USA 106, 20675–20680 (2009)
    Article ADS CAS Google Scholar
  55. DeFries, R. S., Rudel, T., Uriarte, M. & Hansen, M. Deforestation driven by urban population growth and agricultural trade in the twenty-first century. Nature Geosci. 3, 178–181 (2010)
    Article ADS CAS Google Scholar
  56. Kremen, C., Daily, G. C., Klein, A. & Scofield, D. Inadequate assessment of the ecosystem service rationale for conservation: reply to Ghazoul. Conserv. Biol. 22, 795–798 (2008)
    Article Google Scholar
  57. Licker, R. et al. Mind the gap: how do climate and agricultural management explain the ‘yield gap’ of croplands around? Global Ecol. Biogeogr. 19, 769–782 (2010)These authors present a new technique for estimating global patterns of yield and ‘yield gaps’, highlighting opportunities for improving food production around the world.
    Article Google Scholar
  58. Neumann, K., Verburg, P. H., Stehfest, E. & Müller, C. The yield gap of global grain production: a spatial analysis. Agric. Syst. 103, 316–326 (2010)
    Article Google Scholar
  59. Sánchez, P. A. Tripling crop yields in tropical Africa. Nature Geosci. 3, 299–300 (2010)
    Article ADS Google Scholar
  60. Jaggard, K. W., Qi, A. & Ober, E. S. Possible changes to arable crop yields by 2050. Phil. Trans. R. Soc. B 365, 2835–2851 (2010)
    Article Google Scholar
  61. Tester, M. & Langridge, P. Breeding technologies to increase crop production in a changing world. Science 327, 818–822 (2010)
    Article ADS CAS Google Scholar
  62. Cordell, D., Drangert, J. O. & White, S. The story of phosphorus: global food security and food for thought. Glob. Environ. Change 19, 292–305 (2009)
    Article Google Scholar
  63. Cassman, K. G., Dobermann, A. & Walters, D. T. Agroecosystems, nitrogen-use efficiency, and nitrogen management. Ambio 31, 132–140 (2002)
    Article Google Scholar
  64. Potter, P., Ramankutty, N., Bennett, E. M. & Donner, S. D. Characterizing the spatial patterns of global fertilizer application and manure production. Earth Interact. 14, 1–22 (2010)
    Article Google Scholar
  65. Liu, J. et al. A high-resolution assessment on global nitrogen flows in cropland. Proc. Natl Acad. Sci. USA 107, 8035–8040 (2010)
    Article ADS CAS Google Scholar
  66. Vitousek, P. et al. Nutrient imbalances in agricultural development. Science 324, 1519–1520 (2009)
    Article ADS CAS Google Scholar
  67. Chen, X. P. et al. Integrated soil-crop system management for food security. Proc. Natl Acad. Sci. 108, 6,399–6 404 (2011)
    Article ADS CAS Google Scholar
  68. Gustavsson, J., Cederberg, C., Sonesson, U., van Otterdijk, R. & Meybeck, A. Global Food Losses and Food Waste Section 3.2 (Study conducted for the International Congress “Save Food!” at Interpack2011, Düsseldorf, Germany) (FAO, Rural Infrastructure and Agro-Industries Division, 2011)
    Google Scholar
  69. Lundqvist, J., De Fraiture, C. & Molden, D. Saving Water: from Field to Fork: Curbing Losses and Wastage in the Food Chain 20–23 (Stockholm International Water Institute, 2008)
    Google Scholar
  70. Parfitt, J., Barthel, M. & Macnaughton, S. Food waste within food supply chains: quantification and potential for change to 2050. Phil. Trans. R. Soc. B 365, 3065–3081 (2010)
    Article Google Scholar
  71. Schlenker, W. & Roberts, M. J. Nonlinear temperature effects indicate severe damages to US crop yields under climate change. Proc. Natl Acad. Sci. USA 106, 15594–15598 (2009)
    Article ADS CAS Google Scholar
  72. Sachs, J. et al. Monitoring the world’s agriculture. Nature 466, 558–560 (2010)
    Article ADS CAS Google Scholar
  73. Zaks, D. P. M. & Kucharik, C. J. Data and monitoring needs for a more ecological agriculture. Environ. Res. Lett. 6, 014017 (2011)
    Article ADS Google Scholar

Download references