Release of Ca2+ from a non-mitochondrial store site in peritoneal macrophages treated with saponin by inositol 1,4,5-trisphosphate (original) (raw)

Abstract

The effects of inositol 1,4,5-trisphosphate, prepared from human erythrocyte ghosts, on Ca2+ release from intracellular store sites were studied in saponin-treated guinea pig peritoneal macrophages. Micromolar concentrations of inositol 1,4,5-trisphosphate released Ca2+ within 1 min from store sites which had accumulated Ca2+ in the presence of 10 mM-NaN3. In the presence of 10 mM-NaN3, the Ca2+ accumulated in the presence of oxalate was seen in the endoplasmic reticulum of saponin-treated macrophages by electron microscopy, indicating that the site of Ca2+ released by inositol 1,4,5-trisphosphate may be endoplasmic reticulum-like membranes. When the concentrations of free Ca2+ were over 3.5 X 10(-6) M, the release of Ca2+ by this agent was inhibited. This inhibition may be due to either the higher concentration of extra-vesicular free Ca2+ or the larger accumulation of Ca2+ into the store site or perhaps both effects. MgCl2 also had an inhibitory effect on the Ca2+ release. Inositol 1,4,5-trisphosphate also released Ca2+ from cardiac sarcoplasmic reticulum, but not from erythrocyte inside-out vesicles.

229

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berridge M. J. Phosphatidylinositol hydrolysis: a multifunctional transducing mechanism. Mol Cell Endocrinol. 1981 Nov;24(2):115–140. doi: 10.1016/0303-7207(81)90055-1. [DOI] [PubMed] [Google Scholar]
  2. Burgess G. M., McKinney J. S., Fabiato A., Leslie B. A., Putney J. W., Jr Calcium pools in saponin-permeabilized guinea pig hepatocytes. J Biol Chem. 1983 Dec 25;258(24):15336–15345. [PubMed] [Google Scholar]
  3. Downes C. P., Michell R. H. The polyphosphoinositide phosphodiesterase of erythrocyte membranes. Biochem J. 1981 Jul 15;198(1):133–140. doi: 10.1042/bj1980133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Downes C. P., Mussat M. C., Michell R. H. The inositol trisphosphate phosphomonoesterase of the human erythrocyte membrane. Biochem J. 1982 Apr 1;203(1):169–177. doi: 10.1042/bj2030169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Harafuji H., Ogawa Y. Re-examination of the apparent binding constant of ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid with calcium around neutral pH. J Biochem. 1980 May;87(5):1305–1312. doi: 10.1093/oxfordjournals.jbchem.a132868. [DOI] [PubMed] [Google Scholar]
  6. Hirata M., Hamachi T., Hashimoto T., Suematsu E., Koga T. Ca2+ release in the endoplasmic reticulum of guinea pig peritoneal macrophages. J Biochem. 1983 Oct;94(4):1155–1163. doi: 10.1093/oxfordjournals.jbchem.a134460. [DOI] [PubMed] [Google Scholar]
  7. Hirata M., Hamachi T., Suematsu E., Koga T. Stimulation of Ca2+ efflux by N-formyl chemotactic peptides in guinea-pig peritoneal macrophages. Biochim Biophys Acta. 1983 Dec 19;763(4):339–345. doi: 10.1016/0167-4889(83)90095-2. [DOI] [PubMed] [Google Scholar]
  8. Hirata M., Hashimoto T., Hamachi T., Koga T. Changes of intracellular free Ca2+ in macrophages following N-formyl chemotactic peptide stimulation. Direct measurement by the loading of quin 2. J Biochem. 1984 Jul;96(1):9–16. doi: 10.1093/oxfordjournals.jbchem.a134834. [DOI] [PubMed] [Google Scholar]
  9. Hirata M., Inamitsu T. Effect of diltiazem on the release of calcium from the canine fragmented cardiac sarcoplasmic reticulum. Jpn J Pharmacol. 1983 Oct;33(5):991–997. doi: 10.1254/jjp.33.991. [DOI] [PubMed] [Google Scholar]
  10. Hirata M., Koga T. ATP-dependent Ca2+ accumulation in intracellular membranes of guinea pig macrophages after saponin treatment. Biochem Biophys Res Commun. 1982 Feb 26;104(4):1544–1549. doi: 10.1016/0006-291x(82)91427-9. [DOI] [PubMed] [Google Scholar]
  11. Hirata M., Suematsu E., Koga T. Effect of calmodulin and calmodulin antagonists on the Ca2+ uptake by the intracellular Ca2+-accumulating system of guinea pig peritoneal macrophages treated with saponin. Mol Pharmacol. 1983 Jan;23(1):78–85. [PubMed] [Google Scholar]
  12. Hoffstein S. T. Ultrastructural demonstration of calcium loss from local regions of the plasma membrane of surface-stimulated human granulocytes. J Immunol. 1979 Sep;123(3):1395–1402. [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. Le Peuch C. J., Le Peuch D. A., Demaille J. G. Phospholamban, activator of the cardiac sarcoplasmic reticulum calcium pump. Physicochemical properties and diagonal purification. Biochemistry. 1980 Jul 8;19(14):3368–3373. doi: 10.1021/bi00555a042. [DOI] [PubMed] [Google Scholar]
  15. McGraw C. F., Somlyo A. V., Blaustein M. P. Localization of calcium in presynaptic nerve terminals. An ultrastructural and electron microprobe analysis. J Cell Biol. 1980 May;85(2):228–241. doi: 10.1083/jcb.85.2.228. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Michell R. H. Inositol phospholipids and cell surface receptor function. Biochim Biophys Acta. 1975 Mar 25;415(1):81–47. doi: 10.1016/0304-4157(75)90017-9. [DOI] [PubMed] [Google Scholar]
  17. Streb H., Irvine R. F., Berridge M. J., Schulz I. Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate. Nature. 1983 Nov 3;306(5938):67–69. doi: 10.1038/306067a0. [DOI] [PubMed] [Google Scholar]
  18. Suematsu E., Hirata M., Hashimoto T., Kuriyama H. Inositol 1,4,5-trisphosphate releases Ca2+ from intracellular store sites in skinned single cells of porcine coronary artery. Biochem Biophys Res Commun. 1984 Apr 30;120(2):481–485. doi: 10.1016/0006-291x(84)91279-8. [DOI] [PubMed] [Google Scholar]
  19. Takenawa T., Homma Y., Nagai Y. Role of Ca2+ in phosphatidylinositol response and arachidonic acid release in formylated tripeptide- or Ca2+ ionophore A23187-stimulated guinea pig neutrophils. J Immunol. 1983 Jun;130(6):2849–2855. [PubMed] [Google Scholar]
  20. Waisman D. M., Gimble J. M., Goodman D. B., Rasmussen H. Studies of the Ca2+ transport mechanism of human erythrocyte inside-out plasma membrane vesicles. I. Regulation of the Ca2+ pump by calmodulin. J Biol Chem. 1981 Jan 10;256(1):409–414. [PubMed] [Google Scholar]
  21. Yagawa K., Onoue K., Aida Y. Structural studies of Fc receptors. I. Binding properties, solubilization, and partial characterization of fc receptors of macrophages. J Immunol. 1979 Jan;122(1):366–373. [PubMed] [Google Scholar]