The substrate specificity and structure of mitogen-activated protein (MAP) kinase-activated protein kinase-2 (original) (raw)

Abstract

The substrate specificity of mitogen-activated protein (MAP) kinase-activated protein kinase-2 (MAPKAP kinase-2) was investigated by using synthetic peptides related to the N-terminus of glycogen synthase. The minimum sequence required for efficient phosphorylation was found to be Xaa-Xaa-Hyd-Xaa-Arg-Xaa-Xaa-Ser-Xaa-Xaa, where Hyd is a bulky hydrophobic residue (Phe > Leu > Val >> Ala), and the peptide Lys-Lys-Phe-Asn-Arg-Thr-Leu-Ser-Val-Ala was phosphorylated with a Km of 9.3 microM and Vmax. of 10 mumol/min per mg. MAPKAP kinase-1 (a homologue of ribosomal protein S6 kinase) also requires an arginine three residues N-terminal to the serine (position n-3), but not a hydrophobic residue at position n-5. Neither MAPKAP kinase-1 nor MAPKAP kinase-2 could tolerate a proline residue at position n + 1, indicating that their specificities do not overlap with that of MAP kinase. The specificity of calmodulin-dependent protein kinase-II resembled that of MAPKAP kinase-2, except that it could tolerate replacement of the arginine by a lysine and the phosphorylation-site serine by a threonine residue. Partial cDNAs encoding MAPKAP kinase-2 were isolated from rabbit and human skeletal muscle and human teratocarcinoma libraries, and Northern-blotting experiments revealed a single 3.3 kb mRNA transcript present at similar levels in six human tissues examined. The catalytic domain was most similar (35-40% identity) to calmodulin-dependent protein kinases II and IV, phosphorylase kinase, putative serine kinase H1 and the C-terminal domain of MAPKAP kinase-1, which form one branch of the protein kinase phylogenetic tree. The sequence N-terminal to the catalytic domain is proline-rich and contains two putative SH3-binding sites. The threonine residue phosphorylated by MAP kinase lies immediately C-terminal to the catalytic domain and is followed by a nuclear localization signal, Lys-Lys-(Xaa)10-Lys-Arg-Arg-Lys-Lys, near the C-terminus.

843

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arrigo A. P., Suhan J. P., Welch W. J. Dynamic changes in the structure and intracellular locale of the mammalian low-molecular-weight heat shock protein. Mol Cell Biol. 1988 Dec;8(12):5059–5071. doi: 10.1128/mcb.8.12.5059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Browner M. F., Nakano K., Bang A. G., Fletterick R. J. Human muscle glycogen synthase cDNA sequence: a negatively charged protein with an asymmetric charge distribution. Proc Natl Acad Sci U S A. 1989 Mar;86(5):1443–1447. doi: 10.1073/pnas.86.5.1443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Campbell D. G., Hardie D. G., Vulliet P. R. Identification of four phosphorylation sites in the N-terminal region of tyrosine hydroxylase. J Biol Chem. 1986 Aug 15;261(23):10489–10492. [PubMed] [Google Scholar]
  4. Chen R. H., Sarnecki C., Blenis J. Nuclear localization and regulation of erk- and rsk-encoded protein kinases. Mol Cell Biol. 1992 Mar;12(3):915–927. doi: 10.1128/mcb.12.3.915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cicchetti P., Mayer B. J., Thiel G., Baltimore D. Identification of a protein that binds to the SH3 region of Abl and is similar to Bcr and GAP-rho. Science. 1992 Aug 7;257(5071):803–806. doi: 10.1126/science.1379745. [DOI] [PubMed] [Google Scholar]
  6. Clark-Lewis I., Sanghera J. S., Pelech S. L. Definition of a consensus sequence for peptide substrate recognition by p44mpk, the meiosis-activated myelin basic protein kinase. J Biol Chem. 1991 Aug 15;266(23):15180–15184. [PubMed] [Google Scholar]
  7. Cohen P. T. Cloning of protein-serine/threonine phosphatases. Methods Enzymol. 1991;201:398–408. doi: 10.1016/0076-6879(91)01036-2. [DOI] [PubMed] [Google Scholar]
  8. Dent P., Lavoinne A., Nakielny S., Caudwell F. B., Watt P., Cohen P. The molecular mechanism by which insulin stimulates glycogen synthesis in mammalian skeletal muscle. Nature. 1990 Nov 22;348(6299):302–308. doi: 10.1038/348302a0. [DOI] [PubMed] [Google Scholar]
  9. Dingwall C., Laskey R. A. Nuclear targeting sequences--a consensus? Trends Biochem Sci. 1991 Dec;16(12):478–481. doi: 10.1016/0968-0004(91)90184-w. [DOI] [PubMed] [Google Scholar]
