The shape of a Möbius strip (original) (raw)

Nature Materials volume 6, pages 563–567 (2007)Cite this article

Abstract

The Möbius strip, obtained by taking a rectangular strip of plastic or paper, twisting one end through 180∘, and then joining the ends, is the canonical example of a one-sided surface. Finding its characteristic developable shape has been an open problem ever since its first formulation in refs 1,2. Here we use the invariant variational bicomplex formalism to derive the first equilibrium equations for a wide developable strip undergoing large deformations, thereby giving the first non-trivial demonstration of the potential of this approach. We then formulate the boundary-value problem for the Möbius strip and solve it numerically. Solutions for increasing width show the formation of creases bounding nearly flat triangular regions, a feature also familiar from fabric draping3 and paper crumpling4,5. This could give new insight into energy localization phenomena in unstretchable sheets6, which might help to predict points of onset of tearing. It could also aid our understanding of the relationship between geometry and physical properties of nano- and microscopic Möbius strip structures7,8,9.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 12 print issues and online access

$259.00 per year

only $21.58 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Sadowsky, M. in Proc. 3rd Int. Congr. Appl. Mech., Stockholm (Sweden) Vol. 2 (eds Oseen, A. C. W. & Weibull, W.) 444–451 (AB. Sveriges Litografiska Tryckerier, Stockholm, 1931).
    Google Scholar
  2. Sadowsky, M. Ein elementarer Beweis für die Existenz eines abwickelbaren Möbiusschen Bandes und Zurückfürung des geometrischen Problems auf ein Variationsproblem. Sitzungsber. Preuss. Akad. Wiss. 22, 412–415 (1930).
    Google Scholar
  3. Cerda, E., Mahadevan, L. & Pasini, J. M. The elements of draping. Proc. Natl Acad. Sci. USA 101, 1806–1810 (2004).
    Article CAS Google Scholar
  4. Vliegenthart, G. A. & Gompper, G. Force crumpling of self-avoiding elastic sheets. Nature Mater. 5, 216–221 (2006).
    Article CAS Google Scholar
  5. Lobkovsky, A., Ghentges, S., Li, H., Morse, D. & Witten, T. A. Scaling properties of stretching ridges in a crumpled elastic sheet. Science 270, 1482–1485 (1995).
    Article CAS Google Scholar
  6. Cerda, E., Chaieb, S., Melo, F. & Mahadevan, L. Conical dislocations in crumpling. Nature 401, 46–49 (1999).
    Article CAS Google Scholar
  7. Tanda, S. et al. A Möbius strip of single crystals. Nature 417, 397–398 (2002).
    Article CAS Google Scholar
  8. Tanda, S., Tsuneta, T., Toshima, T., Matsuura, T. & Tsubota, M. Topological crystals. J. Phys. IV 131, 289–294 (2005).
    CAS Google Scholar
  9. Gravesen, J. & Willatzen, M. Eigenstates of Möbius nanostructures including curvature effects. Phys. Rev. A 72, 032108 (2005).
    Article Google Scholar
  10. Emmer, M. Visual art and mathematics: The Moebius band. Leonardo 13, 108–111 (1980).
    Article Google Scholar
  11. Yakubo, K., Avishai, Y. & Cohen, D. Persistent currents in Möbius strips. Phys. Rev. B 67, 125319 (2003).
    Article Google Scholar
  12. Hayashi, M. & Ebisawa, H. Little-Parks oscillation of superconducting Möbius strip. J. Phys. Soc. Japan 70, 3495–3498 (2001).
    Article CAS Google Scholar
  13. Balakrishnan, R. & Satija, I. I. Gauge-invariant geometry of space curves: Application to boundary curves of Möbius-type strips. Preprint at <http://arxiv.org/abs/math-ph/0507039> (2005).
  14. Graustein, W. C. Differential Geometry (Dover, New York, 1966).
    Google Scholar
  15. Wunderlich, W. Über ein abwickelbares Möbiusband. Monatsh. Math. 66, 276–289 (1962).
    Article Google Scholar
  16. Schwarz, G. A pretender to the title “canonical Moebius strip”. Pacif. J. Math. 143, 195–200 (1990).
    Article Google Scholar
  17. Schwarz, G. E. The dark side of the Moebius strip. Am. Math. Monthly 97 (December), 890–897 (1990).
    Article Google Scholar
  18. Randrup, T. & Røgen, P. Sides of the Möbius strip. Arch. Math. 66, 511–521 (1996).
    Article Google Scholar
  19. Love, A. E. H. A Treatise on the Mathematical Theory of Elasticity 4th edn (Cambridge Univ. Press, Cambridge, 1927).
    Google Scholar
  20. Griffiths, P. A. Exterior Differential Systems and the Calculus of Variations Vol. 25 (Progress in Mathematics, Birkhäuser, Boston, 1983).
    Book Google Scholar
  21. Anderson, I. M. The Variational Bicomplex. Technical Report, Utah State Univ., available online at http://www.math.usu.edu/~fg_mp/Publications/VB/vb.pdf (1989).
  22. Langer, J. & Singer, D. Lagrangian aspects of the Kirchhoff elastic rod. SIAM Rev. 38, 605–618 (1996).
    Article Google Scholar
  23. Capovilla, R., Chryssomalakos, C. & Guven, J. Hamiltonians for curves. J. Phys. A 35, 6571–6587 (2002).
    Article Google Scholar
  24. Murata, S. & Umehara, M. Flat surfaces with singularities in Euclidean 3-space. Preprint at <http://arxiv.org/abs/math.DG/0605604> (2006).
  25. Chicone, C. & Kalton, N. J. Flat embeddings of the Möbius strip in R3. Commun. Appl. Nonlinear Anal. 9, 31–50 (2002).
    Google Scholar
  26. Fuller, F. B. Decomposition of the linking number of a closed ribbon: A problem from molecular biology. Proc. Natl Acad. Sci. USA 75, 3557–3561 (1978).
    Article CAS Google Scholar
  27. Barr, S. Experiments in Topology (Thomas Y. Crowell Company, New York, 1964).
    Google Scholar
  28. Stasiak, A., Katritch, V. & Kauffman, L. H. (eds) in Ideal Knots (Series on Knots and Everything, Vol. 19, World Scientific, Singapore, 1998).
  29. Halpern, B. & Weaver, C. Inverting a cylinder through isometric immersions and isometric embeddings. Trans. Am. Math. Soc. 230, 41–70 (1977).
    Article Google Scholar
  30. Mahadevan, L. & Keller, J. B. The shape of a Möbius band. Proc. R. Soc. Lond. A 440, 149–162 (1993).
    Article Google Scholar

Download references

Acknowledgements

This work was supported by the UK’s Engineering and Physical Sciences Research Council under grant number GR/T22926/01.

Author information

Authors and Affiliations

  1. Department of Civil and Environmental Engineering, Centre for Nonlinear Dynamics, University College London, London WC1E 6BT, UK
    E. L. Starostin & G. H. M. van der Heijden

Authors

  1. E. L. Starostin
    You can also search for this author inPubMed Google Scholar
  2. G. H. M. van der Heijden
    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toG. H. M. van der Heijden.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

About this article

Cite this article

Starostin, E., van der Heijden, G. The shape of a Möbius strip.Nature Mater 6, 563–567 (2007). https://doi.org/10.1038/nmat1929

Download citation

This article is cited by