  10. Donella-Deana A., Lavoinne A., Marin O., Pinna L. A., Cohen P. An analysis of the substrate specificity of insulin-stimulated protein kinase-1, a mammalian homologue of S6 kinase-II. Biochim Biophys Acta. 1993 Aug 18;1178(2):189–193. doi: 10.1016/0167-4889(93)90008-d. [DOI] [PubMed] [Google Scholar]
  11. Dubois M. F., Bensaude O. MAP kinase activation during heat shock in quiescent and exponentially growing mammalian cells. FEBS Lett. 1993 Jun 14;324(2):191–195. doi: 10.1016/0014-5793(93)81391-c. [DOI] [PubMed] [Google Scholar]
  12. Flotow H., Thomas G. Substrate recognition determinants of the mitogen-activated 70K S6 kinase from rat liver. J Biol Chem. 1992 Feb 15;267(5):3074–3078. [PubMed] [Google Scholar]
  13. Gaestel M., Schröder W., Benndorf R., Lippmann C., Buchner K., Hucho F., Erdmann V. A., Bielka H. Identification of the phosphorylation sites of the murine small heat shock protein hsp25. J Biol Chem. 1991 Aug 5;266(22):14721–14724. [PubMed] [Google Scholar]
  14. Gonzalez F. A., Raden D. L., Davis R. J. Identification of substrate recognition determinants for human ERK1 and ERK2 protein kinases. J Biol Chem. 1991 Nov 25;266(33):22159–22163. [PubMed] [Google Scholar]
  15. Graff J. M., Rajan R. R., Randall R. R., Nairn A. C., Blackshear P. J. Protein kinase C substrate and inhibitor characteristics of peptides derived from the myristoylated alanine-rich C kinase substrate (MARCKS) protein phosphorylation site domain. J Biol Chem. 1991 Aug 5;266(22):14390–14398. [PubMed] [Google Scholar]
  16. Hanks S. K., Quinn A. M., Hunter T. The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science. 1988 Jul 1;241(4861):42–52. doi: 10.1126/science.3291115. [DOI] [PubMed] [Google Scholar]
  17. Hanks S. K., Quinn A. M. Protein kinase catalytic domain sequence database: identification of conserved features of primary structure and classification of family members. Methods Enzymol. 1991;200:38–62. doi: 10.1016/0076-6879(91)00126-h. [DOI] [PubMed] [Google Scholar]
  18. Hanson P. I., Schulman H. Neuronal Ca2+/calmodulin-dependent protein kinases. Annu Rev Biochem. 1992;61:559–601. doi: 10.1146/annurev.bi.61.070192.003015. [DOI] [PubMed] [Google Scholar]
  19. Hepburn A., Demolle D., Boeynaems J. m., Fiers W., Dumont J. E. Rapid phosphorylation of a 27 kDa protein induced by tumor necrosis factor. FEBS Lett. 1988 Jan 25;227(2):175–178. doi: 10.1016/0014-5793(88)80892-5. [DOI] [PubMed] [Google Scholar]
  20. Jakob U., Gaestel M., Engel K., Buchner J. Small heat shock proteins are molecular chaperones. J Biol Chem. 1993 Jan 25;268(3):1517–1520. [PubMed] [Google Scholar]
  21. Kaur P., Saklatvala J. Interleukin 1 and tumour necrosis factor increase phosphorylation of fibroblast proteins. FEBS Lett. 1988 Dec 5;241(1-2):6–10. doi: 10.1016/0014-5793(88)81019-6. [DOI] [PubMed] [Google Scholar]
  22. Knauf U., Bielka H., Gaestel M. Over-expression of the small heat-shock protein, hsp25, inhibits growth of Ehrlich ascites tumor cells. FEBS Lett. 1992 Sep 14;309(3):297–302. doi: 10.1016/0014-5793(92)80793-g. [DOI] [PubMed] [Google Scholar]
  23. Landry J., Chrétien P., Lambert H., Hickey E., Weber L. A. Heat shock resistance conferred by expression of the human HSP27 gene in rodent cells. J Cell Biol. 1989 Jul;109(1):7–15. doi: 10.1083/jcb.109.1.7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Landry J., Lambert H., Zhou M., Lavoie J. N., Hickey E., Weber L. A., Anderson C. W. Human HSP27 is phosphorylated at serines 78 and 82 by heat shock and mitogen-activated kinases that recognize the same amino acid motif as S6 kinase II. J Biol Chem. 1992 Jan 15;267(2):794–803. [PubMed] [Google Scholar]
  25. Lavoinne A., Erikson E., Maller J. L., Price D. J., Avruch J., Cohen P. Purification and characterisation of the insulin-stimulated protein kinase from rabbit skeletal muscle; close similarity to S6 kinase II. Eur J Biochem. 1991 Aug 1;199(3):723–728. doi: 10.1111/j.1432-1033.1991.tb16176.x. [DOI] [PubMed] [Google Scholar]
  26. Meggio F., Chessa G., Borin G., Pinna L. A., Marchiori F. Synthetic fragments of protamines as model substrates for rat liver cyclic AMP-dependent protein kinase. Biochim Biophys Acta. 1981 Nov 13;662(1):94–101. doi: 10.1016/0005-2744(81)90228-x. [DOI] [PubMed] [Google Scholar]
  27. Pearson R. B., Woodgett J. R., Cohen P., Kemp B. E. Substrate specificity of a multifunctional calmodulin-dependent protein kinase. J Biol Chem. 1985 Nov 25;260(27):14471–14476. [PubMed] [Google Scholar]
  28. Regazzi R., Eppenberger U., Fabbro D. The 27,000 daltons stress proteins are phosphorylated by protein kinase C during the tumor promoter-mediated growth inhibition of human mammary carcinoma cells. Biochem Biophys Res Commun. 1988 Apr 15;152(1):62–68. doi: 10.1016/s0006-291x(88)80680-6. [DOI] [PubMed] [Google Scholar]
  29. Ren R., Mayer B. J., Cicchetti P., Baltimore D. Identification of a ten-amino acid proline-rich SH3 binding site. Science. 1993 Feb 19;259(5098):1157–1161. doi: 10.1126/science.8438166. [DOI] [PubMed] [Google Scholar]
  30. Saklatvala J., Kaur P., Guesdon F. Phosphorylation of the small heat-shock protein is regulated by interleukin 1, tumour necrosis factor, growth factors, bradykinin and ATP. Biochem J. 1991 Aug 1;277(Pt 3):635–642. doi: 10.1042/bj2770635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sasaki K., Shima H., Kitagawa Y., Irino S., Sugimura T., Nagao M. Identification of members of the protein phosphatase 1 gene family in the rat and enhanced expression of protein phosphatase 1 alpha gene in rat hepatocellular carcinomas. Jpn J Cancer Res. 1990 Dec;81(12):1272–1280. doi: 10.1111/j.1349-7006.1990.tb02690.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Scott J. D., Glaccum M. B., Fischer E. H., Krebs E. G. Primary-structure requirements for inhibition by the heat-stable inhibitor of the cAMP-dependent protein kinase. Proc Natl Acad Sci U S A. 1986 Mar;83(6):1613–1616. doi: 10.1073/pnas.83.6.1613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Simmerman H. K., Collins J. H., Theibert J. L., Wegener A. D., Jones L. R. Sequence analysis of phospholamban. Identification of phosphorylation sites and two major structural domains. J Biol Chem. 1986 Oct 5;261(28):13333–13341. [PubMed] [Google Scholar]
  34. Stewart A. A., Cohen P. Protein phosphatase-2B from rabbit skeletal muscle: a Ca2+-dependent, calmodulin-stimulated enzyme. Methods Enzymol. 1988;159:409–416. doi: 10.1016/0076-6879(88)59040-7. [DOI] [PubMed] [Google Scholar]
  35. Stokoe D., Campbell D. G., Nakielny S., Hidaka H., Leevers S. J., Marshall C., Cohen P. MAPKAP kinase-2; a novel protein kinase activated by mitogen-activated protein kinase. EMBO J. 1992 Nov;11(11):3985–3994. doi: 10.1002/j.1460-2075.1992.tb05492.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Stokoe D., Engel K., Campbell D. G., Cohen P., Gaestel M. Identification of MAPKAP kinase 2 as a major enzyme responsible for the phosphorylation of the small mammalian heat shock proteins. FEBS Lett. 1992 Nov 30;313(3):307–313. doi: 10.1016/0014-5793(92)81216-9. [DOI] [PubMed] [Google Scholar]
  37. Sutherland C., Campbell D. G., Cohen P. Identification of insulin-stimulated protein kinase-1 as the rabbit equivalent of rskmo-2. Identification of two threonines phosphorylated during activation by mitogen-activated protein kinase. Eur J Biochem. 1993 Mar 1;212(2):581–588. doi: 10.1111/j.1432-1033.1993.tb17696.x. [DOI] [PubMed] [Google Scholar]
  38. Traverse S., Gomez N., Paterson H., Marshall C., Cohen P. Sustained activation of the mitogen-activated protein (MAP) kinase cascade may be required for differentiation of PC12 cells. Comparison of the effects of nerve growth factor and epidermal growth factor. Biochem J. 1992 Dec 1;288(Pt 2):351–355. doi: 10.1042/bj2880351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Welch W. J. Phorbol ester, calcium ionophore, or serum added to quiescent rat embryo fibroblast cells all result in the elevated phosphorylation of two 28,000-dalton mammalian stress proteins. J Biol Chem. 1985 Mar 10;260(5):3058–3062. [PubMed] [Google Scholar]
  40. Woodgett J. R., Tonks N. K., Cohen P. Identification of a calmodulin-dependent glycogen synthase kinase in rabbit skeletal muscle, distinct from phosphorylase kinase. FEBS Lett. 1982 Nov 1;148(1):5–11. doi: 10.1016/0014-5793(82)81231-3. [DOI] [PubMed] [Google Scholar]
  41. da Cruz e Silva E. F., Cohen P. T. Isolation and sequence analysis of a cDNA clone encoding the entire catalytic subunit of phosphorylase kinase. FEBS Lett. 1987 Aug 10;220(1):36–42. doi: 10.1016/0014-5793(87)80871-2. [DOI] [PubMed] [Google Scholar]